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Abstract

A large empirical literature exists seeking to identify crop yield distributions. Consensus has not

yet formed. This is in part because of data aggregation problems but also in part because no

satisfactory motivation has been forwarded in favor of any distribution, including the normal.

This article explores the foundations of crop yield distributions for the Law of the Minimum, or

weakest-link, resource constraint technology. It is shown that heterogeneity in resource

availabilities can increase expected yield. The role of stochastic dependence is studied for the

technology. With independent, identical, uniform resource availability distributions the yield

skew is positive, whereas it is negative whenever the distributions are normal. Simulations show

how asymmetries in resource availabilities determine skewness. Extreme value theory is used to

suggest a negative yield skew whenever production is in a tightly controlled environment so that

the left tails of resource availability distributions are thin.

Keywords: beta-normal distribution, crop insurance, extreme value theory, Liebig technology,

limiting factors, order statistics, reliability, weakest link.

JEL classification: Q1, D2, D8
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Introduction

Two major and unresolved themes in the production economics of crop agriculture concern

responses to inputs absent uncertainty and yield distributions conditional on inputs. Nature,

through sunshine, rainfall, and other weather variables, ensures that crop inputs are stochastic. In

addition, inputs applied during cultivation do not equate with inputs available to the plant, and

this is in part because of weather-dependent linkages involving soil temperature, soil biological

activity, and run-off. Thus, these two themes cannot be separated in that if one does not

understand input-output relations absent uncertainty about input availabilities then one cannot

know much about these relations in the presence of uncertainty. The intent of this article is to

seek firmer footing regarding the structural foundations of yield distributions. In doing so, we

will pay particular attention to one controversial feature of yield distributions, namely, crop yield

skewness.

To further these goals, a stance must be taken on the deterministic structure of crop

production technologies. Although long controversial, the only technology with clearly

motivated foundations is the Sprengel and von Liebig “law of the minimum,” henceforth referred 

to as LoM. The idea is that crop input availabilities are perfect complements such that the most

limiting resource determines output; e.g., 1 2
1 2min[ ( ), ( ), ... ]y a x a x , where resource availability

( )i
ia x is a non-decreasing function of some input ix . When the ( )i

ia x functions are linear then

the technology is referred to as a linear LoM. In general, the technology requires that surplus

resource availabilities (RAs) have a null marginal product.1 When advocating the technology,

11 The weakest-link technology also arises in the economics of financing public goods
(Hirshleifer 1983; Cornes 1993), as well as in health economics (Dow, Philipson, and Sala-I-
Martin 1999).
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von Liebig famously suggested the analogy with what is now referred to as the Liebig barrel.

This is a barrel with a regular bottom but where staves have different lengths at the top. Capacity

is determined by the shortest stave so that lengthening any other stave has no effect. The form is

a generalization of Leontief’s fixed-proportions technology specification. The claim has found

some, but limited, empirical support.

Paris (1992) used a widely studied Iowa corn production experiment data set to find support

for a non-linear LoM specification, where Frank, Beattie, and Embleton (1990) had earlier found

evidence against a linear version with that data set. Using a dual approach and nonparametric

data envelopment methods on (again) Iowa corn data, Chambers and Lichtenberg (1996) find

mixed results on input substitutability consequences of the specification. Llewelyn and

Featherstone (1997) used a simulation approach to identify evidence in favor of a non-linear

LoM specification. Berck, Geoghegan, and Stohs (2000) took a nonparametric regression

approach to test for the absence of input substitution to find little support for LoM.

In the agronomy literature, Cerrato and Blackmer (1990) are among a large number who

have favored the specification. Others, as in Bloom, Chapin, and Mooney (1985), Chapin et al.

(1987), Rastetter and Shaver (1992), Sinclair and Park (1993), and Lynch and Ho (2005), point

to a multiple limitation hypothesis, or MLH. This hypothesis uses an economic framework and

views nutrients as currency to be allocated within the plant to suggest that “growth is equally 

limited by all resources” (Bloom, Chapin, and Mooney 1985, p. 367). Taking an evolutionary

economics perspective, the general tenet of this rapidly expanding literature is that successful

plant species (i.e., survivors) are the genetic variants that best support biological pathways to

substitute for limiting resources when at risk. For example, one means of effecting substitution is

to store nutrients (at a cost) for possible later use. Laboratory tests, as in Rubio, Zhu, and Lynch
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(2003), of these alternative hypotheses on a wide range of nutrients are not conclusive. It appears

that the LoM is appropriate for many nutrient comparisons while for others the production

process is more involved.

Thus, research is quite inconclusive on the LoM. A potential reason for this, at least for some

data sets considered above, is the role of spatial non-uniformities in the production setting. Berck

and Helfand (1990) have pointed out that integration over such non-uniformities can smooth over

non-differentiable points in an LoM technology so that the observed noisy data may rationalize an

alternative response technology. Our modeling framework will assume a generalized LoM

technology in the presence of noise when seeking to understand crop yield distributions.

The literature on yield distributions, though not as extensive, is also unresolved. As with

identifying the nature of a deterministic technology, the complexity of a biological system

requires careful conditioning of the environment to test for technical attributes. Even under

experimental conditions, field cropping is far from ideal in this regard. Parallel to the LoM, there

also exists a yield distribution that is advocated by reference to theoretical foundations, namely,

the normal. Here, the idea in the background is often that yield realizations over a sufficiently

large area will differ because of many distinct shocks. So, the reasoning goes, some central limit

theorem can be invoked to identify the normal as the limiting distribution.

The most widely cited early work on yield distributions is that of Day (1965). His data were

from nitrogen-conditioned experimental cotton, corn, and oat plots in Mississippi over the

middle part of the twentieth century. While finding strong evidence in favor of positive skewness

(i.e., loosely where the bulk of the probability mass is to the left of the mean) for cotton, there

was weaker evidence in favor of positive skewness for corn and fairly strong evidence in favor of

negative skewness for oats. In addition, his skewness estimates tended to decline with an
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increase in the nitrogen application rate for each of the three crops.2 This suggests that RA

constraints are important in determining skewness.

