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Abstract

A large empirical literature exists seeking to identify crop yield distributions. Consensus has not
yet formed. Thisisin part because of data aggregation problems but also in part because no
satisfactory motivation has been forwarded in favor of any distribution, including the normal.
This article explores the foundations of crop yield distributions for the Law of the Minimum, or
weakest-link, resource constraint technology. It is shown that heterogeneity in resource
availabilities can increase expected yield. Therole of stochastic dependenceis studied for the
technology. With independent, identical, uniform resource availability distributions the yield
skew is positive, whereas it is negative whenever the distributions are normal. Simulations show
how asymmetries in resource availabilities determine skewness. Extreme value theory is used to
suggest a negative yield skew whenever production isin atightly controlled environment so that

the left tails of resource availability distributions are thin.

Keywords: beta-normal distribution, crop insurance, extreme value theory, Liebig technology,
limiting factors, order statistics, reliability, weakest link.

JEL classification: Q1, D2, D8



Introduction
Two major and unresolved themes in the production economics of crop agriculture concern
responses to inputs absent uncertainty and yield distributions conditional on inputs. Nature,
through sunshine, rainfall, and other weather variables, ensures that crop inputs are stochastic. In
addition, inputs applied during cultivation do not equate with inputs available to the plant, and
thisisin part because of weather-dependent linkages involving soil temperature, soil biological
activity, and run-off. Thus, these two themes cannot be separated in that if one does not
understand input-output relations absent uncertainty about input availabilities then one cannot
know much about these relations in the presence of uncertainty. The intent of this articleisto
seek firmer footing regarding the structural foundations of yield distributions. In doing so, we
will pay particular attention to one controversial feature of yield distributions, namely, crop yield
skewness.

To further these goals, a stance must be taken on the deterministic structure of crop
production technologies. Although long controversial, the only technology with clearly
motivated foundations is the Sprengel and von Liebig “law of the minimum,” henceforth referred

toasLoM. Theideaisthat crop input availabilities are perfect complements such that the most
limiting resource determines output; e.g., y =min[a‘(x,),a*(x,), ... ] , where resource availability
a'(x) isanon-decreasing function of someinput x . When the a'(x) functions are linear then

the technology isreferred to asalinear LoM. In genera, the technology requires that surplus

resource availabilities (RAS) have anull marginal product.’ When advocating the technol ogy,

" The weakest-link technology also arises in the economics of financing public goods
(Hirshleifer 1983; Cornes 1993), as well asin health economics (Dow, Philipson, and Sala-I-
Martin 1999).



von Liebig famously suggested the analogy with what is now referred to as the Liebig barrel.
Thisisabarrel with aregular bottom but where staves have different lengths at the top. Capacity
is determined by the shortest stave so that |lengthening any other stave has no effect. Theformis
a generalization of Leontief’s fixed-proportions technology specification. The claim has found
some, but limited, empirical support.

Paris (1992) used awidely studied lowa corn production experiment data set to find support
for anon-linear LoM specification, where Frank, Beattie, and Embleton (1990) had earlier found
evidence against alinear version with that data set. Using a dual approach and nonparametric
data envelopment methods on (again) lowa corn data, Chambers and Lichtenberg (1996) find
mixed results on input substitutability consequences of the specification. LIewelyn and
Featherstone (1997) used a simulation approach to identify evidence in favor of anon-linear
LoM specification. Berck, Geoghegan, and Stohs (2000) took a nonparametric regression
approach to test for the absence of input substitution to find little support for LoM.

