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Executive Summary 

This paper deals with efficient estimates of the parameters in consumer demand systems.  
It is well known that such estimates are obtained if and only if one makes use of all the 
available theoretical and statistical information.   
 We assume that consumer households are risk-neutral and maximize their 
expected utility subject to an expected budget constraint. The idea of dealing with 
expected information is not new and it allows the drawing of a clear distinction between 
the specification of the theoretical model and the specification of the statistical structure 
of the error terms in the intervening econometric model.  The process of expectation 
formation belongs to the individual consumer and needs not be further specified, given 
the risk-neutrality assumption. 
            We view the econometric process of estimating systems of demand functions as a 
two-step approach. First, the consumer chooses his consumption plan according to the 
theoretical model specified above. Second, the econometrician intervenes some time later 
to collect information about the choices made by a sample of consumers and, in so doing, 
he introduces measurement errors on all the sample information involved, namely 
quantities and prices of real goods and disposable income.  
 The theoretical development, therefore, must be coupled with the specification of 
the error structure associated with the observed quantities of real goods, their observed 
prices and disposable income to form the econometric model of interest.  The traditional 
approach to demand analysis is to assume that only the observed quantities of real goods 
are measured with error.  In contrast, we allow for all the sample quantities, prices and 
disposable income to be measured with error.  This is not an assumption but rather an 
empirical fact of data collection. This primal-dual approach was originally suggested by 
Paris (2003d). 
 The specification of the primal-dual approach requires the utilization of all the 
primal and dual relations of consumer theory in order to provide estimable equations for 
all the error terms involved on both the observed quantities and prices of the real goods. 
This process of data generation and collection constitutes a novel primal-dual 
specification of the econometric model for consumer demand. This proposition is the 
main contribution of the paper. It departs in a radical way from the traditional approach 
that uses only the dual side of consumer theory.  
 The second contribution of the paper is a suggestion for an efficient estimating 
procedure that implements the primal-dual specification articulated above. Presumably, 
there may exist alternative estimation approaches (Bayesian, for example) and the 
procedure presented here is only one of them. 
 The estimation approach is divided into two phases.  The objective of Phase I is 
the estimation of all the expected quantities and prices for each sample unit. These 
estimates are then used in Phase II for obtaining efficient estimates of the model 
parameters.  The Phase II specification of the consumer demand model takes on the form 
of a nonlinear seemingly unrelated (NSUR) equation system. Hence, it can be estimated 
by a maximum likelihood approach (alternatively, an iterated feasible generalized least-
squares procedure). 
 The model selected for illustrating the primal-dual approach is the Linear 
Expenditure System (LES), with two sets of parameters: The first set of nonnegative 
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parameters, say the beta parameters, constitute the structural parameters of the Cobb-
Douglas utility function that characterizes the LES model. Identification of these 
parameters requires that they add up to unity. The second set of parameters, say the 
gamma parameters, one for each good, are interpreted as the “subsistence” quantity of the 
corresponding good. The restriction on these parameters is that be nonnegative and have 
a value that is inferior to the minimum sample quantity of the corresponding good. 
 An interesting and novel by-product of the primal-dual approach is that the 
system of demand functions must be specified in terms of the quantities of real goods.  In 
other words, an expenditure share specification is not admitted because, now that all the 
observed quantities and prices are measured with error, the complexity of the 
corresponding error term is unyielding and unnecessary.  This specification of the primal-
dual demand system implies that it is no longer necessary to drop an equation because the 
variance/covariance matrix of the residuals is, in general, not singular.  
 The sample data utilized for the empirical implementation of the LES model deal 
with 119 Italian households that made their consumption choice over four goods: bread 
and cereals, meat, beverages, and other food. The estimates of the primal-dual model 
indicate a considerable gain in efficiency when compared with the estimates of the 
traditional dual model. 
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Introduction 

A well-known proposition asserts that efficient estimates of an econometric model are 

obtained if and only if one makes use of all the available theoretical and statistical 

information. Keeping this proposition in mind, we investigate the task of estimating a 

Linear Expenditure System (LES) of consumer demand (Klein and Rubin, 1947-48, 

Stone, 1954) using the traditional approach and a novel approach based upon the joint 

estimation of all the primal and dual relations of the standard consumer theory. This 

primal-dual approach was originally suggested by Paris (2003a, 2003b, 2003c, 2003d), 

who also developed an analogous rationale and methodology for estimating factor 

demand and output supply functions. We will also present the extension of the primal-

dual approach to an Almost Ideal Demand System (AIDS). 

 We assume that consumer households are risk-neutral and maximize their 

expected utility subject to an expected budget constraint. The idea of dealing with 

expected information is not new and it allows the drawing of a clear distinction between 

the specification of the theoretical model and the specification of the statistical structure 

of the error terms in the intervening econometric model.  The process of expectation 

formation belongs to the individual consumer and needs not be further specified, given 

the risk-neutrality assumption.  
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 We view the econometric process of estimating systems of demand functions as a 

two-step approach. First, the consumer chooses his consumption plan according to the 

theoretical model specified above in terms of expected information. Second, the 

econometrician intervenes some time later to collect information about the choices made 

by a sample of consumers and, in so doing, he introduces measurement errors on all the 

sample information involved, namely quantities and prices of real goods and disposable 

income.  

 The theoretical development, therefore, must be coupled with the specification of 

the error structure associated with the observed quantities of real goods, their observed 

prices and disposable income to form the econometric model of interest. The 

specification of the primal-dual approach requires the utilization of all the primal and 

dual relations of consumer theory in order to provide estimable equations for all the error 

terms involved on both the observed quantities and prices of the real goods. This process 

of data generation and collection constitutes a primal-dual specification of the 

econometric model for consumer demand. This proposition is the main contribution of 

the paper. It departs in a radical way from the traditional approach that uses only the dual 

side of consumer theory.  

