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WEATHER BASED INSTRUMENTS IN THE CONTEXT OF WHOLE FARM RISK 
MANAGEMENT 

 

Ernst Berg and Bernhard Schmitz∗ 

Abstract 

Recent and presumable future developments tend to increase the risks associated with farming 
activities. These include climate risks which have always played an important role in farming. 
Weather based instruments can be valuable tools to reduce the risk associate with un-
favourable climatic events. However, a number of factors can limit the hedging effectiveness 
of these tools. These factors include basis risk, the impacts of remaining price uncertainty and 
diversification effects. The paper addresses the influence of each oft these factors. In its final 
part an integrated approach for a comprehensive assessment of weather derivatives and other 
hedging instruments is proposed that is based on the concept of portfolio optimisation. 

Keywords 

Downside risk, portfolio optimisation, risk management, risk-value models, weather deriva-
tives. 
 

1 Introduction 
When the first weather derivatives appeared, i.e. the temperature based heating and cooling 
degree days contracts in the U.S., agriculture was soon detected as a promising field of 
application, since production quantities as well as input requirements are heavily dependent 
on weather patterns. Since then, in a number of theoretical studies the fundamentals have been 
laid out and several empirical analyses have indicated the potential of these new hedging 
instruments. However, despite these promising results, applications are still rare. One reason 
for this is certainly that it always takes some time for new instruments to enter the market. 
However, there may be more impediments for a wider adoption, as for example the fact that 
these tools provide financial compensation only for shortfalls of produced output or excessive 
input needs respectively, while other risks like unpredictable price changes remain 
unchanged. Furthermore, besides weather derivatives, farmers have other opportunities to 
influence the risk exposure of their firms. Among them are the choice of the production 
programme as well as marketing activities including forward pricing and hedging with futures 
and options. In total, all these opportunities comprise a portfolio of activities which eventually 
determines the extent of risk a farm operation is exposed to. 
Because of a multitude of interdependencies, assessing the relative value of each instrument 
requires the consideration of the whole set of possible actions. Treating an instrument 
separately is likely to lead to an overestimation of its risk reducing potential. In our paper we 
address this issue. On the outset we systematize the risk management instruments available to 
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the farmer. Next, the major factors that influence the effectiveness of weather derivatives as 
hedging instruments will be addressed. These include basis risk, the impacts of remaining 
price uncertainty and diversification effects. In the last part of the paper we shall outline an 
approach that aims at assessing the value of weather derivatives and other hedging 
instruments comprehensively in the context of portfolio optimisation. 

2 Risk management instruments  
Farmers have a wide variety of possibilities to influence the risk associated with their 
operations. Following HARDAKER et al. (2004: 268ff) and BERG (2005), these can be broadly 
classified into on farm risk management instruments on one hand and market based or risk 
sharing instruments on the other hand (Figure 1). The former include all measures that aim at 
avoiding or reducing the exposure to risks, such as precautionary actions to prevent accidents, 
fire outbreaks or burglaries. Furthermore strategies to control pests and diseases in plant and 
animal production belong to this category. Spreading the risk through the diversification of 
farming activities is based on the fact the dispersion of the overall return can be reduced by 
selecting a portfolio of activities that have outcomes with low or negative correlations. 
Finally, building financial reserves aims at creating a risk bearing potential that allows 
compensating the effects of unfavourable events if necessary. 

Figure 1: Risk management instruments 

 

Risk sharing instruments presuppose the existence of market partners. If risk pooling is 
possible insurance contracts that certainly belong to the most popular risk management 
instruments may be the appropriate risk-sharing devices. In addition, risks can be shared with 
market partners by entering a contractual agreement. Popular examples include forward 
contracting of inputs and outputs as well as hedging with futures and options. Weather 
derivatives also belong to this group.  
All these instruments are interdependent in the sense that the effect of a certain measure on 
the overall risk exposure depends on the constellation of all other instruments. For instance, a 
broadly diversified production programme limits the benefit of additional risk management 
instruments. In principal, this requires an integrated approach to risk management which 
considers the full set of risk management instruments simultaneously to ultimately arrive at an 
optimal mix of instruments. 
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3 Weather derivatives versus insurance contracts  
While standard insurance contracts confirm indemnity payments in case of the occurrence of a 
damage, weather derivatives base their payoffs on the value that an underlying index takes on. 
Thus, they are equivalent with regular insurance contracts only in the absence of any basis 
risk. A simplistic example shall demonstrate the impacts of this circumstance.  
As increasing values of weather indices often improve yields only up to a certain limit, we 
restrict our discussion to option contracts. In case of a long put option the payoff is given by 

