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Abstract 

 

 

While controversy surrounds skewness attributes of typical yield distributions, a 

better understanding is important for agricultural policy assessment and for crop 

insurance rate setting. Day (1965) conjectured that crop yield skewness declines with an 

increase in low levels of nitrogen use, but higher levels have no effect. In a theoretical 

model based on the law of the minimum (von Liebig) technology, we find conditions 

under which Day’s conjecture applies. Employing four experimental plot datasets, we 

investigate the conjecture by introducing (a) a flexible Bayesian extension of the Just-

Pope technology to incorporate skewness, and (b) a quantile-based measure of skewness 

shift. For corn yields, the Bayesian estimation provides strong evidence in favor of 

negative skewness at commercial nitrogen rates and for Day’s conjecture. There was 

weaker evidence in favor of positively skewed cotton yield and little evidence in favor of 

the conjecture. The results are also confirmed by the quantile-based measure. 

 

Keywords: crop insurance, Gibbs sampler, Just and Pope technology, negative skewness, 

quantile regression. 
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Risks originating from the random nature of yield have a significant impact on farmers’ 

production and marketing decisions (Goodwin and Ker 2002). A better understanding of 

crop yield distributions is important both for crop producers and for the crop insurance 

industry, where contract payout patterns are sensitive to distribution tails. There is a long-

established literature on how inputs affect mean and variance of crop yield distributions 

while much less is known about how inputs affect yield skewness. A positive skew 

indicates that the tail on the right side is longer than that on the left side and the bulk of 

the values lie to the left of the mean. 

The best known early work on crop yield skewness was by Day (1965), whose 

intuition suggested positive skewness (p. 714 and p. 735). His rationale for the hypothesis 

of positive skewness reveals much about his views on the crop production process during 

the middle years of the 20th century (p. 714): 

“That field crop yields should conform to such a pattern seems plausible. Excellent 
weather condition (sic) throughout the entire growing season (particularly during 
the germination, flowering, heading, and harvesting season) must prevail if high 
yields are to be obtained. Such crop years do occur and phenomenally high yields 
are recorded. These pull average yields up. On the other hand, bad weather – too 
much or too little rain or heat – during any one of several critical periods is 
sufficient to reduce yields drastically, even though ideal weather is the rule during 
the preceding and succeeding parts of the season. Thus, common sense suggests 
that less than average yields are more likely than greater than average yields.” 
 

We interpret the emphasis on critical periods as a general belief that a law of the 

minimum production technology applies in the sense of, e.g., Paris (1992). It is 

noteworthy that Day explored data from Mississippi, far outside the main crop growing 

areas of the United States with soil and climate limitations that suggest that ‘ideal’ 

conditions are not to be expected throughout the growing season.1 In addition, many have 

                                                 
1 Soil matters in a variety of ways, including in determining how resilient a crop is to 
adverse weather. Deep soils high in organic matter allow deep rooting and drainage away 
from roots. They also ensure moisture storage across the season so that early season 



2 

argued that improved understanding of crop nutrient needs, pest control inputs (Gardner 

2002) and seed genetics (Yu and Babcock 2010) have likely removed many of the factors 

that might constrain yield in a typical year. This is our view. We suggest further that 

activities intended to remove stochastic production constraints, such as increased use of 

nitrogen, should generally act to render skewness less positive or more negative. 

Day found mixed evidence on the direction of skewness. Despite some controversy in 

regard to the relevance of central limit theorems and concerns about methodologies used 

to draw inferences from aggregated data (Just and Weninger 1999; Khoundouri and 

Kourogenis 2010), the preponderance of evidence since then has pointed to negative 

yield skewness for crops grown in the Corn Belt. See Hennessy (2009, 2010) for recent 

reviews. Much of the analysis has been on aggregated data, where input use is unknown.  

We take Day’s approach in scrutinizing input-controlled crop trial data and were 

inspired by some of his findings. For Mississippi cotton and corn experimental farm crop 

trial data at seven different nitrogen levels, he found a positive Pearson statistic for 

skewness. In the case of cotton, skewness tended to become less positive at higher 

nitrogen levels while no discernable pattern emerged for corn. Oats had positive 

skewness at the zero nitrogen level but negative and generally declining skewness at the 

higher levels. In conclusion, Day used these empirical regularities to conjecture (p. 739) 

that skewness decreases with increased nitrogen up to a critical level.2 

For estimation of input effects on the crop yield distribution, one widely applied 

model is by Just and Pope (1978; 1979). These authors develop a stochastic production 

function specification that allows explicit estimation of the effect of independent 

                                                                                                                                                 
moisture can substitute in for later water deficiencies or heat-induced water stress. 
2 He does not provide any formal logical argument on why this might be so and appears 
to have been taken aback by them (p. 735). As we have just argued, perhaps his reasoning 
on why positive skewness was to be expected in mid-20th century crop production should 
have led him to a theoretical foundation consistent with the empirical regularities. 
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variables, e.g., fertilizer, on the mean and variance of the yield distribution. The 1978 

paper proposes a maximum likelihood estimation (MLE) procedure while the 1979 

proposes a three-step feasible generalized least square (FGLS) approach to estimate the 

first and second moments of stochastic yield responses. But the model does not address 

yield skewness.  

Antle (1987) introduces a moment-based non-parametric model, which is able to 

express skewness as a function of inputs. But complexity and lack of efficiency limit its 

practical application (Yatchew 1998). More recently, Antle (2010) has proposed and 

implemented a partial moment regression system approach to studying the role of inputs 

on skewness. For real-farm potato production data in Ecuador’s Northern Highland 

region, he finds that fertilizer use likely decreases skewness, consistent with Day’s 

findings but in a very different context. He finds that fungicide and labor use likely 

increase skewness and suggests that partial moment analysis is needed to understand 

subtleties in how inputs affect distribution tails. Employing a two-stage MLE procedure, 

Nelson and Preckel (1989) propose the conditional beta distribution for crop yield. 

Weaknesses in their method include that (i) estimation efficiency is conditioned on the 

pre-imposed beta density, and that (ii) standard errors-of-moment elasticities are highly 

nonlinear and difficult to obtain.  

The general theme of the current study is that one should expect a relaxation of 

production constraints to decrease yield skewness. In addition, no further effect on 

skewness should be expected when the input is sufficiently large that it is unlikely to 

constrain. We develop a theoretical framework to illustrate how more of an input should 

affect yield skewness and then use two approaches to investigate empirically the impact 

of applied nitrogen rates on skewness. In the first approach we extend the Just-Pope 

model to accommodate skewness. The model is then applied to several crop trial 
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experimental datasets. Two datasets are applied to corn in Iowa, one to corn in Minnesota, 

and one to cotton in Texas. We conduct inference within a Bayesian framework, 

employing Monte Carlo Markov Chain methods. The second empirical method involves 

quantile regression models to estimate skewness shifts induced by nitrogen application 

across different portions of yield distribution.  