 The second contribution of the paper is a suggestion for an estimating procedure 

that implements the primal-dual specification articulated above. The resulting 

econometric specification is a nonlinear errors-in-variables system of equations. The 

nonlinear error-in-variables problem has received a great deal of attention in recent years 

(Amemiya,1985; Amemiya and Fuller, 1988; Hsiao, 1989; McFadden, 1989; Hsiao and 

Wang, 2000; Gorrieroux and Monfort, 1993; McFadden and Ruud, 1994; Carroll, 
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Ruppert and Stefanski, 1995; Kukush and Zwanzig, 2002; Kukush, Markovsky and van 

Huffel, 2002). In spite of all these interesting efforts, a general and easy-to-implement 

consistent estimator for the general errors-in-variables problem has yet to be discovered. 

In particular, no discussion of a nonlinear system when all the variables are measured 

with error seems to have appeared in the literature. 

 Given this background, we propose the following approach to estimation of the 

primal-dual model of consumer theory under measurement error.  We suggest an easy-to-

estimate two-phase procedure that, in phase II, may be regarded as a (NSUR) nonlinear 

seemingly unrelated equation model. The statistical properties of this estimator are 

presently unknown.  For this reason, we analyze the estimator by means of a Monte Carlo 

(MC) experiment that mimics very closely the empirical model at hand and shows that 

the bias is very small. 

 The estimation approach is divided into two phases.  The objective of Phase I is 

the estimation of all the expected quantities and prices for each sample unit. These 

estimates are then used in Phase II for obtaining efficient estimates of the model 

parameters.  The Phase II specification of the consumer demand model takes on the form 

of a nonlinear seemingly unrelated (NSUR) equation system. Hence, it can be estimated 

by an iterated feasible generalized least-squares procedure. 

 The model selected for illustrating the primal-dual approach is the Linear 

Expenditure System, with two sets of parameters: The first set of nonnegative parameters, 

say the beta parameters, constitute the structural parameters of the Cobb-Douglas utility 

function that characterizes the LES model. Identification of these parameters requires that 

they add up to unity. The second set of parameters, say the gamma parameters, one for 
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each good, are interpreted as the “subsistence” quantity of the corresponding good. The 

restriction on these parameters is that be nonnegative and have a value that is inferior to 

the minimum sample quantity of the corresponding good. The gamma parameters are 

important determinants of the price elasticities of demand. 

 An interesting by-product of the primal-dual approach is that the system of 

demand functions must be specified in terms of the quantities of real goods.  In other 

words, an expenditure share specification is not admitted because, now that all the 

observed quantities and prices are measured with error, it takes the full primal-dual 

system of relations to estimates the moments of the error distribution.  This specification 

of the primal-dual demand system implies that it is no longer necessary to drop an 

equation because the variance/covariance matrix of the residuals is, in general, not 

singular.  

 The sample data utilized for the empirical implementation of the LES model deal 

with 119 Italian households that made their consumption choice over four goods: bread 

and cereals, meat, beverages, and other food. The estimates of the primal-dual model 

indicate a considerable gain in efficiency when compared with the estimates of the 

traditional dual model. 

  

The Theory 

We postulate risk-neutral consumers who maximize their expected utility subject to an 

expected budget constraint. The idea of dealing with expected information is not new. 

The process of expectation formation belongs to the individual consumer and needs not 

be further specified, given the risk-neutrality assumption.  Hence, let 

� 

pe  be the 

� 

(J ×1)  
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vector of expected prices and 

� 

ye  the expected disposable income available to the risk-

neutral household. We assume that the consumer solves the following problem 

(1)   

� 

U *(pe ,ye ) =
def

max
x

{Ue(x)  s.t.  ye = ′ p ex} 

where 

� 

x  is a 

� 

(J ×1)  vector of commodity quantities. The first-order-necessary conditions 

corresponding to problem (1) are  

(2)   

� 

∂L
∂x

= Ux
e(x)− λpe = 0

∂L
∂λ

= ye − ′ p ex = 0
 

where 

� 

L  is the Lagrangean function and 

� 

λ  is the Lagrange multiplier associated with the 

budget constraint. Equations (2) constitute the primal relations. Solution of equations (2) 

(if it exists) transforms the vector of commodity quantities 

� 

x  into a vector of expected 

quantities

� 

xe . Similarly, the Lagrange multiplier 

� 

λ  becomes the expected Lagrange 

multiplier 

� 

λe  taking on the meaning of marginal utility of money income, that 

is

� 

U
ye
* (pe ,ye ) = λe , where 

� 

U *(⋅)  is the indirect utility function.   We assume an interior 

solution of equations (2) that will generate commodity demand functions with values 

(3)   

� 

xe = de(pe ,ye ). 

Equations (3) constitute the dual relations. In the case of a flexible specification of the 

demand functions (3), such as in the Almost Ideal Demand System (AIDS) of Deaton and 

Muellbauer (1980), the first-order necessary conditions (2) exist only in a latent form. 

This suggests that the first order necessary conditions convey independent information 

that is not fully utilized in the conventional estimation of the AIDS demand system. 
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The Error Structure 

The theoretical development of the previous section must be coupled with the 

specification of the error structure associated with the observed quantities of real goods, 

their observed prices and disposable income to form the econometric model of interest.  

The traditional approach to demand analysis is to assume that only the observed 

quantities of real goods are measured with error.  In contrast, we allow for all the sample 

quantities, prices and disposable income to be measured with error.  This is not an 

assumption but rather an empirical fact of data collection. In other words, the 

econometrician observes 

� 

x, p and y  that bear an additive relation with their expected 

counterparts, that is 

� 

x = xe + ε, p = pe + ν  and

� 

y = ye + ν0 . The vector of errors 

� 

′ e = ( ′ ε , ′ ν ,ν0 ) is distributed as 

� 

e ~ N(0,Σ) . We further assume that the errors are 

independently distributed across sample units. 