In the agronomy literature, Cerrato and Blackmer (1990) are among alarge number who
have favored the specification. Others, asin Bloom, Chapin, and Mooney (1985), Chapin et al.
(1987), Rastetter and Shaver (1992), Sinclair and Park (1993), and Lynch and Ho (2005), point
to amultiple limitation hypothesis, or MLH. This hypothesis uses an economic framework and
views nutrients as currency to be allocated within the plant to suggest that “growth is equally
limited by all resources” (Bloom, Chapin, and Mooney 1985, p. 367). Taking an evolutionary
economics perspective, the genera tenet of thisrapidly expanding literature is that successful
plant species (i.e., survivors) are the genetic variants that best support biological pathwaysto
substitute for limiting resources when at risk. For example, one means of effecting substitution is

to store nutrients (at a cost) for possible later use. Laboratory tests, asin Rubio, Zhu, and Lynch



(2003), of these aternative hypotheses on awide range of nutrients are not conclusive. It appears
that the LoM is appropriate for many nutrient comparisons while for others the production
process is more involved.

Thus, research is quite inconclusive on the LoM. A potentia reason for this, at |east for some
data sets considered above, isthe role of spatial non-uniformities in the production setting. Berck
and Helfand (1990) have pointed out that integration over such non-uniformities can smooth over
non-differentiable pointsin an LoM technology so that the observed noisy data may rationalize an
alternative response technology. Our modeling framework will assume a generalized LoM
technology in the presence of noise when seeking to understand crop yield distributions.

The literature on yield distributions, though not as extensive, is aso unresolved. Aswith
identifying the nature of a deterministic technology, the complexity of abiological system
requires careful conditioning of the environment to test for technical attributes. Even under
experimental conditions, field cropping isfar from ideal in thisregard. Parallel to the LoM, there
also exists ayield distribution that is advocated by reference to theoretical foundations, namely,
the normal. Here, the idea in the background is often that yield realizations over a sufficiently
large areawill differ because of many distinct shocks. So, the reasoning goes, some central limit
theorem can be invoked to identify the normal as the limiting distribution.

The most widely cited early work on yield distributions is that of Day (1965). His data were
from nitrogen-conditioned experimental cotton, corn, and oat plotsin Mississippi over the
middle part of the twentieth century. While finding strong evidence in favor of positive skewness
(i.e., loosely where the bulk of the probability massisto the left of the mean) for cotton, there
was weaker evidence in favor of positive skewness for corn and fairly strong evidence in favor of

negative skewness for oats. In addition, his skewness estimates tended to decline with an



increase in the nitrogen application rate for each of the three crops.? This suggests that RA
constraints are important in determining skewness.

A sample of more recent studies includes Gallagher (1987), for U.S.-level soybean yields
over 1941-84, who found evidence of negative skewness. Nelson and Preckel (1989) and Nelson
(1990), for farm-level commercia corn in lowa over 1961-70, suggested negative skewness, as
did work by Swinton and King (1991) on Minnesota commercia corn production over 1944-87.
Moss and Shonkwiler (1993) have found negative skewness when analyzing U.S.-level corn
yield data over 1930-90. However, Just and Weninger (1999) have emphasized methodol ogy
concerns with much of thislarge body of work. Data aggregation across space and possible
misspecification of control factors (including time) may occur. In addition, they have expressed
concerns about how significance tests on normality, the typical reference distribution, had been
interpreted and/or presented for interpretation.

Endeavoring to control for these criticisms, Ramirez, Mishra, and Field (2003) have
identified negative skewness for lowa corn and soybeans using annual average data over 1950-
99, and positive skewness for Texas Plains dryland cotton data, 1970-99. Sherrick et al. (2004),
for University of Illinois data 1992-99, have subsequently found very suggestive evidence for
negative skewness in corn and soybean yields. In conclusion, athough the methodol ogies may
have been remissin certain ways, the variety in crop data sets studied, years of observation, and
methods used suggest the existence of non-zero skewness. For midwestern corn and soybeans

and for more recent data, the preponderance of evidence points strongly to negative skewness.

2See his Table 3 on p. 722. His work was a so noteworthy in suggesting the use of the beta
distribution as one sufficiently flexible in moment range to model input-conditioned distribution
functions.