In general, we find that corn yield skewness is positive at nitrogen levels below about 

25 lb/ac, but negative at higher levels. In addition, nitrogen levels above about 75-100 

lb/ac have little effect on skewness. In short, we find strong evidence in favor of Day’s 

conjecture. For cotton, where the least observations are available, we find limited 

evidence of positive skewness and no evidence in favor or against Day’s conjecture. 

After developing our theoretical model, the two empirical approaches are outlined. Then 

the data are explained, estimations are run and discussed, and some concluding comments 

are offered. 

 

Theoretical Model 

The intent of this section is to find technical conditions under which Day’s conjecture 

applies. We will then argue that, on the whole, one should probably expect these 

conditions to apply. The skewness concept we adopt in this section is Pearson’s standard 

moment-based concept, as employed in Day (1965). Start with a result due to van Zwet’s 

(1964).3 

Fact 1: For   random, if ( )h   is increasing and convex and the skewness statistics exist, 

then random variable ( )h   is more positively skewed than is  . 

 

With ( )S   as the skewness statistic, the fact can be expressed as 

                                                 
3 Theorem 2.1.1, page 10. 
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In Appendix A, the following is demonstrated. 

Fact 2: When ( )h   is increasing and concave, then inequality (1) is reversed. 

 

Van Zwet’s observation was used by Hennessy (2010) to show a possible relationship 

between weather and yield distributions. Suppose that, all else equal, better weather in 

some index sense improves yield, but the marginal effect is decreasing. Then the 

weather-conditioned yield distribution will be more negatively skewed than the weather 

distribution itself. In the analysis to follow, our interest is in the role that market inputs 

play in determining skewness. More specifically, what conditions on a stochastic crop 

production technology would support the Day conjecture? 

Following Berck and Helfand (1990), Paris (1992), Chambers and Lichtenberg (1996), 

and Berck, Geoghegan and Stohs (2000), the production technology is modeled as of the 

von-Liebig type: 

(2) ( ; ) min[ , ],y x x       

where x  is a representative input and   might be viewed as a carry-over soil endowment 

of that input. Variable   is a spatial production constraint, such as the availability of 

alternative nutrients in the soil, organic matter or a measure of soil compaction. Random 

endowment   follows distribution ( )F   with support on set [ , ]   . Endowment   

follows mass distribution ( )G   with support [ , ]a b  across the unit of analysis, where the 

density exists over the entire support and where   is independent of  . For future 

reference we write the survival function as ( ) 1 ( )G x G x     . Our interest is in 
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mean, or aggregate, yield over the entire unit of analysis, i.e., integrate over space:4 

(3) 

( ) ( ; ) ( ) min[ , ] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) .

b b

a a

x xx

aa a

x

a
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x G d
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Specify ICX  and ICV  as, respectively, the sets of increasing, convex and increasing, 

concave functions. In light of Facts 1 and 2 we wish to establish the following. For x   

0x  and 1x x  with 1 0x x , can it be shown that either (i) 1( )y x ICX ICV    when 

viewed as a function of 0( )y x  , or (ii) 0( )y x ICX ICV    when viewed as a 

function of 1( )y x  ? For (i) and (ii), it is readily shown that monotonicity applies. To 

see this, write 0( )t y x    so that 1
0( )y t x    where 1( )y   represents the inverse 

function of ( )y  . Then, upon substitution, we may specify 1
1 0( ) ( ( ))B t y x x y t   . The 

function ( )y   is increasing so its inverse is increasing and the chain rule gives that ( )B t  

is increasing.  

For convexity/concavity, the other part of each condition set in Facts 1 and 2, Cargo 

(1965) has shown that if ( )t  and ( )t  are both twice continuously differentiable and 

strictly increasing functions on domain T , then ( )t  is a convex transformation of ( )t  

whenever 

(4) 
( ) ( )

,
( ) ( )

tt tt

t t

t t
t T

t t

 
 

    

or, equivalently, whenever Ln[ ( )] / Ln[ ( )] /t td t dt d t dt  . Under the same conditions 

                                                 
4 Although Hennessy (2009) also considered a production function of type (2) above, 
there both   and   were random. By contrast with the production function in (3), the 
yield distribution function was bivariate. The skewness to be considered here is upon 
aggregating across realizations of  . As we will discuss, aggregation has important 
implications for skewness. 
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on ( )t  and ( )t , then ( )t  is a concave transformation of ( )t  whenever the 

inequality in (4) is reversed. To see this, write ( ) ( ( ))t u t   and then compute 

( ) ( ( )) ( )t tt u t t   , ( ( ))u t  ( ) / ( )t tt t  , 

2( ( )) ( ) { ( ) ( ) ( ) ( )} / [ ( )]t t tt t tt tu t t t t t t t         , and 

3( ( )) { ( ) ( ) ( ) ( )} / [ ( )]t tt t tt tu t t t t t t        . The latter has the sign of Ln[ ( )] /td t dt  

Ln[ ( )] /td t dt . In our case, we need to show  

(5) 1 0

1 0

( ) ( )
[ , ]

( ) ( )

y x y x

y x y x
 

 

 
  

 
 

  
 

 

for an increasing and convex transformation, and also to show that the inequality is 

reversed for an increasing and concave transformation. 

Now (3) provides ( ) ( )y x G x      and ( ) ( )y x g x       so that condition 

(5) becomes  

(6) 1 0

1 0

( ) ( )
[ , ].

( ) ( )

g x g x

G x G x

    
 

 
  

 
 

Given that 1 0x x , this is a monotonicity condition. It requires that ( ) ( )G x g x     

2[ ( )] 0g x   . An alternative way of stating it is to write ( ) Ln[ ( )]GJ x G x     and 

then  

(7) ( ) 0 [ , ].G
xxJ x         

The log of the survival function needs to be convex; this attribute is often referred to as 

the log-convex survival function property. Bagnoli and Bergstrom (2005) in their 

Theorem 4 and Table 3 have this to be true for the Weibull, Pareto and Gamma 

distributions under certain shape parameter conditions. In that case, an increase in 

nitrogen use would make skewness more positive. 
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A third way of characterizing (6) is that hazard ratio ( ) / ( )g x G x    is decreasing. 