 The combination of the statistical model specified above and the primal and dual 

relations of the previous section can be summarized in the following econometric 

structure: 

The statistical model 

(4)  

� 

p = pe + ν   

(5)  

� 

y = ye + ν0    

(6)  

� 

x = xe + ε  

subject to the theoretical constraints 

(7)  

� 

pe = Ux e
e (xe ,β

Ue ) /Uye
* (pe ,ye ,β

U* ) 

(8)  

� 

ye = ′ p exe  

(9)  

� 

xe = de(pe ,ye ,βx e ) . 
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 Suppose that both the observed and the expected quantities and prices were 

known. Then, the problem of estimating the parameters 

� 

β
Ue ,βU*  and 

� 

βx e  would be a 

straightforward application of a nonlinear seemingly unrelated (NSUR) equation 

procedure to the following model 

  

� 

p =Ux e
e (xe ,β

Ue ) /Uye
* (pe ,ye ,β

U* )+ ν  

  

� 

y = ′ p exe + ν0  

  

� 

x = de(pe ,ye ,βx e )+ ε . 

Unfortunately, expected quantities and prices are rarely, if ever, recorded and it is 

necessary to obtain an estimate of them before achieving the final objective. The 

estimation problem, then, consists in the estimation of all the expected quantities, 

expected prices and expected disposable income together with the parameters 

� 

β
Ue ,βU*  

and 

� 

βx e  that specify the utility and the demand functions. 

 

The Econometric Model 

We assume a sample of N household with index 

� 

n =1,...,N . There are probably 

alternative approaches suitable for estimating the specification presented in the previous 

section. The estimation procedure proposed here is articulated in two-phases. The Phase I 

objective consists in obtaining estimates of all the individual households’ expected 

quantities and prices.  These estimates, then, will be used during Phase II to obtain the 

final estimates of the model’s parameters.  
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 The Phase I specification minimizes the least-squares objective function. 

Specifically, let 

� 

β = (β
Ue ,βU* ,βx e ) be the vector of parameters that constitute the final 

goal of the estimation process.  Then, the Phase I estimation problem is stated as follows: 

(10)   

� 

min
β,p jn

e ,x jn
e ,yn

e ,en
′ e nen

n=1

N
∑  

subject to 

(11)   

� 

pn = pn
e + νn  

(12)   

� 

yn = yn
e + ν0n  

(13)   

� 

xn = xn
e + εn  

and 

(14)   

� 

pn
e =Ux e ,n

e (xn
e ,β

Ue ) /Uye ,n
* (pn

e ,yn
e ,β

U* ) 

(15)   

� 

yn
e = ′ p n

exn
e  

(16)   

� 

xn
e = dn

e (pn
e ,yn

e ,βx e ) . 

 The estimates of expected quantities and prices 

� 

ˆ p n
e , ˆ y n

e , ˆ x n
e  will be used in the Phase 

II estimation problem. The objective function of Phase II is a weighted least-squares 

specification. Let 

� 

ˆ Σ )y(
−1  be the estimated covariance matrix computed from the estimated 

residuals of the first order necessary conditions and of the demand functions of Phase I, 

where the error associated with the budget constraint is omitted. Thus, the error vector is 

� 

e = (ν,ε) . The error associated with the budget constraint has been omitted because in 

Phase II the expected expenditure is known and there is no error term to minimize. Then, 

the Phase II estimation problem consists in the application of the NSUR procedure to the 

following model: 
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(17)   

� 

min
β ,en

′ e n ˆ Σ )y(
−1 en

n=1

N
∑ /NJ  

subject to 

(18)   

� 

pn = Ux e ,n
e ( ˆ x n

e ,β
U e ) /U

ye ,n
* ( ˆ p n

e , ˆ y n
e ,β

U* ) + νn  

(19)   

� 

xn = dn
e ( ˆ p n

e , ˆ y n
e ,βx ) + εn  

where N is the number of observations and J is the number of equations. Iteration to 

convergence of the covariance matrix 

� 

ˆ Σ )y(
−1  will produce the final estimates of the 

parameter vectors 

� 

β
Ue ,βU*  and βx . The model’s specification presented above assumes 

that the errors in different equations are equally weighted. A preliminary Monte Carlo 

analysis suggests that different weighting schemes have a negligible impact upon the 

parameter estimates. 

 We point out that an important stopping rule of the iteration process is provided 

by the convergence of the objective function to the number 1 since 

� 

tr ′ U Σ−1U = trU ′ U Σ−1 = NJ , where the operator tr is the trace and 

� 

U = e1,...,eJ[ ] .  That is, 

the optimal convergence point of the objective function is known a priori. We have found 

empirically that convergence to the number 1 is faster than the convergence to the 

number NJ, which is the reason for the form of the objective function specified in 

equation (17).  

 

The Linear Expenditure System 

In the Linear Expenditure System (LES) originally suggested by Klein and Rubin (1947-

48) and estimated by Stone (1954), the direct utility takes on the following Cobb-Douglas 

specification: 
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(20)   

� 

Ue(x) = β j log(x j
j=1

J
∑ − γ j )  

where 

� 

x j > γ j ≥ 0  and the parameter 

� 

γ j  represents a subsistence level of the 

corresponding good and where the nonnegative parameters 

� 

β j  must sum up to unity, 

� 

β j =1j∑ , for identification purposes. 

 The Phase II econometric model takes on the following specification: 

(21)    

� 

min
β ,en

′ e n ˆ Σ )y(
−1 en

n=1

N
∑ /NJ  

subject to 

Primal relations 

(22)   

� 

pjn = Ux j
e ,n

e ( ˆ x jn
e ,β

U e ) /U
ye ,n
* ( ˆ p jn

e , ˆ y n
e ,β

U* ) + ν jn

   = β j
( ˆ y n

e − ˆ p kn
e γ k )k=1

J∑

( ˆ x jn
e − γ j )

+ ν jn

 

Dual relations 

(23)   

� 

x jn = d jn
e ( ˆ p jn

e , ˆ y n
e ,βx j

) +ε jn

     = γ j + β j
( ˆ y n

e − ˆ p kn
e γ k )k=1

J∑

ˆ p jn
e +ε jn

 

  

 The LES demand functions are homogeneous of degree zero in prices and income 

and satisfy the Slutsky equation if all the estimated parameters 

� 

˜ β j  and 

� 

˜ γ j  are positive and 

� 

˜ β jj∑ = 1, as required by the above specification. Hence, no hypothesis testing is possible 

for these important properties of demand functions. 

