

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Are Workers' Enterprises Entry Policies Conventional

Michele Moretto and Gianpaolo Rossini

NOTA DI LAVORO 31.2007

MARCH 2007

ETA – Economic Theory and Applications

Michele Moretto, *Department of Economics, University of Padova*
Gianpaolo Rossini, *Department of Economics, University of Bologna*

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
<http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm>

Social Science Research Network Electronic Paper Collection:
<http://ssrn.com/abstract=979911>

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei

Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it

Are Workers' Enterprises Entry Policies Conventional

Summary

One of the main reasons why workers' enterprises (WE) still represent a relevant chunk of the economy may lie in some affinities with conventional profit maximizing firms. To prove this, we compare the entry policies of WEs and conventional firms when they can decide size at entry while having to stick to it afterwards. Even though short run differences remain, a long run coincidence appears besides that under certainty. Endogenizing size and time of entry in an uncertain dynamic environment we see that WEs enter at the same trigger and size of conventional firms. Both of them wait less and choose a dimension larger than the minimum efficient scale. This may be another way to explain why WE are still an important share of the economy (Hesse and Cihàk, 2007) despite the ongoing mantra of their imminent demise.

Keywords: Workers' Enterprises, Entry, Uncertainty, Rigidity

JEL Classification: G13, J54, L3

We thank the Universities of Bologna and Padova for the financial support under the 60% scheme for the year 2006

Address for correspondence:

Michele Moretto
University of Padova
Department of Economics
Via del Santo, 22
Padova
Italy
E-mail: michele.moretto@unipd.it

Are Workers' Enterprises entry policies conventional?*

Michele Moretto
University of Padova
Department of Economics
Via del Santo, 22; Padova, Italy
michele.moretto@unipd.it

Gianpaolo Rossini
University of Bologna
Department of Economics
Strada Maggiore, 45; Bologna, Italy
rossini@spbo.unibo.it

Abstract

One of the main reasons why workers' enterprises (*WE*) still represent a relevant chunk of the economy may lay in some affinities with conventional profit maximizing firms. To prove this, we compare the entry policies of *WEs* and conventional firms when they can decide size at entry while having to stick to it afterwards. Even though short run differences remain, a long run coincidence appears besides that under certainty. Endogenizing size and time of entry in an uncertain dynamic environment we see that *WEs* enter at the same trigger and size of conventional firms. Both of them wait less and choose a dimension larger than the minimum efficient scale. This may be another way to explain why *WE* are still an important share of the economy (Hesse and Cihák, 2007) despite the ongoing mantra of their imminent demise.

JEL Classification: G13, J54, L3

Keywords: Workers' enterprises, entry, uncertainty, rigidity

1 Prologue

In Labour Managed firms (*LMFs*) workers own and govern the enterprise on an equal foot. *LMFs* exist in most countries and industries (Craig and Pencavel, 1992, 1995; Moretto and Rossini, 2003). For instance, *LM* banks are quite

*We thank the Universities of Bologna and Padova for the financial support under the 60% scheme for the year 2006.

common in both developed and emerging countries and seem to contribute to equity and financial stability (Hesse and Cihák, 2007). Last but not least, *LMFs* are quite close to firms belonging to the broad *US Census* category dubbed *Nonemployer* (Moretto and Rossini, 2005) and, in particular, to the large subset corresponding to *Partnerships*, very popular among infant firms in high tech sectors.

Whenever we compare a *LMF* with a conventional profit maximizing firm (*PMF*) we come across some fundamental differences in short run behavior, while a kind of long run coincidence holds.