To explain a decreasing hazard rate in our context, consider the ratio’s numerator and 

denominator. Numerator ( )g x   can be viewed as the probability that an additional unit 

of input x  is marginal, i.e., will have no effect on production. Denominator ( )G x   

conditions the distribution to provide the probability that factor x   is marginal in the 

sense that this factor has limited yield. Thus a decreasing hazard ratio increases the 

probability that an additional unit of the input is effective in increasing production given 

that lower levels have been effective.5 This seems to be rather unreasonable.6 

Condition (5) is reversed, i.e., an increasing and concave transformation applies, 

whenever  

(8) ( ) 0 [ , ],G
xxJ x         

or the survival function is log-concave. This is true whenever ( ) ( )G x g x     

2[ ( )] 0g x   . The condition applies whenever the density function is concave. More 

generally, it applies whenever the density function is log-concave, or 2( ) ( ) [ ( )]g g g      

(An 1998). As such, it applies for the normal, uniform, logistic, and the extreme value 

distribution with distribution function exp[ exp( )]   among others of interest to 

economists (An 1998).7 We consider this more likely than a log-convex survival function 

                                                 
5 Given the productivity interpretation just provided, a comment on (5) may prove helpful. 
It is apparent from (5) that the matter at issue is relative curvature where the best-known 
application in economics is attributable to Pratt (1964). There, the topic was the effect on 
degree of risk aversion as wealth moves along a utility function. Here, the topic is the 
effect on input expected productivity as the input level moves along the survival function 
that depicts how effective the input is in expectation.  
6 The analogy in the actuarial science or reliability statistics literatures would be that the 
probability of living to birthday 86 given that one has lived to birthday 85 is larger than 
the probability of living to birthday 85 conditional on having lived to birthday 84.  
7 The statistics literature on log-concave densities, distributions and survival functions is  
very large. We refer the reader to Dharmadhikari and Joag-dev (1988) for an extensive 
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as it requires the conditional probability the input is effective at the margin to be 

declining in the amount of input. 

In conclusion, we can state Richard Day’s conjecture as follows: 

 

Proposition 1: If the survival function for the mass distribution of spatial endowment 

factor   is log-concave, or (8) applies, then an increase in input x  makes average 

production over the unit of analysis less positively or more negatively skewed. If the 

survival function is log-convex, or (7) applies, then the reverse is true. 

 

Of course, if market input x  has price 0w   and this price increases, then the law of 

factor demand would have an increase in input use (p. 131 in Chambers 1988). Under (8), 

the result would be a more negative skew on the yield distribution.  

 

Corollary 1: Suppose (i) the survival function for spatial endowment factor   is log-

concave and (ii) the standard law of factor demand applies. Then, ceteris paribus, a 

decrease in the price of the market input will lead to a less positive or more negative 

skew on average production over the unit of analysis. If, instead, the survival function is 

log-convex, then the reverse is true. 

 

A comment is in order in regard to simulations in table 1 of Hennessy (2009) where a 

pair of random variables 1 2( , )   are jointly normally distributed and output is y   

1 2min[ , ]  . There, an increase in the mean of one might increase or decrease the 

skewness of the output distribution. The unit of analysis there is at one spatial point. 

Integrating out over one of the random variables, when considering aggregate yield 

                                                                                                                                                 
but dated review. 
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where one variable is viewed as having a mass density over space, smoothes the 

skewness statistic so that a uniformly monotone effect can be identified under certain 

regularity conditions. These are conditions (7) and (8). 

From an economic perspective, our general reading of the proposition and corollary is 

as follows. The real price of crop nutrients has in the main decreased dramatically over 

the past century (Gardner 2002; Federico 2005). All else fixed, our result identifies 

conditions under which this should affect the nature of skewness in a definite way. In 

what follows we will test for how inputs have affected skewness.  

 
Empirical Analysis 

We will use two distinct approaches to provide evidence on how inputs affect yield 

skewness. The first extends the Just-Pope specification to account for skewness and uses 

Bayesian methods to implement the approach. The second method invokes a quantile 

regression to study how the quantile gaps stretch or contract as the input changes. 

 

Bayesian analysis of a skewness measure 

Let experimental plot crop yield be given by 

(9) ( )( ) ( ) h zy f z g z    

where z  is an input, e.g., nitrogen. Here   is random and ( )f  , ( )g   and ( )h   are 

functions to be parameterized and estimated. To be consistent with Just-Pope method 

applications, let  

(10) 1 1 1
0 0 0( ) ; ( ) ; ( ) .f z z g z z h z z          

The moments for crop yield are  
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Eqn. (11) implies that (i) skewness is determined by 0 1( , )   only, (ii) scale (and so yield 

variance) is determined by 0 1 0 1( , , , )     so that scale can change with the level of z  

independent of skewness, and (iii) location (and so yield mean) is determined by 

0 1 0 1 0 1( , , , , , )       so that location can change with z  independent of yield variance 

and skewness. In summary, the stochastic production function in Eqn. (9) is mean, 

variance and skewness flexible.  

We estimate the stochastic production technology using crop nitrogen trial data. 

Given the discrete and limited number of nitrogen levels applied in such trials, we 

estimate the impacts of the nitrogen input on the skewness of crop yield distribution for 

each nitrogen level individually. For the nitrogen application level i , {1,2..., }Ii I  , 

we adopt Eqn. (9) to give our empirical crop yield model as 

(12) 1/
0 ,  ~ ( , );   .

ii i i c
Iy a b D Beta i       Xβ  

where 1 2( , , ... , ) 'i i i i
ky y y y  denotes the k plot-level crop yield observations for the ith 

nitrogen level. Parameter 0
ia  denotes the constant term in the yield equation where it is 

allowed to vary with nitrogen application, and it includes the effect of nitrogen on mean 

yield, ( )if z . Matrix 1 2(  ... )Lx x xX , in which 1 2( , , ... , ) '  l l l lI Lx x x x l   , denotes 

controlled variables such as location, rotation, and/or tillage effect, and technological 

innovation of crop production is represented by a time dummy or trend. The 

corresponding coefficient vector is 1 2( , , ... , ) 'L  β . The scale effect in specification 
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(9) is represented by ( )i ib g z . The probability density function (pdf) of the general 

beta distribution is 1 2 1 21 1 1 11 2
1 2

1 2 1 2

( ) 1
( ; , ) (1 ) (1 )

( ) ( ) ( , )
f x x x x x

B
     

   
    

   
 

, 

where ( )   is the gamma function and the beta function 1 2( , )B    appears as a 

normalization constant. The above pdf is defined on the interval (0,1)  with two positive 

shape parameters, 1  and 2 . Instead we employ a symmetric beta distribution, 

( , )Beta   , which is parameterized by 1 2( )    . 

We specify the yield random variations as 1/ ic  with skewness parameter ic , and 

assume that   follows a symmetric beta distribution ( , )Beta    on the range [0, ]D . 

Based on the constructive representation in (12), skewness is introduced into an 

originally symmetric distribution on   through parameter ic . Doing so allows us to 

retain some well-known properties of symmetric distributions, so that Fact 1 and Fact 2 

allow skewness to be ordered in a common framework. Notice that the transformation 

1/( )
icf    is increasing and convex. The symmetric specification of   in Eqn. (12), 

together with Fact 1 and Fact 2, means that condition 1ic   (i.e., 1/ 1ic  ) implies a 

positive yield skew at the ith nitrogen level. On the other hand, condition 1ic   (i.e., 

1/ 1ic  ) implies a negative skew. In addition, higher ic  is associated with decreasing 

skewness.  