This article will address the technical implications of the LoM technology in the presence of
stochastic RAs. It will be shown that there is reason to believe that the inputs affecting RAs will
be economic complements whether or not the RAs are statistically independent. This means that
an increase in the crop’s price will increase all input choices and an increase in the price of any
input will decrease all input choices. The implications for producer profit of different stochastic
dependence structures are also explored to find that stronger positive dependence between RAs
should increase expected profit for any given vector of input choices. Notwithstanding what the
weakest-link technology might suggest about the technical cost of heterogeneous RAS, we
identify cases where expected yield should increase with heterogeneity in availabilities, all else
equal.

Turning to skewness, three statistical models of RAs are considered, where in each case the
distributions of availabilities are controlled to have null skew in order to avoid introducing bias.
The distributions considered are the uniform, the normal, and the raised cosine. It is shown that
positive or negative skewness in yield can be supported. Anaysis and simulation methods are used
to explore how heterogeneity in the means and variances of RAs act to modify yield skewness.
Heterogeneity in means tend to marginalize the contribution of some RAs so that the statistical
attributes of the others, including skewness, determine yield distribution attributes. Contraction in
the variance of one RA can aso affect yield skewnessin awell-defined manner. It can mass
probability toward the upper end of ayield distribution and so may promote negative skewness. An
increase in correlation among RAs tends to reduce the relevance of the LOM constraints because
the likelihood increases that just one RA dominates as a constraint on production.

It is argued too that the motive for the empirical observation of typically negative skew in

crop yields for prime agricultural cropland may be, in part, sourced in alimiting distribution law.



But acentral limit theorem for the first-order (i.e., least-order) statistic may be amore
appropriate reference point than the standard central limit theorems for means. If RA
distributions have thin left tails, then the LoM suggests, together with extreme value theory, a
bias toward negative skewness. In intensively cultivated areas where most inputs can be
controlled with some precision, one might expect thin left tails on the RA distributions and thus

negatively skewed yield.

Framework
The LoM yield technology for RAs ¢, €[0,&'1c R, , i €Q, ={12,...,N}, assertsayield
realization as
@ y=min[g,, ... ,&,]-
This expression is very general because the distribution of ¢ = (g, ... ,&) cR" isdetermined by
the market input vector x e R" , among other factors, where R" isthe positive closed M -
dimensiona orthant of reals. Market inputs are enumerated as x; , j€{12,..,M}=Q,,.
The upper bound on each RA, ¢, is assumed fixed for convenience as it will not be relevant to
our analysis, and we define y* = max;_, {&}. The unit output priceis P . Factor pricesare w,
where we R" represents the vector of factor prices.

If the ¢, are random, then (1) provides the first-order, or least-order, statistic (David and
Nagargja 2003). Model the ¢, asindependent with input-conditioned distributions F' (g, | x),
continuoudly differentiablein ¢, and twice continuously differentiablein x. Survival functions

are F'(g, |x) =1-F'(g |X), and the general formulafor the cumulative distribution of y is



G(y|x)=Prob[e, <yor ... orgy <y|x]=1-Probfe, > y,&, >y, ...,.&y > Y|X]
=1-G(y|x; Gy =TT ,F (I

Its probability density functionis

v (Y1)
SE(y

@ 9y =GyIx
while expected profit is
(4  V(x;P,w)=PE[y|x]- Z:':lwkxk = Pjoyu G(y|x)dy - zlilwkxk’
where we have computed the input-conditioned expected yield as

(5)  Elylx=] yd&(y1x)=yG(y [} - [ G(yxdy=[ G(yIxdy.

Thus, the optimality conditions are

Y = N[ OF (Y] X) /0%,
6 Pl G | = -w, =0 VkeQ,,,
® P, <y|x>z,_1( T ]dy W 0y
with solution arguments x; (P,w).