A sample of more recent studies includes Gallagher (1987), for U.S.-level soybean yields

over 1941-84, who found evidence of negative skewness. Nelson and Preckel (1989) and Nelson

(1990), for farm-level commercial corn in Iowa over 1961-70, suggested negative skewness, as

did work by Swinton and King (1991) on Minnesota commercial corn production over 1944-87.

Moss and Shonkwiler (1993) have found negative skewness when analyzing U.S.-level corn

yield data over 1930-90. However, Just and Weninger (1999) have emphasized methodology

concerns with much of this large body of work. Data aggregation across space and possible

misspecification of control factors (including time) may occur. In addition, they have expressed

concerns about how significance tests on normality, the typical reference distribution, had been

interpreted and/or presented for interpretation.

Endeavoring to control for these criticisms, Ramirez, Mishra, and Field (2003) have

identified negative skewness for Iowa corn and soybeans using annual average data over 1950-

99, and positive skewness for Texas Plains dryland cotton data, 1970-99. Sherrick et al. (2004),

for University of Illinois data 1992-99, have subsequently found very suggestive evidence for

negative skewness in corn and soybean yields. In conclusion, although the methodologies may

have been remiss in certain ways, the variety in crop data sets studied, years of observation, and

methods used suggest the existence of non-zero skewness. For midwestern corn and soybeans

and for more recent data, the preponderance of evidence points strongly to negative skewness.

2 See his Table 3 on p. 722. His work was also noteworthy in suggesting the use of the beta
distribution as one sufficiently flexible in moment range to model input-conditioned distribution
functions.
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This article will address the technical implications of the LoM technology in the presence of

stochastic RAs. It will be shown that there is reason to believe that the inputs affecting RAs will

be economic complements whether or not the RAs are statistically independent. This means that

an increase in the crop’s price will increase all input choices and an increase in the price of any

input will decrease all input choices. The implications for producer profit of different stochastic

dependence structures are also explored to find that stronger positive dependence between RAs

should increase expected profit for any given vector of input choices. Notwithstanding what the

weakest-link technology might suggest about the technical cost of heterogeneous RAs, we

identify cases where expected yield should increase with heterogeneity in availabilities, all else

equal.

Turning to skewness, three statistical models of RAs are considered, where in each case the

distributions of availabilities are controlled to have null skew in order to avoid introducing bias.

The distributions considered are the uniform, the normal, and the raised cosine. It is shown that

positive or negative skewness in yield can be supported. Analysis and simulation methods are used

to explore how heterogeneity in the means and variances of RAs act to modify yield skewness.

Heterogeneity in means tend to marginalize the contribution of some RAs so that the statistical

attributes of the others, including skewness, determine yield distribution attributes. Contraction in

the variance of one RA can also affect yield skewness in a well-defined manner. It can mass

probability toward the upper end of a yield distribution and so may promote negative skewness. An

increase in correlation among RAs tends to reduce the relevance of the LOM constraints because

the likelihood increases that just one RA dominates as a constraint on production.

It is argued too that the motive for the empirical observation of typically negative skew in

crop yields for prime agricultural cropland may be, in part, sourced in a limiting distribution law.
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But a central limit theorem for the first-order (i.e., least-order) statistic may be a more

appropriate reference point than the standard central limit theorems for means. If RA

distributions have thin left tails, then the LoM suggests, together with extreme value theory, a

bias toward negative skewness. In intensively cultivated areas where most inputs can be

controlled with some precision, one might expect thin left tails on the RA distributions and thus

negatively skewed yield.

Framework

The LoM yield technology for RAs [0, ]u
i i    , {1,2, ... , }Ni N  , asserts a yield

realization as

(1) 1min[ , ... , ].Ny  

This expression is very general because the distribution of 1( , ... , ) N
N     is determined by

the market input vector Mx  , among other factors, where M
 is the positive closed M -

dimensional orthant of reals. Market inputs are enumerated as jx , {1,2, ... , } Mj M  .

The upper bound on each RA, u
i, is assumed fixed for convenience as it will not be relevant to

our analysis, and we define max { }
N

u u
i iy  . The unit output price is P . Factor prices are jw

where Mw  represents the vector of factor prices.

If the i are random, then (1) provides the first-order, or least-order, statistic (David and

Nagaraja 2003). Model the i as independent with input-conditioned distributions ( | )i
iF x ,

continuously differentiable in i and twice continuously differentiable in x . Survival functions

are ( | )i
iF x 1 ( | )i

iF x  , and the general formula for the cumulative distribution of y is
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(2)
1 1 2

1

( | ) Prob[ or ... or | ] 1 Prob[ , , ... , | ]

1 ( | ); ( | ) ( | ).

N N

N j
j

G y x y y x y y y x

G y x G y x F y x

    



       

  

Its probability density function is

(3)
1

( | )
( ) ( | ) ,

( | )

i
N

ii

f y x
g y G y x

F y x
 

while expected profit is

(4)
1 10

( ; , ) [ | ] ( | ) ,
uyM M

k k k kk k
V x P w PE y x w x P G y x dy w x

 
    

where we have computed the input-conditioned expected yield as

(5)
00 0 0

[ | ] ( | ) ( | ) ( | ) ( | ) .
u u uuy y yyE y x ydG y x yG y x G y x dy G y x dy     

Thus, the optimality conditions are

(6)
10

( | ) /
( | ) 0 ,

( | )

u iy N k
k Mii

F y x x
P G y x dy w k

F y x

  
    

 


with solution arguments * ( , )kx P w .

Our first point is that complementarity is preserved under weak conditions. The cross-

derivatives with respect to kx and lx are

(7)

2

10

1,10

( | ) /( ; , )
( | )

( | )

( | ) / ( | ) /
( | ) .