( )[ ]xKMaxVA −⋅= ,0  (1) 

where V denotes the tick size and K is the strike level. This payoff structure corresponds to a 
Leontief type production function (cf. BERG, 1997) that grows linearly with increasing x, until 
x = K where the yield achieves its maximum. 
The fair premium Pf of the option equals the discounted expected value of the payoff, E(A), 
i.e. 

( ) [ ]( ))(,0  xKMaxEVeAEeP hrhr
f −== ⋅−⋅−  (2) 

where the factor e–rh discounts the payment over the duration h using the interest rate r. The 
expected value of the Max function, E(Max[.]), represents the weighted average of the 
payments that occur if the index falls above or below the strike level K, respectively. Since no 
payment occurs at index values above K we can write: 

[ ]( ) ))|(()(,0 KxxEKH(K)xKMaxE ≤−⋅=−  (3) 

In equation (3) H marks the probability that x exceeds K. If h(x) represents the density 
function of the weather index H(K) is given by 

∫
∞−

=
K

dxxhKH  )()(  (4) 

If the index is normally distributed H(K) becomes 

σ
)x(EKz)z()K(H −

=Φ=        with ,  (5) 

where )z(Φ represents the standard normal distribution. We still have to determine the 
expected value of x, given that x falls below K as represented by the term )|( KxxE ≤ . This is 
essentially the expected value of the distribution of x truncated above K. The expected value 
of the truncated normal distribution is (HARTUNG, 1998, p. 149) 

 
)(
)()()|(

z
zxEKxxE

Φ
−

+=<
φσ  (6) 

where (.)Φ  is the standard normal distribution and (.)φ  the respective density function. 
Following, we shall examine the effect that the option has on the total net return per ha Wp 
which comprises the market revenue plus the option payoff minus the fair premium Pf. It is 
given by 

[ ] fyP PxxEMaxVpyW −−⋅+= ))((,0  (7) 

In the above formula y is the yield and py represents the product price. Now let y represent the 
yield of wheat which we assume to be normally distributed with a mean of 80 dt/ha and a 
standard deviation of 10 dt/ha. If the product price py is contractually fixed at 10 €/dt, with 
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these assumptions, the distribution of the revenue corresponds to the solid black line in 
Figure 2 with an expected value of 800 €/ha and a standard deviation of 100 €/dt.  
The weather index x may represent the amount of rainfall during a certain period and shall 
likewise be normally distributed with a mean of E(x) = 100 mm and the standard deviation 
s = 125 mm. Setting the strike level at the expected value, i.e. K = 100, we derive the 
probability H(100) = 0.5 and the conditional expectation E(x | x ≤ K) = 90 mm. Thus, the 
average negative deviation of the index from K according to equation (3) is 5 mm. 
Multiplying by a tick size V = 8 €/mm yields a fair premium of 40 €/ha 1. 

Figure 2:  Impact of basis risk on the effectiveness of weather derivatives 
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Assuming that y and x are positively correlated random variables with the above 
characteristics, we can simulate the model of equation (7) stochastically. The simulation 
results are depicted in Figure 2. As can be seen from the graph, buying an option completely 
eliminates the downside risk if and only if we assume a perfect correlation between the yield 
and the weather index. In this case the weather derivative is equivalent to an insurance 
contract based on the individual yield. In turn, at correlations less than +1 – even though they 
may be close to one – very low revenues cannot be excluded anymore. Although the weather 
derivative always reduces the probability of low returns, it cannot secure a certain revenue 
because of the basis risk that is always present. This means that financial disasters caused by a 
local event, e.g. a hailstorm, flood or even pest damage, are still possible, although fairly 
unlikely. Weather derivatives can therefore reduce profitability risks but they cannot ensure 
liquidity. Likewise they cannot replace other types of disaster assistance. Naming them as 
index insurances may therefore be somewhat misleading. 