Inference here is conducted within a Bayesian framework. One important advantage 

of adopting the Bayesian approach is that it is relatively easy to incorporate inequality 

constraints on parameters into the estimation procedure. The inequality constraint is to 

ensure that parameter estimates are consistent with relationships implied by the 

underlying distribution assumption, which is 0

1
( ) / (0,1)

ici i iy a b
D
    Xβ , i.e., 
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0

1
0 ( ) / 1

ici i iy a b
D
     Xβ . Furthermore, the Bayesian estimation procedure is 

particularly suitable as the model specified in Eqn. (12) is very nonlinear in the 

parameters, which makes it very difficult for the MLE estimator to converge.  

For the parameter vector in model (12), { , , , , , },D   0a β b c  where 0 1{ } ,i I
ia 0a  

1{ } ,i I
ib b  1{ } ,i I

ic c  Bayesian inference stems from the joint posterior distribution of 

the model parameters conditional on the observed data, which can be expressed as 

follows: 

(13) 

1
1

1 1

0

( , , , , , | , )

1 1
 1 ( );

( , )

1
1  if (0,1),

;        

0                       otherwise;

i i

i

c cN i i i i iI n
k k

Ai i i
i k

ci i
k

i i i
A

p D Y

c y a y a
I p

D B b b D b

y a
a a I D b








 




 

                        
         





0a β b c X

Xβ                                      

 

where ( )N i n   are the total observation numbers and 
1

1 1

0
( , ) ( (1 ) )B t t dt       

denotes the beta function. The first three items are the likelihood function, while the last 

term in the product, ( )p  , denotes the joint prior distribution of model parameters.  

The Gibbs sampler, one of the Monte Carlo Markov Chain methods in Bayesian 

implementation, is applied by repeated sampling from the conditional posterior density of 

each parameter. It is obvious that the posterior distribution for each parameter derived 

from the joint posterior distribution in Eqn. (13) doesn’t belong to any convenient 

distribution family. Thus we employ the random-walk Metropolis-Hasting algorithms 

(see the detailed introduction and application in, e.g., Gelman et al. 2007, and Koop, 

Poirier and Tobias 2007) for updating draws from each posterior distribution of model 

parameters. The technical details regarding the conditional posterior distributions and 
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implementation of the Gibbs sampler are provided in Appendix B. After convergence, the 

draws of the Gibbs sampler for each parameter are used to compute the mean and 

standard deviation of the marginal posterior distribution. 

 
Quantile regression analysis of skewness shifts  

Quantile-based measures can be used to describe shape-shifts of a distribution including 

skewness (Hao and Naiman 2007, Ch. 2). Note that for a skewed distribution, the quantile 

function ( )pQ , which is defined as ( )( )ip
iP Z Q p   for a random variable Z  and 

probability [0,1]ip  , is asymmetric around the median. Based on a random sample, the 

quantile-based measure, ( )pS , defined as the ratio of the spreads above and below the 

median (upper spread vs. lower spread), ( ) (1 ) (0.5) (0.5) ( )[( ) / ( ) 1]p p pS Q Q Q Q     for 

0.5p   could be used to measure skewness (Hao and Naiman 2007).8 For symmetric 

distributions, (1 ) (0.5) (0.5) ( )p pQ Q Q Q     so that ( ) 0pS   means the concave relation in p, 

(1 ) (0.5) (0.5) ( )p pQ Q Q Q    , which is consistent in spirit with Fact 2. 

Compared with a reference case, disproportional upper and lower spread changes 

relative to the median indicate skewness shifts in a comparison case. Thus the sample-

based skewness shift, ( )pSS , for the middle 100(1 2 )%p  of the population is defined as  

(14) 
(1 ) (0.5) (1 ) (0.5)

( )
(0.5) ( ) (0.5) ( )

( ) / ( )
1

( ) / ( )

p p
p C C R R

p p
C C R R

Q Q Q Q
SS

Q Q Q Q

   
    

 for 0.5p   

(Hao and Naiman 2007),9 where ( )
( )
p

C RQ  is p  quantile for the comparison (reference) case.  

In this study, the quantile regression model (QRM) introduced by Koenker and 

Bassett (1978) is employed to characterize the impact of explanatory variables, e.g., 

                                                 
8 Eqn. 2.2, page 14.  
9 Eqn. 5.2, page 72. We don’t calculate sample-based skewness shift ( )pSS  in this study. 
Instead, we employ and report model-based measure ( )pSKS  at a later juncture. 
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nitrogen, on the shape of the yield distribution. The model is specified as  

(15) { } { },' ' ,   Quan ( | ) ' ,   i i i
p z z z p p p Iy X z X y X X i            

where Quan ( | ) 'iy X X   denotes the conditional quantile of crop yield, iy , on a set 

of controlled variables, { }(  )zz X X , in which the first variable is the nitrogen 

application rates, z , while { } 2' (  ... )z LX x x   are other controlled variables as defined in 

Eqn. (12). All controlled variables are centered at sample means. 

Following the measure in Eqn. (14), the skewness shift resulting from additional 

nitrogen application can be calculated from the estimated QRM coefficients10 

(16) 
(1 ) (1 ) (0.5) (0.5) (1 ) (0.5)

( )
(0.5) (0.5) ( ) ( ) (0.5) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) / ( )
1000 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) / ( )

p p p
p z z

p p p
z z

SKS
     
     

      
      

 for 0.5p  , 

where the estimated constant ̂ ’s provide the fitted quantile functions at the means of 

independent variables and are defined as the reference cases. Standard errors of the 

estimated skewness shifts can be obtained by the bootstrap method (Greene 2003, p. 924). 

For a given portion, 100(1 2 )%p , of yield population, ( ) 0pSKS   indicates a reduction 

of right-skewness induced by an increase of nitrogen application. Conversely, ( ) 0pSKS   

indicates an exacerbation of right-skewness, i.e., the crop yield is more positively/right 

skewed.  

 
Data 

In this study, four crop yield datasets—A, B, C, and D—are employed. We do not 

consider Day’s data because, apart from the different methodologies we bring to bear, 

that would amount to in-sample validation of the conjecture. One common feature of the 

datasets is that all have been collected from controlled experiments, although the 
                                                 
10 Eqn. 5.2, page 72. We have introduced the factor 1000, as quantile bound [0,1]p  
leads to very small numbers. 
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experiments are conducted under different control conditions such as tillage practices and 

rotation sequences.  