( | ) ( | )

u

u

iy N k l
ii

k l

i ry N Nk l
ri ri r i

F y x x xV x P w
P G y x dy

x x F y x

F y x x F y x x
P G y x dy

F y x F y x



 

   
     

      
    

   



 

This is positive , ,Mk l k l   , so long as (i) the inputs induce (weakly) a first-order

dominating shift in an RA, or ( | ) / 0 , ,i
k N MF y x x y i k        , and (ii) each RA

distribution is (again weakly) submodular in inputs, or 2 ( | ) / 0 ,i
k lF y x x x y     
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, , ,N Mi k l k   l . Thus, ( ; , )V x P w is supermodular in the vector of market inputs since

any twice continuously differentiable function is supermodular whenever all second-order cross

derivatives are non-negative. For a supermodular function with constant unit input costs and a

constant unit output price, Theorem 10 (p. 166) in Milgrom and Shannon (1994) shows that the

inputs complement in the economic sense and inputs are normal in the output price.

LEMMA 1: For a LoM technology where the input-conditioned RAs are independent, let (i) an

increase in any input induce (weakly) a first-order dominating shift in each marginal RA

distribution, and (ii) these marginal distributions be (weakly) submodular in inputs. Then all

inputs decrease with either an increase in any input price or a decrease in the output price.

In particular, condition (ii) certainly applies when each input is dedicated to a single resource

availability (e.g., irrigated water for the water resource and artificial fertilizer for the nitrogen

resource) because then 2 ( | ) / 0 , , , ,i
k l N MF y x x x y i k l k l          . In general,

non-positive cross-derivatives with respect to inputs on the independent cumulative marginals

ensure supermodularity on expected output because i is an increasing function of itself and

2 2

0 0
{ ( | )}/ { ( | ) }/

u u
i ii i

i i j k i i j kdF x x x F x d x x
 
          2

0
{ ( | ) / }

u
i i

i j k iF x x x d


     under

very general real analysis conditions.

Lemma 1 begs the following question. If the LoM applies and there is RA uncertainty, then

must the market inputs complement? That is, can the independence assumption be relaxed? The

answer is in the affirmative.

PROPOSITION 1: Assume the crop yield survival function ( | )G y x is twice continuously
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differentiable in Mx  with ( | )iF y x as the marginal distributions for RAs. Assume (i) and (ii)

in Lemma 1, but make no assumptions on the dependence structure between marginals. If the

LoM applies, then inputs must be economic complements.

The proof is provided in the appendix. Thus, under mild smoothness requirements, the

complementarity attribute of the deterministic LoM technology is shown to be robust to the

introduction of uncertainty and even arbitrary structure on how the marginals interact. Clearly,

the first-order dominance requirement cannot be relaxed. The differentiability assumptions could

be relaxed with little consequence, but the analysis would become cumbersome without the

convenience of differential operations.

A definition allows us to make a further point with (4), one concerning the technology alone.

DEFINITION 1: (Lehmann 1966, p. 1137; Shaked and Shanthikumar 2007, p. 392) For N

and NI  , suppose a cumulative distribution ( ) : [0,1]J I  has marginals ( )i
i NJ i  .

If
1

( ) ( )
N i

ii
J J I  


   and

1
( ) ( )

N i
ii

J J I  


   , then the distribution is said to be

positive quadrant dependent, or PQD.

When compared with independence, and considering only two dimensions, the definition

requires a larger probability mass to the southwest of any given point, and also a larger

probability mass to the northeast of that point, too. The stochastic ordering is intended to measure

the extent of covariability between the set of random variables, and one implication is that

Cov( , ) 0 ,i j Ni j    .

PROPOSITION 2: Suppose the technology is LoM and the marginal distributions for input-
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conditioned RAs are fixed. If the joint input-conditioned RA distribution is PQD along the hyper-

line i Ni   then expected output and expected producer profit is larger than were the

input-conditioned RAs independent.

To confirm this, set i Ny i    , substitute yield survival function
1

( | )
N j
j

F y x


into (4) and compare with ( | )F y x at each y realization where ( | )F y x is PQD. The proposition

asserts that PQD among the RAs increases expected output, when compared with independence.

For any given choice of inputs and any given marginal distributions for RAs, expected output

will be larger if the RAs tend to be more positively covarying than is the case under

independence. The condition is not particularly strong because the PQD dominance need not

occur for N   , but only for a one-dimensional subset of this; specifically, along

iy     Ni . The result should be intuitive in that if there is to be heterogeneity among

RAs then it should be as unidimensional as possible in light of the weakest-link constraints.

One final point on RA heterogeneity can be made by considering location shifts in the

distribution. Suppose i i i    where the i are independent. Given (1), expected yield may

then be represented as

(8) 1 1[ | ] min[ , ... , ] ( | ).
N

N

i
N N ii

E y x dF x


    


   

From (2) and (4), (8) may be alternatively written as

(9) 1 1 0
[ | ] Prob[ , ... , | ] ( | ) .

u

N
N

y i
N N ii

E y x y y x dy F y x dy


    


       

Two definitions are useful at this juncture.
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DEFINITION 2: (Marshall and Olkin 1979, p. 7) NQ is said to be majorized by NQ ,

denoted as Q Q  , whenever both ( ) ( )1 1

k k

i i Ni i
q q k

 
     and ( ) ( )1 1

N N

i ii i
q q

 
   where

the ( )iq are the order statistics, i.e., (1) (2) ( )... Nq q q   . A function ( ) : NW Q   is said to

be Schur-concave whenever Q Q  implies ( ) ( )W Q W Q  , and it is said to be Schur-convex

whenever Q Q  implies ( ) ( )W Q W Q  .

DEFINITION 3: (Shaked and Shanthikumar 2007, p. 1) A distribution ( ) : [0,1]J   is said to

be increasing failure rate (IFR) if Ln[ ( )]J  is concave in while it is decreasing failure rate

(DFR) if Ln[ ( )]J  is convex in .

