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Abstract 

This study provides empirical evidence on the effects of production risk on smallholder 
farmers’ adoption of farm technology, using plot-level data collected from two semi-arid 
districts in Kenya, Machakos and Taita Taveta. Using Mundlak’s approach (1978), the study 
found that factors such as yield variability and the risk of crop failures indeed affect 
technology adoption decisions in low-income, rainfed agriculture. However, the direction and 
magnitude of effects depend on the farm technology under consideration. The results explain 
why poor farm households in rainfed and risky production environments are reluctant to adopt 
new farm technologies that could improve production: it is because the technologies involve 
enormous downside risks. This result underscores the fact that productivity gain is a 
necessary, but not sufficient, condition to attract farmers to adopt new technologies and 
agricultural innovations.  

Keywords: farm productivity; production risk; farm technology adoption; Kenya 

JEL classification: D81 ; Q12 ; Q18 

 

Grâce à des données au niveau de la parcelle, réunies dans deux districts semi-arides du 
Kenya, le Machakos et le Taita Taveta, cette étude apporte une preuve empirique des effets du 
risque de production concernant l’adoption d’une technologie agricole par les petits fermiers. 
Au moyen de l’approche de Mundlak (1978), l’étude a révélé que pour la culture sèche, à 
petits revenus, des facteurs comme la variabilité des récoltes et le risque de pertes de récoltes 
affectent en effet les décisions d’adopter une technologie. Pourtant, la direction et la 
magnitude des effets dépendent de la technologie agricole à l’étude. Les résultats expliquent 
pourquoi les petits fermiers des zones de culture sèche et de production à risque sont réticents 
à l’idée d’adopter de nouvelles technologies agricoles qui pourraient améliorer la 
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production : parce que les technologies impliquent d’énormes risques baissiers. Ce résultat 
souligne le fait que le gain de productivité est une condition nécessaire mais pas suffisante 
pour motiver les fermiers à adopter de nouvelles technologies et innovations agricoles.  

Mots-clés : productivité agricole ; risque de production ; adoption de la technologie 
agricole ; Kenya 

Catégories JEL : D81 ; Q12 ; Q18 

 

1. Introduction 

In sub-Saharan Africa, more than 70% of the poor live in rural areas. The rural poor are 
heavily dependent on their natural resource base, particularly soil and its productive capacity. 
The main physical asset of poor farmers is land, and its contribution to their income is far 
more important than physical capital. Land degradation in the form of soil erosion and 
nutrient depletion pose a threat to food security and the sustainability of agricultural 
production, particularly in the less favored dryland areas. In Kenya, the magnitude of soil 
erosion losses to the economy has been estimated as equivalent to US$390 million annually or 
3.8% of gross domestic product (Cohen et al., 2006). In response, government and 
development partners have devoted substantial resources to improving environmental 
conditions and increasing agricultural productivity. In particular, they have emphasized as a 
possible solution the use of modern farm technology – such as soil and water conservation 
technologies and fertilizer – that would enable farmers to increase their productivity while 
conserving the soil capital (MoA, 2004; World Bank, 2008). However, adoption of modern 
technology has been limited in most of sub-Saharan Africa. This is particularly the case in 
Kenya, where small-scale agriculture remains characterized by little use of external inputs, 
soil erosion and high nutrient depletion. The government has initiated extension worker 
programs to promote the adoption of improved technology. However, despite the concerted 
efforts by government and development partners, the adoption rate of improved farm 
technology remains disappointingly low.  

Many questions about the determinants of farm technology adoption remain unanswered. 
Earlier research was devoted to individual and plot characteristics (see Feder et al., 1985, for a 
detailed survey). More recent studies have explored the role of social factors in technology 
adoption (Foster & Rosenzweig, 1995; Nyangena, 2008). A key element missing from the 
research is empirical analysis of the role of risk in investing in technology and production 
effects among low-income farmers. Production risk is an important element in agricultural 
production decisions, particularly in the uptake of farm technology. If poor people are risk 
averse, they will be reluctant to invest in modern technology; thus, they will remain poor 
unless ways are found to minimize the downside effects (Antle, 1983; Dercon, 2004). For 
risk-averse individuals, an increase in variance with enormous downside risk may make the 
individual worse off. Only economically secure farmers who have sufficient defense against 
downside risk will undertake profitable capital investments and innovations, while most of the 
poor remain caught in a risk-induced poverty trap (Eswaran & Kotwal, 1990; Rosenzweig & 
Binswanger, 1993; Mosley & Verschoor, 2005; Dercon & Christiaensen, 2007; Yesuf & 
Bluffstone, 2009).  