Our first point isthat complementarity is preserved under weak conditions. The cross-

derivatives with respect to x, and x, are

0%, 0% F'(yIx)

Y = N (OF (Y ]X)/0x, \x=n [ OF (y|x)/0x,
il G(y'x)ziﬂ( Fi(y1) jzi;?( F(y1¥ jdy'

oV (% P,w) _ PJ-Oy“C—;(y | X)zil(azlfi (y|x)/ 6%, 0x, jdy
(7

Thisis positive Vk,l e Q,, k=1, solong as (i) the inputs induce (weakly) afirst-order
dominating shift in an RA, or oF'(y|x)/ox, <0VyeR_,VieQ,,VkeQ,, , and (i) each RA

distribution is (again weakly) submodular in inputs, or 6°F'(y|x)/ox0x <0VyeR _,



VieQ,, vkl eQ, k=l.Thus, V(x;P,w) issupermodular in the vector of market inputs since

any twice continuously differentiable function is supermodular whenever all second-order cross
derivatives are non-negative. For a supermodular function with constant unit input costs and a
constant unit output price, Theorem 10 (p. 166) in Milgrom and Shannon (1994) shows that the
inputs complement in the economic sense and inputs are normal in the output price.

LEMMA 1: For a LoM technology where the input-conditioned RAs are independent, let (i) an
increase in any input induce (weakly) a first-order dominating shift in each marginal RA
distribution, and (ii) these marginal distributions be (weakly) submodular in inputs. Then all

inputs decrease with either an increasein any input price or a decrease in the output price.

In particular, condition (ii) certainly applies when each input is dedicated to a single resource

availability (e.g., irrigated water for the water resource and artificial fertilizer for the nitrogen
resource) because then 9°F'(y|x)/ox0x =0VyeR,,VieQ,, vk, €Q,, kI . Ingenerd,
non-positive cross-derivatives with respect to inputs on the independent cumulative marginas

ensure supermodul arity on expected output because ¢, isan increasing function of itself and

[ e dF (5, [} oxi0x, = [ F' (s, [0de} 1%, = [ {6°F' (s, 1X)/ %, % ds, under
very general real analysis conditions.

Lemma 1 begs the following question. If the LoM applies and there is RA uncertainty, then
must the market inputs complement? That is, can the independence assumption be relaxed? The
answer isin the affirmative.

PROPOSITION 1: Assume the crop yield survival function G(y|x) is twice continuously



differentiablein xe R" with F'(y|x) asthe marginal distributions for RAs. Assume (i) and (ii)

in Lemma 1, but make no assumptions on the dependence structure between marginals. If the

LoM applies, then inputs must be economic complements.

The proof is provided in the appendix. Thus, under mild smoothness requirements, the
complementarity attribute of the deterministic LoM technology is shown to be robust to the
introduction of uncertainty and even arbitrary structure on how the marginals interact. Clearly,
the first-order dominance requirement cannot be relaxed. The differentiability assumptions could
be relaxed with little consequence, but the analysis would become cumbersome without the
convenience of differential operations.

A definition allows us to make a further point with (4), one concerning the technology alone.
DEFINITION 1: (Lehmann 1966, p. 1137; Shaked and Shanthikumar 2007, p. 392) For o € R™

and | cR", suppose a cumulative distribution J(®): | —[0,1] hasmarginalsJ' (o) Vi e Q,, .
It J(@)2]]", 3" (@) Voe!l and J(@)2]],3 (@) Yol , then the distribution is said to be

positive quadrant dependent, or PQD.

When compared with independence, and considering only two dimensions, the definition
requires alarger probability mass to the southwest of any given point, and also alarger
probability mass to the northeast of that point, too. The stochastic ordering is intended to measure
the extent of covariability between the set of random variables, and one implication is that

Cov(m, ;) 20Vi, jeQ, .

PROPOSITION 2: Suppose the technology is LoM and the marginal distributions for input-



conditioned RAs are fixed. If the joint input-conditioned RA distribution is PQD along the hyper-

line & =2 Vi e Q) then expected output and expected producer profit islarger than were the

input-conditioned RAs independent.