In the short run the supply of the *LMF* reacts in a negative manner to higher market prices. The same occurs to the amount of labour required. Moreover, an increase in fixed costs generates a larger membership as the *LMF* needs fresh employee-members to bear larger overheads¹. These reactions, deemed as “perverse”, have been cast within the original modelling of the *LMF* (Ward, 1958; Vanek, 1970) and are still quite popular even though they lack realism since they are based on the assumption that, in the short term, an *LMF* changes, as a result of market signals, the membership size decided at the foundation. This weakness has been amended by the proponents of the new theory of Workers’ Enterprises (*WE*) (Sertel, 1987; 1991; 1993; Fehr and Sertel, 1993). *WEs*, based on the evolution of the traditional *LMF* underpinning, are quite similar to *LMFs*, but for membership, that can follow two alternative arrangements. In the first, size is chosen at the time of entry in the market and is not liable to vary in the short run. In the second, there exists a competitive market for memberships and, thanks to it, the number of members can change in the short run. In both cases “perversities” of the *LMF* shy away.

In the long run *LMFs*, *WEs* and *PMFs* are indistinguishable. This has given rise to the paradox stating that, in the long run, it is immaterial whether capital hires labour or the other way round (Samuelson, 1957; Dow, 1993). However, this result should be taken with great care, since the long run comparison between *PMF* and *WE* is confined to a static framework where the entry process is not explicitly modeled.

Here comes our main purpose, i.e. to model the entry decision and to test the long run convergence of *WE* and *PMF* with market uncertainty and investment irreversibility. After all, one of the main reasons why *WEs* still represent a significant chunk of the economy may lay in some affinities with respect to conventional firms. In this sense we shall provide a further interpretation of the persistence of *WE* in most economies (Hesse and Cihák, 2007) despite the ongoing mantra of their imminent demise. To interpret this unexpected survival (and flourishing) we show fresh similarities between *WE* and *PMF*, with market uncertainty in a dynamic setting when firms can delay entry, which is thought of as an option that firms possess to enter a market. In this option - like scenario, firms observe the quantity that market demands. Then, they choose size and

¹We may consider hiring labor that will not become member of the *LMF*. This possibility is considered in the literature (Bonin and Putterman, 1987). The resulting *LMF* is a sort of hybrid closer to a *PMF*, or, in other words, an intermediate arrangement between the *LMF* and the *PMF*.

set the price, that triggers entry, in an optimal way. This occurs in the same way regardless of the market structure (Leahy, 1993, Grenadier 2002). With no uncertainty in a dynamic setting the trigger prices of *WEs* and *PMFs* are the same (Moretto and Rossini, 2005): the two enterprises follow parallel patterns and in equilibrium cannot be distinguished. This happens if both firms do not change, after entry, the amount of labour chosen even when market incentives require it. The assumption closely mirrors the internal organization of human capital intensive industries. Here labor has a high specific value and firms are reluctant either to reduce it or to increase it due to large adjustment costs. This rigidity makes the *PMF* quite close to a *WE* constrained by a fixed membership after entry. Without this constraint affinities would shrink sharply.

The paper goes on as follows: In the next section we are concerned with the *WE* textbook case in a static environment; in section 3 we model entry, size and trigger prices under uncertainty. Conclusions are drawn in the epilogue.

2 The textbook case

We shortly present the *WE* static short run model drawn from current literature.²

We consider a *WE* producing a homogenous good with the short run Marshallian technology $Q(L)$, with $Q(0) = 0$, $Q'(L) > 0$, $Q''(L) < 0$ and $L \in [L, \bar{L}]$, where Q is the quantity manufactured and L is the labor input. The good is sold at price p .

The *WE* sets optimal membership maximizing the surplus per worker (value added $(y(p; L))$ minus market wage (w)):

$$y(p; L) - w = \frac{pQ(L) - I}{L} - w \quad (1)$$

where I indicates the sunk - fixed cost.

The short run (*sr*) first order condition (*FOC*) yields:

$$pQ'(L_{WE}^{sr}) = y(p; L_{WE}^{sr}) \quad (2)$$

Provided that $y(p; L) - w > 0$ we get the well known result that the optimal amount of labor employed by the *WE* in the short run is smaller than for the corresponding *PMF*, given by the marginal condition $pQ'(L_{PM}^{sr}) = w$.