Despite the significant role that risk exposure plays in production decisions, there is scant 
empirical literature on the role of production risk in farm investment decisions in low income 
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rainfed agriculture. Notable exceptions are the works of Hassan and Hallam (1990), Fufa and 
Hassan (2003), Koundouri et al. (2006), Groom et al. (2008) and Kassie et al. (2008). With 
the exception of Kassie et al. (2008), they used cross-sectional data and econometric 
approaches that left the unobserved heterogeneities uncontrolled for. If correlated to some of 
the observed factors that could potentially create inconsistency and bias in the parameter 
estimates, this could lead to the wrong policy conclusions. In this study we used plot-level 
data that mimic the major features of panel data. We also used a pseudo-fixed effect 
econometric approach to control for unobserved heterogeneities. Unlike the above studies, we 
also used a two-stage instrumental variable estimation approach to address the potential 
endogeneity problems involved in our estimation. Our study extends the literature on farm 
technology adoption in low-income countries by bringing out the issue of risk exposure 
through alternative and more robust estimation procedures. 

The data used in this study were collected by the International Food Policy Research Institute 
(IFPRI) in 2003 from 321 maize-growing households in two districts, Taita Taveta and 
Machakos, which are in an arid region of Kenya. The data were collected at plot level and 
thus are rich with details of households and plots. Manure, chemical fertilizer and terracing 
are the major farm technologies adopted in our study sites and hence are the only ones 
considered in our study.  

Our choice of maize is premised on the fact that this is a key food crop in Kenya, constituting 
3% of Kenya’s overall GDP, 12% of agricultural GDP and 21% of the total value of primary 
agricultural commodities (GoK, 1998). Maize cultivation occupies about 1.4 million hectares 
of land in the country, with 25% of large-scale farmers and 75% of small-scale farmers 
engaged in its production. The productivity of maize has been on a downward trend since the 
1970s, a period that was preceded by a fairly successful maize green revolution. Pingali 
(2001) estimates per capita maize production at 79 kg and consumption at 103 kg, implying 
that the country is increasingly importing maize. 

The rest of the paper is organized as follows. Section 1 offers a brief overview of the 
literature, Section 2 discusses the conceptual framework used to analyze the farmers’ adoption 
decisions in the presence of production risk, Section 3 presents the econometric 
specifications, Section 4 describes and discusses the data, Section 5 presents and discusses the 
empirical results, and Section 6 concludes by summarizing the findings and offering policy 
recommendations. 

 

2. The literature on poverty, risk exposure and farm technology adoption 

To increase agricultural productivity, modern inputs such as soil and water conservation 
technologies and fertilizer are important. Manure application can also be a crucial supplement 
to or even substitute for fertilizer, especially among the resource-poor smallholders. In sub-
Saharan Africa, adoption levels remain low. Feder et al. (1985) conducted a comprehensive 
survey to summarize factors in adopting farm technologies and agricultural innovations. 
Among other factors, whether to adopt a technology or not depends on the profitability of the 
technology, farmer education and other observed and unobserved differences among farmers 
and across farming systems (Suri, 2009).  

In Kenya, studies by the International Maize and Wheat Improvement Center (CIMMYT) and 
other similar research institutions examined the factors that affect the productivity of maize 
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and the adoption of farm technologies among maize growers. These studies showed that 
farmer characteristics such as age, gender, levels of education and wealth, and institutional 
factors (such as access to capital and labor markets, land tenure security and social capital) are 
important in farm technology adoption decisions (see Foster & Rosenzweig, 1995; Mwangi et 
al., 1998; Jackson & Watts, 2002; Doss, 2003; Nyangena, 2008). Missing from the literature, 
in the Kenyan and other cases in sub-Saharan Africa, is the link between risk exposure and 
technology adoption decisions. When farmers are poor, they depend solely on rain for their 
farming and cannot create a safety net to fall back on during times of drought and other 
setbacks. As a result, they are hesitant to engage in any investment that involves some 
possibility of downside risk, even if it promises higher returns (Just & Pope, 1979; 
Rosenzweig & Binswanger, 1993). Under such circumstances, farmer households opt to stick 
to low-risk technologies despite the low returns – a decision that perpetuates the vicious circle 
of poverty (Dercon & Christiaensen, 2007; Yesuf & Bluffstone, 2009).  