4 Limits to the effectiveness of weather derivatives 

The major factors that influence the effectiveness of weather derivatives as hedging 
instruments include basis risk, the impacts of remaining price uncertainty and diversification 
effects. These will be discussed in the following sections. 

                                                 
1 Since all payments are evaluated at harvesting time discounting is not necessary. 
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4.1 Basis risk 
Basis risk, in general, refers to the phenomenon that the payoffs of a derivative do not 
perfectly correspond to the shortfalls of the underlying exposure. In case of weather 
derivatives they may be either caused by an imperfect relationship between the weather index 
and the biological production process or by the fact that the index is monitored some distance 
away from site where the crop is grown. Latter is normally referred to as geographical basis 
risk while the former describes the local basis risk that remains even if monitoring takes place 
in close neighbourhood to the production site. 
In the following, we deal with local basis risk, using the results of field trials where the 
weather data are recorded next to the experimental field. The example refers to starch potatoes 
that exhibit a remarkable dependency on weather variables, particularly rainfall, as can be 
seen from the correlation coefficients given in Table 1. While the accumulated rainfall 
between May and September is yield increasing, high temperatures during summer obviously 
have a negative impact. Trying different accumulation periods we found the highest 
correlation between the yield and the cumulative rainfall from May to September. 

Table 1:  Correlation coefficients 

  

Cumulative 
precipitation 

mm 

Average 
temperature 

°C 
April -0.30 -0.01 

May -0.17 0.11 

June 0.57 -0.20 

July 0.47 -0.57 

August 0.35 -0.24 

September 0.27 0.07 

May-September 0.67 0.02 
Source: own calculation; data: chamber of Agriculture, 
Hanover 

Figure 3 depicts the relation between yield and precipitation using de-trended yield data of the 
years 1980 to 2002. According to the diagram, yield depression can be expected in years 
where the cumulative rainfall falls below around 340 mm. Above this amount yields remain 
largely constant. This relationship can be represented by a linear limited function: 

( )[ ] BeyxbaMiny ++= maxˆ,   (8) 

In the above equation y marks the estimated yield and x the cumulated rainfall from May to 
September. The parameters a and b are the constant and the slope of the linearly increasing 
function, respectively, ŷmax is the maximum yield caused by increasing amounts of rainfall, 
and eB represents an error term that accounts for the estimation error. Using least squares 
estimation leads to the parameters depicted in Table 2. 
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Figure 3: Yield response to rainfall  
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The graph in Figure 3 clearly indicates that a put option with the payoff structure given in 
equation (1) is an appropriate tool to hedge against the risk of low rainfall. The strike level K 
corresponds to the amount of rainfall that just leads to the maximum expected yield (ŷmax), 
i.e.: 

b
ayK −

= maxˆ
   (9) 

The optimal tick size V can be expressed by the slope b and product price py: 

ypbV =   (10) 

Since starch potatoes are subject to market regulations and because of the fairly low quality 
requirements the product price can be considered as almost deterministic. With these 
assumptions the revenue without derivative (W0) is given by 

( )Bmaxyy e]ŷ,xba[MinpypW     0 ++==  (11) 

In this equation the rainfall index x is a random variable. Thus, the variability of yield is 
determined by the variability of rainfall and the unexplained remaining variability eB which 
then represents the basis risk. A χ2 test of the residuals led to the conclusion that the normality 
hypothesis cannot be rejected at a 5 % error level. Thus, we assume eB as normally distributed 
with mean 0 and a standard deviation of 43 dt/ha, as derived from the data. 

