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Abstract

The study of natural catastrophe models plays an important role in
the prevention and mitigation of disasters. After the occurrence of a nat-
ural disaster, the reconstruction can be financed with catastrophe bonds
(CAT bonds) or reinsurance. This paper examines the calibration of a real
parametric CAT bond for earthquakes that was sponsored by the Mexican
government. The calibration of the CAT bond is based on the estimation of
the intensity rate that describes the earthquake process from the two sides
of the contract, the reinsurance and the capital markets, and from the his-
torical data. The results demonstrate that, under specific conditions, the
financial strategy of the government, a mix of reinsurance and CAT bond, is
optimal in the sense that it provides coverage of USD 450 million for a lower
cost than the reinsurance itself. Since other variables can affect the value
of the losses caused by earthquakes, e.g. magnitude, depth, city impact,
etc., we also derive the price of a hypothetical modeled-index loss (zero)
coupon CAT bond for earthquakes, which is based on the compound dou-
bly stochastic Poisson pricing methodology from BARYSHNIKOV, MAYO
and TAYLOR (2001) and BURNECKI and KUKLA (2003). In essence,
this hybrid trigger combines modeled loss and index trigger types, trying
to reduce basis risk borne by the sponsor while still preserving a non-
indemnity trigger mechanism. Our results indicate that the (zero) coupon
CAT bond price increases as the threshold level increases, but decreases
as the expiration time increases. Due to the quality of the data, the re-
sults show that the expected loss is considerably more important for the
valuation of the CAT bond than the entire distribution of losses.
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Process, Trigger mechanism

Aknowledgements: The financial support from the Deutsche Forschungsgemein-
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1 Introduction

By its geographical position, Mexico finds itself under a great variety of natural
phenomena which can cause disasters, like earthquakes, eruptions, hurricanes,
burning forest, floods and aridity (dryness). In case of disaster, the effects on
financial and natural resources are huge and volatile. In Mexico the first risk to
transfer is the seismic risk, because although it is the less recurrent, it has the
biggest impact on the population and country. For example, an earthquake of
magnitude 8.1 Mw Richter scale that hit Mexico in 1985, destroyed hundreds
of buildings and caused thousand of deaths. The Mexican insurance industry
officials estimated payouts of four billion dollars. Figure 1 depicts the number of
earthquakes higher than 6.5 Mw occurred in Mexico during the years 1900-2003.

Figure 1: Number of earthquakes occurred in Mexico during 1900-
2003.
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Source: Own representation.

After the occurrence of a natural disaster, the reconstruction can be financed
with catastrophe bonds (CAT bonds) or reinsurance. For insurers, reinsurers and
other corporations CAT bonds are hedging instruments that offer multi year pro-
tection without the credit risk present in reinsurance by providing full collateral
for the risk limits offered throught the transaction. For investors CAT bonds offer
attractive returns and reduction of portfolio risk, since CAT bonds defaults are
uncorrelated with defaults of other securities.

BARYSHNIKOV, MAYO and TAYLOR (1998, 2001) present an arbitrage free
solution to the pricing of CAT bonds under conditions of continous trading and
according to the statistical characteristics of the dominant underlying processes.
Instead of pricing, ANDERSON, BENDIMERAD, CANABARRO and FINKE-
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MEIER (2000) devoted to the CAT bond benefits by providing an extensive
relative value analysis. Others, like CROSON and KUNREUTHER (2000) focus
on the CAT management and their combination with reinsurance. LEE AND YU
(2002) analyze default risk on CAT bonds and therefore their pricing method-
ology is focused only on CAT bonds that are issued by insurers. Also under
an arbitrage-free framework, VAUGIRARD (2003) valuate catastrophe bonds by
Monte Carlo simulation and stochastic interest rates. BURNECKI and KUKLA
(2003) correct and apply the results of BARYSHNIKOV, MAYO and TAYLOR
(1998) to calculate non-arbitrage prices of a zero coupon and coupon CAT bond.

As the study of natural catastrophe models plays an important role in the preven-
tion and mitigation of disasters, the main motivation of this paper is the analysis
of pricing CAT bonds. In particular, we examine the calibration of a parametric
CAT bond for earthquakes that was sponsored by the Mexican government and
issued by the special purpose CAT-MEX Ltd in May 2006. The calibration of
the CAT bond is based on the estimation of the intensity rate that describes
the earthquakes process from the two sides of the contract: from the reinsurance
market that consists of the sponsor company (the Mexican government) and the
issuer of reinsurance coverage (in this case Swiss Re) and from the capital mar-
kets, which is formed by the issuer of the CAT bond (CAT-MEX Ltd.) and the
investors. In addition to these intensity estimates, the historical intensity rate is
computed to conduct a comparative analysis between the intensity rates to know
whether the sponsor company is getting protection at a fair price or whether the
reinsurance company is selling the bond to the investors for a reasonable price.
Our results demonstrate that the reinsurance market estimates a probability of
an earthquake lower than the one estimated from historical data. Under specific
conditions, the financial strategy of the government, a mix of reinsurance and
CAT bond is optimal in the sense that it provides coverage of USD 450 million
for a lower cost than the reinsurance itself.

Since a modeled loss trigger mechanism takes other varibles into account that
can affect the value of the losses, the pricing of a hypothetical CAT bond with
a modeled-index loss trigger for earthquakes in Mexico is also examined in this
paper. These new approach is also fundamentally driven by the desire to mini-
mize the basis risk borne by the sponsor, while remaining non-indemnity based.
Due to the missing information of losses, different loss models are proposed to
describe the severity of earthquakes and the analytical distribution is fitted to
the loss data that is formed with actual and estimated losses. We found that the
best process governing the flow of earthquakes is described by the homogeneous
Poisson process. Formerly estimating the frequency and severity of earthquakes,
the modeled loss is connected with an index CAT bond, using the compound
doubly stochastic Poisson pricing methodology from BARYSHNIKOV, MAYO
and TAYLOR (2001). and BURNECKI and KUKLA (2003). This methodol-
ogy and Monte Carlo simulations are applied to the studied data to find (zero)
coupon CAT bond prices for earthquakes in Mexico. The threshold level and the
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maturity time are also computed. Furthermore, the robustness of the modeled
loss with respect to the CAT bond prices is analyzed. Because of the quality of
the data, the results show that there is no significant impact of the choice of the
modeled loss on the CAT bond prices. However, the expected loss is considerably
more important for the evaluation of a CAT bond than the entire distribution of
losses.

Our paper is structured as follows. In the next section we discuss fundamentals of
CAT bonds and how this financial instrument can transfer seismic risk. Section
3 is devoted to the calibration of the real parametric CAT bond for earthquakes
in Mexico. Section 4 presents the valuation framework of a modeled-index CAT
bond fitted to earthquake data in Mexico. Section 5 summarizes the article and
suggests a possible extension. All quotations of money in this paper will be in
USD and therefore we will omit the explicit notion of the currency.

2 CAT bonds

In the mid-1990’s catastrophe bonds (CAT bonds), also named as Act of God or
Insurance-linked bond, were developed to ease the transfer of catastrophe based
insurance risk from insurers, reinsurers and corporations (sponsors) to capital
market investors. CAT bonds are bonds whose coupons and principal payments
depend on the performance of a pool or index of natural catastrophe risks, or
on the presence of specified trigger conditions. They protect sponsor companies
from financial losses caused by large natural disasters by offering an alternative
or complement to traditional reinsurance.