Using a dynamic model and observed data from the Philippines, Shively (1997, 2001) showed 
how investments in soil conservation may affect small farmers’ production and threaten their 
food security – a consumption risk that may be a disincentive to adopt soil conservation 
technologies in low-income countries. His results showed that on small farms the risk of 
consumption shortfall generates inefficient patterns of soil conservation adoption. The 
observed adoption patterns reflected the risk characteristics of the soil conservation method, 
and the differences in farm size and risk exposure among farmers. Similarly, using panel data 
and historical rainfall patterns as a proxy for counterfactual consumption risk, Dercon and 
Christiaensen (2007) showed how low-consumption outcomes during harvest failure 
discourage the application of fertilizer by small farmers in Ethiopia. 

Despite a growing trend in the literature to examine the impact of consumption risk on farm 
technology adoption, the role of production risk is less well documented. Understanding the 
link between production risk exposure and technology adoption decisions is vital in order to 
scale up existing successful farm technologies across poor farm households and reduce food 
insecurity and rural poverty in many of these countries. This study is one effort to understand 
this linkage using detailed plot-level information and proper econometric tools in arid areas of 
Kenya. 

 

2. Conceptual framework 

This section describes the conceptual framework used to explain farm households’ input use 
and production investment. This study applies a flexible moment-based approach, as first 
suggested by Antle (1983, 1987). 

Following Koundouri et al. (2006), we assume that farmers are risk averse and use a vector of 
conventional inputs, X , and other soil conserving and conditioning inputs, such as soil and 
water conservation, fertilizers and manure, represented by vector S to produce a single 
output q . The household incurs production risk because crop yield is affected by uncertain 
climatic conditions. This risk is captured by a random variable,  , whose distribution (.)G  is 
exogenous to the household’s actions. Let ( )p  and ( )r  be the corresponding vectors of output 
and input prices, respectively; farmers are assumed to be price takers in both markets. The 
prices are assumed to be nonrandom and hence climatic variables are the only source of 
uncertainty. The production function is given by: 
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 HXSfq /,  ,     (1) 

 

where q is output, S and X are soil conserving and conditioning, and standard inputs that are 
conditioned by plot and household endowments, (H).1 This function is assumed to be well 
behaved, continuous and twice differentiable.  

Allowing for risk aversion, the household’s problem is to maximize the expected utility of 
gross income as follows: 

 

   )(]})()(),,([max)(
,,

 dGSrXrXSpfEUEMax
SXXS     (2) 

 

U(.) is the von Neumann-Morgenstern function. The first-order condition for the soil 
conserving and conditioning input choice is given by the following: 
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where U  is the change in utility of income following a change in income, 
( )U 


 
  

,   is 

the farm income and rs is the price of the soil conserving and conditioning input. A similar 
procedure could be followed to derive the first-order necessary conditions for the standard 
input X. For the risk-neutral households, the second term in the right-hand side of equation 
(3b) will disappear and adoption of farm technology will depend on the traditional marginal 
conditions.  

For the risk-averse households, this term is different from zero. The second term on the right-
hand side in equation (3b) is different from zero and measures deviations from the risk 
neutrality situation. The term is proportional and should be opposite in sign to the marginal 
risk premium with respect to the soil conserving and conditioning input.  

In the absence of risk and market imperfections, the optimal solution for the soil conserving 
and conditioning input would depend mainly on the input and output vectors and plot 
characteristics. However, in the presence of risk aversion and market imperfection, the 

                                                 
1 Hereafter, H is suppressed for simplicity.  
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optimal solution would also depend on the shape of functions U(.), f (.) and G(.), and 
household endowments.  

Solving equations (3a) and (3b) is empirically difficult. In addition to the choice of 
technology specification, the distribution of ε needs to be known and the agent’s preferences 
need to be specified. For this reason, Antle (1983, 1987) proposed a flexible estimation 
approach that has the advantage of requiring only cross-sectional information on prices and 
input quantities, plus other observables, such as plot and household characteristics and 
endowments. According to this approach and without loss of generality, maximizing the 
expected utility of farm income with respect to any input is equivalent to maximizing a 
function of moments of the distribution of ε, those moments having themselves X and S as 
arguments (see Antle 1983, 1987). In our study, we computed the first three moments of our 
stochastic production function and included them as our covariates in analyzing the adoption 
decisions for each soil conserving and conditioning input. Our empirical approach is 
discussed in the next section. 