Definition 2 captures the idea of more dispersion. To see this, suppose that {1,2,6} and

{2,3,4} . Then    as 2 1 , 2 3 1 2   , and 2 3 4 1 2 6     . Majorization has

been used widely in the economics of income and wealth inequality since the work by Lorenz

and Dalton a century ago (Marshall and Olkin 1979, p. 6). Definition 3 seeks to measure how

quickly a distribution tail tapers off, where IFR identifies a rapidly fading right-hand tail. Our

interest in majorization is when the i location parameters become more dispersed in the sense

of a majorization shift. A rapidly fading right tail for each marginal RA distribution suggests that

dispersion in location shifts for independent draws from otherwise identical distributions will

reduce the expected value of the least-order statistic and so will reduce expected yield. The next

proposition confirms this.

PROPOSITION 3: Suppose the technology is LoM, while input-conditioned RAs are independent
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and have a common distribution up to location. Let the distribution express IFR (DFR). Then a

majorizing shift in the location vector reduces (increases) expected output for any given input

choice.

The proposition gives precise conditions under which heterogeneity in the technology of RAs

is detrimental to anticipated yield for any given set of inputs. Perhaps contrary to the intuition

one might glean from Liebig’s barrel, eqn. (1), and Proposition 1, even under the very stylized 

setting of Proposition 3 we find that heterogeneity in RAs need not adversely impact yield. Bear

in mind though that for a distribution function to be DFR at a point, the density function must be

decreasing at that point. So for DFR to apply over the entire support, it must be that the density

function is decreasing over the support.

What sorts of distributions exhibit DFR? A commonly used distribution in reliability theory,

which is what our study of crop yield distributions has brought us to, is the Weibull. It has the

form

(10) [ ( ) ]( | ) 1 ,ixi
iF x e

   

for 0i , ( ) 0x  , and 0 (Rausand and Høyland 2004). As is readily shown, the

distribution expresses IFR if 1 and DFR if 1 . Our interest is in the product of location-

displaced survival functions along the equal values line. Using Prob( )i i y   

Prob( )i iy   and location-shifted univariate Weibull survival functions, then the yield

survival function under independence is

(11) 1
[ ( )] ( )[ ( )] ( )

1
.

N
ii i

N x yx y

j
e e

      
  






13

It can readily be shown that this is smaller under a more dispersed location vector when

1
( )

N

ii
y 


 is Schur-convex, and that occurs when 1 . On the other hand, (11) increases

with more dispersion in the location vector when 1 , and there is no effect when 1 .

An alternative model of resource availabilities is the gamma with location displacements.

Here,

(12) 1 ( )

(0, ]

[ ( )]
( | ) ,

( ) i

i x s
i s

x
F x s e ds


 







 




 

for ( ) 0x  , 0 , and ( ) the gamma function. The yield survival function is given by

(13)   1 ( )
1

[ ( )] ( ) .
i

NNN x s
i y

x s e ds  


 

  
 

  

It is well known that the gamma distribution is IFR if 1 and DFR if 1 (Rausand and

Høyland 2004, p. 61). Use of Definition 3 and a little further work shows that the yield survival

function (and so expected yield) is decreasing with more dispersion in the location shifters

whenever 1 and increasing whenever 1 .3

Comparing Propositions 2 and 3, one sees that care is required when stylizing heterogeneity

in a crop’s technology. Given marginals, then less heterogeneity in the sense of more positively

covarying RAs is good. Given dependence structure, namely independence, then more

heterogeneity in mean is probably bad, but we cannot be sure without further knowledge on the

marginal distributions. Tail thickness matters. We turn next to the issue of skewness, where RA

tail thickness will assume a more prominent role.

3 Apply the Ostrowski method from the proof of Proposition 3, in the appendix. From an
empirical perspective, Babcock and Blackmer (1992) have modeled soil nitrate availability for
Iowa corn production using a location shifted gamma distribution in a LoM technology
framework. They find 1 ; see their Table 1.
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Skewness and Uniform Case

The yield distribution of interest is when inputs are fixed, for otherwise the measured statistical

attributes of yield may be due to heterogeneity in input uses over the area of interest and not due

to the technology itself. To make further progress in this section, we also assume that each i is

independently drawn from the standard continuous uniform distribution, [0,1]i U . Thus there

is no bias in favor of any resource, and in addition the RAs are symmetric around the mean so

that they have zero skewness. A well-known result is that the first-order statistic then has density

(14)
1

1 1

0

(1 )
( ;1, ) ,

(1 )

N

N

y
g y N

z dz










or the beta distribution with parameters 1 and N (Gupta and Nadarajah 2004a, p. 89).

Its mean, variance, and third central moment are 1(1 )y N   , 2 2 1(1 ) (2 )y N N N     , and

1 1 32 ( 1)(2 ) (3 ) (1 ) 0y N N N N N         . Bearing in mind that skewness is defined as

3/y y y   , we have

(15)
2( 1) 2

0.
(3 )y

N N
N N


 

 


Thus, yield in this case expresses positive skew as found in Day (1965) for Mississippi cotton

and corn during 1921-57 and Ramirez, Misra, and Field (2003) for West Texas Dryland cotton

during 1970-99.

Heterogeneity in Means

Of course, in reality even if RAs have uniform marginals, they are unlikely to have common

means or variances, if only because factor prices, agronomic knowledge, and technological
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capabilities differ. Neither are the RAs likely to be independent. We will relax each of these

conditions in turn. To focus on effects, let there be just two resources at issue, where 1 is

discrete uniformly distributed on point pair {0,1} , 2 is discrete uniformly distributed on

{ ,1 }  , [0,1] , and these random variables are independent.4 Therefore, the random

variables have the same higher central moments for marginals, differing only by the shifted

mean. In order to commence with a zero skew distribution, let the probability of both low and

high states be 0.5. The distribution of 1 2min[ , ]y  is 0 with probability 0.5, with probability

0.25, and 1 with probability 0.25. The moments are ( 1) / 4y   , 2 2(3 2 3) /16y     , y 

23(1 ) (1 ) / 32   with skewness 2 2 3/ 26(1 ) (1 )(3 2 3) 0y           where the derivative

of interest satisfies

(16)
 2.52

96(1 )
0

3 2 3

yd

d

 
  


 

 

on [0,1] . In addition, for [ 1,0] , eqn. (16) shows that an increase in leads to a less

negative skewness statistic. Thus, heterogeneity in location alone tends to reduce skewness for

the discrete uniform distribution. This is because the location shift takes probability mass away

from a support point at the lower end of the distribution.