To confirmthis, set y=1=¢ Vi eQ, , substitute yield survival function l_Ij,NzllEj (Y%

into (4) and compare with F(y|x) at each y realization where F(y|x) is PQD. The proposition
asserts that PQD among the RAs increases expected output, when compared with independence.
For any given choice of inputs and any given marginal distributions for RAs, expected output
will be larger if the RAstend to be more positively covarying than is the case under

independence. The condition is not particularly strong because the PQD dominance need not

occur for Ve e R", but only for a one-dimensiona subset of this; specifically, along
y=A=¢g V i€Q,. Theresult should beintuitivein that if there is to be heterogeneity among

RAs then it should be as unidimensional as possible in light of the weakest-link constraints.
One final point on RA heterogeneity can be made by considering location shiftsin the
distribution. Suppose ¢, = 1, +n, wherethe n, are independent. Given (1), expected yield may

then be represented as
®  ElylxI=[ _.minlg+n,, .. +n ][], oF (1%,

From (2) and (4), (8) may be alternatively written as

9  Elylx =LE}RN Probln, >y~ ...,y > Y= pty I><]dy:j0y [T, F'(y—mlxady.

Two definitions are useful at this juncture.

10



DEFINITION 2: (Marshall and Olkin 1979, p. 7) Q' R" issaid to be majorized by Q" e R",
denoted as Q" = Q', whenever both zik:lq(’i) > zikzlq(';) vkeQ, and ziN:lq('i) = zith(’;) where
the q;, arethe order statistics, i.e., g;) < Q) <...< (- Afunction W(Q): RY >R issaidto

be Schur-concave whenever Q" > Q"implies W(Q') >W(Q"), and it is said to be Schur-convex

whenever Q" > Q’implies W(Q') <W(Q").

DerINITION 3: (Shaked and Shanthikumar 2007, p. 1) A distribution J(®): R —[0,1] issaid to
beincreasing failurerate (IFR) if Ln[J(w)] isconcavein o whileit is decreasing failure rate

(DFR) if Ln[J(w)] isconvexin o .

Definition 2 captures the idea of more dispersion. To see this, suppose that 1" ={1,2,6} and
u'={2,34.Then u">pu" as2>1,2+3>1+2,and 2+ 3+4=1+2+6. Magjorization has
been used widely in the economics of income and wealth inequality since the work by Lorenz
and Dalton a century ago (Marshall and Olkin 1979, p. 6). Definition 3 seeks to measure how
quickly adistribution tail tapers off, where IFR identifies arapidly fading right-hand tail. Our
interest in majorization iswhen the p. location parameters become more dispersed in the sense
of amajorization shift. A rapidly fading right tail for each marginal RA distribution suggests that
dispersion in location shifts for independent draws from otherwise identical distributions will
reduce the expected value of the least-order statistic and so will reduce expected yield. The next
proposition confirms this.

PROPOSITION 3: Suppose the technology is LoM, while input-conditioned RAs are independent

11



and have a common distribution up to location. Let the distribution express IFR (DFR). Then a
majorizing shift in the location vector reduces (increases) expected output for any given input

choice.

The proposition gives precise conditions under which heterogeneity in the technology of RAs
is detrimental to anticipated yield for any given set of inputs. Perhaps contrary to the intuition
one might glean from Liebig’s barrel, eqn. (1), and Proposition 1, even under the very stylized
setting of Proposition 3 we find that heterogeneity in RAs need not adversely impact yield. Bear
in mind though that for a distribution function to be DFR at a point, the density function must be
decreasing at that point. So for DFR to apply over the entire support, it must be that the density
function is decreasing over the support.

What sorts of distributions exhibit DFR? A commonly used distribution in reliability theory,
which iswhat our study of crop yield distributions has brought us to, is the Weibull. It has the

form
(10) F'(g |x) =1-e Vel
for & >0, A(x)>0, and « >0 (Rausand and Hgyland 2004). Asis readily shown, the

distribution expresses IFR if o >1 and DFR if o <1. Our interest isin the product of location-

displaced survival functions along the equal values line. Using Prob(e; + i, > y) =
Prob(e; > y— 1) and location-shifted univariate Weibull survival functions, then the yield
survival function under independenceis

N
N _ ary e -2 N — 1 &
(11) szle (2001 (y-4)" _ g PO 2 (y-)*

12



It can readily be shown that thisis smaller under a more dispersed location vector when
ziN:l(y — ) is Schur-convex, and that occurs when « >1. On the other hand, (11) increases

with more dispersion in the location vector when « <1, and thereis no effect when a =1.
An alternative model of resource availabilities is the gamma with location displacements.