 The LES model of consumer behavior admits an explicit solution of the first-

order-necessary conditions. This means that, during the Phase I estimation, either the 

primal or the dual relations are redundant. We re-emphasize, however, that, during the 
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Phase II, relations (22) and (23) convey independent information through different errors 

and their distributions. They are both required, therefore, for a complete specification of 

the econometric model, if one wishes to obtain more efficient estimates of the model’s 

parameters. In the case of a flexible functional form specification such as the AIDS 

model, for example, neither the primal nor the dual relations are redundant even during 

Phase I. 

 

The Traditional LES Model and Its Estimation 

In contrast to the primal-dual specification discussed above, the traditional estimation of 

the LES model assumes that prices and disposable income are measured without error.  

Hence, the problem reduces to the estimation of the (dual) system of demand functions 

(23), with a considerable loss of efficiency, as will be illustrated in the empirical section.  

 Traditionally, consumer demand systems have been estimated in expenditure 

share form. The reason for selecting this specification is probably based upon the 

empirical fact that household surveys often record only the expenditure on the various 

categories of goods and not the corresponding quantities and prices, separately. The 

primal-dual approach presented above, however, does not admit such a specification of 

the demand system because the error terms of the demand equations would become 

unnecessarily complex and the individual error terms could not be estimated. 

Furthermore and contrary to the share specification, the primal-dual approach does not 

require dropping any equation because the corresponding variance/covariance of the 

disturbance terms is not singular. The justification of this proposition goes as follows. 

Demand equations (23) have the structure of a nonlinear seemingly unrelated (NSUR) 
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equation specification. Estimates of this model, obtained by an iterated Feasible 

Generalized Least Squares procedure are stated as 

� 

˜ ε nj , ˜ β j , ˜ γ j  and 

� 

˜ β jj∑ = 1. Then, it must 

be that:  

   

� 

pnj xij = pnj ˜ γ j + ˜ β j (yn − pnk ˜ γ kk∑ ) + pnj ˜ ε nj
pnj xnjj∑ = pnj ˜ γ jj∑ + ˜ β jj∑ (yn − pnk ˜ γ kk∑ ) + pnj ˜ ε njj∑

yn = yn + pnj ˜ ε njj∑

0 = pnj ˜ ε njj∑

 

QED. That is, the restriction 

� 

pnjj∑ εnj = 0 , which in a model stated in terms of good 

expenditures (the dependent variable is 

� 

pnj xnj ) corresponds to the “restriction” 

� 

pnjj∑ xnj = yn  (met by all sample observations), is naturally satisfied in model (23) and 

the variance/covariance matrix 

� 

˜ Σ = ˜ ε nj ˜ ε nk /N
n
∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  is, in general, not singular.  

  In summary, when distinct quantities and prices of all commodities are available 

for every sample unit, it is more appropriate to estimate the demand system in quantity 

form than in either expenditure or share form.  Because the LES model is nonlinear in the 

parameters, a change of scale may make a good deal of difference both upon the 

estimates and their standard errors. 

 

Empirical Results 

A cross-section sample of 119 consumers who made their choices over bundles of four 

real goods (bread and cereals, meat, beverages, other foods) was utilized for the 

estimation of the above LES model. Information on quantities and expenditures on the 

four goods was available for each sample unit. Hence, it was possible to compute the 

corresponding commodity prices (unit values) for each consumer.  The estimation of the 
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Phase II was performed using the SHAZAM 9 econometric package and the iterated   

NSUR procedure. 

 Table 1 presents the results of the Phase II estimation of the primal-dual model 

along with the estimates of the LES model obtained using the traditional approach. We 

adopted the out-of-sample prediction procedure suggested by Fuller (1980) for nonlinear 

models and estimated the prediction of the last observation, number 119. The values of 

the estimated beta parameters in the two models are within a rather narrow neighborhood 

of each other. However, the values of the gamma parameters are quite different: all the 

values of the gamma parameters of the traditional LES model violate the theoretical 

restriction that 

� 

min
i
(xij ) > γ j ≥ 0 , while all the values of the gamma parameters in the 

primal-dual model satisfy those conditions. The values of the t-ratios of the primal-dual 

model are consistently and considerably higher than the corresponding t-ratios of the LES 

model. Hence, the results of Table 1 support the proposition that the estimation of the 

LES consumer model produces more efficient estimates when using the primal-dual 

approach.  

 The efficiency gain documented by the results of Table 1 is measured by the 

increase in the value of t-ratios to which there corresponds a smaller value of the variance 

of the estimates. 

 In both cases the variance/covariance matrix is well conditioned as indicated by 

the condition number associated with each of the models.  Belsley et al. have suggested 

that collinearities may begin to arise when the condition number is near or above 30. 
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Table 1. Iterated NSUR Estimates of the LES model  

             (t-ratios in parenthesis) 

Parameters 
 

Traditional 
LES model 
 

Primal-Dual LES 
model 

Bread & cereals 
      

� 

β1 
0.04500 
(4.495) 
 

0.07516 
(52.57) 

Meat 
      

� 

β2  
0.18879 
(11.77) 
 

0.15372 
(414.44) 

Beverages 
      

� 

β3  
0.20320 
(12.12) 
 

0.20301 
(346.52) 

Other foods 
      

� 

β4  
0.56300 
(21.32) 
 

0.56812 
(368.69) 

Bread & cereals 
      

� 

γ1 
0.81685 
(21.739) 
 

0.17288 
(19.435) 

Meat 
      

� 

γ2  
0.38904 
(10.82) 
 

0.15485 
(256.29) 

Beverages 
      

� 

γ 3  
1.3493 
(7.351) 
 

0.05220 
(6.598) 

Other foods 
       

� 

γ 4  
2.1027 
(10.579) 
 

0.03015 
(2.728) 

Log-Likelihood -137.9925 
 

1121.573 

Condition  
Number of 

� 

Σ 
8.706 20.587 

 