Heterogeneity in Variances

As above, let there be just two resources at issue, where 1 is discrete uniformly distributed on

{0,1} . But let 2 be discrete uniformly distributed on { ,1 }  , [0,0.5] , while these random

4 If 1 then 1 2 1min[ , ]  .
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variables are (again) independent. If 0.5 then the support of 2 is concentrated at 2 0.5 .

As before, set the skew as zero by letting the probability of the low state be 0.5 in each case. The

distribution of 1 2min[ , ]y  is 0 with probability 0.5, with probability 0.25, and 1  with

probability 0.25. The moments are 0.25y , 2 2( 8 3) /16y     , and 23(1 2 ) / 32y  

with skewness 2 2 3/ 26(1 2 ) (8 8 3)y        so that the derivative of interest is

(17)
 2.52

96(2 1) (1 )
0.5 0.

3 8 8

sign
yd

d

   


  

 
   

 

Heterogeneity in variance, through contracting the support of one distribution, reduces skewness.

As with a location shift, heterogeneity takes probability mass away from a heavily weighted

support point in the distribution’s left tail. 

Dependence

Following Dasgupta and Maskin (1987), set

(18) 1 2

(0,0) with probability 0.25(1 );
(0,1) with probability 0.25(1 );

( , )
(1,0) with probability 0.25(1 );
(1,1) with probability 0.25(1 );









  
 

for [ 1,1] where 0 acts to place more probability on points (0,0) and (1,1) so this is an

illustration of a probability shift given in Definition 1. Our interest here is not in understanding

the impact on mean but rather on higher moments. Mean, variance, and third central moment of

yield are now 0.25(1 )y   , 2 (3 )(1 ) /16y     , (3 )(1 )(1 ) / 32y       , where

skewness is 0.5 0.52(1 )(3 ) (1 )y        . Note that 1Lim y  and 0y when 1 .

The derivative with respect to the correlation parameter is
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(19) 3/ 2 3/ 2

8
0.

(3 ) (1 )
yd

d


  

 
 

So an increase in correlation decreases skewness for the discrete uniform distribution. As

correlation increases, the distribution of 1 2min[ , ] becomes more like the uniform distribution,

with zero skewness. A decrease in correlation can be seen as an increase in heterogeneity in the

RAs. Overall, we see that skewness falls when means diverge (more heterogeneity), one of the

random variables assumes less variance (more heterogeneity), or the distributions become more

correlated (less heterogeneity).

Skewness and Normal Case

Now let the ibe independent and drawn from an identical distribution, namely, ( )i
iF  

 ( ) /i    , the standard cumulative normal before being relocated and scaled by common

parameters. Then the yield density for the minimum of N draws is

(20)
1

( ) 1 ,
N

N y y
g y

 


  


              

where ( )is the density of the normalized distribution. This is an instance of the Beta-Normal

distribution as discussed in Eugene, Lee, and Famoye (2002).5 When 2N  , then Choi (2005),

correcting Gupta and Nadarajah (2004b), shows the first three moments to be 0.5
y    

, 2 2 1( 1)y    , and 3 3/ 20.5( 4) 0y     . Thus, and by contrast with the uniform

5 Actually, as has been recently pointed out by Jones (2004), when N is a natural number, then
this is the least-order statistic of independent draws from a common normal distribution. The
literature on order statistics for i.i.d. normal random variables has a long pedigree dating at least
as far back as Bose and Gupta (1959).
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distribution, skewness is negative at 3/ 20.5( 4)( 1)y      . This should not be surprising

when one considers how weighting 1 (( ) / )y    biases density (( ) / )y   in (20).

Though low at low yields, the yield density function should not be as low for low yield draws as

for high yield draws. This is in contrast to uniform RA densities, where the survival function

density in (14) completely determines the shape of yield density, and yield density will have

negative derivative everywhere it has support.

To illustrate the effects of heterogeneity, suppose first that 2N  and the random variables

are perfectly positively correlated. Then yield follows the standard normal up to location and

scale, thus having zero skew. Suppose instead that the random variable had perfect negative

correlation so that 1 2( ) / ( ) /        . Then the yield distribution is half-normal with

support to the left of and clearly has negative skew. By contrast with the uniform, an increase

in correlation (and so a decrease in heterogeneity) from 0 to 1 increases skewness to

0y .

The case of drawing from a bivariate normal with heterogeneous means involves a

nonlinearity. If, under independence and equal variances, means differ substantially, then only

the marginal with the lower mean matters, and skewness should not differ much from zero. With

means 1 and 2, as 1 increases toward 2 then yield skewness should decrease away from zero

until 1 2  and should increase toward zero thereafter. So heterogeneity in means should

increase skewness toward zero. This is in contrast to the uniform case where heterogeneity in

means decreases skewness toward zero.
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Alternatively, suppose we allow possibly distinct means and variances on the RAs where the

variance of 2 recedes to zero. Then, of course, correlation ceases to be a meaningful statistic and

we may ignore it. With mean of 2 at 2, the distribution becomes censored normal with support

to the left of 2 and strictly positive probability massed at 2. Again, the distribution is clearly

negatively skewed. So casual heuristic reasoning suggests that heterogeneity through lower

variance for one RA tends to introduce a downward bias in the skewness of the least-order

statistic of symmetric random variables when compared with the baseline case where

independent draws are taken from identical distributions. This downward bias is as under the

comparable scenario for the uniform distribution.