Table 2: Parameters of yield response function and rainfall distribution 
Yield response function 

Parameters Estimation error [dt/ha] 
Rainfall  May-Septemeber  

[mm] 

 ŷmax [dt/ha] 573  Mean 0  Mean 353

 a [dt/ha] 55.3  Standard deviation 43  Standard deviation 82

 b [dt/ha/mm] 1.52  χ2 *) 1.28  χ2 *) 7.9

 K [mm] 342  Deg. of freedom 4  Deg. of freedom 8
*) Normality hypothesis accepted at 5 % error level 
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The total revenue with the put option (Wp) is composed of the market return as given in (11) 
plus the option payoff: 

( ) ( )[ ] fBmaxyp PxK,MaxVe]ŷ,xba[MinpW −−⋅+++= 0    

Using the relations given by (9) and (10) and rearranging the terms finally yields equation 
(12): 

( ) [ ]
[ ]( )

[ ]( )
( ) fBmaxy

fBmaxy

fBmaxy

fyBmaxyp

Peŷp

P)Kx(b,Mine]),Kx(b[Minŷp

P)xK(b,Maxe]),Kba(xba[Minŷp

P)xK(,Maxbpe]ŷ,xba[MinpW

−+=

−−−+−+=

−−+++−++=

−−⋅+++=

 

0 0 

0 0   

0     

 (12) 

As can be seen from equation (12), the total revenue with the put option is not dependent 
anymore on the rainfall index itself but only on the basis risk.  
To compute the pair premium we need to analyse the historical rainfall data. The comparison 
of the empirical frequencies of the rainfall index from 1980 to 2002 with a normal distribution 
led to the conclusion that the normality hypothesis cannot be rejected at 5 % error level. Thus, 
the approach of equations (3) to (6) can be used to derive the fair premium. With the 
distributional parameters given in Table 2, an interest rate of 5 % p.a. and a duration of 
5 months, the resulting fair premium amounts to 273 €/ha. 
Figure 4 depicts the simulation results with and without the weather derivative2. The graph 
indicates that buying the option significantly reduces the risk of experiencing low returns. The 
standard deviation is almost cut by half and the 5 % and 10 % percentiles are notably shifted 
upward. The derivative turns the originally negatively skewed distribution into a symmetrical 
one, indicating that primarily downside risk is effectively reduced.  

Figure 4: Simulation results for the potato example 
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without 
option 

with 
option 

mean 3.483 € 3.480 €

Standard 
deviation 519 € 278 €

5% Percentile 2.457 € 3.023 €

10% Percentile 2.766 € 3.124 €

90% Percentile 4.026 € 3.838 €

95% Percentile 4.139 € 3.935 €

skewness -1,14 0,00

The effect of the option would be less evident if the correlation was lower. The relatively high 
correlation is certainly influenced by the fact that the weather station is located next to the 
experimental field. While for temperature the geographical basis risk is less important (cf 
BERG et al. 2006a), in the case of rainfall it is certainly significant. MUßHOFF et al. (2005) 
have investigated the impact of geographical basis risk of rainfall for the state of Brandenburg 
using an empirically estimated de-correlation function. Their simulation results indicate that 
the risk reduction of a rainfall option – defined by the upward shift of the 5 % percentile – 

                                                 
2 The results are based on 10000 random simulation runs. 
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drops by roughly 45 % if the index is measured in a distance of 25 km and by almost 70 % if 
the distance increases to 100 km. 
While the geographical basis risk is something one has to live with since weather stations will 
rarely be located close to the field, the local basis risk may be reduced by using a portfolio of 
hedging instruments composed of set a of options based on different indexes. In our case the 
correlations given in Table 1 would call for the construction of additional put options based 
the monthly precipitation and call options based on the monthly temperature averages for 
June to August. Since the tick size V corresponds to the number of contracts with normalised 
payoffs, finding the best mixture then becomes a problem of portfolio selection.   