In the long run (*lr*) competition dissipates all rents. Fresh firms, using same technology $Q(L)$, same variable and fixed costs, will enter at the Marshallian point:

$$p_{WE} = AC(\hat{L}) \equiv \frac{w\hat{L} + I}{Q(\hat{L})}, \quad (3)$$

where $AC(\hat{L})$ is the long run average total cost evaluated at the minimum efficient scale, i.e.: $L_{WE}^{lr} \equiv \hat{L} = \arg \min AC(L)$. Moreover, in the long run profits are null and the two firms behave the same way, i.e. $L_{WE}^{lr} = L_{PM}^{lr}$.

²For a recent survey on the literature on *WE* and labour participation see Moretto and Rossini (2003).

3 WE's entry under uncertainty

The above analysis is confined to a deterministic framework and considers a *WE* already in the market, neglecting the entry process.

Our main purpose is to model the entry policy of a single *WE* in isolation regardless of rivals. In this sense we may say that the firm is myopic. Then we shall see what happens if the firm becomes farsighted dismissing its myopic habit.

We start investigating a *WE* that has an option to enter the market with an irreversibly sunk investment project of finite size. The controls are time of entry and size in terms of labor membership.

In the vein of real option theory we assume that (Dixit and Pindyck, 1994):

1. The project, corresponding to a start-up decision, is of finite size with an entry cost I and technology described above.
2. The investment I is irreversibly sunk. It can neither be changed, nor temporarily stopped, nor shut down but it can be delayed while waiting for new information.³
3. For the sake of comparison with the textbook case, the instantaneous short run surplus per worker after entry is equal to (1) when the market wage w per unit of labour is constant over time.
4. The *WE* faces an infinitely elastic demand function: the uncertain market price is driven by the following trendless stochastic differential equation:

$$dp_t = \sigma p_t dB_t \quad \text{with } \sigma > 0 \text{ and } p_0 = p, \quad (4)$$

where dB_t is the standard increment of a Wiener process.⁴

5. The project is funded by *WE* members, who are all alike and maximize the discounted value of expected individual value added.
6. Finally, as pointed out in the introduction with regard to the change in membership, L is chosen before entry and held fixed afterwards.

Given these assumptions, only if the price is high enough, the *WE* enters setting the optimal size (L). The decision process requires a backward procedure. First, for any L , the value of the individual option to enter is computed. Subsequently, homogeneous employee-members of the *WE* chose L which maximizes the individual (option) value at entry.

³This avoids the analysis of operating options, such as the ability of the firm to reduce output and to shut down. These options increase the value of the firm. See McDonald and Siegel (1986) and, for a thorough discussion, Dixit and Pindyck (1994, chs. 6 and 7).

⁴By the Markov property of the process p_t , the results do not change qualitatively assuming a positive (or negative) trend of price (Dixit, 1993). Moreover, analogous results will be obtained if uncertainty is embedded in costs (See Dixit and Pindyck, 1994).

The employee-member of a *WE* of size L determines whether and when to start the new project solving an optimal stopping time problem by choosing the investment timing which maximizes:

$$f_{WE}(p; L) = \max_T E_0 [(y(p_T; L) - w) e^{-\rho T} \mid p_0 = p] \quad (5)$$

Each employee-member holds an option to invest corresponding to (5) and has an interest in exercising it cooperatively at the same time. He waits up to time T , where T is a random variable whose distribution can be obtained from that of (4). Then, he invests when p_t , starting from p_0 , reaches an upper value, say p_{WE} . Assuming that p_{WE} exists, taking expectation of (5) and using the distribution of T , we are able to write the member's value function, before investing, as (Dixit and Pindyck, 1994; Dixit et al., 1999):

$$f_{WE}(p; L) = (y(p_{WE}; L) - w) \left(\frac{p}{p_{WE}} \right)^\beta \quad \text{for } p < p_{WE}. \quad (6)$$

where $1 < \beta < \infty$ is the positive root of the auxiliary quadratic equation $\Psi(\beta) = \frac{1}{2}\sigma^2\beta(\beta - 1) - \rho = 0$. The individual option value (6) represents the expected net per capita dividend of the project, i.e., $y(p_{WE}; L) - w$, multiplied by the expected discount factor, i.e., $\left(\frac{p}{p_{WE}} \right)^\beta$. Therefore, the optimal investing rule implies that $f_{WE}(p; L) > y(p; L) - w$ for all $p < p_{WE}$.