 Table 2 presents the estimates of the out-of-sample prediction for all the 

dependent variables in the respective models. As stated above, we chose to predict the 

values of observation N. 119.  Overall, the predictions of the primal-dual model appear to 

be closer to the actual values than those of the traditional model. 
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 Table 2. Out-of-Sample Prediction of Observation 119 in the LES model  

             (t-ratios in parenthesis) 

Dependent 
Variables 
 

Observation 119 
Actual Values 

Traditional LES 
model 
 

Primal-Dual LES 
model 

Bread & cereals 
       

1.15 0.91965 
(2.7405) 
 

0.9819 
(3.87) 

Meat 
       

1.20 0.52380 
(3.548) 
 

0.5286 
(3.10) 

Beverages 
       

2.50 2.0376 
(2.585) 
 

2.5123 
(37.27) 

Other foods 
       

1.10 3.0158 
(5.612) 
 

1.6847 
(13.54) 

Price of 
Bread & cereals 
       

0.6 ------ 
 

0.3737 
(1.656) 

Price of Meat 
       

1.9 ------- 
 

1.7783 
(34.14) 
 

Price of 
Beverages 
       

0.4 ------- 
 

0.3564 
(1.813) 

Price of 
Other food 
        

0.8 ------- 
 

1.5087 
(7.695) 

 

 

 Table 3 presents the estimated variance/covariance matrix of the residuals. It 

appears that the variances of the residuals in any demand equation of the primal-dual 

specification are considerably smaller than the corresponding variances in the traditional 

model.  
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Table 3.  Variance/covariance matrices of the residuals 
_______________________________________________________________________ 
SIGMA MATRIX of the traditional LES model 
        q1            q2            q3           q4 

 
q1   0.10928 
q2   0.11551E-01  0.20517E-01 
q3  -0.95759E-01 -0.14903E-01   .60383 
q4  -0.56190E-01 -0.43189E-01  -.13240       .28027 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
SIGMA MATRIX of the primal-dual LES model  
 
        p1          p2         p3           p4          q1           q2          q3           q4 
 

p1   0.59366E-01 

p2  -0.17408E-03  0.25097E-01 

p3  -0.58309E-02  0.25474E-03  0.40408E-02 

p4  -0.11953E-01 -0.66197E-02 -0.29823E-02  0.13974E-01 

q1   0.43796E-01  0.52107E-02 -0.46102E-02 -0.95242E-02  0.46482E-01 

q2  -0.86016E-03  0.69884E-02  0.81152E-04 -0.14204E-02  0.21219E-02   0.24322E-02 

q3  -0.17338E-01 -0.17054E-02  0.10305E-01 -0.92647E-02 -0.14462E-01  -0.13820E-03  0.33890E-01 

q4  -0.20982E-01 -0.14904E-01 -0.44839E-02  0.18958E-01 -0.19124E-01  -0.40583E-02 -0.14132E-01  0.34153E-01 

 
________________________________________________________________________ 
 
 

 Finally, Table 4 presents the expenditure and price elasticities evaluated at the 

sample mean. It can be shown that the expenditure elasticity,

� 

η j , in the LES model is 

equal to 

  

� 

η j = β j /wj  

where 

� 

wj = p jx j / y  is the expenditure share of the j-th good. Similarly, the Marshallian 

own price elasticity, 

� 

e jj
M , can be stated as 

  

� 

e jj
M = −1+ (1− β j )(γ j / x j ) 

while the Marshallian cross-price elasticities are equal to 

  

� 

e jk
M = −β j (pkγ k / pjx j ). 
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Hence, if 

� 

γ j  is positive, as postulated by the original specification and as we would 

expect for food categories, the demand for the j-th commodity is inelastic. The 

corresponding Hicksian price elasticities can be stated as 

 

� 

e jk
H = e jk

M + η jwk . 

The Hicksian price elasticities are relevant for a welfare analysis of the consumer 

problem.  

 The first two commodities involved in the empirical analysis (bread and cereals, 

meat) are food categories that could be regarded as “necessity” goods. Table 4 shows that 

the expenditure elasticities of both models reflect this expectation. From the magnitude of 

the expenditure elasticities beverages and “other food” are to be considered “luxury” 

commodities. Both the Marshallian and the Hicksian own price elasticities of the primal-

dual model are more responsive than those of the traditional LES model. The Hicksian 

cross-price eslasticities of the primal-dual model have larger absolute values than the 

corresponding elasticities of the traditional model. 

 Notice that while the Marshallian cross-price elasticities indicate that all the 

commodities are gross complements (this characteristic is implied by the LES model 

when all the beta and gamma parameters are positive), the Hicksian cross-price 

elasticities indicate that all the commodities are gross substitutes (this result is not 

implied by the LES model). 
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Table 4. Expenditure and (Marshallian and Hicksian) Price Elasticities 

              (evaluated at the sample means) 
 
Expenditure 
Elasticities 

LES Traditional 
model 

LES Primal-Dual 
model 
 

Bread & cereals 0.4209 0.7749 
Meat 0.9890 0.7690 
Beverages 1.0518 1.0756 
Other food 1.1060 1.1044 
 
Marshallian price elasticities: traditional LES model 
                q1            q2            q3             q4 
q1  -0.1472597  -0.0500327  -0.0426791  -0.1577379 
q2  -0.0919421  -0.4463100  -0.1059385  -0.3915389 
q3  -0.0996054  -0.1345430  -0.5678010  -0.4241732 
q4  -0.0993272  -0.1341671  -0.1144477  -0.6586734 
 
Marshallian price elasticities: Primal-Dual model 
               q1            q2            q3              q4 

q1  -0.8221749  -0.0389523  -0.0032695  -0.0044655 
q2  -0.0160878  -0.7784319  -0.0033353  -0.0045554 
q3  -0.0212071  -0.0523811  -0.9833059  -0.0060049 
q4  -0.0216506  -0.0534766  -0.0044886  -0.9951954 
 

 
Hicksian price elasticities: traditional LES model 
               q1             q2            q3             q4 
q1  -0.1022577   0.0303274   0.0386461   0.0565331 
q2   0.0137867  -0.2575100   0.0851289   0.1118748 
q3   0.0128371   0.0662456  -0.3646010   0.1112067 
q4   0.0189162   0.0769801   0.0992353  -0.0956734 
 