 

3. Empirical methodology 

This section presents the empirical methodology used in this study to compute moments of 
production function and analyze the major determinants of farm technology adoption in 
Kenya. The econometric estimation of production risk impact on soil conserving and 
conditioning technology adoption is conducted in two steps. First, we compute the first three 
sample moments (namely, mean, variance and skewness) of each household from the 
production function, then the estimated moments are included alongside other explanatory 
variables in a pseudo-fixed effect probit model to determine whether production risk has any 
impact on farm technology adoption.  

Using plot-level data from Kenya, maize production per unit area was regressed on farm 
inputs, including soil conserving and conditioning inputs, observed plot, and household and 
institutional characteristics to get the estimates of the mean effect. The model takes the 
following form: 

 

  )/,,( HXSfY  ,     (4) 

 

where Y is the maize production per unit of land obtained by the household; S and X are 
production inputs/technologies as described above,   is the random variable capturing 
unobserved natural shocks (mainly climate-related) and other unobservables,   is a vector of 
parameters to be estimated and H and plot are household endowments. 
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The thj central moment of value of maize production about its mean is given as: 

 

{[ (.) ] }jj e Y    for j=2….m            (5) 

 

where  denotes the mean value of maize production. The estimated residuals from the mean 
regression are estimates of the first moment of value of maize production distribution. The 
estimated residuals   are then squared and regressed on the same set of explanatory variables 
as in equation (6): 

 

vHXSf 


)/,,( 22
2                                     (6) 

 

The least squares estimates of 2̂  are consistent and asymptotically normal (Antle, 1983). 

The predicted values of 2 are also consistent estimates of the second central moment 
(variance of maize production) of maize production distribution. This approach has been used 
in the literature (see Antle, 1983; Kim & Chavas, 2003; Koundouri et al., 2006). 

Consistent estimates can only be obtained when unobserved heterogeneity that may be 
correlated with observed explanatory variables is controlled for. We achieve this by exploiting 
the panel data characteristics of our data. Two options are available: 1) using household-
specific fixed effects or 2) using random effect. In our case, fixed effect is undesirable 
because some households have only a single plot and would be dropped in the analysis. 
Furthermore, some of our variables of interest (such as institutional variables) are measured at 
the household level. The use of fixed effect would mean excluding those variables from the 
analysis. Random effect, on the other hand, would leave the household heterogeneities 
uncontrolled for. This implies that we cannot use purely fixed effect or purely random effect 
models. Instead, we blend the two. A pseudo-fixed effect model (Mundlak, 1978) runs a 
random effect model, but mimics the basic features of a fixed effect model by including the 
mean values of plot-variant explanatory variables in our regression, so that most of the 
household heterogeneities would be controlled for indirectly. Mundlak’s approach is based on 
the assumption that unobserved effects are linearly correlated with explanatory variables, as 
specified below: 

 

μh = α x  +℮h, ℮h~ iid(0,σ2
ε) , (7) 
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where α is corresponding vector of coefficients, x  is the mean of plot-variant explanatory 

variables within each household and ℮ is a random error term which is uncorrelated with x . 
The fact that α is significant implies that household heterogeneity is an issue and should be 
properly taken care of, using a fixed or pseudo-fixed effect approach. Following Mundlak’s 
approach, we included mean distance of plots from homesteads, mean plot slope, mean soil 
type and mean plot size in our regression to account for some of the household heterogeneities 
in a random effect model. The use of the pseudo-fixed effect approach would also help us to 
address the problem of endogeneity bias, if it is caused by household heterogeneities. But, if 
the causes are plot (time) varying factors, we still need to address the problem of 
endogeneities with other alternative approaches. In our estimation, we tested and found that 
fertilizer use is an endogenous variable in our production model. We thus used a two-stage 
instrumental variable (IV) approach and a control function approach to address the problem of 
endogeneity in our estimation. These are discussed in more detail in the results section below.  

 

4. The data 

This study was based on primary data collected by IFPRI from the Machakos and Taita 
Taveta districts in Kenya in 2003. A random sample of 321 households (43% from Machakos 
and 57% from Taita Taveta) was visited and a detailed questionnaire used to collect the 
requisite data. The basic descriptive statistics of the variables used in the paper are 
summarized in Table 1. 