Consistently with (1), entry occurs if the cash flow generated by the project is weakly larger than the long-run average cost. Maximizing (6) for p_{WE} , we see that the *WE* should invest when the market price exceeds the break-even threshold:

$$p_{WE} = \frac{\beta}{\beta - 1} AC(L) \quad (7)$$

which is the (deterministic) Marshall trigger $AC(L)$ multiplied by $\frac{\beta}{\beta - 1} > 1$, due to irreversibility of entry. The consequence is that, with new observations on market profitability obtained by waiting, the enterprise reduces the downside risk (Dixit and Pindyck, 1994, p. 142).

Substituting (7) back into (6) and maximizing with respect to L , the optimal entry size of *WE* can be obtained from:

$$p_{WE} Q'(L_{WE}^{sr}) = w + f_{WE}(L_{WE}^{sr}) > w. \quad (8)$$

where $f_{WE}(L_{WE}^{sr}) \equiv \frac{1}{\beta-1} (w + \frac{I}{L_{WE}^{sr}})$.

The *WE* chooses the optimal size equating the value marginal product, which is decreasing by concavity of the technology, to the "supplemented wage", that exceeds the market wage w . The Marshallian full cost of the investment imputed to each employee-member is $w + f_{WE}$, larger than w , since each member of the

WE owns an equal option to delay entry. After all, would-be employee-members are workers endowed with the option (and the skill) to build an egalitarian *partnership* making for a compensation larger than w .

Let us now turn to the long-run. Since competition dissipates all rents, the option value to delay entry goes to zero (i.e. $f_{WE} = 0$). However, by the infinite elasticity of demand, the optimal entry trigger (7) is not altered (Leahy, 1993, p.1118; Dixit and Pindyck, 1994, p. 254-257; Grenadier, 2002, p.703-704). All firms are alike and demand is infinitely elastic. Then, each employee-member maximizes her individual option to enter. By doing that she ends up choosing the optimal dimension of the industry as a whole. This means that L_{WE}^{lr} is the dimension of a *WE* encompassing all employee-members in the industry.

Then, we may prove that:

Proposition 1 *a) Long run competition forces the *WE* to operate with a larger dimension than in the short run, i.e.:*

$$L_{WE}^{sr} < \hat{L} < L_{WE}^{lr},$$

b) The entry trigger prices react in distinct ways in the long run vis à vis the short run, i.e.:

$$\frac{\partial p_{WE}^{sr}}{\partial L} > 0 \quad \frac{\partial p_{WE}^{lr}}{\partial L} < 0.$$

Proof. See Appendix. ■

To sum up:

1. under uncertainty the *WE* enters in both the short run and the long run if the market price is larger than the average total cost $AC(L) \equiv \frac{wL+I}{Q(L)}$ multiplied by a coefficient $\frac{\beta}{\beta-1}$,

2. the myopic *WE* enters with a size lower than minimum efficient scale \hat{L}

3. the farsighted *WE* under long run competition adopts a size which is above the efficient scale \hat{L} .

In other words, in the short run myopic equilibrium, the *WE* operates to the left of the minimum efficient scale, while, in the long run farsighted equilibrium, to the right.

Furthermore, we notice that, the optimal entry triggers of the short run *WE* and of the long run *WE* react in opposite ways with respect to dimension. Then, although we do not know whether p_{WE}^{sr} is larger or smaller than p_{WE}^{lr} , since it depends on the shape of $AC(L)$, as a result of competition - free entry - firms exercise their option sooner since the potential entry of new rivals reduces the value of the option to wait in the hands of the members of the *WE*.