The transaction involves four parties: the sponsor or ceding company (government
agencies, insurers, reinsurers), the special purpose vehicle SPV (or issuer), the
collateral and the investors (institutional investors, insurers, reinsurers, and hedge
funds). The basic structure is shown in Figure 2. The sponsor sets up a SPV
as an issuer of the bond and a source of reinsurance protection. The issuer sells
bonds to capital market investors and the proceeds are deposited in a collateral
account, in which earnings from assets are collected and from which a floating rate
is payed to the SPV. The sponsor enters into a reinsurance or derivative contract
with the issuer and pays him a premium. The SPV usually gives quarterly coupon
payments to the investors. The premium and the investment bond proceeds that
the SPV received from the collateral are a source of interest or coupons paid to
investors. If there is no trigger event during the life of the bonds, the SPV gives
the principal back to the investors with the final coupon or the generous interest,
otherwise the SPV pays the ceding according to the terms of the reinsurance
contract and sometimes pays nothing or partially the principal and interest to
the investors.

There is a variety of trigger mechanisms to determine when the losses of a natural
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Figure 2: Cash flows diagram of a CAT bond. In case of event (red
arrow), no event (blue arrow).

Source: Own representation.

catastrophe should be covered by the CAT bond. These include the indemnity,
the industry index, the pure parametric, the parametric index, the modeled loss
and the hybrid trigger. Each of these mechanisms shows a range of levels of basis
risks and transparency to investors.

The Indemnity trigger involves the actual loss of the ceding company. The ced-
ing company receives reimbursement for its actual losses from the covered event,
above the predetermined level of losses. This trigger closely replicates the tradi-
tional reinsurance, but it is exposed to catastrophic and operational risk of the
ceding company. With an Industry index trigger, the ceding company recovers
a proportion of total industry losses in excess of a predetermined point to the ex-
tent of the remainder of the principal. The Pure parametric index payouts are
triggered by the occurrence of a catastrophic event with certain defined physical
parameters, for example wind speed and location of a hurricane or the magni-
tude or location of an earthquake. The Parametric index trigger uses different
weighted boxes to reflect the ceding company’s exposure to events in different
areas. In a Modeled loss trigger mechanism, after a catastrophe occurs the
physical parameters of the catastrophe are used by a modelling firm to estimate
the expected losses to the ceding company’s portfolio. Instead of dealing with the
company’s actual claims, the transaction is based on the estimates of the model.
If the modeled losses are above a specified threshold, the bond is triggered. A
Hybrid trigger uses more than one trigger type in a single transaction.

The pricing of CAT bonds reveals some similarities to the defaultable bonds,
but CAT bonds offer higher returns because of the unfixed stochastic nature of
the catastrophe process. The similarity between catastrophe und default in the
log-normal context has been commented on KAU and KEENAN (1990).
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2.1 Seismology in Mexico

Mexico has a high level of seismic activity due to the interaction between the
Cocos plate and the North American plate. This zone along the Middle America
Trench suffers large magnitude events with a frequency higher than any other
subduction zone in the world. These events can cause substantial damage in
Mexico City, due to a phenomenon known as the Mexico City effect. The Mexico
City soil, which consists mostly of reclaimed, water-saturated lakebed deposits,
amplifies 5 to 20 times the long-period seismic energy, RMS (2006). Due to this
effect and the high concentration of exposure in Mexico City, seismic risk is on
the top of the list for catastrophic risk in Mexico.

Historically, the Cocos plate boundary produced the 1985 Michoacan earthquake
of magnitude 8.1 Mw Richter scale. It destroyed hundreds of buildings and
caused thousand of deaths in Mexico City and other parts of the country. It is
considered the most damaging earthquake in the history of Mexico City. The
Mexican insurance industry officials estimated payouts of four billion dollars. In
the last decades, other earthquakes have reached the magnitude 7.8 Mw Richter
scale.

For earthquakes, the Mexican insurance market has traditionally been highly reg-
ulated, with limited protection provided to homeowners and reinsurance by the
government. Today, after the occurrence of an earthquake, the reconstruction
can be financed by transferring the risk to the capital markets with catastrophic
(CAT) bonds that would pass the risk on to investors. The first successful CAT
bond against earthquakes losses in California was issued in 1997 by Swiss Re and
the first CAT bond by a non-financial firm was issued in 1999 in order to cover
earthquake losses in Tokyo region for Oriental Land Company Ltd., the owner of
Tokyo Disneyland. Also for the first time since 2003, a non-(re)insurance spon-
sor, the government of Mexico, elected to access the CAT bond market directly.
FROOT (2001) described other transactions on the market for catastrophic risk
and CLARKE, COLLURA and MCGHEE (2007) give a catastrophe bond market
update.

3 Calibrating a Mexican Parametric CAT Bond

In 1996, the Mexican government established the Mexico’s Fund for Natural
Disasters (FONDEN) in order to reduce the exposure to the impact of natural
catastrophes and to recover quickly as soon as they occur. However, FONDEN is
funded by fiscal resources which are limited and have been insufficient to meet the
government’s obligations. Faced with the shortage of the FONDEN’s resources
and the high probability of earthquake occurrence, in May 2006 the Mexican gov-
ernment sponsored a parametric CAT bond against earthquake risk. The decision
was taken because the instrument design protects and magnifies, with a degree
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of transparency, the resources of the trust. The CAT bond payment is based
on some physical parameters of the underlying event (e.g. the magnitude Mw),
thereby there is no justification of losses. The parametric CAT bond helps the
government with emergency services and rebuilding after a big earthquake.

The CAT bond was issued by a special purpose Cayman Islands CAT-MEX Ltd.
and structured by Swiss Reinsurance Company (SRC) and Deutsche Bank Secu-
rities. The 160 million CAT bond pays a tranche equal to the London Inter-Bank
Offered Rate (LIBOR) plus 235 basis points. The CAT bond is part of a total
coverage of 450 million provided by the reinsurer for three years against earth-
quake risk and with total premiums of 26 million. The payment of losses is
conditional upon confirmation by a leading independent consulting firm which
develops catastrophe risk assessment. This event verification agent (Applied In-
surance Research Worldwide Corporation - AIR) modeled the seismic risk and
detected nine seismic zones, see Figure 3. Given the federal governmental budget
plan, just three out of these nine zones were insured in the transaction: zone 1,
zone 2 and zone 5, with coverage of 150 million in each case, SHCP (2004). The
CAT bond payment would be triggered if there is an event, i.e. an earthquake
higher or equal than 8 Mw hitting zone 1 or zone 2, or an earthquake higher or
equal than 7.5 Mw hitting zone 5.

Figure 3: Map of seismic regions in Mexico. Insured zones: 1,2,5.

Source: SHCP, 2004:8.

The cash flows diagram for the mexican CAT bond are described in Figure 4.
CAT-MEX Ltd. is a special purpose that issues the bond that is placed among
investors and invests the proceeds in high quality assets within a collateral ac-
count. Simultaneous to the issuance of the bond, CAT-MEX Ltd. enters into
a reinsurance contract with SRC. The proceeds of the bond will also serve to
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provide SRC coverage for earthquakes in Mexico in connection with an insurance
agreement that FONDEN has entered with the European Finance Reinsurance
Co. Ltd., an indirect wholly-owned subsidiary of SRC. A separate Event Pay-
ment Account was established with the Bank of New York providing FONDEN
the ability to receive loss payments directly from CAT-MEX Ltd., subject to the
terms and conditions of the insurance agreement. In case of occurrence of a trig-
ger event, an earthquake with a certain magnitude in any of the three defined
zones in Mexico, SRC pays the covered insured amount to the government, which
stops paying premiums at that time and investors sacrifices their full principal
and coupons.

Figure 4: The cash flows diagram for the mexican CAT bond.

Source: SHCP.

Assuming perfect financial market, the calibration of the parametric CAT bond
is based on the estimation of the intensity rate that describes the flow process
of earthquakes from the two sides of the contract: from the reinsurance and the
capital markets.