 

Dataset A: Corn production data are obtained from controlled experiments conducted at 

Iowa State University’s Research and Demonstration Farm located in Floyd County, 

Iowa, from 1979 to 2003 (Mallarino, Ortiz-Torres and Pecinovsky 2004). The corn yield 

data are collected under four rotations, <C>, <CS>, <CCS>, and <CCCS>, where 

<CCCS> is to be read as the corn-corn-corn-soybeans rotation. Four levels of nitrogen 

treatments, 0 lb/ac, 80 lb/ac, 160 lb/ac, and 240 lb/ac are applied for corn. Each 

combination of rotation and nitrogen level is replicated three times each a year. Using the 

same dataset, Hennessy (2006) investigates the rotation effect on crop yield and on 

nitrogen input choices. Rotation effect is found to persist for one year. Taking the one-

year memory into account, dataset A contains 525 observations for each nitrogen level. 

The corresponding specification for Eqn. (12) after including the controlled variables is 

2 1/
0 1

,  ~ ( , );   1,2,3,4
ii i i c

j jj
y a x b D Beta i    


      

where 1 2[ , ]' β  represents the average effects of crop rotation <CC> and linear time 

trend on corn yields.  

 

Dataset B: Corn yields in dataset B are generated by controlled experiments on fifteen 

geographically dispersed Iowa farms under <CC> and <CS> rotations from 1985 to 1990 

under ten levels of nitrogen fertilizer, 0 lb/ac, 25 lb/ac, 50 lb/ac, 75 lb/ac, 100 lb/ac, 120 

lb/ac, 150 lb/ac, 200 lb/ac, 250 lb/ac, and 300 lb/ac. In the context of yield and revenue 

insurance, Babcock and Hennessy (1996) employ part of this dataset to estimate 

conditional distributions of crop yields. There are three replications of each nitrogen level. 

Total observations for each level of nitrogen vary from 193 to 203. The control variables 
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for Eqn. (12) include five dummies, 1 5,...,  , for the years 1985, 1986, 1987, 1988, and 

1989, one dummy 6  for the CC rotation, and fourteen dummy variables for farm 

locations ( 7 14,...,  ). The corresponding specification is   

20 1/
0 1

,  ~ ( , );   1,2,...,10.
ii i i c

j jj
y a x b D Beta i    


      

 

Dataset C: In dataset C, corn yield data are collected from replicated plot experiments in 

Morris County, Minnesota, from 1984 to 1989 with five nitrogen fertilizer rates of 0 lb/ac, 

40 lb/ac, 80 lb/ac, 120 lb/ac, and 160 lb/ac.11 For each nitrogen rate, there are 167 or 168 

observations. Besides the time indicators for 1985-1989 ( 1 4,...,  ), dummies for various 

tillage practices, fall plow (FP; 5 ), fall chisel (FC; 6 ), and ridge till (RD; 7 ), are also 

included as controlled variables in the Eqn. (12) regression, which is specified as  

7 1/
0 1

,  ~ ( , );   1,2,...,5.
ii i i c

j jj
y a x b D Beta i    


      

 

Dataset D: We choose to consider cotton yield data because the crop has received some 

attention in the skewness literature. Ramirez, Mishra and Field (2003) studied dryland 

cotton in the West Texas Plains counties of Childress, Cochran, Crosby, Hale and 

Wichita. Like Day, these authors identify positive skewness. Similar to Day’s intuition, 

they ascribe it to the positive skewness of the limiting factor, rainfall. Our cotton yield 

data are obtained from field experiments in Calhoun, San Patricio, and Wharton counties 

in the Texas Coastal Bend cotton growing region for 1998-2002.12 Nitrogen fertilizer is 

                                                 
11 See Mitchell (2004) for more details on the dataset. We thank Paul Mitchell for 
providing us with datasets C and D. 
12 The original data do not provide irrigation information. Comparing the yields in the 
data to the NASS county yields and typical dryland vs. irrigated yields in the literature, it 
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applied at four levels, 0 lb/ac, 50 lb/ac, 100 lb/ac, and 150 lb/ac. The controlled variables 

in Eqn. (12) are two location dummies for the first two sampling areas, 1  and 2 , and 

time dummies for the years 1998-2001 ( 3 6,...,  ). There are 39 yield observations for 

each nitrogen rate. The regression model is specified as 

6 1/
0 1

,  ~ ( , );   1,2,...,4.
ii i i c

j jj
y a x b D Beta i    


      

 
Parameter Estimates and Discussion of Results 

Bayesian analysis of a skewness measure 

The Gibbs sampler is fully documented in Appendix B and is coded in Matlab. We run 

the posterior simulator for 10,000 simulations and discard the first 5,000 simulations as 

burn-in. Estimation results on generated data experiments revealed that the Bayesian 

algorithm is able to recover parameters of the data generation process well. The priors of 

the model parameters are set to be reasonably non-informative as follows: 0 ~ (10,10)ia N ; 

~ (100,20)ib N ; ~ (1,1)ic N ; ~ (0,10)D N ; ~ (0,10)N ; and ~ (0,10)i N . For each 

of datasets A, B, C, and D, Appendix C presents coefficient posterior means, standard 

deviations and model parameter probabilities of being positive.  

Following Eqn. (11), the skewness of conditional corn yield distribution for each 

nitrogen application level is calculated as 

                                                                                                                                                 
is clear that the yields are dryland cotton. We thank Paul Mitchell for pointing this 
out. See Seo, Mitchell and Leatham (2005) for more details on the dataset. 
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where 1 /i id c . The mean and standard errors of skewness for each nitrogen level are 

calculated using the draws from posterior distributions of individual parameters and are 

presented in table 1.  

It can be seen from the results in table 1 that for datasets A, B, and C the estimated 

skewness measures are generally consistent with our theoretical results and prior 

expectation. An increase in nitrogen inputs makes average corn production more 

negatively skewed. While positive skewness is shown at zero or low levels of nitrogen 

rates, higher levels of nitrogen reduce skewness to negative values. Skewness ceases to 

decrease further in response to an increase in nitrogen at levels more than approximately 

100 lb/ac. 

Specifically, in dataset A, we see strong evidence of negative skewness associated 

with non-zero nitrogen rates. The posterior standard deviations for the skewness 

parameters are quite small relative to their means. An increase in nitrogen is associated 

with an increase in the absolute values of skewness. In datasets B and C, we see similar 

patterns for skewness shifts, but the inference from these data are not as strong given that 

the posterior standard deviations are of nearly equal magnitude to the posterior means. 

For cotton yield in dataset D, positive skewness is found for all nitrogen rates. The 

finding is consistent with findings in the literature (e.g., Day 1965; Ramirez, Misra and 
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Field 2003). As pointed out in some other studies, the positive skewness of cotton yield 

could be related to rainfall and drought conditions in the sampling areas. In other words, 

nitrogen is generally not the limiting factor. 

 
Quantile regression analysis of skewness shifts  

Estimation results of the quantile regression model are reported at nine quantiles ranging 

from 0.025 to 0.975 in Appendix D. All explanatory variables are centered at sample 

means. Based on the estimated coefficients, skewness shifts in Eqn. (16) are calculated 

and their standard errors are computed from 1,000 bootstrap samples. Table 2 presents 

the means and standard errors of the estimated skewness shifts for the middle 

100(1 2 )%p  of the conditional crop yield distribution. 