Here,

i _ [ﬂ’(x)]a o-1-A(X)s
(12)  Fi(g |X) @) Le(oygi]s e H03gs,

for A(X)>0, a >0, and I'(a) thegamma function. Theyield survival function is given by

o0

Sa—le—l(x)sds.

(13) 2O M@ " TTL]

Y-t
It iswell known that the gamma distributionis IFR if « >1 and DFR if o <1 (Rausand and
Hoayland 2004, p. 61). Use of Definition 3 and alittle further work shows that the yield survival
function (and so expected yield) is decreasing with more dispersion in the location shifters
whenever o >1 and increasing whenever o <1.2

Comparing Propositions 2 and 3, one sees that care is required when stylizing heterogeneity
in a crop’s technology. Given marginals, then less heterogeneity in the sense of more positively
covarying RAs s good. Given dependence structure, namely independence, then more
heterogeneity in mean is probably bad, but we cannot be sure without further knowledge on the
marginal distributions. Tail thickness matters. We turn next to the issue of skewness, where RA

tail thickness will assume a more prominent role.

® Apply the Ostrowski method from the proof of Proposition 3, in the appendix. From an
empirical perspective, Babcock and Blackmer (1992) have modeled soil nitrate availability for
lowa corn production using alocation shifted gamma distribution in a LoM technology
framework. They find « >1; seetheir Table 1.

13



Skewness and Uniform Case
Theyield distribution of interest is when inputs are fixed, for otherwise the measured statistical
attributes of yield may be due to heterogeneity in input uses over the area of interest and not due

to the technology itself. To make further progressin this section, we also assume that each ¢; is
independently drawn from the standard continuous uniform distribution, & ~U[0,1] . Thus there

isno biasin favor of any resource, and in addition the RAs are symmetric around the mean so

that they have zero skewness. A well-known result isthat the first-order statistic then has density

1-y" |
[[a-2"a

(14)  9(y;LN)=
or the beta distribution with parameters o =1 and 8 = N (Gupta and Nadargah 20044, p. 89).
Its mean, variance, and third central moment are u, = (1+N)™, o) = N(1+N)?(2+N)™, and
¢, =2N(N-1)(2+N)™*(3+N)™(1+N) > 0. Bearing in mind that skewness is defined as

y,=¢, /o], wehave

C2(N-1) [2+N

W) 7=V N

> 0.

Thus, yield in this case expresses positive skew as found in Day (1965) for Mississippi cotton
and corn during 1921-57 and Ramirez, Misra, and Field (2003) for West Texas Dryland cotton

during 1970-99.

Heterogeneity in Means

Of course, in redlity even if RAs have uniform marginals, they are unlikely to have common

means or variances, if only because factor prices, agronomic knowledge, and technol ogical

14



capabilities differ. Neither are the RAslikely to be independent. We will relax each of these
conditionsin turn. To focus on effects, |et there be just two resources at issue, where ¢, is
discrete uniformly distributed on point pair {0,1} , ¢, isdiscrete uniformly distributed on
{r,1+7}, 7 € [0,1], and these random variables are independent.* Therefore, the random

variables have the same higher central moments for marginals, differing only by the shifted
mean. In order to commence with a zero skew distribution, let the probability of both low and

high states be 0.5. The distribution of y=min[e,,&,] is0 with probability 0.5, = with probability
0.25, and 1 with probability 0.25. The momentsare i, =(r +1)/4, o] = (3> -2r +3)/16, ¢, =

3(1-7)?(1+7)/32 with skewness y, = 6(1-7)*(1+7)(3r* - 2r + 3)*'* > 0 where the derivative

of interest satisfies

d —
(16) Yy _ 96(1-17)r <0

dr (32-2r+3)"

on 7 €[0,1] . In addition, for 7 €[-1,0], egn. (16) showsthat an increasein r leadsto aless

negative skewness statistic. Thus, heterogeneity in location aone tends to reduce skewness for
the discrete uniform distribution. Thisis because the location shift takes probability mass away

from a support point at the lower end of the distribution.