Let Ft be an increasing filtration with time t ∈ [0, T ]. The arrival process of
earthquakes or the number of earthquakes in the interval (0, t] is described by the
process Nt, t ≥ 0. This process uses the times Ti when the ith earthquake occurs
or the times between earthquakes τi = Ti − Ti−1. The earthquake process Nt in
terms of τi’s is defined as:

Nt =
∞∑

n=1

1(Tn < t) (1)

Since earthquakes can strike at any time during the year with the same probabil-
ity, the traditional approach in seismology is to model earthquake recurrence as
a random process, in which the earthquakes suffer the loss of memory property
P(X > x + y|X > y) = P(X > x), where X is a random variable. Neverthe-
less it is possible to predict, on average, how many events will occur and how
severe they will be. The arrival process of earthquakes Nt can be characterized
with a Homogeneous Poisson Process (HPP), with intensity rate λ > 0 if Nt is
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a point process governed by the Poisson law and the waiting times τi are expo-
nentially distributed with intensity λ. Hence, the probability of occurrence of an
earthquake is:

P(τi < t) = 1− P(τi ≥ t) = 1− e−λt (2)

In fact, we are interesting in the occurrence of the first event. We define the
first waiting time as the stopping time equal to τ = min {t : Nt > 0}, with cdf
Fτ (t) = P(τ < t) = P(Nt > 0) = 1− e−λt and fτ (t) = λe−λt.

Let the random variable J = 450 · 1(τ < 3) with density function fτ (t) be the
payoff of the covered insured amount to the government in case of occurrence
of an event over a three year period T = 3. Denote H as the total premium
paid by the government equal to 26 million. Suppose a flat term structure of
continuously compounded discount interest rates and a HPP with intensity λ1 to
describe the arrival process of earthquakes. Under the non-arbitrage framework,
a compounded discount actuarially fair insurance price at time t = 0 in the
reinsurance market is defined as:

H = E
[
Je−τrτ

]
= E

[
450 · 1(τ < 3)e−τrτ

]
= 450

∫ 3

0

e−rttfτ (t)dt

= 450

∫ 3

0

e−rttλ1e
−λ1tdt (3)

i.e. the insurance premium is equal to the value of the expected discounted loss
from earthquake. Substituing the values of H and assuming an annual continously
compounded discount interest rate rt = log(1.0541) constant and equal to the
LIBOR in May 2006, we get:

26 = 450

∫ 3

0

e− log(1.0541)tλ1e
−λ1tdt (4)

where 1 − e−λ1t is the probability of occurrence of an event. The estimation of
the intensity rate from the reinsurance market λ1 is equal to 0.0214. That means
that the premium paid by the government to the insurance company considers a
probability of occurrence of an event in three years equal to 0.0624 or the insurer
expects 2.15 events in one hundred years.

For computing the intensity in the capital markets λ2, we suppose that the con-
tract structure defines a coupon CAT bond that pays to the investors the prin-
cipal P equal to 160 million at time to maturity T = 3 and gives coupons C
every 3 months during the bond’s life in case of no event. If there is an event,
the investors sacrifice their principal and coupons. These coupon bonds offered
by CAT-MEX Ltd. pay to the investors a fixed spread rate z equal to 235 basis
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points over LIBOR. We consider the annual discretely compounded discount in-
terest rate rt = 5.4139% to be constant and equal to LIBOR in May 2006. The
fixed coupons payments C have a value (in USD million) of:

C =

(
rt + z

4

)
P =

(
5.4139% + 2.35%

4

)
160 = 3.1055 (5)

Let the random variable G be the investors’ gain from investing in the bond,
which consists of the principal and coupons. Moreover, assume that the arrival
process of earthquakes follows a HPP with intensity λ2. Under an arbitrage free
scenario, the discretely discount fair bond price at time t = 0 is given by:

P = E

[
G

(
1

1 + rτ

)τ]
= E

[
12∑

t=1

C · 1(τ >
t

4
)

(
1

1 + rt

) t
4

+ P · 1(τ > 3)

(
1

1 + rt

)3
]

=
12∑

t=1

Ce−λ2
t
4

(
1

1 + rt

) t
4

+ Pe−3λ2

(
1

1 + rt

)3

(6)

In this case, the investors receive 12 coupons during 3 years and its principal P at
maturity T = 3. Hence, substituting the values of the principal P = 160 million
and the coupons C = 3.1055 million in equation (6), it follows:

160 =
12∑

t=1

3.06

(
e−λ2

1.0541

) t
4

+
160e−3λ2

(1.0541)3
(7)

Solving the equation (7), the intensity rate from the capital market λ2 is equal to
0.0241. In other words, the capital market estimates a probability of occurrence
of an event equal to 0.0699, equivalently to 2.4 events in one hundred years.

Additionally to the estimation of the intensity rate for the reinsurance and the
capital markets, the historical intensity rate that describes the flow process of
earthquakes λ3 is calculated. The data was provided by the National Institute of
Seismology in Mexico (SSN). It describes the time t, the depth d, the magnitude
Mw and the epicenters of 192 earthquakes higher than 6.5 Mw occurred in the
country during 1900 to 2003. Earthquakes less than 6.5 Mw were not taken into
account because of their high frequency and low loss impact. Table 1 shows that
almost 50% of the earthquakes has occurred in the insured zones, mainly in zone
2.

Let Yi be i.i.d. random variables, indicating the magnitude Mw of the ith earth-
quake at time t. Define ū as the threshold for a specific location. The estimation
of the historical λ3 is based on the intensity model. This model assumes that
there exist i.i.d. random variables εi called trigger events that characterize earth-
quakes with magnitude Yi higher than a defined threshold ū for a specific location,
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Table 1: Frequency of the earthquake location for the 1900-2003 earth-
quake data.

Zone Frequency Percent % Cumulative
1 30 16% 16%
2 42 22% 38%
5 18 9% 47%
Other 102 53% 100%

Source: Own calculations.

i.e. εi = 1(Yi ≥ ū). Then the trigger event process Bt is characterized as:

Bt =
Nt∑
i=1

εi (8)

where Nt is an HPP describing the arrival process of earthquakes with intensity
λ > 0. Bt is a process which counts only earthquakes that trigger the CAT bond’s
payoff. However, the dataset contains only three such events, what leads to the
calibration of the intensity of Bt be based on only two waiting times. Therefore
in order to compute λ3, consider the process Bt and define p as the probability
of occurrence of a trigger event conditional on the occurrence of the earthquake.
Then the probability of no event up to time t is equal to:

P(Bt = 0) = P(Nt = 0) + P(Nt = 1)(1− p) + P(Nt = 2)(1− p)2 + . . .

=
∞∑

k=0

P(Nt = k)(1− p)k =
∞∑

k=0

(λt)k

k!
e(−λt)(1− p)k

=
∞∑

k=0

{λ(1− p)t}k

k!
e(−λt)e−λ(1−p)teλ(1−p)t = e−λpt = e−λ3t (9)

by definition of the Poisson distribution and since
∑∞

k=0
{λ(1−p)t}k

k!
e−λ(1−p)t = 1.

Now the calibration of the λ3 can be decomposed into the calibration of the inten-
sity of all earthquakes with a magnitude higher than 6.5 Mw and the estimation
of the probability of the trigger event.

Since the historical data contains three earthquakes with magnitude Mw higher
than the defined thresholds by the modelling company, the probability of occur-
rence of the trigger event is equal to p =

(
3

192

)
. The estimation of the annual

intensity is obtained by taking the mean of the daily number of earthquakes times
360 i.e. λ = (0.005140)(360) = 1.8504. Consequently the annual historical inten-
sity rate for a trigger event is equal to λ3 = λp = 1.8504

(
3

192

)
= 0.0289. This

means that approximately 2.89 events are expected to occur in the insured areas
of the country within one hundred years.