The results in table 2 indicate that higher levels of nitrogen application slightly 

decrease right-skewness for all selected measures in datasets A and B. Estimated ( )pSKS  

values in dataset A are significantly different from zero at the 1% significance level, 

while in dataset B the negative effects are only highly significant for the middle 95% and 

97.5% of the population. The percentage decrease in skewness induced by one more unit 

of nitrogen range from 0.17% to 0.22% in dataset A and from 0.02% to 0.21% in dataset 

B. On average, the magnitude of impact appears to be smaller in dataset B.  

Although not significant in general, the impacts in dataset C are not consistent across 

different portions of the yield population, which may be because of the relatively smaller 

sample size. For the middle 50% and 90% of the yield population, the effect of high 

nitrogen application is negative, i.e., reducing right-skewness, but the effect changes to 

positive for 95% and 97.5% of the population. A positive and small effect of nitrogen on 

cotton yield skewness is found in dataset D, indicating that a more right-skewed yield 

distribution is associated with higher levels of nitrogen.  
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Conclusion 

Working with the law of the minimum technology, we provide a modeling framework in 

which to interpret Day’s (1965) observations that more nitrogen tends to make skewness 

less positive or more negative, but only up to a point. This framework allows us to find 

reasonable conditions on the distribution of a competing constraint (e.g., soil 

characteristics) such that aggregate skewness decreases with more of a (possibly) 

constraining input. We develop two approaches to assess the role of nitrogen in 

determining yield skewness. One is a generalization of the Just-Pope technology, 

implemented with Bayesian methods, while the other is a quantile regression approach.  

Experimental plot datasets allow us to address the typical concerns of temporal and 

spatial aggregation in yield modeling. For corn yields, estimation results from both 

methods provide strong evidence that negative skewness is associated with non-zero 

nitrogen rates. In addition, more negative skewness is associated with more nitrogen, and 

some evidence is provided that a ceiling nitrogen level exists above which skewness does 

not change. There is weaker evidence for positively skewed cotton yield, and we found 

no discernable skewness pattern as nitrogen levels change.  

In conclusion, we think that development of a fuller theory on how input constraints 

affect yield skewness will have to await empirical regularities emerging from studies on 

diverse crops grown in different production environments. Although perhaps most 

convenient to work with, nitrogen is not the only management practice that can be varied 

in a controlled manner. For example, controlled experimental data on conservation tillage 

practices are available (e.g., DeVuyst and Halvorson 2004). To the extent that 

conservation tillage promotes soil water storage, one might expect an effect on yield 

skewness in water-constrained cropping areas. Data on irrigation effects are also 

available (e.g., Eck 1984; Kim et al. 2008), where one would expect that an increase in 
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availability of irrigation water will act to make yield skewness less positive or more 

negative.  
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Table 1. Estimated mean and standard deviation (in parentheses) for derived skewness 

Dataset A     
Nitrogen  0 80 160 240 
Skewness 0.1317 

(0.0685) 
-0.1458 
(0.0453) 

-0.1715 
(0.0544) 

-0.1739 
(0.0478) 

Dataset B 
Nitrogen  0 25 50 75 100 
Skewness 0.1571 

(0.0821) 
0.0562  

(0.0618) 
-0.0559 

 (0.0677) 
-0.1537 
(0.0893) 

-0.1793 
(0.0842) 

Nitrogen  125 150 200 250 300 
Skewness -0.1931 

(0.0870) 
-0.1626 
(0.0913) 

-0.1958 
(0.0886) 

-0.1719 
(0.887) 

-0.1972 
(0.0884) 

Dataset C 
Nitrogen  0 40 80 120 160 
Skewness 0.2073 

(0.0868) 
-0.0909 
(0.0752) 

-0.0728 
(0.0867) 

-0.1316 
(0.0807) 

-0.0079 
(0.0975) 

Dataset D 
Nitrogen  0 50 100 150 
Skewness 0.1403 

(0.0850) 
0.0290 

 (0.0721) 
0.0735 

 (0.0664) 
0.0998 

 (0.0717) 
 



26 

Table 2. Estimated skewness shifts for the middle 100(1 2 )%p  of conditional yield 
distribution 
 
Dataset A     
p  0.25 0.1 0.05 0.025 

( )pS  0.00 -0.16 -0.17 -0.17 
( )pSKS  -2.2*** 

(0.7) 
-2.0*** 

(0.5) 
-1.7*** 

(0.4) 
-2.0*** 

(0.5) 
Dataset B 
p  0.25 0.1 0.05 0.025 

( )pS  -0.14 -0.34 -0.41 -0.42 
( )pSKS  0.2 

(0.8) 
-1.2** 
(0.6) 

-1.7*** 
(0.5) 

-2.1*** 
(0.5) 

Dataset C 
p  0.25 0.1 0.05 0.025 

( )pS  0.19 0.34 0.33 0.36 
( )pSKS  -0.1 

(2.0) 
-0.7 
(1.7) 

1.1 
(1.5) 

1.0 
(1.4) 

Dataset D 
p  0.25 0.1 0.05 0.025 

( )pS  -0.07 0.12 0.37 0.40 
( )pSKS  1.6 

(3.9) 
1.7 

(2.6) 
1.6 

(2.5) 
1.5 

(2.4) 
 
Note: Single (*), double (**), and triple (***) asterisks denote significance at 0.10, 0.05, 
and 0.01 levels, respectively.
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Appendix A. Demonstration of Fact 2 
 
Define ( ) ( )g x h x   . It is readily shown that ( )g x  is increasing and concave in x  if 

and only if ( )h   is increasing and concave in its argument. For any arbitrary random 

variable  , define     so that   is also a random variable. Inequality (1) holds for 

any random variable, so we may write ( ( )) ( )S g S  . Hence, by substitution, 

(A1) 

( ( )) ( )

( ( )) ( )

( ( )) ( )

( ( )) ( ).

S h S

S h S

S h S

S h S

 

 

 

 

  

     

   

 

 

The first implication follows from the fact that 3 3 3[( [ ]) ] [( 1) ( [ ]) ]        � � � �  

3[( [ ]) ]    � � . The final inequality follows from direct substitution in which how 

  impacts ( )h   is not relevant.    
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Appendix B. Conditional Posterior Distribution and Gibbs Sampler 

As specified in Eqn. (13), parameters 0
ia , ib , and ic  are associated with the i th nitrogen 

level only, so they are estimated from the corresponding set of yield observations, ,  i
ky k  

{1, ... , }in . While the yield observations at all nitrogen levels contain information on the 

coefficients 1 2( , , ... , ) 'L  β , and the distribution parameters D  and  , in the 

following Gibbs sampling algorithm, they are estimated based on the whole sample set 

with observation 
1

I

ii
n n


  . 