 

Table 1: Basic descriptive statistics 

 Machakos Taita Taveta Districts combined 

Variable Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Household characteristics       

Age of household head 49 14 53 13 51 14 

Male-headed households 0.91  0.77  0.83  

Education of household head 7 4 6 4 6 4 

District where plot is located 0.43  0.57  1  

Household size 6 3 6 3 6 3 

Farm characteristics       

Farm size (ha) 3.5 6.7 3.2 4.6 3.3 5.6 

Manure input per ha (kg) 759.6 1775 170.8 213.9 602 1544 

Fertilizer input per ha (kg) 20.3 23 0 0 20.3 23 

Labor input per ha (days) 50 60.2 80.8 214.3 67.5 166.8 

Terrace length per ha (meters) 325.5 392.9 162.8 396.2 233.2 402.5 

Proportion of terraced plots 0.85  0.5  0.65  

Proportion of plots manured 0.6  0.17  0.35  

Proportion of plots fertilized 0.33  0  0.14  

Flat plots 0.21  0.26  0.24  
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Gentle slope 0.4  0.34  0.37  

Medium slope 0.28  0.35  0.32  

Steep slope 0.11  0.05  0.07  

Sandy plots 0.23  0.1  0.16  

Sandy loam plots 0.44  0.64  0.55  

Loamy silt plots 0.25  0.16  0.2  

Clay soil plots 0.08  0.1  0.09  

Distance from homestead (meters) 262.6 609 1137.3 1942.2 758.9 1576.5 

Institutional factors       

Access to extension services 0.24  0.44  0.33  

Time to nearest market (minutes 
walking) 108 19 89 39 97 33 

Membership in organizations 0.81  0.48  0.62  

Tenure security 0.23  0.13  0.17  

 

The average land holding is slightly more than three hectares in both districts. In our sample, 
55% of the plots are sandy loam, 20% are loamy silt and the remaining 25% are sandy clay. 
Furthermore, in both districts 60% of the plots are on flat land or gentle slopes, and 
approximately 40% are on medium to steep slopes. The average distance of plots from 
homesteads is 759 meters. In terms of use of soil conserving and conditioning inputs, about 
65%, 35% and 14% of plots are terraced, spread with manure, and fertilized, respectively, 
although the intensity of use of these technologies varies by district.  

In terms of basic household characteristics, 83% of the households are male-headed, the 
average age of the household heads is 51 years, and the household heads have on average six 
years of education. 

In terms of access to basic infrastructure and institutions, 33% of households reportedly have 
access to agricultural extension services and 62% are members of one or more civil or local 
organizations and networks (a proxy for social capital). The average distance to the nearest 
market is about 97 walking minutes. In terms of tenure security, only 17% of the sampled 
households feel secure in their land tenure, while 83% feel they have no form of tenure 
security.  

 

5. Results and discussion 

In this section, we present and discuss the regression results. We first present the results from 
our production model, together with our estimates of the three moments (mean, variance and 
skewness). We then present and discuss the pseudo-probit model results for each of the 
technologies, where production risk factors are included as right-hand side variables. 
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5.1 The production model results 

Although crop output is not the direct focus of our study, it is important to highlight a few 
results about it because it is the source of our risk variables. Fertilizer is an endogenous 
variable and would bias our results if not addressed. As a result, we employ an instrumental 
variable two stage least squares (IV 2SLS) approach to tackle the problem. Other variables, 
such as labor and manure, are treated as purely exogenous because the households depend on 
their own manure, which takes a long time to accumulate, and household population for labor. 
The F-statistic of 20.45 is an indication of strong instruments and the over-identification test 
results of 0.009 Sargan score and Basmann chi-square with p-value of 0.92 indicate that the 
instruments are valid (see Bound et al., 1995; Staiger & Stock, 1997). 

The results are consistent with the theory and findings of other studies. They indicate that 
technologies are output increasing. Labor turns out to be the input with the greatest impact on 
output, followed by manure and then terracing. The impact of fertilizer, although 
insignificant, has the right sign, which indeed has economic significance. The statistical 
insignificance of fertilizer input could be largely because most of the farm households apply 
insufficient quantities, as shown by the summary statistics. 