Table 2 summarizes the values of the intensities rates λ′s and the probabilities
of occurrence of a trigger event in one and three years. Whereas the reinsurance
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Table 2: Calibration of intensity rates: the intensity rate from the
reinsurance market λ1, the intensity rate from the capital market λ2

and the historical intensity rate λ3

λ1 λ2 λ3

Intensity 0.0214 0.0241 0.0289
Probability of event in 1 year 0.0212 0.0238 0.0284
Probability of event in 3 year 0.0624 0.0699 0.0830
No. expected events in 100 years 2.1482 2.4171 2.8912

Source: Own calculations.

market expects 2.15 events to occur in one hundred years, the capital market
anticipates 2.22 events and the historical data predicts 2.89 events. Observe
that the value of the λ3 depends on the time period of the historical data, it
is estimated from the years 1900 to 2003 and it is not very accurate since it is
based on three events only. For a different period, λ3 might be smaller than λ1

or λ2. The magnitude of earthquakes above 6.5 Mw that occurred in Mexico
during 1990 to 2003 are illustrated in Figure 5. It also indicates earthquakes
that occurred in the insured zones and trigger events. Apparently the difference

Figure 5: Magnitude of trigger events (filled circles), earthquakes in
zone 1 (black circles), earthquakes in zone 2 (green circles), earth-
quakes in zone 5 (magenta circles), earthquakes out of insured zones
(blue circles).
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Source: Own representation.

between the intensity rates λ1, λ2 and λ3 seems to be insignificant, but for the
government it has a financial and social repercussion since the intensity rate of
the flow process of earthquakes influences the price of the parametric CAT bond
that will help the government to obtain resources after a big earthquake.

The absence of the public and liquid market of earthquake risk in the reinsurance
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market might explain the small difference between λ1 and λ2, since just limited
information is available. This might cause the pricing in the reinsurance market to
be less transparent than pricing in the capital markets. Another argument to this
difference might be because contracts in the capital market are more expensive
than contracts in the reinsurance market: the associated risk or default or the
cost of risk capital (the required return necessary to make a capital budgeting
project) in the capital markets is usually higher than that in the reinsurance
market. A CAT bond presents no credit risk as the proceeds of the bond are held
in a SPV, a transaction off the insurer’s balance sheet. The estimation of λ3 is
not very precise since it is based on the time period of the historical data, but for
interpretations we suppose that λ3 is the real intensity rate describing the flow
of process of earthquakes.

Particularly after a catastrophic event occurred, the reinsurance market suffers
from a shortage of capital but this gives reinsurance firms the ability to gain more
market power that will enable them to charge higher premiums than expected.
Our estimation of intensity rates, contrary to the theory predictions, show that
the Mexican government paid total premiums of 26 million that is 0.75 times
the real actuarially fair one (34.605 million), which is obtained by substituting
the historical intensity λ3 in equation (4). At first glance, it appears that either
the government saves 8.605 million in transaction costs from transferring the
seismic risk with a reinsurance contract or that reinsurer is underestimating the
occurrence probability of a trigger event. This is, however, not a valid argument
because the actuarially fair reinsurance price assumes that the coverage payout
depends only on the loss of the insured event. In reality, the reinsurance market
and the coverage payouts are exposed to other risks that can affect the value of
the premium, e.g. the credit risk. Considering this fact, the probability that the
resinsurer will default over the next three years could be approximately equal to
the price discount that the government gets in the risk transfer of earthquake risk
(≈ 24.86%).

However, the best explanation of the low premiums for covering the seismic risk
might be the mix of the reinsurance contract and the CAT bond. Since the
160 million CAT bond is part of a total coverage of 450 million, the reinsurance
company transfers 35% of the total seismic risk to the investors, who effectively
are betting that a trigger event will not hit specified regions in Mexico in the
next three years. If there is no event the money and interests are returned to the
investors, otherwise the reinsurer must pay to the government 290 million from the
reinsurance part and 160 million from the CAT bond to cover the insured loss of
450 million. The value of the premium for 290 million coverage with intensity rate
of eaqrthquake λ1 is

∫ 3

0
290λ1e

−t(rt+λ1)dt = 16.755. Therefore the total premium
of 26 million might consist of 16.755 million premium from the reinsurance part
and the CAT bond and 9.245 million for transaction costs or the management
added value or for coupon payments. This government’s financial strategy is
optimal in the sense that it provides coverage of 450 million against seismic risk
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Table 3: Descriptive statistics for the variables time t, depth d, mag-
nitude Mw and loss X of the loss historical data.

Descriptive t d Mw X ($ million)
Minimum 1900 0 6.5 10.73
Maximum 2003 200 8.2 0
Mean 1951 39.54 6.93 1443.69
Median 1950 33 6.9 0
Sdt. Error - 39.66 0.37 105.16
25% Quantile 1928 12 6.6 0
75% Quantile 1979 53 7.1 0
Skewness - 1.58 0.92 13.19
Kurtosis - 5.63 3.25 179.52
Nr. obs. 192 192 192 192
Distinct obs. 82 54 18 24

Source: Own calculations.

for a lower cost than the reinsurance itself, which has an actuarially fair premium
equal to 34.605 million. However, this financial strategy of the government does
not eliminate completely the costs imposed by market imperfections.

4 Pricing modeled-index CAT bonds for mexi-

can earthquakes

Since the value of the losses can be affected by different variables, e.g. not only
by the magnitude Mw of the earthquake but also by the depth d, the impact
on cities I(0, 1), etc., under the assumptions of non-arbitrage and continuous
trading, we examine the pricing of a CAT bond for earthquakes with a modeled-
index loss trigger mechanism. In essence, this hybrid trigger combines modeled
loss and index trigger types, trying to reduce basis risk borne by the sponsor, while
remaining a non-indemnity trigger mechanism. Besides, this time, the payout of
the bond will be based on historical and estimated losses. We applied the pricing
CAT bond methodology of BARYSHNIKOV, MAYO and TAYLOR (2001) and
BURNECKI and KUKLA (2003) to Mexican earthquake data from the National
Institute of Seismology in Mexico (SSN) and to its corresponding loss data that
we built.

In order to calibrate the pricing model we have to fit both the distribution function
of the incurred losses F (x) and the process Nt governing the flow of earthquakes.

4.1 Severity of mexican earthquakes

The historical losses of earthquakes occurred in Mexico during the years 1900
- 2003 were adjusted to the population growth, the inflation and the exchange

15



rate (peso/dollar) and were converted to USD of 1990. The annual Consumer
Price Index (1860-2003) was used for the inflation adjustment and the Average
Parity Dollar-Peso (1821-1997) was used for the exchange rate adjustment, both
provided by the U.S. Department of Labour. For the population adjustment, the
annual population per Mexican Federation (1900-2003) provided by the National
Institute of Geographical and Information Statistics in Mexico (INEGI) was used.
Table 3 describes some descriptive statistics for the variable time t, depth d,
magnitude Mw and adjusted loss X of the historical data. From 1900 to 2003,
the data considers 192 earthquakes higher than 6.5 Mw and 24 of them with
financial adjusted losses, see Figure 6. The peaks mark the occurrence of two
outliers: the 8.1 Mw earthquake in 1985 and the 7.4 Mw earthquake in 1999.
The earthquake in 1932 had the highest magnitude in the historical data (8.2
Mw), but its losses are not big enough compared to the other earthquakes.

Figure 6: Plot of adjusted losses (left panel) and the magnitude Mw
(right panel) of earthquakes occurred in Mexico during the years 1900-
2003.