Step 1. Drawing from the conditional posterior pdf of 0
ia : 

1
1

0 0
1

1
( | )  1 ( ) ,  .

i i

i
c cn i i i i

i ik k
A Ii i

k

y a y a
p a p a I i

b D b









                   
  

Here the last term 0( )ip a  denotes the prior information on parameter 0
ia  and AI  is the 

inequality constraint defined in Eqn. (13). Imposition of the inequality constraint AI  is 

implemented within the random-walk Metropolis-Hastings algorithm (and similarly in 

the following steps). So in each loop, the potential new parameter value generated from 

the random walk process needs to satisfy both the typical updating rule and the inequality 

constraint to be accepted as a new update in the parameter space. 

Step 2. Drawing from the conditional posterior pdf of ib : 

1
1

1

1 1
( | )  1 ( ) ,  .

i i
i i

c cn n i i i i
i ik k

A Ii i i
k

y a y a
p b p b I i

b b D b









                         
  

Step 3. Drawing from the conditional posterior pdf of ic :  

 
1

1

1

1
( | )  1 ( ) ,  .

i i

i
i

c cn i i i i
ni i ik k

A Ii i
k

y a y a
p c c p c I i

b D b









                   
  
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Step 4. Drawing from the conditional posterior pdf of l : 

1
1

1 1

1
( | )  1 ( ) ,  .

i ic ci i i iI n
k k

l l A Li i
i k

y a y a
p p I l

b D b




 




 

                   
  

Step 5. Drawing from the conditional posterior pdf of D : 

1
1

1 1

1 1
( | )  1 ( ) .

i ic cN i i i iI n
k k

Ai i
i k

y a y a
p D p D I

D b D b







 

                        
  

Step 6. Drawing from the conditional posterior pdf of  : 

1
1

1

1 1
( | )  1 ( ) .

( )

i ic cN i i i in
k k

Ai i
k

y a y a
p p I

D B b D b




 







                        
  



30 

Appendix C. Bayesian Estimation Results on Datasets A, B, C, and D 
 
Table C1. Estimation results on dataset A 

Variable ( | )E y
 

( | )Std y
 

Pr( 0 | )y  Variable ( | )E y ( | )Std y
 

Pr( 0 | )y    

1
0a  11.63 5.35 1.00 3c  1.30 0.11 1.00 
1b  52.51 8.21 1.00 4

0a  13.71 6.12 1.00 
1c  0.85 0.07 1.00 4b  114.43 12.05 1.00 
2
0a  11.43 6.33 1.00 4c  1.31 0.09 1.00 
2b  96.43 10.47 1.00 D  2.78 0.30 1.00 
2c  1.25 0.08 1.00   5.94 0.85 1.00 
3
0a  15.78 6.62 1.00 

1  -29.33 1.54 0.00 
3b  108.68 8.50 1.00 

2  0.16 0.11 0.93 

1 : dummy for rotation effect of <CC>; 2 : time variable 1-25 for 1979-2004. 
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Table C2. Estimation results on dataset B 

Variable ( | )E y
 

( | )Std y Pr( 0 | )y  Variable ( | )E y  ( | )Std y  Pr( 0 | )y   

1
0a  19.69 8.55 1.00 9c  1.34 0.19 1.00 
1b  62.97 16.59 1.00 10

0a  14.97 7.43 1.00 
1c  0.81 0.10 1.00 10b  116.41 15.15 1.00 
2
0a  23.98 7.93 1.00 10c  1.41 0.20 1.00 
2b  72.42 15.25 1.00 D  3.15 1.30 1.00 
2c  0.92 0.08 1.00   8.08 2.71 1.00 
3
0a  24.78 9.04 1.00 

1  -10.82 10.13 0.03 
3b  85.57 14.60 1.00 

2  6.58 11.10 0.90 
3c  1.10 0.12 1.00 

3  -2.09 13.06 0.52 
4
0a  26.57 9.03 1.00 

4  -58.71 14.73 0.00 
4b  95.72 18.67 1.00 

5  -8.97 12.67 0.02 
4c  1.30 0.18 1.00 

6  -27.95 12.13 0.00 
5
0a  17.92 9.64 1.00 

7  -2.90 8.73 0.43 
5b  107.01 18.85 1.00 

8  15.18 13.77 0.91 
5c  1.36 0.18 1.00 

9  -33.53 7.52 0.00 
6
0a  16.40 7.08 1.00 

10  14.77 10.00 0.94 
6b  112.86 14.51 1.00 

11  -1.81 10.75 0.49 
6c  1.40 0.19 1.00 

12  5.23 8.85 0.78 
7
0a  22.32 7.26 1.00 

13  -1.20 12.68 0.56 
7b  106.94 14.57 1.00 

14  20.45 15.57 0.93 
7c  1.32 0.19 1.00 

15  7.93 13.04 0.80 
8
0a  16.35 7.24 1.00 

16  -1.94 13.48 0.54 
8b  116.38 14.21 1.00 

17  -30.02 13.18 0.00 
8c  1.41 0.20 1.00 

18  -9.14 17.77 0.37 
9
0a  16.35 7.63 1.00 

19  -3.14 7.94 0.36 
9b  115.19 18.19 1.00 

20  -3.14 15.65 0.95 

1 5  : dummies for 1985-1989; 6 : dummy for <CC> rotation. 7 20  : location 

dummies. 
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Table C3. Estimation results on dataset C 

Variable ( | )E y
 

( | )Std y Pr( 0 | )y  Variable ( | )E y  ( | )Std y  Pr( 0 | )y 

1
0a  3.64 2.81 1.00 5

0a 32.63 11.72 1.00
1b  58.93 10.45 1.00 5b 84.80 14.57 1.00
1c  0.76 0.09 1.00 5c 1.03 0.15 1.00
2
0a  10.40 5.93 1.00 D 2.43 0.28 1.00
2b  87.18 10.93 1.00  8.24 1.69 1.00
2c  1.17 0.14 1.00

1 -47.75 2.95 0.00
3
0a  25.77 8.59 1.00

2 -35.91 2.60 0.00
3b  86.63 11.92 1.00

3 3.13 2.36 0.90
3c  1.14 0.16 1.00

4 -70.19 3.21 0.00
4
0a  18.48 8.30 1.00

5 5.43 2.49 0.98
4b  95.56 12.61 1.00

6 4.69 2.43 0.97
4c  1.26 0.17 1.00

7 1.89 2.29 0.79

1 4  : dummies for 1985, 1986, 1987, and 1988. 