Finally, in the long-run the *WE* chooses optimal size equating the value marginal product to the market wage w . This choice coincides with that of a *PMF* that determines the amount of labor to hire before entry sticking to it afterwards, regardless of market signals (Moretto and Rossini, 2005). When considering the effects of free entry, both the *PMF* and the *WE* abandon their respective myopic attitude and their behaviors converge, i.e., they enter with a size larger than that dictated by the minimum efficient scale level and, *ceteris paribus*, wait less before entering.

4 Epilogue

In an uncertain dynamic environment firms may anticipate competitive reactions of potential rivals. If they have the option of deciding the best time to start producing and if they cannot change their size after entry, a long run coincidence between a *WE* and a conventional firm emerges.

At entry in a myopic environment *WEs* are smaller than conventional firms. While, in the long run under uncertainty, free entry and risk neutrality a *PMF* and a *WE* both enter with an equal and larger size than that dictated by the minimum efficient scale. Moreover, they wait less as they both anticipate the effects of entry.

Even though our results have been obtained in a simplified framework, the coincidence of behavior at entry between a *WE* and *PMF* facing after-entry labor rigidities, provide a further interpretation of the persistence of *WE* in many industries where human capital specificities make labor flexibility costly.

A more realistic picture requires that each firm perceive the industry demand in the long run as a downward sloping curve. If that was the case, also the optimal triggers would differ between the myopic and the non myopic *WE*. Nonetheless, as proved by Grenadier (2002) for the *PMF*, the results do not change much.

5 Appendix

First part of the *Proposition*.

Substituting (7) into ((6) and rearranging we write the L -th employee-member's value of the project prior to investing:

$$f_{WE}(p; L) = A(L)p^\beta \quad \text{for } p < p_{WE}(L), \quad (9)$$

where the constant $A(L)$ is given by:

$$A(L) \equiv \frac{(\beta - 1)^{\beta-1}}{\beta^\beta} AC(L)^{-\beta} \frac{(wL + I)}{L} > 0 \quad (10)$$

By (9) the optimal dimension requires choosing L for which $A(L)$ is the largest. This is equivalent to maximizing

$$a(L) \equiv AC(L)^{-\beta} \frac{(wL + I)}{L},$$

which gives the first order condition:

$$\frac{L_N Q'(L_N)}{Q(L_N)} = 1 - \frac{(\beta - 1)}{\beta} \frac{I}{(\frac{w}{\rho} L_N + I)} \quad (11)$$

Since the r.h.s. of (11) is less than one, a necessary condition for an optimal solution is an output elasticity $\varepsilon_{QL} \equiv \frac{LQ'(L)}{Q(L)} < 1$, i.e., the average productivity

$\frac{Q(L)}{L}$ must be a decreasing function of labor, as from Assumption 1. By simple manipulation of (11) we get (8).

By Assumptions 4 and 5, the option value to invest by the industry as a whole is given by:

$$F_{WE}(p; L) = f_{WE}(p; L)L \quad (12)$$

where $f_{WE}(p; L)$ is the value of the project for the L -th member of the WE , given by (9). Defining $b(L) \equiv La(L)$, the optimal size is simply given by:⁵

$$b'(L) = a(L) + La'(L) = 0, \quad (13)$$

Over the range where the SOC holds $a'(L_{WE}^{sr}) = 0$. Therefore, $b'(L_{WE}^{sr}) = a'(L_{WE}^{sr}) > 0$. If an L_{WE}^{lr} exists such that $b'(L_{WE}^{lr}) = 0$, this will necessarily be:

$$L_{WE}^{sr} < L_{WE}^{lr}.$$

Second part of the *Proposition*.