1900 1920 1940 1960 1980 2000

Years (t)

0
5

10

A
dj

us
te

d 
L

os
se

s 
(U

SD
 m

ill
io

n)
*E

2

1900 1920 1940 1960 1980 2000

Years (t)

6.
5

7
7.

5
8

M
ag

ni
tu

de
 (

M
w

)

Source: Own representation.

We observed that when all the historical adjusted losses were taken in account,
they were directly proportional to the time t and the magnitude Mw, and in-
versely proportional to the depth d. However, when the outliers are excluded,
the adjusted losses are inversely proportional to the time, magnitude and depth.
Considering this, we modelled the losses of mexican earthquakes in terms of loga-
rithm (log(x)) by means of the linear regression. Under the selection criterion of
the highest coefficient of determination r2, the linear regression loss models that
fit better the historical earthquake loss data were:

log(x) = −27.99 + 2.10Mw + 4.44d− 0.15I(0, 1)− 1.11 log(Mw) · d

For the case without the outlier of the earthquake in 1985:

log(x) = −7.38 + 0.97Mw + 1.51d− 0.19I(0, 1)− 0.52 log(Mw) · d
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Table 4: Coefficients of determination and standard errors of the linear
regression models*

r2
LR1 r2

LR2 r2
LR3 SELR1 SELR2 SELR3

0.226 0.151 0.129 2.8698 2.8302 2.8383

*Applied to the adjusted loss data (r2
LR1, SELR1), without the outlier of the earthquake in 1985 (r2

LR2, SELR2)

and without the outliers of the earthquakes in 1985 and 1999 (r2
LR3, SELR3).

Source: Own calculations.

For the case without the outliers of the earthquakes in 1985 and 1999:

log(x) = 1.3037 + 0.4094Mw + 0.2375d + 0.1836I(0, 1)− 0.2361 log(Mw) · d

where I(0, 1) indicates the impact of the earthquake on Mexico city. Table 4
displays the coefficients of determination and standard errors for each of the
proposed linear regresion models of the historical adjusted loss data r2

LR1, SELR1,
without the observation of the earthquake in 1985 r2

LR2, SELR2 and for the data
without the outliers of the earthquakes in 1985 and 1999 r2

LR3, SELR3. After
selecting the best models, we apply the Expectation - Maximum algorithm (EM)
with linear regression to the historical and estimated losses to fill the missing
data of losses (HOWELL, 1998). See Figure 7.

In order to find an accurate loss distribution that fits the loss data, we compared
the shapes of the empirical ên(x) and the theoretical mean excess function e(x).
Given a loss random variable X, the mean excess function (MEF) is the expected
payment per insured loss with a fixed amount deductible of x i.e. the mean
excess function restricts a random variable X given that it exceeds a certain level
x (HOGG and KLUGMAN, 1984):

e(x) = E(X − x|X > x) =

∫ ∞
x

1− F (u)du

1− F (x)
(10)

The empirical mean excess function is defined as:

ên(x) =

∑
xi>x xi

#i : xi > x
− x

The left panel of Figure 8 shows an increasing pattern for the ên(x), pointing
out that the distribution of losses have heavy tails i.e. it indicates that the Log-
normal, the Burr or the Pareto distribution are candidates to be the analytical
distribution of the loss data. Whereas eliminating the outlier of the earthquake
in 1985 from that modeled loss data, the ên(x) shows a decreasing pattern, indi-
cating that Gamma, Weibull or Pareto could model adequately, see right panel
of Figure 8.

To test whether the fit is adequate, the empirical Fn(x) = 1
n
# {i : xi ≤ x} is com-

pared with the fitted F (x) distribution function. To this end the Kolmogorov
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Figure 7: Historical and modeled losses of earthquakes occurred in
Mexico during 1900-2003 (upper left panel), without the outlier of
the earthquake in 1985 (upper right panel), without outliers of the
earthquakes in 1985 and 1999 (lower panel)
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Figure 8: The empirical mean excess function ên(x) for the modeled
loss data with (left panel) and without the outlier of the earthquake
in 1985 (right panel).
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Table 5: Parameter estimates by A2 minimization procedure and test
statistics for the modeled loss data.*

Distrib. Log-normal Pareto Burr Exponential Gamma Weibull
Parameter µ = 1.456 α = 2.199 α = 3.354 β = 0.132 α = 0.145 β = .214

σ = 1.677 λ = 12.53 λ = 17.33 β = −0.0 τ = .747
τ = 0.895

Kolmogorov S. 0.185 0.142 0.150 0.149 0.299 0.157
(D test) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005)
Kuiper 0.308 0.265 0.278 0.245 0.570 0.298
(V test) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005)
Cramér-von M. 1.447 0.879 0.987 0.911 6.932 1.16
(W 2 test) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005)
Anderson D. 10.490 6.131 6.018 10.519 35.428 6.352
(A2 test) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005)

*In parenthesis, the related p-values based on 1000 simulations. Source: Own calculations.

Smirnov, the Kuiper statistic, the Cramér-von Mises and the Anderson Darling
non-parametric tests are applied. The test of the fit procedure consists of the null
hypothesis: the distribution is suitable {H0 : Fn(x) = F (x; θ)}, and the alterna-
tive: the distribution is not suitable {H1 : Fn(x) 6= F (x; θ)}, where θ is a vector
of known parameters. The fit is accepted when the value of the test is less than
the corresponding critical value Cα, given a significance level α.

The estimated parameters of the modeled loss data (via A2 statistic minimiza-
tion, (D’AGOSTINO and STEPHENS, 1986)) and the corresponding edf test
statistics are shown in Table 5. It also shows the corresponding p-values based
on 1000 simulated samples. Observe that all the tests reject the fit for all the
distributions. However, for other loss models the A2 statistic pass the Burr dis-
tribution at the 2%, 1% and 1% level respectively. Table 6 displays the estimated
parameters, the hypothesis testing and p-values based on 1000 simulated samples
of the modeled loss data without the outlier of the earthquake in 1985. The ex-
ponential distribution with parameter β = 0.120 passes all the tests at the 0.8%
level, except the A2 statistic. Likewise, the Pareto distribution passes two tests
at 0.6% and 1.2% level, but with unacceptable fit in the A2 statistic. All the re-
maining distributions give worse fits. However, in other loss models without the
outlier of 1985 earthquake the Gamma distribution passes all the test statistics
and the A2 statistics at the 0.6%, 6%, 5.6%, 1.8% level respectively.

We also computed the limited expected value function to find the best fit of
the earthquake-loss distribution. For a fixed amount deducible of x, the limited
expected value function characterizes the expected amount per loss retained by
the insured in a policy (HOGG and KLUGMAN, 1984):

l(x) = E {min(X, x)} =

∫ x

0

ydF (y) + x {1− F (x)} , x > 0 (11)

where X is the loss amount random variable, with cdf F (x). The empirical
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Table 6: Parameter estimates by A2 minimization procedure and test
statistics for the modeled loss data without the outlier of the 1985
earthquake.*

Distrib. Log-normal Pareto Burr Exponential Gamma Weibull
Parameter µ = 1.493 α = 2.632 α = 1.8e7 β = 0.120 α = 0.666 β = 0.194

σ = 1.751 λ = 17.17 λ = 9.5e7 β = .070 τ = .770
τ = 0.770

Kolmogorov S. 0.116 0.077 0.070 0.081 0.070 0.070
(D test) (< 0.005) (< 0.005) (0.001) (0.084) (< 0.005) (0.008)
Kuiper 0.215 0.133 0.126 0.138 0.121 0.126
(V test) (< 0.005) (0.006) (< 0.005) (0.008) (< 0.005) (< 0.005)
Cramr-von M. 0.702 0.168 0.166 0.202 0.147 0.166
(W 2 test) (< 0.005) (0.012) (< 0.005) (0.152) (0.006) (< 0.005)
Anderson D. 6.750 3.022 1.617 4.732 1.284 1.617
(A2 test) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005) (< 0.005)

*In parenthesis, the related p-values based on 1000 simulations. Source: Own calculations.

estimate is given by:

l̂n(x) =
1

n

∑
xj<x

xj, +
∑
xj≥x

x


Besides curve-fitting purposes, the limited expected function is very useful be-
cause it emphasizes how different parts of the loss distribution function contribute
to the premium. Figure 9 presents the empirical and analytical limited expected
value functions for the analyzed data set with (left panel) and without the earth-
quake in 1985 (right panel). The closer they are, the better they fit and the closer
the mean values of both distributions are. The graphs give explanation for the
choice of the Burr, Pareto, Gamma and Weibull distributions. Hence, the prices
of the CAT bonds will be based on these distributions.