Unfortunately, thought exercises such as the above aside, little appears to be known about

order statistics for draws from non–i.i.d. normal distributions. To investigate further, Table 1

provides moment estimates for a variety of scenarios when 2N  . The benchmark is italicized

and bolded with means at 1 2 10   , standard deviations at 1 2 1   where 2 Var( )i i  ,

and correlation at 0 . After taking 10,000 independent draws, antithetic variates were used to

double the sample to 20,000.6

Note first that the mean and standard deviation of yield increase with an increase in

correlation. For yield mean, per Definition 1 and Proposition 2, it is preferable that low draws

come in pairs in order to get them out of the way. For standard deviation, the LoM minimization

operation pushes probability weightings toward the lower end of the support so that one should

expect dispersion to decline. Notice also that skewness is never positive, i.e., the simulations

6 For antithetic variates, if the draw 1 2 1 2( , ) ( , )  is made then so is 1 2 1 2( , ) ( , )     . The
intent is to promote law-of-large-numbers convergence by balanced sampling (Boyle, Broadie,



20

suggest that what applies for the first-order statistic with i.i.d. normal draws may be robust to

relaxing the i.i.d. requirements.

Confining attention now to zero correlation simulations, yield skewness does not differ much

across differences in means when variances are common. But skewness is more strongly negative

when the common variance is large. Heterogeneity in means only ensures that the distribution

with the lower mean dominates when determining the first-order statistic. With a sufficiently

large gap in means and sufficiently low standard deviations, the yield skew will be close to zero.

For 1 2 10   too, and recalling that skewness is normalized by yield variance, yield

skewness is more negative when there is also heterogeneity in the RA variances. This is as with

the uniform distribution but for a somewhat different reason. There a contraction in the variance

of one RA ensured that the upper tail of the yield distribution was increasingly concentrated

around the mean of that RA. An increase in the RA variance would not have that effect. For

normally distributed RAs with equal means, a decrease in the variance of one tends to induce a

more negative skew because one is converging on a censored (from the top) normal yield

distribution. An increase in the variance of one RA also tends to induce a more negative skew.

This is because the more dispersed distribution dominates in determining the left end of yield

density whereas the tightly dispersed distribution dominates in determining the right end of yield

density.

The case 1 2( , , ) (0,1,2)   merits attention. There, skewness is -0.664 under 1 2 10   ,

-0.246 under 1 2( , ) (8,10)  and -0.448 under 1 2( , ) (12,10)  . Skewness becomes less

negative when 1decreases from 10 to 8 and when 1 increases from 10 to 12. At 1 8 then 1

and Glasserman 1997).
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is dominant in determining yield because it has lower mean and lower variance. So skewness

should move toward 0, that of the univariate normal distribution. The move toward 0 skewness is

not as pronounced when 1 changes from 10 to 12 because the large variance of 2 ensures it can

still throw up a good draw such that 1narrowly distributed at the upper end of the yield range

will still be important.

Moving to positive correlation, with 1 2 10   then the effect on skewness is clear. When

compared with 0 , skewness is always less negative. Negative correlation makes skewness

even more negative for any given set of RA mean and standard deviation parameters. The most

negative skew statistic arises when 1 2 1 2( , , , , ) ( 0.5,10,10,1,0.5)   , followed closely by

1 2 1 2( , , , , ) ( 0.5,10,10,1,2)   . Here, the common mean ensures that both marginals are

relevant. The negative correlation ensures that a moderately below-average draw from one

marginal is very likely to matter, thus facilitating a pileup of probability mass toward the RA

means. Variance heterogeneity allows for a thinly spread out left tail to the yield distribution.

Skewness and Raised Cosine Case

To further probe the conjecture that the distribution tail determines skewness, consider the raised

cosine distribution. In this case, let 1 2min[ , ]y  where the i are independent with common

density ( ) 0.5Cos( )i if   on [ / 2, / 2]  , the cosine function’s domain of positive value.7 The

7 Here, 0.5 normalizes since
/ 2 / 2

/ 2/ 2
Cos( ) Sin( ) 2i i id

 


  


  . The support was chosen for

analytic convenience. While it intersects the negative domain, remember that skewness is
location independent. A location shift of support [ / 2, / 2] [ / 2, / 2]         , / 2  ,
would not affect skewness.
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distribution is chosen because the power transformation 0.5Cos( ) ( )[Cos( )]i i
   thins out

the density tails when 1 , and because the class of densities is analytically tractable. The

cumulative distribution for RA density ( ) 0.5Cos( )i if   is ( ) [1 Sin( )]/ 2i iF    . From (3),

(21)
Cos( )[1 Sin( )]

( ) ,
2

y y
g y




while moments are 0.3927y , 2[ ] 0.4674E y  , 3[ ] 0.3799E y  , and 3 3[( ) ]/y y yE y   

0.28 .8 By contrasting (20) with (21), it can be seen how tail thickness ensures positive

skewness for the first-order statistic in this case.

Instead, suppose the i are independent with common density -1 2(0.5 ) Cos ( )i  on

[ / 2, / 2]  , the cosine function’s domain of positive value.9 Squaring the smaller values close

to the support boundaries thins out the tails. The cumulative distribution for a resource

availability is 0.5 [ Cos( )Sin( )]/i i i     . From (3), yield density is

(22)
 22Cos ( ) 0.5 ([ Cos( )Sin( )]) /

( ) ,
y y y y

g y



 



while moments are 0.1623y , 2[ ] 0.1612E y  , 3[ ] 0.1150E y  , 0.9086y . Thinning

out the tails of the RA distribution changes the yield skew from positive to negative.

Extreme Value Analysis

It was mentioned in Just and Weninger (1999) that crop yield statistics, being averages over

space and perhaps over time too, should comply with a relevant central limit theorem as the

8 Integrations were performed with the assistance of the Wolfram Integrator webMATHEMATICA,
available at http://integrals.wolfram.com/index.jsp.
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limiting distribution. Bear in mind that the limiting distribution for the average of independently

drawn random variables (independence requirement) from a common distribution (homogeneity

requirement) is just the distribution mean with zero values for all centered higher-order moments.