5 7  : dummies for tillage practices FP, FC, and RD. 
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Table C4. Estimation results on dataset D 

Variable ( | )E y  ( | )Std y  Pr( 0 | )y   Variable ( | )E y  ( | )Std y  Pr( 0 | )y    
1
0a  254.54 46.89 1.00 4b  48.79 10.31 1.00 
1b  37.54 10.84 1.00 4c  0.88 0.08 1.00 
1c  0.83 0.10 1.00 D  26.46 6.17 1.00 
2
0a  324.17 52.78 1.00   7.09 2.32 1.00 
2b  54.53 9.83 1.00 

1  -513.37 191.22 0.00 
2c  0.96 0.10 1.00 

2  -303.86 226.08 0.04 
3
0a  320.09 45.01 1.00 

3  -225.86 222.23 0.19 
3b  51.84 11.19 1.00 

4  -18.55 161.96 0.56 
3c  0.91 0.08 1.00 

5  0.93 78.77 0.54 
4
0a  289.35 41.65 1.00 

6  2.13 70.22 0.53 

1 2  : dummies for location a and b; 3 6  : dummies for 1998-2001. 
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Appendix D. Quantile Regression Results on Datasets A, B, C and D 
 
Table D1. Quantile regression results on dataset A 
 

Dataset A Quantile 
Variable 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 

z  0.23w 0.243w 0.234w 0.28w 0.31w 0.30w 0.31w 0.30w 0.27w 

1  -24.69w -23.10w -27.58w -31.90w -31.21w -30.61w -28.59w -24.19w -24.40w 

2  -0.31u -0.16 -0.19u -0.10 0.26v 0.33w 0.55w 0.48w 0.60w 

  61.52 w 68.51 w 77.17 w 95.77 w 120.83w 142.60w 158.64w 167.29w 174.83w 

1 : dummy for rotation effect of <CC>; 2 : time variable 1-25 for 1979-2004. 

 
Note: u, v and w denote significance at 0.10, 0.05, and 0.01 levels, respectively.



35 

Table D2. Quantile regression results on dataset B 
 

Dataset B Quantile 
Variable 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 

z  0.11v 0.13w 0.14w 0.16w 0.15w 0.15w 0.11w 0.10w 0.08w 

1  15.41 16.87u 9.17 -3.82 -22.75w -19.52w -13.42v -2.40 -20.34v 

2  -14.49 -2.94 -5.90 -2.79 4.40 13.19w 14.81w 16.54w 16.81w 

3  2.92 5.24 -3.10 -3.70 -2.79 -2.81 -2.43 1.21 -2.12 

4  -68.58w -68.25w -75.21w -74.14w -57.03w -48.83w -36.67w -29.97w -34.96w 

5  -14.18w -10.89w -18.35w -19.66w -6.93w -4.68u -1.91 -1.56 -1.84 

6  -29.03w -27.99w -24.23w -24.50w -26.84w -25.38w -21.22w -16.38w -18.53w 

7  15.52 4.54 12.86 22.13w 19.02w 26.73w 31.46w 23.79w 26.14w 

8  -22.74u 16.33w 29.23w 40.24w 42.66w 49.83w 55.66w 51.52w 49.84w 

9  3.98 -13.30 -7.05w -1.73 -18.36w -27.65w -39.26w -52.33w -46.58w 

10  20.77 10.35 24.84w 40.66w 50.04w 47.14w 45.20w 36.64w 51.03w 

11  -4.27 -15.25 -5.90 7.24 30.76w 33.81w 33.23w 27.17w 26.49v 

12  16.48 6.79 25.56w 37.71w 35.81w 27.99w 24.99w 17.31w 19.21u 

13  -2.83 -6.54 7.68 20.48w 27.55w 31.23w 31.77w 26.47w 27.12w 

14  25.76u 14.80u 27.36w 38.01w 44.07w 52.74w 60.38w 61.80w 61.39w 

15  -5.08 -12.50 8.85 29.58w 39.36w 44.45w 50.07w 52.17w 55.25w 

16  10.05 -1.79 11.38u 25.06w 29.56w 24.61w 38.94w 40.14w 41.61w 

17  -20.32 -34.18w -22.35w -7.44 -5.10 5.41 11.31w 13.33w 13.75 

18  28.75v 10.74 16.09 21.95w 17.00v 26.87w 16.63v 12.59u 11.23 

19  16.97 22.98u 29.65w 28.76w 17.44w 14.69v 13.73u 8.10 14.90u 
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20  51.02w 45.82w 52.59w 54.68w 57.62w 57.54w 60.87w 54.53w 51.43w 

  91.72w 89.85w 102.19w 125.14w 142.36w 163.47w 176.92w 176.19w 183.14w 

1 5  : dummies for 1985-1989; 6 : dummy for <CC> rotation. 7 20  : location dummies. 
 
 

 



37 

Table D3. Quantile regression results on datasets C and D 

Dataset C Quantile 
Variable 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 

z  0.31v 0.33w 0.33w 0.31w 0.27w 0.25w 0.26w 0.27w 0.28w 

1  -33.20u -31.50w -35.60w -40.75w -50.71w -62.70w -66.60w -68.90w -69.45w 

2  -31.70u -27.40w -33.40w -34.90w -40.50w -46.80w -39.10w -44.73w -43.90w 

3  -3.20 1.60 3.60 3.45 5.24u -5.00 -3.10 -2.70 0.50 

4  -64.50w -63.50w -67.00w -70.90w -72.89w -85.40w -87.80w -91.13w -84.20w 

5  9.80 3.15 6.10u 5.50v 0.73 3.10 4.80 10.53u 12.30v 

6  4.20 4.60 7.50v 11.95w 4.20u 2.50 1.10 4.83 6.30 

7  3.20 2.00 1.50 4.45 1.36 0.80 2.10 8.50 7.20 

  45.29w 50.62w 57.09w 72.58w 89.91w 104.77w 118.44w 126.48w 132.03w 

1 4  : dummies for 1985, 1986, 1987, and 1988. 5 7  : dummies for tillage practices FP, FC, and RD. 

Dataset D Quantile 
Variable 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 

z  0.75u 0.70 0.62 0.90 w 0.58v 0.82v 0.87 1.04 0.76w 

1  75.33 86.80 119.57v 95.50u 121.00w 202.50w 264.33w 278.00w 250.00w 

2  102.00w 110.60u 129.29w 162.75w 211.00w 332.83w 381.33w 395.00w 337.00w 

3  -379.00w -349.00w -303.57w -394.00w -441.00w -526.17w -671.33w -663.00w -677.00w 

4  -215.00w -206.40w -198.57w -224.50w -169.00w -201.83w -283.67v -243.00w -49.00w 

5  21.67 18.80 7.71 -63.50 -116.00 -243.50w -430.00w -445.00w -429.00w 

6  -17.00 -17.00 -21.00 -109.25u -120.00u 218.17w 272.33u 389.00w 409.00w 

  610.07w 621.14w 645.06 w 738.16 w 830.86 w 979.87w 1074.01w 1126.39w 1166.87w 

1 2  : dummies for location a and b; 3 6  : dummies for 1998-2001. 

 