4.2 Remaining price risk 
While weather derivatives aim at reducing the risk associated with the uncertainty of yields, 
the price risk still remains with the farmer. Even if certain quantities are forward contracted at 
a fixed price a remaining risk can be caused by the fact that in case of low yields the producer 
is urged to purchase the shortfall quantity at uncertain market prices.  
To analyse the impacts of price uncertainty we start looking at the difference in the variance 
of returns. From equation (12) the variance of revenues with the weather derivative can be 
derived as  

( ) ( )Byp eVarpWVar 2=  (13) 

where Var(.) denotes the variance operator. Now let us assume that that the product price py is 
a normally distributed random variable. In this case we notice that for a product of random 
variables, i.e. z = x·y, the variance of z can be computed by the following formula (BOHRN-
STEDT and GOLDBERGER, 1969: 1439): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )222 2 y,xCovyVarxVary,xCovyExExVaryEyVarxEzVar ++++=  

The above formula, in which Cov(x,y) represents the covariance between x and y, yields an 
exact measure of the variance if the density functions of the two random variables are 
symmetric. Otherwise the result is an approximation. Applying the above formula along with 
(12) and observing that the E(eB) = 0 yields the variance of returns as: 

( ) ( ) ( ) ( ) ( )[ ] ( )ByBmaxyByp e,pCoveVarŷpVareVarpEWVar +++= 22  (14) 

If the expected price E(py) in (14) equals the deterministic price py in (13) the comparison of 
the two formulas shows that price uncertainty adds to the variance through the second and the 
third term of (13), where a negative correlation between price and yield reduces the variance 
as it constitutes a natural hedge3. Furthermore, the product of the second term indicates the 
interdependence between price uncertainty and the effectiveness of the weather derivative 
since ŷmax is related to the contract parameters through (9).  
To investigate the orders of magnitude of this interdependence, Monte Carlo simulation 
experiments were conducted using the former model, however, assuming a stochastic price py 
that is normally distributed with a mean of 6.55 €/dt and a standard deviation of 1 €/dt, 
representing a coefficient of variation of roughly 15 %. The simulation results are depicted in 
Table 3. Hedging effectiveness is measured by the reduction of the standard deviation through 
the derivative and by the upward shift of the 5 % percentile, the latter especially referring to 
reduction of downside risk. As can be seen from the figures, even a moderate volatility of 
prices cuts the risk reduction due to the weather derivative by more than half. 

                                                 
3 Note that the expected value of a product of random variables too is increased by a positive and decreased by a 
negative covariance.  
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Table 3: Influence of price uncertainty on the effectiveness of weather derivatives 

Reduction of standard 
deviation Shift of 5 % percentile   
€/ha % €/ha % 

Deterministic price (6.55 €/dt) 241 46.4 566 23.0 

Stochastic price *) 102 13.7 222 9.9 
*) Normally distributed with mean 6.55 €/dt and standard deviation 1 €/dt 

4.3 Diversification effects 
Farmers have a variety of opportunities to influence the risk exposure of their operations. 
Among them the diversification of the production program plays an important role. This is 
particularly true for Europe where farms are typically set up as multi-commodity operations. 
If a diversified production program already exists additional hedging instruments are less 
valuable than in case of a high degree of specialisation. 
This effect shall be illustrated in the following section, using an expected value-variance (EV) 
framework, i.e. we define the certainty equivalent (CE) as expected income minus a risk 
premium, where the latter is expressed using the PRATT approximation (cf. ROBISON and 
BARRY, 1987: 34). Assuming constant absolute risk aversion the certainty equivalent CE is 
given by 

( )yVar)y(ECE
2
λ

−=  

where E(y) denotes expected income, Var(y) is the variance of income and λ represents the 
coefficient of absolute risk aversion. For simplicity let us assume that the expected returns of 
all activities are the same, so we can limit the analysis to the variance. Considering n 
production activities realised in quantities qi, the variance becomes 

( ) ∑ ∑∑
−

= +==
+=

1

1 1

2

1

2 2
n

i

n

ij
ijjii

n

i
i covqqqyVar σ  (15) 

where σi
2 represents the variance of the return of the i-th activity, and covij denotes the 

covariance of returns between the activities i and j. If we assume a portfolio of activities in 
which all quantities are equal, i.e. qi = 1/n the above equation becomes 

( ) ∑ ∑∑
−

= +==
+=

1

1 1
2

1

2
2

21 n

i

n

ij
ij

n

i
i cov

nn
yVar σ  (16) 

We now observe that a portfolio of n elements is comprised of n(n-1)/2 covariances. Thus we 
can define an average covariance as 