This is due to the strong law of large numbers under mild regularity conditions (Durrett 1996, p.

56). Central limit theorems convey the way in which convergence to this distribution mean

occurs, and scaling by root sample size 0.5N is necessary to avoid a degenerate limiting

distribution.

While accepting that central limit theorems are relevant, our intent is to set aside aggregation

issues by considering a sufficiently small and homogeneous area so that all relevant stochastic

realizations and consequences are the same. Returning to (1), and primarily as a theoretical

counterpoint to the Just and Weninger argument, assume the i are independently, identically

drawn while N is large. Yield being the first-order statistic, we are now not in the realm of

limiting distributions for arithmetic averages but rather in that of limiting distributions for

extreme order statistics (Coles 2001; de Haan and Ferreira 2006; Bain and Engelhardt 1992).10

The relevant distribution for convergence is that of the generalized extreme value distribution

(Coles 2001, p. 47; de Haan and Ferreira 2006, p. 6).11 If it exists, then the limiting distribution

for the minimum is, in general form, that of Von Mises and is called the Generalized Extreme

9 The normalizing constant is 0.5 since
/ 2 / 22

/ 2/ 2
Cos ( ) 0.5[ Cos( )Sin( )] 0.5i i i i id

 


     


   .

10 A theory of central limits for statistical aggregates that encompasses both averages (the usual
case) and extreme values has been developed; see Schlather (2001) and Bogachev (2006).
11 As with the central limit theorem for averages, the limiting distribution of the minimum for
independent draws from a common distribution is trivially degenerate. The distribution at issue is
for N large but not too large.
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Value distribution (Castillo 1988, p. 108; Coles 2001, p. 53):12

(23)

1/

1

( ) 1 ; 0; 1 0.

cy
c y

J y e c

 




        
            

 

In this three-parameter family, and may be viewed (loosely) as location and scale

parameters while c determines shape. The minimum of independent identical draws cannot have

limiting distribution other than this form, just as the normal can be the only limiting distribution

for averages. Its attractive property is replicability or min-stability whereby the minimum of

independent draws from the distribution follows the same distribution up to location and scale.13

This distribution can take one of three specific forms, depending on the value of parameter c .

These are Fréchet for 0c  , Weibull for 0c  , and Gumbel for 0c  , where the convergence

limit in (23) as 0c  is (Castillo 1988, p. 185)

(24) Gumbel : ( ) 1 , ,
y

eJ y e y


  

   

with mean value 0.5777  , median 0.3665  , variance 2 2 / 6 , and skewness -1.1396.

Each of these specific distributions has a domain of attraction, i.e., a distribution function

domain such that the first-order statistic of a set of independent draws converges to this form.

The case of 0c  is ruled out from consideration because the minimum of draws from a

distribution with finite lower bound, as with resource availabilities, cannot converge to the

Fréchet distribution (Castillo 1988, p. 102). Upon considering (3), (14), (20), and (21), it should

be no surprise that the determinant of which form, if any, a given distribution is attracted to is tail

12 As we will see below, the similarity of the exponent with the HARA utility specification is not
incidental.
13 The literature generally refers to the counterpart for the maximum extremum, max-stability.
But 1 1max[ , ... , ] min[ , ... , ]N N      , ensuring the solutions are almost identical.
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behavior in the tail of interest (Castillo 1988, pp. 100-120; de Haan and Ferriera 2006, pp. 33).

Thick tails, as with the uniform distribution, should be expected to behave differently when

compared with thin tail distributions such as the normal.

Specifically, a necessary and sufficient condition for convergence to the Gumbel as limiting

distribution is that (Castillo 1988, p. 102)

(25)
 1 1 1

0

( ) ( / ) ( )
Lim .z

t

F F t F t e F t z
e

t

  




    

When 0z  , then 1[ ( )]/F F t t does equal 1. Notice too that 1 1 1( ) [ ( / ) ( )]F t F t e F t z    may

be viewed as a directed first-order Taylor series expansion of quantile function 1( )F around t .

Since / / 2.7183t e t t  , it follows that 1 1( / ) ( )F t e F t  , the direction of the expansion is to

the left of the t -quantile, and the behavior at issue is on the left tail. Turning to the Weibull as

limiting distribution, a necessary and sufficient condition for convergence is that (Castillo 1988,

p. 114)

(26)
1 1

0 1 1

(2 ) ( )
Lim 1,

(4 ) (2 )t

F t F t
F t F t

 

  






where the limit is required to exist. If a distribution has a thick left tail then ( )F rises sharply

near its lower support so that 1 1(2 ) ( )F t F t  is likely to be small when compared with quantile

differences a little further from the left support.

For minima, the normal, lognormal and gamma distributions have the Gumbel distribution

given in (24) as limiting distribution whereas the uniform and exponential have Weibull as the

limiting distribution (Castillo 1988, p. 120). The Weibull distribution considered in (23) is not

that usually studied, as in Bain and Engelhardt (1992). Rather, it is the mirror image up to re-
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location from the origin.14 By contrast with the Gumbel distribution for minima, the standard

Weibull distribution can have positive or negative skewness. So knowledge that the first-order

statistic of the uniform distribution has Weibull distribution as limiting distribution leaves us no

wiser without further information. Thus, there is some evidence to believe that a sufficiently thin

left tail on RA distributions will tend to support a negatively skewed crop yield distribution

whenever that distribution is determined by a LoM technology.

Conclusion

This article has used the law of the minimum, or weakest-link crop production technology,

together with structure on the input-conditioned resource availabilities to seek a better

understanding of the stochastic attributes of crop yield distributions. Some curiosities have been

identified. For instance, when each applied input is matched to just one resource availability and

first-order dominating shifts are induced in the marginal, then negative correlation among

resource availabilities can never overturn the tendency for inputs to complement under LoM. The

role of stochastic dependence structures was investigated to provide precise conditions under

which positive dependency between given marginals for resource availabilities will increase

expected yield when compared with independence. In addition, it was shown that conditions exist

under which location-shifting heterogeneities in resource availabilities can increase expected

yield. This observation is perhaps surprising in light of the Liebig barrel analogy that so

beautifully characterizes the LoM under certain resource availabilities.