4.2 Frequency of mexican earthquakes

In this section we focus on efficient simulation of the arrival point process of
earthquakes Nt. We first look for the appropriate shape of the approximating
distribution. One can achieve that examining the empirical mean excess function
ên(t) for the waiting times of the earthquake data, see left panel of Figure 10.
The empirical mean excess function plot shows an increasing starting and a de-
creasing ending behaviour, implying that the exponential, Gamma, Pareto and
Log-normal distribution could be possible candidates to fit the arrival process of
earthquakes. However, for a large t, the tails of the analytical distributions fitted
to the earthquake data are different from the tail of the empirical distribution.
The analytical mean excess functions e(t) increase with time. See right panel of
Figure 10.

Another way to model the claim arrival process of earthquakes is by a renewal
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Figure 9: The empirical l̂n(x) (black solid line) and analytical l(x) lim-
ited expected value function for the log-normal (green dashed line),
Pareto (blue dashed line), Burr (red dashed line), Weibull (magenta
dashed line) and Gamma (black dashed line) distributions for the mod-
eled loss data with (left panel) and without the outlier of the 1985
earthquake (right panel).
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Figure 10: The empirical mean excess function ên(t) for the earth-
quakes data (left panel) and the mean excess function e(t) for the log-
normal (green solid line), exponential (red dotted line), Pareto (ma-
genta dashed line) and Gamma (cyan solid line) distributions for the
earthquakes data (right panel).
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Table 7: Parameter estimates by A2 minimization procedure and test
statistics for the earthquake data.*

Distrib. Log-normal Exponential Pareto Gamma
Parameter µ = −1.158 β = 1.880 α = 5.875 α = 0.858

σ = 1.345 λ = 2.806 β = 1.546
Kolmogorov S. 0.072 0.045 0.035 0.037
(D tests) (0.005) (0.538) (0.752) (0.626)
Kuiper 0.132 0.078 0.067 0.064
(V test) (< 0.005) (0.619) (0.719) (0.739)
Cramr-von M. 0.212 0.062 0.031 0.030
(W 2 test) (< 0.005) (0.451) (0.742) (0.730)
Anderson D. 2.227 0.653 0.287 0.190
(A2 test) (< 0.005) (0.253) (0.631) (0.880)

*In parenthesis, the related p-values based on 1000 simulations. Source: Own calculations.

process, where one estimates the parameters of the candidate analytical distri-
butions via the A2 minimization procedure and tests the Goodness of fit. The
estimated parameters and their corresponding p-values based on 1000 simulations
are illustrated in Table 7. Observe that the exponential, Pareto and Gamma dis-
tributions pass all the tests at a very high level. The Gamma distribution passes
the A2 test with the highest level (88%).

If the claim arrival process of earthquakes is modelled with an HPP, the inten-
sity is independent of time and the estimation of the annual intensity is ob-
tained by taking the mean of the daily number of earthquakes times 360, i.e.
λ = (0.005140)(360) equal to 1.8504 earthquakes higher than 6.5 Mw per year.
Comparing this annual intensity with the annual intensity of the renewal pro-
cess modelled with an exponential distribution equal to 1.88 indicates that the
earthquakes arrival process can be correctly model with the HPP.

In order to check for a better estimate, we also model the arrival process of
earthquakes with a Non-homogeneous Poisson Process (NHPP). This time, the
expected value is equal to E(Nt) =

∫ t

0
λsds, where the intensity rate is dependent

of time λs and it can be fitted in some parametric functions by least squares. We
tested different polynomial functions to model the intensity λs of the earthquake
data, but the constant intensity λ1

s = 1.8167 with a coefficient of determination
r2 = 0.99 and standard error SE = 2.33 was the best fit. This result shows that
the HPP describes well the arrival process of earthquakes and confirms the theory
of time independence of earthquakes. Earthquakes can strike at any time during
the year with same probability, they do not show seasonality as other natural
events do. Figure 11 depicts the accumulated number of earthquakes and the
mean value functions E(Nt) of the HPP with intensity rates λs = 1.8504 and
λ1

s = 1.8167.
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Figure 11: The accumulated number of earthquakes (solid blue line)
and mean value functions E(Nt) of the HPP with intensity λs = 1.8504
(solid black line) and λ1

s = 1.8167 (dashed red line).
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4.3 Pricing Modeled-Index CAT bonds

An index CAT bond is priced by means of the compound doubly stochastic Pois-
son pricing methodology from BARYSHNIKOV, MAYO and TAYLOR (2001),
according to the statistical characteristics of the dominant underlying processes.
The pricing of CAT bonds relies on a few stochastic assumptions:

(A1) There is a doubly stochastic Poisson process Ns, i.e. a Poisson process
conditional on an stochastic intensity process λs with s ∈ [0, T ], describing the
flow of a particular catastrophic natural event in a specified region.

(A2) The financial losses {Xk}∞k=1 caused by these catastrophic events ti are
independent and i.i.d random variables with cdf F (x).

(A3) The process Ns and Xk are assumed to be independent. Then, the countin-
uous and predictable aggregate loss process is:

Lt =
Nt∑
i=1

Xi (12)

(A4) A continuously compounded discount interest rate r describing the value at
time s of 1 USD paid at time t > s by:

e−R(s,t) = e−
∫ t

s r(ξ)dξ

(A5) A threshold time event τ = inf {t : Lt ≥ D}, that is the moment when the
aggregate loss Lt exceeds the threshold level D. BARYSHNIKOV, MAYO and
TAYLOR (2001) defines the threshold time as a doubly stochastic Poisson process
Mt = 1(Lt > D), with a stochastic intensity depending on the index position:

Λs = λs {1− F (D − Ls)}1(Ls < D) (13)
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Under these assumptions, assume a zero coupon CAT bond that pays a principal
amount P at time to maturity T , conditional on the threshold time τ > T .
Let P be a predictable process Ps = E(P |Fs), i.e. the payment at maturity is
independent from the occurrence and timing of the threshold D. Consider that
in case of occurrence of the trigger event the principal P is fully lost.

The non arbitrage price of the zero coupon CAT bond V 1
t associated with the

threshold D, earthquake flow process Ns with intensity λs, a loss distribution
function F and paying the principal P at maturity is thus given by, (BURNECKI
and KUKLA, 2003:317):

V 1
t = E

[
Pe−R(t,T ) (1−MT ) |Ft

]
= E

[
Pe−R(t,T )

{
1−

∫ T

t

λs {1− F (D − Ls)}1(Ls < D)ds

}
|Ft

]
(14)

i.e. the price of a zero coupon CAT bond is equal to the expected discounted
value of the principal P contingent on the threshold time τ > T . Here the
compounded Poisson process is used to incorporate the various characteristics
of the earthquake process, where the rates at which earthquakes occur and the
impact of their occurrence are regarded as doubly stochastic Poisson processes.