Heterogeneity in Variances

As above, let there be just two resources at issue, where ¢, is discrete uniformly distributed on

{0,3} . But let &, bediscrete uniformly distributed on {z,1-7}, v €[0,0.5], while these random

“If >1then min[e,&,]=¢,.

15



variables are (again) independent. If 7 =0.5 then the support of ¢, isconcentrated at ¢, =0.5.
As before, set the skew as zero by letting the probability of the low state be 0.5 in each case. The
distribution of y=min[e,,¢,] is0 with probability 0.5, ¢ with probability 0.25, and 1-7 with
probability 0.25. The momentsare y, =0.25, o) =(¢* —8r +3)/16, and ¢, = 3(1-2r)*/32
with skewness y, =6(1— 2r)*(8* —8r + 3)*'? so that the derivative of interest is

dy, 96(2r -)r(1-7) "

. =71-05<0.
dz (3-8r+8r7)

(17)

Heterogeneity in variance, through contracting the support of one distribution, reduces skewness.
Aswith alocation shift, heterogeneity takes probability mass away from a heavily weighted

support point in the distribution’s left tail.

Dependence
Following Dasgupta and Maskin (1987), set

(0,0) with probability 0.25(1+ p);
(0,1) with probability 0.251- p);
(L,0) with probability 0.251- p);
(L1) with probability 0.251+ p);

(18) (51152) =

for p e[-1,1] where p >0 actsto place more probability on points (0,0) and (1,1) sothisisan
illustration of a probability shift given in Definition 1. Our interest hereis not in understanding

the impact on mean but rather on higher moments. Mean, variance, and third central moment of
yiddarenow p, =0.25(1+ p), o) = (3— p)(1+ p)/16, ¢, = (83— p)(1+ p)(1- p)/32, where
skewnessis y, =2(1- p)(3— p) **(1+p)°. Notethat Lim , v, =+w» and y, =0 when p=1.

The derivative with respect to the correlation parameter is

16



d
19 I 8

- <0.
dp  (3-p)**(1+p)**

So an increase in correlation decreases skewness for the discrete uniform distribution. As

correlation increases, the distribution of min[e;,&,] becomes more like the uniform distribution,

with zero skewness. A decrease in correlation can be seen as an increase in heterogeneity in the
RAs. Overal, we see that skewness falls when means diverge (more heterogeneity), one of the
random variabl es assumes | ess variance (more heterogeneity), or the distributions become more

correlated (less heterogeneity).

Skewness and Normal Case
Now let the & beindependent and drawn from an identical distribution, namely, F'(g,) =
<I>((gi — p)/ o), the standard cumulative normal before being relocated and scaled by common

parameters. Then the yield density for the minimum of N drawsis

(20) g(y)ﬂ{l—cb(uﬂ qs(uj
O O

(o}
where ¢(-) isthe density of the normalized distribution. Thisis an instance of the Beta-Normal
distribution as discussed in Eugene, Lee, and Famoye (2002).° When N = 2, then Choi (2005),

correcting Gupta and Nadargjah (2004b), shows the first three momentsto be u, = u - on <

p,o;=(r-Do’zr ", and {, =0.5(r —4)o’r ¥* <0. Thus, and by contrast with the uniform

®> Actually, as has been recently pointed out by Jones (2004), when N isanatural number, then
thisisthe least-order statistic of independent draws from a common normal distribution. The
literature on order statistics for i.i.d. normal random variables has along pedigree dating at |east
asfar back as Bose and Gupta (1959).
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distribution, skewness is negative at y, = 0.5(r —4)(x —1)"**. This should not be surprising
when one considers how weighting 1- ®((y — i)/ o) biasesdensity ¢((y— i)/ o) in (20).
Though low at low yields, the yield density function should not be as low for low yield draws as
for high yield draws. Thisisin contrast to uniform RA densities, where the survival function
density in (14) completely determines the shape of yield density, and yield density will have
negative derivative everywhere it has support.