)n(n

cov
COV

n

i

n

ij
ij

1

2
1

1 1

−
=

∑ ∑
−

= +=  (17) 

On substituting the second term in equation (16) by this relation the variance of the portfolio 
becomes 

( ) COV
n

n
n

yVar
n

i
i

11

1

2
2

−
+= ∑

=
σ  (18) 
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On introducing the average variance 2σ  this equation further reduces to  

( ) COV
n

n
n

yVar 11 2 −
+= σ  (19) 

Let us assume identically distributed returns for all activities. From covij=σi σj ρij where ρij 
marks the correlation coefficient we can rewrite the average covariance as 

ρσ 2=COV  
where ρ  marks the average correlation coefficient. Equation (19) then becomes 

( ) ( )( )ρσρσσ 1111 2
22 −+=

−
+= n

nn
n

n
yVar  (20) 

The above equations indicate that the portfolio risk decreases as n increases, however at 
diminishing rates. As the term (n-1)/n approaches 1 for large n the portfolio variance reduces 
to the average covariance which is not diversifiable. If the returns are stochastically 
independent, i.e. the correlation coefficients and covariances are zero, the risk is completely 
diversifiable. If the correlation coefficients amount to +1 no diversification effect occurs as 
can be seen from equation (20). In turn, at correlation coefficients of -1 the portfolio variance 
completely vanishes already at n=2. 
Now assume that in a production program composed of n commodities a derivative is 
introduced to hedge against weather risk for one commodity. This can be represented by 
replacing the i-th element in (18) by one that exhibits a reduced variance, i.e. σi

2 is replaced 
by 2

i
~σ . For simplicity, assume that the average covariance remains unchanged. Then the 

difference of the portfolio variance caused by the derivative is given by Var(y) – Var’(y), 
where in Var’(y) the reduced variance is considered. Expanding the summation in (19) we can 
write:  

( ) ( )

( ) ( ) COV
n

n
n

yrVa
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n
n

yVar
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++++++=′
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++++++=
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From this the difference Var(y) – Var’(y) can be derived as: 

( ) ( ) 2

22

n

~
yrVayVar ii σσ −

=′−  (21) 

From equation (21) we can see that within a portfolio of n activities the variance reducing 
power of a single derivative is downscaled by n2. For a farm with a broadly diversified 
production program weather derivatives are therefore of much less value than for a highly 
specialized operation. Model calculations by SCHMITZ for a farm in Germany that grows five 
different crops clearly demonstrate this effect: a rainfall based weather derivative that is 
introduced for onions reduces the variance of the total profit only by 7.5 % (SCHMITZ, 2007: 
123ff).  
While this effect as such is fairly general, the extent to which it becomes palpable depends on 
the nature of the derivative. The relation of formula (21) applies only if the derivative is 
highly specific in the sense that it only effects the variance of returns of a single commodity. 
In most cases, though, the weather index will be correlated with the yields of several 
commodities which, in turn, will enhance the reduction of the portfolio variance. However, if 
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such cross effects exist they must be considered in the construction and in the valuation of the 
derivatives, what further adds to the complexity of the problem. 

5 Assessing the value of weather derivatives in the context of portfolio optimisation 
The discussion so far has shown that an integrated approach to risk management is necessary 
that can best be characterised as portfolio optimisation. Portfolio selection is often associated 
with MARKOWITZ’s approach of determining an expected value-variance-efficient frontier. In 
this setting the expected value serves as a measure of worth while the variance is used to 
assess the risk that must be assumed in order to achieve a certain level of expected income. 
Thus, the MARKOWITZ model can be viewed as a particular member of a more general class of 
models which are often referred to as risk-value-models. In general, the preference function of 
a risk-value model is defined as  

[ ] [ ]( ))(,)())(( xFRxFWHxF iii =Φ  (22) 

where W[Fi(x)] is the measure of worth and R[Fi(x)] represents the risk measure. Fi(x) marks 
the cumulative distribution function of the risky prospect i and H(.) determines the trade-off 
between risk and worth according to the decision maker’s preferences. The usual assumption 
is that H(.) grows with increasing worth and falls with increasing risk. Neither the value 
measure nor the risk measure depends on wealth. Only the trade-off function is wealth 
dependent. If the decision maker is able to specify the trade-off function, comparing pairs of 
distributions leads to an optimal choice. If H(.) remains unspecified, it is still possible to 
determine the efficient set consisting of the distributions which are not dominated. A 
distribution Fi(x) dominates the distribution Fj(x) if the condition 