Similarly, under the same assumptions that the zero coupon bonds, a coupon
CAT bond V 2

t that pays the principal P at time to maturity T and gives coupon
Cs until the threshold time τ is given by (BURNECKI and KUKLA, 2003:319):

V 2
t = E

[
Pe−R(t,T ) (1−MT ) +

∫ T

t

e−R(t,s)Cs (1−Ms) ds|Ft

]
= E

[
Pe−R(t,T ) +

∫ T

t

e−R(t,s)

{
Cs

(
1−

∫ s

t

λξ {1− F (D − Lξ)}

1(Lξ < D)dξ

)
− Pe−R(s,T )λs {1− F (D − Ls)}1(Ls < D)

}
ds|Ft

]
(15)

These coupons bonds usually pay a fixed spread z over LIBOR that reflects the
value of the premium paid for the insured event, and LIBOR reflects the gain for
investing in the bond.

Following this pricing methodology, we obtain the values of a (zero) coupon CAT
bond for earthquakes at t = 0. We consider that the continuously compounded
discount interest rate r = log(1.054139) is constant and equal to the LIBOR in
May 2006, P = 160 million and the expiration time T ∈ [0.25, 3] years. Define now
the threshold D ∈ [100, 135] million, corresponding to the 0.7 and 0.8-quantiles
of the three yearly accumulated modeled losses, i.e. approximately three payoffs
are expected to occur in one hundred years (see Table 8).

After applying 1000 Monte Carlo simulations, the price of the zero coupon CAT
bond at t = 0 is calculated with respect to the threshold level D and expiration
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Table 8: Quantiles of 3 years accumulated modeled losses.

Quantile 3 years accumulated loss
10% 18.447
20% 23.329
30% 32.892
40% 44.000
50% 61.691
60% 80.458
70% 109.11
80% 119.86
90% 142.72

100% 1577.6

Source: Own calculations.

Table 9: Minimum and maximum of the differences in the zero coupon
CAT bond prices (in % of principal)*

Min. (% Principal) Max. (% Principal)
Diff. ZCB Burr-Pareto -2.640 0.614
Diff. ZCB Gamma-Pareto 0.195 4.804
Diff. ZCB Pareto-Weibull -4.173 -0.193
Diff. ZCB Gamma-Weibull -0.524 1.636

*For the Burr-Pareto distributions of the modeled loss data and for the Gamma-Pareto, Pareto-Weibull, Gamma-

Weibull distributions of the modeled loss data without the outlier of the earthquake in 1985.

Source: Own calculations.

time T . The Burr and Pareto distribution are considered as loss distributions
for the modeled loss data, while the Gamma, Pareto and Weibull distribution
are studied for the modeled loss data without the outlier of the earthquake in
1985. For all the cases the arrival process of earthquakes follows an HPP with
constant intensity λs = 1.8504. The simulations show that the price of the
zero coupon CAT bond decreases as the expiration time increases, because the
occurrence probability of the trigger event increases. However, the bond price
increases as the threshold level increases, since one expects a trigger event with
low probability. When D = 135 USD million and T = 1 year, the CAT bond
price 160e− log(1.054139) ≈ 151.78 million is equal to the case when the threshold
time τ = inf {t : Lt > D} is greater than the maturity T with probability one.

Although the prices are pretty similar, we observe that the loss distribution func-
tion influences the price of the CAT bond, see Table 9. When we consider the
modeled loss data, the zero coupon bond price with respect to expiration time
T and threshold level D is higher and less volatile in the case of the Pareto dis-
tribution (Std. deviation = 10.08) than the Burr distribution (Std. deviation =
10.6). While for the modeled loss data without the outlier of the earthquake in
1985, the Gamma distribution leads to higher prices than the Weibull and Pareto
distributions and whose standard deviations are 8.83, 10.44 and 9.05 respectively.

For a coupon CAT bond, we consider the assumptions of the zero coupon bond
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Table 10: Minimum and maximum of the differences in the (zero)
coupon CAT bond prices (in % of principal)*

Min. (% Principal) Max. (% Principal)
Diff. ZCB-CB Burr -6.228 -0.178
Diff. ZCB-CB Pareto -5.738 -0.375
Diff. ZCB-CB Gamma -7.124 -0.475
Diff. ZCB-CB Pareto (no outlier ’85) -5.250 -0.376
Diff. ZCB-CB Weibull -5.290 -0.475
Diff. CB Burr-Pareto -1.552 0.809
Diff. CB Gamma-Pareto 0.295 6.040
Diff. CB Pareto-Weibull -3.944 -0.295
Diff. CB Gamma-Weibull -0.273 3.105

*For the Burr-Pareto distributions of the modeled loss data and the Gamma-Pareto, Pareto-Weibull, Gamma-

Weibull distributions of the modeled loss data without the outlier of the earthquake in 1985.

Source: Own calculations.

and a spread rate z equal to 235 basis points over LIBOR. The bond has quarterly
annual coupons C t

4
=

(
LIBOR+235bp

4

)
160= 3.1055 million. After 1000 Monte

Carlo simulations, the price of the coupon CAT bond at t = 0 with respect to
the threshold level D and expiration time T is computed for the Burr, Pareto,
Gamma and Weibull distribution of the modeled loss data with and without the
outlier of the earthquake in 1985. Note in Table 10 that the coupon CAT bond
prices are higher than the zero coupon CAT bond prices. Figures 12 indicate that
for all the distributions the price of the coupon CAT bond value increases as the
threshold level D increases. But, increasing the expiration time T leads to lower
coupon CAT bond price because the probability of a trigger event increases and
more coupon payments are expected to be received.

Figure 13 illustrates the difference in distributions of the coupon CAT price with
respect to expiration time T and threshold level D. Concerning to the loss dis-
tribution function for the modeled loss data, the Pareto distribution also leads
to higher prices than the Burr distribution and lower standard deviation (equal
to 8.15 and 8.31 respectively). While for the modeled loss data without the out-
lier of the earthquake in 1985, the Gamma distribution offered higher prices and
lower standard deviation (6.39) than the Weibull and Pareto distributions (equal
to 8.62 and 7.24 respectively).

In order to verify the robustness of the modeled loss with the prices of the zero
and coupon CAT bonds we compare the bond prices calculated from different loss
models with the bond prices simulated from the pricing algorithm. Let P̂ ∗ be
the reference price or the (zero) coupon CAT bond prices of the best loss model
and let P̂i with i = 1 . . . m be the (zero) cupon CAT bond price from the ith loss
model, with P̂ ∗ 6= P̂i. The same seed of the pseudorandom number generator in
1000 Monte Carlo simulations is used to generate P̂ ∗ and P̂i. Furthermore, let P̂j

with j = 1 . . . n be the algorithm CAT bond price obtained in the jth simulation
of 1000 trajectories of the (zero) coupon CAT bond of the best loss model and
which did not use the same seed for their generation.
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Figure 12: Coupon CAT bond prices (vertical axis) with respect to the
threshold level (horizontal right axis) and expiration time (horizontal
left axis) in the Burr-HPP (upper left side), Pareto-HPP (upper right
side), Gamma-HPP (middle left side), Pareto-HPP (middle right side)
and Weibull-HPP (lower side) cases for the modeled loss data with and
without the outlier of the earthquake in 1985.
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To check if the type of the model has strong impact on the prices, we compute
the mean of absolute differences (MAD) i.e. the mean of the differences of the
bond prices P̂i with the reference bond prices P̂ ∗ and the mean of the differences
of the algorithm bond prices P̂j with the reference bond prices P̂ ∗. If the MAD’s
are similar then the type of the model has no influence on the prices of the (zero)
coupon CAT bond:

m∑
i=1

P̂i − P̂ ∗

m
'

n∑
j=1

P̂j − P̂ ∗

n
, m > 0, n > 0 (16)