Define the average cost function $AC(L) \equiv \frac{wL+I}{Q(L)}$. By the concavity of $Q(L)$ it is easy to show that $\lim_{L \rightarrow 0} AC(L) = +\infty$ and $\lim_{L \rightarrow +\infty} AC(L) = +\infty$. By taking the derivative with respect to L , we get:

$$\frac{\partial AC}{\partial L} = \frac{wQ(L) - (wL+I)Q'(L)}{Q(L)^2} = \begin{cases} < 0 & \text{if } \varepsilon_{QL} = \frac{LQ'(L)}{Q(L)} > 1 - \frac{I}{(wL+I)} \\ > 0 & \text{if } \varepsilon_{QL} = \frac{LQ'(L)}{Q(L)} < 1 - \frac{I}{(wL+I)} \end{cases} \quad (14)$$

Then, a value $\hat{L} > 0$ exists such that $\frac{\partial AC}{\partial L} = 0$ and it is given by:

$$\frac{\hat{L}Q'(\hat{L})}{Q(\hat{L})} = \left(1 - \frac{I}{(w\hat{L}+I)}\right). \quad (15)$$

The second order condition confirms that $AC(L)$ is a convex function with a minimum represented by \hat{L} . Since $\frac{(\beta-1)}{\beta} < 1$, by comparing (15) and (11), we notice that in the short run the WE operates only in the descending branch of the average cost curve to the left of the minimum. That is:

$$1 - \frac{(\beta-1)}{\beta} \frac{I}{(wL+I)} > 1 - \frac{I}{(wL+I)}$$

which implies that $\hat{L} > L_{WE}^{sr}$. On the contrary, by comparing (15) and (13), we have:

$$\frac{(\beta-1)}{\beta} \left(1 - \frac{I}{(wL+I)}\right) < 1 - \frac{I}{(wL+I)},$$

which, in the range where the SOC holds, implies that $\hat{L} < L_{WE}^{lr}$.

⁵The SOC is:

$$b''(L) = 2a'(L) + La''(L) < 0.$$

In general $a''(L) < 0$ does not imply that $b''(L) < 0$: the two regions, where the SOC holds, overlap only partially.

References

- [1] Bonin, J. and Puttermann, L. (1987), *Economics of Cooperation and the Labor-Managed Economy*, Harwood Academic Publishers, New York.
- [2] Craig, B. and Pencavel, J. (1992), “The behavior of worker cooperatives: the plywood companies on the Pacific Northwest”, *American Economic Review*, **82**, 1083-1105.
- [3] Craig, B. and Pencavel, J. (1995), “Participation and productivity: a comparison of worker cooperatives and conventional firms in the plywood industry”, *Brookings Papers: Microeconomics*, 121-174.
- [4] Dow, G. (1993), “Why capital hires labour: a bargaining perspective”, *American Economic Review*, **83**, 118-34.
- [5] Fehr, E. and Sertel, M. (1993), “Two forms of workers enterprises facing imperfect labour markets”, *Economic Letters*, **41**, 121-127.
- [6] Grenadier, S. (2002), “Option exercise games: an application to the equilibrium investment strategies of firms”, *Review of Financial Studies*, **15**, 691-721.
- [7] Hesse, H. and Cihák, M. (2007), “Cooperative banks and financial stability”, *IMF Working Paper* No. 07/02.
- [8] Leahy, J. (1993), “Investment in competitive equilibrium: the optimality of myopic behavior”, *Quarterly Journal of Economics*, **108**, 1105-33.
- [9] Moretto, M. and Rossini, G. (2003), “Labour participation”. In: Bianchi, P. and Lambertini, L. (eds.) *Technology, Information and Market Dynamics*. Edward Elgar, Cheltenham, UK.
- [10] Moretto, M. and Rossini, G. (2005), “Start-up entry strategies: employer vs. nonemployer firms”, *FEEM Working Paper* No.13.2005.
- [11] Pestieau, P. and Thisse J.F. (1979), “On market imperfections and labour management”, *Economic Letters*, **3**, 353-356.
- [12] Samuelson, P.A. (1957), “Wages and interest: a modern dissection of Marxian economic models”, *American Economic Review*, **47**, 884-912.
- [13] Sertel, M. (1987), “Workers’ enterprises are not perverse”, *European Economic Review*, **31**, 1619-25.
- [14] Sertel, M. (1991), “Workers’ enterprises in imperfect competition”, *Journal of Comparative Economics*, **15**, 698-710.
- [15] Sertel, M. (1993), “Workers enterprises in price competition”, *Management and Decision Economics*, **14**, 445-449.