Hicksian price elasticities: Primal-Dual model 
               q1             q2             q3            q4 
q1  -0.7470549   0.1159914   0.1429720   0.3941417 
q2   0.0584390  -0.6247119   0.1417512   0.3909037 
q3   0.0830681   0.1626987  -0.7803059   0.5473078 
q4   0.0854132   0.1673550   0.2039403  -0.4270854 
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Monte Carlo Analysis of the Primal-Dual LES model 

The two-phase primal-dual estimator discussed in previous sections is simple to 

implement but its statistical properties are currently unknown. Hence, given the 

complexity of the errors-in-variables system of nonlinear equations discussed above, it is 

of interest to make an empirical assessment of the extent by which the two-phase primal-

dual estimator may perform within the context of the LES model.   

 To this end, we performed a Monte Carlo analysis of the primal-dual estimator 

using the approximate estimates of the LES model presented in Table 1 as the benchmark 

parameter values.  In particular, the beta parameter values in the Monte Carlo experiment 

were selected as 

� 

(β1 = 0.1,β2 = 0.2,β3 = 0.2,β4 = 0.5)  while the gamma parameter values 

were chosen as 

� 

(γ1 = 0.17,γ2 = 0.15,γ 3 = 0.20,γ 4 = 0.15) . The latent expected prices and 

expected total expenditure were chosen as the sample information that was perturbed by 

measurement errors within a wide range of 10 to 30 percent of the base sample values. 

The sample size of the Monte Carlo experiment, then, was equal to the 119, the number 

of sample observations.  With the latent prices and total expenditure so defined, equations 

(23) were used in their expected specification to generate the latent expected quantities of 

the LES model.  Then, 300 draws of measurement errors from normal distributions 

� 

N(0,σ ) as given in tables 5, 6 and 7 were used to define the observed price and quantity 

information of the Monte Carlo runs.  

 For comparison, the LES model was also estimated in its traditional form, that is, 

as a system of demand functions represented by equations (23), using the same observed 

quantity and price information generated for the primal-dual estimator. In other words, if 

we assume that both prices and quantities are measured with error and we estimate the 
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LES model by the two alternative estimators, which of the two estimators should be 

preferred? 

 The performance of the primal-dual and the traditional estimators was assessed by 

means of the mean squared error (MSE) loss criterion as defined in Judge et al. (1980, p. 

26). They show that an overall MSE measure of a model can be decomposed in the 

familiar two components as the trace of the covariance matrix and the trace of the 

squared bias. 

  Tables 5, 6 and 7 present the results of the Monte Carlo analysis with three  

different structures of error distributions. The comparison between the primal-dual 

estimator and the traditional dual estimator shows two distinct patterns of parameter 

estimates. The 

� 

β  coefficients are measured rather precisely in all cases with the 

traditional dual estimator exhibiting a smaller MSE loss in Tables 5 and 6 but a larger 

MSE in Table 7. However, the squared bias of the 

� 

β  coefficients is smaller (by an order 

of magnitude) for the primal-dual estimator in all the three Tables. The 

� 

γ  coefficients 

seem more difficult to estimate correctly and it is important to recall that these 

coefficients are crucial determinants of the demand’s price elasticities. The MSE loss and 

the squared bias of the 

� 

γ  coefficients are much larger for the traditional dual estimator. 

As the error size increases (Table 6), the 

� 

γ  MSE loss of the traditional estimator becomes 

very large in absolute terms and relative to the variance loss. This event occurs also in 

Table 7. Overall, the bias of the primal-dual estimator remains relatively small for both 

the beta and gamma parameters under the three scenarios. Table 8 expands the results of 

Table 7 reporting on the MSE, variance and squared bias of each individual parameter. 

The results show a very small bias for both the beta and the gamma parameters. 
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 There remains to discuss the identification problem of the primal-dual estimator. 

The complexity of the errors-in-variables in a system of nonlinear equations makes a 

general treatment difficult to deal with in analytical terms. Therefore, we have 

approached the identification of the primal-dual estimator from an empirical point of 

view. That is, if the Phase-I and Phase-II estimation problems have unique optimal 

solutions, the model is certainly locally identified. One way to verify empirically this 

unique optimal solution property is to re-estimate the model using different starting 

values. Indeed, in all the explorations of the parameter space we obtained the same 

optimal solution. Hence, we are rather confident that the primal-dual estimator used in 

the LES model presented above is identified.  A concomitant way to explore the 

identification problem is to examine the frequency diagrams of the beta and gamma 

parameters of the LES model in the Monte Carlo simulation experiment. If the frequency 

is peaked sufficiently around the mean value one can reasonably conclude that the model 

is identified, as lack of identification would correspond to a flat or even a multiple-peak 

distribution. In figure 1 we report the distributions of the beta and gamma parameters of 

the primal-dual model corresponding to the measurement error assumptions of Table 7.  

Also this empirical evidence suggests that the primal-dual model is identified. 

 Although Monte Carlo analyses have only a limited validity, the structure of the 

experiments reported above mimic very closely the structure of the original LES 

problem. Hence, the results of these Monte Carlo experiments throw some interesting 

light on a very complex statistical problem. The preliminary conclusion is that, for this 

sample of data applied to the LES model, the primal-dual estimator may be preferable to 

the traditional dual estimator under a rather wide range of measurement errors because of 
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the more precise estimates of the 

� 

γ  parameters.  As prices and quantities are almost 

surely measured with error, the Monte Carlo evidence presented here suggests that the 

primal-dual estimator, which attempts to deal explicitly with errors on both quantities and 

prices, may have a significantly smaller bias than the traditional LES estimator which 

assumes away fifty percent of the problem. 