[ ] [ ] [ ] [ ])()(and)()( xFRxFRxFWxFW jiji ≤≥  

holds with at least one strict inequality (FISHBURN 1977: 118). All non dominated alterna-
tives lie on the efficient frontier which can be determined by solving the optimisation problem 

[ ]

[ ] cxFR

MaxxFW

≤

→

)(
tosubject

!)(
 (23) 

where c must be varied across all possible numerals of R[F(x)]. 
While the appropriateness of risk measures is still controversially discussed in the relevant 
literature it is widely agreed that the expected value is the best measure of worth in risk-value 
models, i.e. W[F(x)] = E[x]. In the MARKOWITZ approach the risk measure is given by the 
variance, i.e. R[F(x)] = E[(x–μ)2], where μ denotes the mean and E[.] represents the 
expectation operator. The disadvantage of this approach is two-fold: First, the EV-approach 
yields similar results as the more general expected utility (EU) approach only if the 
distribution of outcomes is not very skewed. Secondly, when moments of the distribution are 
used as risk measures, the mean is (implicitly) considered as the relevant target and risk is 
quantified using the magnitude of deviations from this target. Since the target is determined 
endogenously these measures do not change if a certain amount d is added to an uncertain 
outcome X, i.e. R[X]=R[X+d]. Contrary, if the target is determined exogenously, adding a 
certain quantity to an uncertain prospect reduces the risk associated with it, i.e. R[X]>R[X+d]. 
Generally, one would consider a situation to be less risky if a certain income is earned in 
addition to the uncertain prospect. 
This leads to a further class of risk measures which explicitly refer to downside-risk in the 
sense that only those outcomes are considered that are worse than some specific target. This 
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class of measures dates back to the work of FISHBURN (1977) and was revisited by SARIN and 
WEBER (1993). Considering only the lower part of the distribution, these measures account 
for the downside-risk and are called lower partial moments (LPM). They are defined as 

( )∫
∞−

−=
z

k
n dx)x(fxz)z(LPM      (k ≥ 0) (24) 

Setting the target z and the order k of the LPM yields a specific measure. Basic cases that play 
an important role in applications, are obtained for k = 0, 1 and 2. Setting k=0 yields the 
shortfall probability LPM0(z) that is closely related with the value-at-risk:4 

 ( ) ( )zFdxxfxzzLPM
z

=−= ∫
∞−

 )()( 0
0  (25) 

For k=1 the resulting measure is the shortfall expectation: 

( ) [ ] ( )zFzxxzEdxxfxzzLPM
z

<−=−= ∫
∞−

| )()( 1
1  (26) 

LPM1(z) denotes the (conditional) expected value of shortfalls multiplied by the probability of 
the occurrence of below target returns. Thus, it accounts for the probability as well as for the 
magnitude of shortfalls. Finally k=2 leads to the shortfall variance 

( ) [ ] ( )zFzxxzEdxxfxzzLPM
z

<−=−= ∫
∞−

|)( )()( 22
2  (27) 

the square root of which denotes the shortfall standard deviation. Here the squared downside 
deviations from the target are considered in the risk measure. 
The preference function of the risk-value model using the expected value E[x] as value 
measure and a lower partial moment LPMk(z) as risk measure can be stated as 

( ) )(][)( zLPMcxExF k−=Φ  (28) 

where c>0 denotes die weighting factor and k is the order of the LPM. Increasing c therefore 
means increasing risk aversion. SCHNEEWEIß (1967: 89ff) has shown that the corresponding 
utility function has the following form: 

⎩
⎨
⎧

≤−−

>
=

zxxzcx
zxx

xu k if)(
if

)(  (29) 