Yield skewness was considered for three types of resource availability distributions. It was

14 For the maximum-order statistic, the relocated Weibull with usual orientation is the appropriate
limiting distribution.
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shown that the LoM can support both positive and negative yield skewness. Location and scale

heterogeneities were studied to discern definite, but sometimes involved, patterns in their

implications for skewness. It was suggested that the left tail attributes of resource availability

distributions are key in determining yield skew, and a connection with extreme value theory was

provided. Again, this theory can support either positive or negative skewness for zero skew,

independent and identical resource availability distributions. If the crop production process is

quite tightly controlled, then the left tails of resource availabilities should be thin, and negative

skewness will be favored. This suggests that one should be more likely to compute negative

skewness when looking at yield data of more recent vintage, in prime growing areas, and in more

developed countries where market inputs are more readily available.
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Appendix

Proof of Proposition 1: We will use Sklar’s theorem (Nelsen 1999, p. 41), namely (as stated for 

survival functions), the fact that any multivariate survival function with defined marginal survival

functions ( | )i
iF x can be represented in the copula form of 1

1[̂ ( | ), ... , ( | )]N
NC F x F x  where

the properties that [̂ ] :C  [0,1] [0,1]N  must satisfy include 2-increasing. A 2-increasing function

1( , ... , )Nf z z is one that satisfies ( ... , , ... , ... ) ( ... , , ... , ... ) ( ... , , ... , ... )i j i j i jf z z f z z f z z      

( ... , , ... , ... ) , , ,i j N i i j jf z z i j z z z z            , i.e., it is supermodular and would have non-

negative cross-derivatives were it twice continuously differentiable. From (2), our interest is in

1ˆ( | ) [ ( | ), ... , ( | )]NG y x C F y x F y x , or along the copula bisector i Ny i  . The cross

differentiation with respect to ix and jx gives

(A1)
1 2 2 1

1 1 1

ˆ ˆ[ , ... , ] ( | ) [ , ... , ] ( | ) ( | )
0,

N l N l r
N N N

l l rl r l
i j i j

C u u F y x C u u F y x F y x
u x x u u x x

   

  

    
 

      
  

where ( | )k k
iu F y x . Given twice continuous differentiability of ( | )G y x and i)-ii), (A1) must

be true over [0, ]uy y . That is all we need to prove in light of (2) and (4).

Proof of Proposition 3: Ostrowski’s criterion (Marshall and Olkin 1979, p. 57) asserts that a

continuously differentiable function 1 2 1 2( ) : , ,Nh z I I I I    is Schur-concave whenever

(A2)
( ) ( )

( ) 0,i j
i j

h z h z
z z

z z

  
      

and Schur-convex whenever the inequality in (A2) is reversed. In our case of expected yield

[ | ]E y x in (9), and common distribution up to location shift, when ,t t Nz t  , then (A2)

becomes
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(A3)
0

( | )( | )
( ) ( | ) 0.

( | ) ( | )

u

N

y ji
i j kk

i j

f y xf y x
F y x dy

F y x F y x


  

  

 
       



Statement (A3) is true whenever

(A4)
( | )( | )

( ) 0 [0, ].
( | ) ( | )

j ui
i j

i j

f y xf y x
y y

F y x F y x


 

 

 
        

Under IFR then Ln[ ( | )]F y x is concave in y for any relevant . So IFR asserts that

( | ) / ( | )f y x F y x   is increasing in y and decreasing in location parameter . If ( )i

j then

(A5)
( | )( | )

( ) 0 [0, ],
( | ) ( | )

j ui

i j

f y xf y x
y y

F y x F y x


 


   

 

and (A4) follows. The assertion for DFR follows from the Schur-convexity version of inequality

(A2).



Table 1. Yield Moments When Resource Availabilities Are Jointly Normally Distributed

 Yield
moments

0.5 0 0.5

1 2( , )  (10,10) (8,10) (12,10) (10,10) (8,10) (12,10) (10,10) (8,10) (12,10)

1 2( , )

(1,1)

 


Mean
Std. Dev.
Skewness

9.305
0.721
-0.341

7.894
0.885
-0.335

9.891
0.880
-0.341

9.435
0.827
-0.131

7.950
0.959
-0.122

9.949
0.938
-0.144

9.600
0.912
-0.028

7.990
1.000
-0.022

9.991
0.988
-0.022

1 2( , )

(1,2)

 


Mean
Std. Dev.
Skewness

8.933
1.179
-0.923

7.661
0.934
-0.463

9.652
1.592
-0.658

9.108
1.303
-0.664

7.780
1.020
-0.246

9.782
1.696
-0.448

9.300
1.420
-0.561

7.894
1.077
-0.229

9.895
1.835
-0.272

1 2( , )

(2,2)

 


Mean
Std. Dev.
Skewness

8.605
1.452
-0.365

7.379
1.555
-0.379

9.398
1.537
-0.416

8.864
1.642
-0.177

7.593
1.751
-0.191

9.609
1.744
-0.176

9.201
1.829
-0.042

7.826
1.908
-0.049

9.830
1.915
-0.056

1 2( , )

(1,0.5)

 


Mean
Std. Dev.
Skewness

9.470
0.584
-0.935

7.963
0.936
-0.275

9.963
0.473
-0.148

9.550
0.654
-0.671

7.983
0.963
-0.149

9.985
0.492
-0.029

9.653
0.707
-0.623

7.997
0.999
-0.052

9.997
0.503
-0.006

1 2( , )

(0.5,0.5)

 


Mean
Std. Dev.
Skewness

9.685
0.361
-0.375

7.997
0.488
-0.064

9.996
0.494
-0.070

9.719
0.416
-0.144

7.999
0.500
-0.010

10.000
0.500
-0.011

9.800
0.459
-0.041

8.000
0.499
0.000

10.000
0.504
0.000