Figure 13: Difference in the coupon CAT bond price (vertical axis)
in the Burr-Pareto (upper left side), the Gamma-Pareto (upper right
side), the Pareto-Weibull (lower left side) and the Gamma-Weibull
(lower right side) distributions under an HPP, with respect to the
threshold level (horizontal right axis) and expiration time (horizontal
left axis).
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Table 11: Percentages in terms of P̂ ∗ of the MAD and the MAVRD of
the (zero) coupon CAT bond prices*

T D P̂ ∗ (%) MADA (%) MADB (%) MAV RDA (%) MAV RDB

ZCCB 1 100 148.576 0.283 0.975 0.329 0.265
1 120 149.637 0.203 0.663 0.270 0.228
1 135 149.637 0.619 0.802 0.619 0.183
2 100 133.422 1.577 2.334 1.577 0.566
2 120 137.439 0.823 1.306 0.823 0.375
2 135 138.873 0.884 1.161 0.930 0.358
3 100 114.866 4.666 5.316 4.666 0.859
3 120 123.177 2.409 2.958 2.409 0.640
3 135 125.766 2.468 2.817 2.468 0.520

CCB 1 100 151.236 0.513 1.152 0.556 0.257
1 120 152.306 0.398 0.853 0.419 0.216
1 135 152.920 0.383 0.601 0.405 0.178
2 100 139.461 0.966 2.131 0.966 0.475
2 120 142.950 0.731 1.585 0.774 0.395
2 135 145.141 0.337 0.827 0.556 0.354
3 100 124.831 2.412 3.421 2.412 0.823
3 120 131.508 1.844 2.590 1.844 0.708
3 135 134.324 2.071 2.474 2.071 0.600

*from the different loss models (MADA, MAV RDA) and one hundred simulations of 1000 trajectories of the

coupon CAT bond prices from the algorithm (MADB , MAV RDB) with respect to expiration time T and

threshold level D.

Source: Own calculations.

In terms of relative differences, if the means of the absolute values of the relative
differences (MAVRD) are similar then the model has no impact on the zero and
coupon CAT bond prices:

m∑
i=1

1

m

∣∣∣∣∣ P̂i − P̂ ∗

P̂ ∗

∣∣∣∣∣ '
n∑

j=1

1

n

∣∣∣∣∣ P̂j − P̂ ∗

P̂ ∗

∣∣∣∣∣ , m > 0, n > 0 (17)

Table 11 shows the percentages in terms of the reference prices P̂ ∗ of the MAD
and the MAVRD of the (zero) coupon CAT bond prices from different loss models
(MADA, MAV RDA) and from the algorithm (MADB, MAV RDB), with respect
to expiration time T and threshold level D. The prices from the algorithm are
generated with one hundred simulations of 1000 trajectories of the (zero) coupon
CAT bond prices. We find that most of the percentages of the MAD are sim-
ilar (the difference is less than 1%) meaning that the loss models do not have
impact on the (zero) coupon CAT bond prices. Although the percentages of
the MAV RDA differ from the percentages of the MAV RDB in the zero coupon
CAT bonds prices when T = 2 years and D = 100 million or T = 3 years with
D = 100, 120, 135 million, the rest of the percentages of the MAVRD remain
similar (the difference in percentages is above 0% and less than 2%). These sim-
ilarities also hold for the percentages of the MAV RD of the coupon CAT bond
prices (the difference in percentages is less than 1.5%), meaning no significant
influence of the loss models on the coupon CAT bond prices.

An explanation of the previous results is the quality of the original loss data,
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Figure 14: The zero coupon (left panel) and coupon (right panel) CAT
bond prices at time to maturity T = 3 years with respect to the thresh-
old level D ∈ [100, 135] million. The CAT bond prices under the Burr
distribution (solid lines), the Pareto distribution (dotted lines) and
under different loss models (different color lines)
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Source: Own representation.

where 88% of the data is missing. In our data analysis, the expected loss is
considerably more important for the CAT bond prices than the entire distribution
of losses. This was due to the nonlinear character of the loss function and the
dependence of different variables that affect the price of the CAT bond. For
example, an earthquake with strength two Mw higher than the average strength
might do more or less than twice the damage of an earthquake of average strength.
Figure 14 presents the (zero) coupon CAT bond prices at time to maturity T = 3
with respect to the threshold level D, under the Burr and Pareto distribution
for different loss models. The bond prices are more dispersed under different loss
models with the same distribution assumption than under different distribution
assumptions with the same loss model. This confirms the importance of the
expected losses over the distribution of losses.

The relevance of the modeled-index loss trigger mechanism is that it considers
different variables that influence the underlying risk. Because of the quality of
the data, the previous empirical study showed that the modeled loss did not have
influence on the CAT bond prices. However, for a given severity and frequency
of earthquake risk, this analysis may be useful in determining how a CAT bond
will be priced relative to an expected level.

5 Conclusion

Mexico has a high level of seismic activity due to the interaction between the
Cocos plate and the North American plate. In the presence of this, the Mexican
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government has turned to the capital markets to cover costs of potential earth-
quake catastrophes, issuing a CAT bond that passes the risk on to investors.
This paper examines the calibration of a real parametric CAT bond that was
sponsored by the Mexican government and derives the price of a hypothetical
modeled-index loss CAT bond for earthquakes.

Under the assumption of perfect markets, the calibration of the bond is based on
the estimation of the intensity rate that describes the flow process of earthquakes
from the two sides of the contract: from the reinsurance and the capital markets.
Additionally, we estimate the historical intensity rate using the intensity model
that accounts only earthquakes that trigger the CAT bond’s payoff. However,
the dataset contained only three such events, what leads to the decomposition of
the calibration of the historical intensity rate into the calibration of the intensity
of all earthquakes with a magnitude higher than 6.5 Mw and the estimation
of the probability of the trigger event. The intensity rate estimates from the
reinsurance λ1 and capital market λ2 are approximately equal but they deviate
from the historical intensity rate λ3. Assuming that the historical intensity rate
would be the adequately correct one, the best argument to the low premiums
for covering the seismic risk of 450 million might be the financial strategy of the
government, a mix of reinsurance and CAT bond, where 35% of the total seismic
risk is transferred to the investors.

This paper also derives the price of a hypothetical CAT bond for earthquakes
with a modeled-index loss trigger mechanism, which takes other variables into
account that can affect the value of losses, e.g. the physical characteristics of
an earthquake. We price a modeled-index CAT bond price by means of a com-
pound doubly stochastic Poisson process, where the trigger event depends on the
frequency and severity of earthquakes. We observe that the (zero) coupon CAT
bond prices increased as the threshold level D increased, but decreased as the
expiration time T increased. This is mainly because the probability of a trigger
event increases and more coupon payments are expected to be received. Because
of the quality of the data, different loss models reveal no impact on the CAT bond
prices and the expected loss is considerably more important for the evaluation of
the modeled-index CAT bond than the entire distribution of losses.

The CAT bond’s spread rate is reflected by the intensity rate of the earthquake
process in the parametric trigger, while for the modeled loss trigger mechanism the
spread rate is represented by the intensity rate of the earthquake process and the
level of accumulated losses Ls. Without doubt, the availability of information and
the quality of the data provided by research institutions attempting earthquakes
has a direct impact on the accuracy of this risk analysis and for the evaluation
of CAT bonds.
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