As can be seen from (29) above the target level all three cases result in the same utility 
function which is given by u(x) = x. The differences between them occur in the range where x 
falls below the target. For k=0 the utility function is linearly increasing at a constant slope but 
has a discontinuity at the target z. This does neither allow a general statement about the 
decision maker’s attitude towards risk nor is it consistent with decision theory. Therefore this 
measure receives no further attention in our paper.  
The shortfall expectation, i.e. k=1, considers not only the shortfall probability but also its 
extent. The corresponding utility function is piecewise linear with the steeper slope in the 
lower part. Only if all possible outcomes fall either below or above the target level, 
respectively, the utility function implies risk neutral behaviour. Otherwise the shape of the 
utility function is approximately concave and therefore implies risk aversion. 
                                                 
4 For details on the value-at-risk concept see e.g.  JORION (1997), MANFREDO and LEUTHOLD (1999) 
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The use of higher order LPMs, i.e. higher values of k, implies stronger local risk aversion in 
the lower part of the domain while above the target local risk neutrality remains. Using 
LPM2(z), i.e. the shortfall variance, the shortfalls are squared, thus giving particular weight to 
the higher losses. The corresponding utility function is quadratic in the range below the target 
level and therefore also implies risk aversion. Different from the former case, the utility 
function is strictly concave in the lower part. 
From the above framework the shortfall expectation and the shortfall variance appear as 
suitable risk measures for risk averse decision makers. Since a desirable feature of any 
measure is that it has an obvious meaning for the decision maker the shortfall expectation is 
particularly appealing. Model experiments conducted by STARP have shown that at moderate 
degrees of risk aversion the results obtained by the expected value-LPM1 approach are very 
similar to those of the EU approach (STARP, 2006; BERG and STARP, 2006). At higher degrees 
of risk aversion, however, the approaches yield different results because the LPM1 model 
cannot approximate the utility function close enough. Using higher order LPMs might lead to 
improvements, but only at the expense of losing much of the understandability of the risk 
measure. 
Implementing the general approach given in (23) using LPM1 as risk measure implies that the 
expected profit enters the objective function while the risk measure is considered as a 
constraint. Thus, the objective function is to select the portfolio of activities x that maximizes 
the expected profit π 

( ) ( ) ypΩypxyp
x

ddg |,,,max
0 0
∫ ∫
∞ ∞

π  (30) 

subject to the resource constraints bxA ≤  and the constraint on the risk measure 
( ) czLPM ≤1 , where c is parameterised in order to compute the efficient frontier. In (30) the 

term π(⋅) denotes the profit function and g(⋅|Ω) is the joint density function of prices and 
yields conditional on Ω, the set of information available when the portfolio is selected. The 
random price vector p consists of cash prices for all products and in addition futures and 
forward contract prices as far as they are available. The random yield vector y contains the 
individual crop yields. The resource constraints reflect the physical capacities of the farm as 
well as institutional constraints, e.g. rotational restrictions and agricultural policy regulations. 
Finally, the vector of activities x, besides the production processes also contains risk 
management measures including hedging price risks with futures and options and production 
risks with weather derivatives. While this approach is certainly complex it is the only way to 
assess the value of risk management tools comprehensively. 

6 Conclusions 
The discussion has shown that a comprehensive assessment of hedging instruments, including 
weather derivatives, requires an integrated approach as suggested in this paper. Since most 
research so far focuses on single instruments more research is needed to this end. Important 
aspects to be considered with regard to weather derivatives include structured (i.e. combined) 
contracts and cross effects resulting from the fact that most weather indexes are correlated 
with the yields of several crops.  
Selecting an optimal portfolio of hedging instruments is a complex task. It can therefore be 
doubted that farmers – besides all other tasks they have to fulfil in their predominantly small 
to medium sized operations – will ever be able to successfully cope with this problem. Left to 
themselves they would certainly be overcharged. Instead one could imagine that other 
institutions, possibly formed under participation of agricultural commerce, the banking sector, 
insurance companies and the extension service, take over the task of creating and managing 
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such portfolios that fit the needs of certain farm types. The farmers themselves would then 
only have to deal with one aggregate instrument aimed at reducing their downside-risk of 
income.  
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