- [16] Vanek J., (1970), *The General Theory of Labor Managed Market Economies*. Cornell University Press, Ithaca, N.Y..
- [17] Ward, B. (1958), “The firm in Illyria: market syndicalism”, *American Economic Review*, **48**, 566-89.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:

<http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm>
<http://www.ssrn.com/link/feem.html>
<http://www.repec.org>
<http://agecon.lib.umn.edu>
<http://www.bepress.com/feem/>

NOTE DI LAVORO PUBLISHED IN 2007

NRM	1.2007	<i>Rinaldo Brau, Alessandro Lanza, and Francesco Pigliaru: How Fast are Small Tourist Countries Growing? The 1980-2003 Evidence</i>
PRCG	2.2007	<i>C.V. Fiorio, M. Florio, S. Salini and P. Ferrari: Consumers' Attitudes on Services of General Interest in the EU: Accessibility, Price and Quality 2000-2004</i>
PRCG	3.2007	<i>Cesare Dosi and Michele Moretto: Concession Bidding Rules and Investment Time Flexibility</i>
IEM	4.2007	<i>Chiara Longo, Matteo Manera, Anil Markandya and Elisa Scarpa: Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting</i>
PRCG	5.2007	<i>Bernardo Bortolotti, William Megginson and Scott B. Smart: The Rise of Accelerated Seasoned Equity Underwritings</i>
CCMP	6.2007	<i>Valentina Bosetti and Massimo Tavoni: Uncertain R&D, Backstop Technology and GHGs Stabilization</i>
CCMP	7.2007	<i>Robert Küster, Ingo Ellersdorfer, Ulrich Fahl (lxxxi): A CGE-Analysis of Energy Policies Considering Labor Market Imperfections and Technology Specifications</i>
CCMP	8.2007	<i>Mònica Serrano (lxxxi): The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy</i>
CCMP	9.2007	<i>Erwin L. Corong (lxxxi): Economic and Poverty Impacts of a Voluntary Carbon Reduction for a Small Liberalized Developing Economy: The Case of the Philippines</i>
CCMP	10.2007	<i>Valentina Bosetti, Emanuele Massetti, and Massimo Tavoni: The WITCH Model. Structure, Baseline, Solutions</i>
SIEV	11.2007	<i>Margherita Turvani, Aline Chiabai, Anna Alberini and Stefania Tonin: Public Policies for Contaminated Site Cleanup: The Opinions of the Italian Public</i>
CCMP	12.2007	<i>M. Berritella, A. Certa, M. Enea and P. Zito: An Analytic Hierarchy Process for The Evaluation of Transport Policies to Reduce Climate Change Impacts</i>
NRM	13.2007	<i>Francesco Bosello, Barbara Buchner, Jacopo Giupponi and Andrea Povellato: The Kyoto Protocol and the Effect of Existing and Planned Measures in the Agricultural and Forestry Sector in the EU25</i>
NRM	14.2007	<i>Francesco Bosello, Carlo Giupponi and Andrea Povellato: A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector</i>
CCMP	15.2007	<i>Massimo Tavoni, Brent Sohngen, and Valentina Bosetti: Forestry and the Carbon Market Response to Stabilize Climate</i>
ETA	16.2007	<i>Erik Ansink and Arjan Ruijs: Climate Change and the Stability of Water Allocation Agreements</i>
ETA	17.2007	<i>François Gusdorf and Stéphane Hallegatte: Compact or Spread-Out Cities: Urban Planning, Taxation, and the Vulnerability to Transportation Shocks</i>
NRM	18.2007	<i>Giovanni Bella: A Bug's Life: Competition Among Species Towards the Environment</i>
IEM	19.2007	<i>Valeria Termini and Laura Cavallo: "Spot, Bilateral and Futures Trading in Electricity Markets. Implications for Stability"</i>
ETA	20.2007	<i>Stéphane Hallegatte and Michael Ghil: Endogenous Business Cycles and the Economic Response to Exogenous Shocks</i>
CTN	21.2007	<i>Thierry Bréchet, François Gerard and Henry Tulkens: Climate Coalitions: A Theoretical and Computational Appraisal</i>
CCMP	22.2007	<i>Claudia Kettner, Angela Köppel, Stefan P. Schleicher and Gregor Thenius: Stringency and Distribution in the EU Emissions Trading Scheme –The 2005 Evidence</i>
NRM	23.2007	<i>Hongyu Ding, Arjan Ruijs and Ekko C. van Ierland: Designing a Decision Support System for Marine Reserves Management: An Economic Analysis for the Dutch North Sea</i>
CCMP	24.2007	<i>Massimiliano Mazzanti, Anna Montini and Roberto Zoboli: Economic Dynamics, Emission Trends and the EKC Hypothesis New Evidence Using NAMEA and Provincial Panel Data for Italy</i>
ETA	25.2007	<i>Joan Canton: Redealing the Cards: How the Presence of an Eco-Industry Modifies the Political Economy of Environmental Policies</i>
ETA	26.2007	<i>Joan Canton: Environmental Taxation and International Eco-Industries</i>
CCMP	27.2007	<i>Oscar Cacho and Leslie Lipper (lxxxi): Abatement and Transaction Costs of Carbon-Sink Projects Involving Smallholders</i>
CCMP	28.2007	<i>A. Caparrós, E. Cerdá, P. Ovando and P. Campos (lxxxi): Carbon Sequestration with Reforestations and Biodiversity-Scenic Values</i>
CCMP	29.2007	<i>Georg E. Kindermann, Michael Obersteiner, Ewald Rametsteiner and Ian McCallum (lxxxi): Predicting the Deforestation-Trend Under Different Carbon-Prices</i>