 

Table 2: Regression estimates of the production function (output per hectare as the 
dependent variable) 

Variable Parameter estimate 

 IV-2SLS 

Household characteristics  

Male-headed households -0.150 (0.284) 

Farm characteristics  

Log fertilizer intensity (kg) 0.275 (0.321) 

Log manure intensity (kg) 0.170*** (0.066) 

Log labor intensity (man days) 0.438*** (0.05) 

Log terrace intensity (meters) 0.101*** (0.036) 

Manure and terrace -0.022 (0.014) 

Constant 2.265 (0.284) 

Sargan (score) chi2(1)= 0.0093 (p = 0.923)  

Basmann chi2(1)= 0.0091 (p = 0.924)  

No. of observations 494 

F-statistic (2, 486) = 20.447*** 

 

5.2 The adoption model results 

In this section, we generate the first three moments of the production function in the previous 
section and use them as additional covariates to examine their impacts on the farm technology 
adoption decision. We used a pseudo-fixed effect probit model to examine these relationships. 
As discussed in Section 5.1, above, the pseudo-fixed effect model helps us to control for 
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unobserved heterogeneities and address the problem of selection and endogeneity. The fact 
that the mean values of plot varying explanatory variables are significant indicates the 
superiority of our pseudo-fixed effect estimates over a simple random effect probit model that 
leaves the unobserved heterogeneities uncontrolled for. Table 3 presents the results of our 
pseudo-fixed effect adoption model. 

 

Table 3: Determinant of terrace, manure and fertilizer adoption 

Explanatory 
variable Terrace adoption 

Manure Fertilizer 

Adoption Intensity Adoption Intensity 

Risk measures     

Predicted mean yield 
of maize 

0.037 (0.039) 0.102** (0.36) -0.273(0.59) 0.173***(0.02) 0.615***(0.037) 

Predicted variance of 
yield 

-0.038 (0.039) -0.165***(0.036) -2.18***(0.577) -0.015(0.02) -0.065*(0.038) 

Predicted skewness 
of yield 

0.005*** (0.002) -0.0001 (0.002) 0.045**(0.022) -0.01***(0.0009) -0.033***(0.002) 

Household characteristics 

Household size 0.034*** (0.007) -0.002 (0.006) -0.004(0.034) -0.001(0.004) 0.021***(0.007) 

Age of household 
head (years)  

0.001 (0.002) -0.001 (0.001) -0.007(0.008) -0.00003(0.0008) 0.002(0.002) 

Education of 
household head 
(years) 

0.010* (0.005) 0.002(0.005) 0.025(0.025) 0.004 (0.003) 0.008(0.005) 

Sex of household 
head (male) -0.163**(0.058) 0.116** (0.053) 0.785***(0.287) 0.14*** (0.03) 0.518***(0.056) 

Social capital 0.045**(0.022) 0.022 (0.96) 0.124(0.108) 0.008(0.012) 0.011(0.022) 

Farm characteristics 

Plot size 0.001 (0.009) 0.013(1.31) 0.038(0.043) 0.002(0.005) -0.006(0.009) 

Distance of plot from 
homestead  

-0.00003 (0.00002) 
-0.00005** 

(0.00002) 
-0.0003**(0.0001) 0.000(0.000) 0.00003*(0.00002) 

Gentle slope 0.007 (0.069) 0.025 (0.063) 0.065(0.328) 0.002 (0.035) -0.056(0.066) 

Medium slope -0.024(0.11) 0.091(0.101) 0.494(0.529) -0.01 (0.057) -0.117(0.107) 

Steep slope -0.178 (0.171) 0.011 (0.57) 0.205(0.817) -0.005(0.088)  

Location, Taita 
Taveta -0.350***(0.05) -0.198***(0.046) -1.322***(0.241) -0.109***(0.026) 0.034(0.049) 

Loamy soil -0.146 *(0.085) 0.080 (0.078) 0.234(0.409) -0.019 (0.044) -0.006(0.082) 

Clay soil -0.09 (0.128) 0.157 (0.117) 0.42(0.616) -0.045 (0.066) -0.138(0.123) 

Average plot size 0.006 (0.01) 0.002 (0.009) -0.017(0.047) 0.002 (0.005) -0.004(0.009) 

Average plot distance 
from homestead 

0.0001**(0.00003) 0.00004* (0.00002) 0.0002(0.0001) 0.000 (0.000) 0.000(0.000) 

Average plot slope 0.118** (0.059) 0.023 (0.054) 0.096(0.283) 0.025 (0.031) 0.054(0.057) 

Average soil type 0.137*(0.074) -0.127* (0.068) -0.247(0.358) 0.035 (0.038) 0.089(0.072) 

Institutional factors 

Distance to nearest 
market (minutes 
walking) 

0.0002 (0.0006) 0.0002 (0.0006) -0.001(0.003) 0.008(012) -0.00001(0.0006) 