 

Table 5. Performance comparison between the primal-dual and the traditional estimators 

of the LES model (averages over 300 samples, 

� 

σ ≡  standard error ) 

Parameter Distribution of 
Measurement 
Errors 

� 

N(0,σ ) 

Parameter True 
Values 

Primal-Dual 
Estimator  

Traditional 
Dual Estimator 

    

� 

β1    

� 

N(0,.05)      .10      .10153     .10132 
    

� 

β2     

� 

N(0,.15)      .20      .19395     .20332 
    

� 

β3     

� 

N(0,.04)      .20      .20231     .20767 
    

� 

β4     

� 

N(0,.10)      .50      .50221     .48769 
    

� 

γ1    

� 

N(0,.10)      .17      .14895     .24025 
    

� 

γ2     

� 

N(0,.05)      .15      .15897     .19534 
    

� 

γ 3     

� 

N(0,.15)      .20      .14674     .30975 
    

� 

γ 4     

� 

N(0,.15)      .15      .11047     .46277 
     

� 

β  MSE loss       .0016143     .0005204 

� 

β  Variance loss       .0015651     .0002975 

� 

β  Squared bias       .0000492     .0002229 
     

� 

γ  MSE loss       .0219131     .1410271 

� 

γ  Variance loss       .0169909     .0241679 

� 

γ  Squared bias       .0049222     .1168592 
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Table 6. Performance comparison between the primal-dual and the traditional estimators 

of the LES model (averages over 300 samples, 

� 

σ ≡  standard error ) 

Parameter Distribution of 
Measurement 
Errors 

� 

N(0,σ ) 

Parameter True 
Values 

Primal-Dual 
Estimator  

Traditional 
Dual Estimator 

    

� 

β1    

� 

N(0,.10)      .10      .09816     .09470 
    

� 

β2     

� 

N(0,.20)      .20      .20354     .22355 
    

� 

β3     

� 

N(0,.10)      .20      .20218     .20035 
    

� 

β4     

� 

N(0,.10)      .50      .49612     .48139 
    

� 

γ1    

� 

N(0,.10)      .17      .15399     .46191 
    

� 

γ2     

� 

N(0,.10)      .15      .12181     .28595 
    

� 

γ 3     

� 

N(0,.20)      .20      .10969     .64485 
    

� 

γ 4     

� 

N(0,.20)      .15      .11058   1.05442 
     

� 

β  MSE loss       .0111978     .0062146 

� 

β  Variance loss       .0111621     .0052855 

� 

β  Squared bias       .0000357     .0009292 
     

� 

γ  MSE loss       .0530731   1.3591495 

� 

γ  Variance loss       .0423443     .2395930 

� 

γ  Squared bias       .0107288   1.1195565 
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Table 7. Performance comparison between the primal-dual and the traditional estimators 

of the LES model (averages over 300 samples, 

� 

σ ≡  standard error ) 

Parameter Distribution of 
Measurement 
Errors 

� 

N(0,σ ) 

Parameter True 
Values 

Primal-Dual 
Estimator  

Traditional 
Dual Estimator 

    

� 

β1    

� 

N(0,.10)      .10      .09956     .09545 
    

� 

β2     

� 

N(0,.20)      .20      .20478     .22819 
    

� 

β3     

� 

N(0,.10)      .20      .20282     .19901 
    

� 

β4     

� 

N(0,.10)      .50      .49284     .47735 
    

� 

γ1    

� 

N(0,.10)      .17      .16232     .45499 
    

� 

γ2     

� 

N(0,.10)      .15      .12900     .27771 
    

� 

γ 3     

� 

N(0,.05)      .20      .20843     .64981 
    

� 

γ 4     

� 

N(0,.05)      .15      .19008   1.05253 
     

� 

β  MSE loss       .0021637     .0070402 

� 

β  Variance loss       .0020813     .0057108 

� 

β  Squared bias       .0000823     .0013295 
     

� 

γ  MSE loss       .0260812   1.3296031 

� 

γ  Variance loss       .0239038     .2151904 

� 

γ  Squared bias       .0021774   1.1144128 
 

 

 

Table 8. MSE, Variance, and Squared Bias for each parameter of the Primal-Dual 
Estimator (From Table 7). 300 samples. 
 
Parameter       MSE    Variance     Squared Bias 
Bread & Cereals  

� 

β1  0.0000732  0.0000730  0.0000002 
Meat                    

� 

β2   0.0002524  0.0002295  0.0000229 
Beverages           

� 

β3   0.0010640  0.0010560  0.0000079 
Other Food         

� 

β4   0.0007741  0.0007228  0.0000513 
    
Bread & Cereals  

� 

γ1        0.0016289        0.0015699        0.0000590 
Meat                    

� 

γ2         0.0027959        0.0023546        0.0004412   
Beverages           

� 

γ 3         0.0034389        0.0033678        0.0000711 
Other Food         

� 

γ 4         0.0182176        0.0166115        0.0016061 
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Figure 1. Distribution of beta and gamma parameters in the Monte Carlo analysis 
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The Primal-Dual Estimator of the AIDS Model 

The AIDS model is traditionally specified as the following expenditure function: 

(24)   

� 

logEe(pe ,Ue ) = (1−Ue ) log[a(pe )]+Ue log[b(pe )]= log ye  

where 

� 

a(pe ) and b(pe )  are price indexes defined (by Deaton and Muellbauer, 1980) as 

(25)  

� 

log[a(pe )]= α0 + αk
k=1

J
∑ log pk

e + γ kj
j

J
∑

k

J
∑ log pk

e log pj
e /2  

(26)  

� 

log[b(pe )]= log[a(pe )]+ β0 (pk
e )βk

k=1

J
∏ . 

The AIDS indirect utility function, therefore, can be written as 

(27)  

� 

U *(pe ,ye ) = log y
e − log[a(pe )]
β0 (pk

e )βk
k
∏

 

with the marginal utility of money income given by 

(28)  

� 

U
ye
* (pe ,ye ) = 1/ yeβ0 (pk

e )βk
k
∏ = λe . 