CCMP	30.2007	<i>Raul Ponce-Hernandez</i> (lxxxii): <u>A Modelling Framework for Addressing the Synergies between Global Conventions through Land Use Changes: Carbon Sequestration, Biodiversity Conservation, Prevention of Land Degradation and Food Security in Agricultural and Forested Lands in Developing Countries</u>
ETA	31.2007	<i>Michele Moretto and Gianpaolo Rossini</i> : <u>Are Workers' Enterprises Entry Policies Conventional</u>

(lxxxi) This paper was presented at the EAERE-FEEM-VIU Summer School on "Computable General Equilibrium Modeling in Environmental and Resource Economics", held in Venice from June 25th to July 1st, 2006 and supported by the Marie Curie Series of Conferences "European Summer School in Resource and Environmental Economics".

(lxxxii) This paper was presented at the Workshop on "Climate Mitigation Measures in the Agro-Forestry Sector and Biodiversity Futures", Trieste, 16-17 October 2006 and jointly organised by The Ecological and Environmental Economics - EEE Programme, The Abdus Salam International Centre for Theoretical Physics - ICTP, UNESCO Man and the Biosphere Programme - MAB, and The International Institute for Applied Systems Analysis - IIASA.

2007 SERIES

CCMP	<i>Climate Change Modelling and Policy</i> (Editor: Marzio Galeotti)
SIEV	<i>Sustainability Indicators and Environmental Valuation</i> (Editor: Anil Markandya)
NRM	<i>Natural Resources Management</i> (Editor: Carlo Giupponi)
KTHC	<i>Knowledge, Technology, Human Capital</i> (Editor: Gianmarco Ottaviano)
IEM	<i>International Energy Markets</i> (Editor: Matteo Manera)
CSRM	<i>Corporate Social Responsibility and Sustainable Management</i> (Editor: Giulio Sapelli)
PRCG	<i>Privatisation Regulation Corporate Governance</i> (Editor: Bernardo Bortolotti)
ETA	<i>Economic Theory and Applications</i> (Editor: Carlo Carraro)
CTN	<i>Coalition Theory Network</i>