Secure land tenure 0.125**(0.053) -0.074(0.049) -0.237(0.256) -0.025(0.028) 0.028(0.052) 
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Number of extension 
visits 

-0.016 (0.017) -0.046**(0.016) -0.274***(0.082) 0.016 *(0.009) 0.045***(0.017) 

No. of observations 483 483 480 483 483 

Wald chi2  (23)=211.38*** (23)=356.14*** (23)=455.48*** (23)=949.86*** (23)=2523.28*** 

***, **, * = significant at 1%, 5% and 10%, respectively. 

 

The first moment has a highly significant positive effect on fertilizer adoption and manure 
application. This implies that farm households are driven by profit/output maximization and 
would be motivated to apply yield increasing methodologies whenever they are guaranteed 
higher returns. The same positive effect is also reflected in the intensity of fertilizer 
application. 

Yield variability, as reflected by the second moment, has a negative impact on manure 
application, intensity of manure application, and fertilizer application. This indicates that 
farmers are discouraged from applying manure and applying manure plus fertilizer in 
sufficient quantities when yields are less certain. They would rather accept a low output than 
invest heavily in pursuit of a higher, but uncertain, output. As much as farmers are driven by 
profit/output maximization, they are also risk averse and will minimize investment in risky 
ventures. 

A higher possibility of crop failure (downside risk), as measured by skewness of yield, 
increases the probability that farmers will adopt terracing and reduces the probability that they 
will adopt fertilizer. At the same time, this probability increases the intensity of manure use 
and reduces the intensity of fertilizer application. Farm households possibly view terracing 
and more intensive application of manure as measures for rehabilitating plots that are heavily 
degraded and no longer promise any yields. Fertilizer, a yield enhancing input, is only 
attractive to the farmer when the possibility of crop failure is low – the farmers are motivated 
to adopt fertilizer technology and apply fertilizer in sufficient quantities when yields are more 
guaranteed. Alternatively, the farm households could view manure and terracing as risk-
reducing and fertilizer as risk-increasing. 

Besides production risk variables, plot-level variables (such as distance of plot from 
homestead and district where the plot is located), household characteristics (such as household 
size, education, sex of household head and household social networks), and institutional 
factors (such as security of land tenure and number of visits by government extension 
officers) have statistically significant effects on farmers’ decisions to adopt or not adopt a 
given technology. 

Household size is positively correlated with terracing. That is, a marginal increase in 
household membership increases the probability that the household will adopt terracing as a 
means of conserving and conditioning soil. This is not surprising, since terracing is labor-
intensive and would favor larger households. Therefore, when households rely on family 
labor, as in the districts we studied, a large household becomes an obvious positive predictor 
of terracing. Intensity of fertilizer application is also positively influenced by household size 
and, again, this is possibly due to the high labor input requirement associated with it. 

Education of the household head increases the probability of a farm household adopting 
terracing. This is because a better educated household head, the primary decision maker, is 
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more capable of accessing and assimilating information about the various technologies, their 
advantages, and the dangers of not adopting them.  

Female household heads have a higher probability of adopting soil conserving and 
conditioning technology than their male counterparts. This is perhaps because smallholder 
agriculture is dominated by women, and any crop failure would affect them more heavily. On 
the other hand, female-headed households have a lower probability of adopting manure and 
fertilizer. This is probably because men control more resources and therefore male-headed 
households have a better chance of purchasing fertilizer. Further, accumulating manure 
requires keeping livestock, an activity most commonly associated with men. A more intensive 
application of fertilizer and manure is also associated with male-headed households. 

Social capital has a positive effect on the probability of terrace adoption. Social capital and 
networks help farmers to mobilize the necessary labor, equipment and skills for terrace 
construction. Quality networks may also be essential for mobilizing financial resources and 
agricultural extension services that can translate into better agricultural practices. 

Distance from the homestead to the plot reduces the probability and intensity of manure use. 
Because manure is normally accumulated in the backyard and is heavy and bulky, farmers 
may be less willing to apply it if the plot is farther from the homestead. Moreover, where the 
farmer relies on hired labor, it becomes more expensive to apply manure on plots far from the 
homestead. Equally important are the management challenges of farms that lie far from the 
homestead. Such farms are more vulnerable to crop theft and invasion by animals. As a result, 
a household may not find it prudent to invest heavily in such plots. It is also possible that 
distant plots may have been more recently acquired or opened up for cultivation (and 
therefore the soil is less exhausted), hence the reduced need for manure. Conversely, distance 
from homestead to plot is directly related to intensity of fertilizer application. This could 
indicate that farm households tend to substitute fertilizer for manure as homestead-to-plot 
distance increases. 