 The Phase II estimation problem of the AIDS model can then be stated as follows: 

    

� 

min
β ,en

′ e n ˆ Σ −1en
n=1

N
∑  

subject to  

Primal relations 

(29)  

� 

pjn = Ux j
e ,n

e ( ˆ x jn
e ,β

U e ) /U
ye ,n
* ( ˆ p jn

e , ˆ y n
e ,β

U* ) + ν jn

    = Taylor series of Ux ,n
e ( ˆ x e )[ ] ˆ y n

eβ0 ( ˆ p kn
e )βk

k=1

J
∏⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ + ν jn

 

Dual relations      

(30)  

� 

x jn =
α j ˆ y n

e

ˆ p jn
e +

ˆ y n
e

ˆ p jn
e γ kj

k=1

J
∑ log ˆ p kn

e +
β j ˆ y n

e

ˆ p jn
e log[ ˆ y n

e /a( ˆ p n
e )] +ε jn . 
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The Taylor series expansion of the latent direct utility function provides the 

complementary primal information for obtaining efficient estimates of the AIDS 

parameters. The results will be reported in another paper. 

 

Errors-in-Variables with Replicated Measurements 

The principal source of the statistical difficulties (unknown properties) associated with 

the estimator presented in previous sections lies with the number of latent variables 

which increases indefinitely, in parallel with the number of sample observations. If it 

were possible to obtain replicate measurements of these latent variables, a consistent 

estimator would be readily available. Thus, we reformulate the primal-dual LES model as 

a panel data specification.  In this enterprise, we follow Collado (1997) who assumes that 

the population is divided in cohorts, 

� 

c = 1,...,C , according to certain characteristics.  

Furthermore, the cohorts have fixed membership. The sample observations are thus given 

the index 

� 

rc =1,...,Rc  and 

� 

c = 1,...,C . Furthermore, and only for simplicity, let assume that 

we have sampled the same number of households from each cohort. In this case, the 

sample observations bear the double index 

� 

rc  and the model assumes the appearance of a 

special panel data specification where the latent variables are associated with replicated 

measurements. Therefore, the Phase I specification of the LES models becomes 

(31)        

� 

prc = pc
e + ν rc  

(32)   

� 

yrc = yc
e +ν0rc  

(33)   

� 

xrc = xc
e + εrc  

(34)   

� 

x jrc = d jrc
e ( ˆ p jrc

e , ˆ y rc
e ,βx j

) +ε jrc

     = γ j + β j
( ˆ y rc

e − ˆ p krc
e γ k )k=1

J∑

ˆ p jrc
e +ε jrc
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which can be re-written in terms of the averages of the sample information with respect 

to the number of sample replicates in each cohort. 

 The original sample of 119 households was divided into 40 cohorts on the basis of 

the total income expenditure.  Admittedly, other more stable characteristics might be 

preferable.  The empirical results are given in Table 8. 

Table 8. Iterated NSUR Estimates of the LES model of Cohorts 

             (t-ratios in parenthesis) 

Parameters 
 

Traditional 
LES Cohort model 
 

Primal-Dual LES 
Cohort model 

Bread & cereals 
      

� 

β1 
0.05267 
(6.648) 
 

0.09358 
(72.509) 

Meat 
      

� 

β2  
0.19870 
(9.661) 
 

0.18365 
(422.89) 

Beverages 
      

� 

β3  
0.14562 
(7.676) 
 

0.18920 
(257.51) 

Other foods 
      

� 

β4  
0.60211 
(18.881) 
 

0.53356 
(443.36) 

Bread & cereals 
      

� 

γ1 
0.39419 
(5.2626) 
 

0.17167 
(14.463) 

Meat 
      

� 

γ2  
-0.0209 
(0.471) 
 

0.04478 
(17.024) 

Beverages 
      

� 

γ 3  
0.58899 
(2.8667) 
 

0.14727 
(9.011) 

Other foods 
       

� 

γ 4  
-0.17425 
(0.431) 
 

0.06818 
(3.265) 

Log-Likelihood 18.6052 
 

584.8549 

Condition  
Number of 

� 

Σ 
9.237 37.003 
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 In comparison to the Table 1, the results of the cohort model presented in Table 8 

indicate that the estimates of the traditional LES model are somewhat unstable. 

Furthermore, there is a considerable loss of significance. In contrast, the estimates of the 

primal-dual model have about the same high level of significance of the model reported 

in Table 1.  

 Since we know for certain that the estimator of the errors-in-variables model 

based upon replicated measurement of the latent variables is consistent and the empirical 

estimates are not very different between the two error specifications, we advance the 

conjecture that also the estimator of the errors-in-variables model without replicated 

measurement is consistent. The proof of this conjecture is the subject of another paper. 

 

Conclusion 

We presented a primal-dual estimator of a LES model of consumer behavior that, in 

principle, ought to be more efficient than any other estimator based upon the traditional 

dual approach. The model specification assumes the natural structure of a nonlinear 

errors-in-variables system of equations for which no easy-to-implement consistent 

estimator is available. We formulate the estimation problem as the minimization of the 

sum of squared errors in the direction of all available prices and quantities. 

 The estimator is articulated into two phases. In phase I, the un-weighted sum of 

squared errors is minimized subject to the theoretical nonlinear equations and the 

statistical error structure. The minimization is carried out with respect to the structural 

parameters of the LES model and the latent variables expressing the expected quantities 

and prices of the individual household. 
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 In phase II, the estimates of the latent variables are used in an iterated nonlinear 

seemingly unrelated equation specification involving all the primal and dual relations. 

 It is conjectured that the primal-dual estimator is consistent. In order to explore 

the performance of the estimator we use a Monte Carlo analysis on a model that mimics 

very closely the nature of the sample information. The conclusion of this Monte Carlo 

analysis is that the primal-dual estimator has a very small bias in relatively small 

samples. 

 To gauge the performance of this estimator (whose statistical properties are still 

unknown) with a consistent estimator, we assume that the available sample information 

can be interpreted as a collection of replicate measurement of population cohorts’ 

behavior. In this way, the model is akin to a panel data model whose estimator is known 

to be consistent. The primal-dual estimates of the LES model obtained with the cohort 

estimator are very close to those obtained with the original estimator. This evidence lends 

further support to the conjecture that the single-measurement primal-dual estimator is 

also consistent. 
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