Farmers in Taita Taveta are less likely than their counterparts in Machakos to adopt terracing, 
manure and fertilizer application. Farming in Machakos is more profitable because it lies 
closer to Nairobi and ready markets for high-value crops. This motivates farmers in Machakos 
to use land more sustainably through terracing and manure application and to increase output 
through fertilizer use. The profitability of farming in Machakos also means that the farmers 
have more resources to invest in farm technology. Other factors that give Machakos an edge 
over Taita Taveta in farm technology adoption are better participation in social organizations, 
more secure land tenure and less labor-intensive agriculture. Again, it must be appreciated 
that terracing in Machakos dates back to the colonial periods. The technology has been in the 
area for a longer period and its use known to a wider cross-section of farmers. Intensity of 
manure application is also lower in Taita Taveta than in Machakos. 

Secure land tenure increases the probability of adoption of terracing. Terracing is an 
expensive technology in the short run and its returns are not immediate, meaning it would 
only be undertaken by a farmer who was assured of the land ownership. Farmers who have no 
secure land tenure prefer short-term investments in land. It is thus not surprising that the 
probability of fertilizer adoption decreases with secure land tenure because the farmer’s focus 
shifts to a longer time horizon rather than short-term gains. In such circumstances, the farmer 
may be concerned with the negative effects of fertilizer to the soil in the long run. 
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The number of visits by government agricultural extension officers negatively influences the 
probability of manure application but increases the probability of fertilizer use. This implies 
that extension services in the country focus on modern farm inputs and put hardly any 
emphasis on traditional farm inputs, such as manure, despite their advantages. Consequently, 
farmers who have more contact with extension officers reduce their use of traditional inputs in 
favor of modern inputs. 

 

6. Summary and policy recommendations 

This study examined the role of production risk in the adoption of soil conserving and 
conditioning inputs in two semi-arid districts of Kenya, Taita Taveta and Machakos. Antle’s 
method of moments was used to generate the three moments of production of maize. These 
three moments were later used as covariates in the pseudo-fixed effect probit model to 
examine their effects on adoption decision.  

Empirical analysis revealed that production risk factors (both yield variance and downside 
risk) are important determinants of farm technology adoption decisions in rural Kenya. 
Variability of maize output reduces the probability of manure use and intensity of fertilizer 
application. The predicted mean yield increases the probability of fertilizer and manure 
application by farmers. The intensity of fertilizer use is also positively influenced by the 
predicted mean yield. A higher probability of crop failure (downside risk) encourages farmers 
to undertake terracing and apply manure more intensively, but lowers the probability and 
intensity of fertilizer use. This indicates that use of fertilizer is meant to increase output, while 
manure input and terracing are used to maintain the level of yield or to restore severely 
degraded soils that no longer promise good yields. Thus, farmers view manure application 
and terracing as means to reduce downside risk. 

Other factors that are important in technology adoption are farm location, distance of plot 
from homestead, education of household head, number of visits by agricultural extension 
officers and tenure security as perceived by farmers. Social capital, gender of the household 
head and household size are also important. 

These findings have various policy implications. When formulating agricultural or land 
management policies, it is important to consider the role of risks. Generally, all technologies 
have a degree of risk associated with them. When farmers are risk averse, economic 
instruments to hedge against exposure to risks are necessary to motivate them to adopt the 
desired technologies quickly and easily. For instance, when considering promoting the use of 
fertilizer and manure, policies must be put in place to hedge against the potential production 
risk associated with the introduction of the technology. Given the missing insurance market, 
this is perhaps possible through the introduction of safety nets to guard against such downside 
risk.  

The impact of production risk on technology adoption varies by technology type. Policies, 
therefore, should be customized to different technologies in different environments. A 
toolbox, one-size-fits-all, approach to policy should be discouraged. Regional, farm-level and 
household-level factors should all be fused into the policies, if such policies are to succeed.  

Security of tenure is essential if policies are to succeed in promoting greater adoption of 
terracing as a sustainable soil and water management technology. This makes it necessary for 
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the government not only to issue land titles but also to convince citizens of the sanctity of 
such titles. This will stimulate long-term investment in land and help farmers avoid the 
poverty trap. Social capital and networks also need to be encouraged to scale up successful 
adoption of soil and water conservation technologies in areas where access to information and 
labor scarcity are key constraints. 
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