Toillustrate the effects of heterogeneity, suppose first that N = 2 and the random variables
are perfectly positively correlated. Then yield follows the standard normal up to location and
scale, thus having zero skew. Suppose instead that the random variable had perfect negative
correlation so that (¢, — u)/ o =—(¢, — 1)/ o . Then theyield distribution is half-normal with
support to the left of 1 and clearly has negative skew. By contrast with the uniform, an increase
in correlation (and so a decrease in heterogeneity) from p =0 to p =1 increases skewness to
vy =0.

The case of drawing from a bivariate normal with heterogeneous meansinvolves a
nonlinearity. If, under independence and equal variances, means differ substantially, then only
the marginal with the lower mean matters, and skewness should not differ much from zero. With
means ¢, and &,, as &, increasestoward &, then yield skewness should decrease away from zero
until &, =&, and should increase toward zero thereafter. So heterogeneity in means should

increase skewness toward zero. Thisisin contrast to the uniform case where heterogeneity in

means decreases skewness toward zero.
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Alternatively, suppose we alow possibly distinct means and variances on the RAs where the

variance of ¢, recedesto zero. Then, of course, correlation ceases to be a meaningful statistic and
we may ignoreit. With mean of ¢, at &, , the distribution becomes censored normal with support
to theleft of &, and strictly positive probability massed at &,. Again, the distribution is clearly

negatively skewed. So casual heuristic reasoning suggests that heterogeneity through lower
variance for one RA tends to introduce a downward bias in the skewness of the |east-order
statistic of symmetric random variables when compared with the baseline case where
independent draws are taken from identical distributions. This downward bias is as under the
comparable scenario for the uniform distribution.

Unfortunately, thought exercises such as the above aside, little appears to be known about
order statistics for draws from non-i.i.d. normal distributions. To investigate further, Table 1
provides moment estimates for a variety of scenarioswhen N = 2. The benchmark isitalicized
and bolded with means a z, = £, = 10, standard deviations a o, = ¢, =1 where 6> = Var(e,),
and correlation at p = 0. After taking 10,000 independent draws, antithetic variates were used to
double the sample to 20,000.°

Note first that the mean and standard deviation of yield increase with anincreasein
correlation. For yield mean, per Definition 1 and Proposition 2, it is preferable that low draws
come in pairsin order to get them out of the way. For standard deviation, the LoM minimization

operation pushes probability weightings toward the lower end of the support so that one should

expect dispersion to decline. Notice also that skewness is never positive, i.e., the smulations

® For antithetic variates, if thedraw (¢,,¢,) = (&,,€,) ismadethen sois (¢,,¢,) = (-€,,—¢,) . The
intent is to promote law-of -large-numbers convergence by balanced sampling (Boyle, Broadie,
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suggest that what applies for the first-order statistic with i.i.d. normal draws may be robust to
relaxing thei.i.d. requirements.

Confining attention now to zero correlation simulations, yield skewness does not differ much
across differences in means when variances are common. But skewness is more strongly negative
when the common variance is large. Heterogeneity in means only ensures that the distribution
with the lower mean dominates when determining the first-order statistic. With a sufficiently
large gap in means and sufficiently low standard deviations, the yield skew will be close to zero.

For & =&, =10 too, and recalling that skewnessis normalized by yield variance, yield

skewness is more negative when there is aso heterogeneity in the RA variances. Thisisaswith
the uniform distribution but for a somewhat different reason. There a contraction in the variance
of one RA ensured that the upper tail of the yield distribution was increasingly concentrated
around the mean of that RA. An increase in the RA variance would not have that effect. For
normally distributed RAs with equal means, a decrease in the variance of one tends to induce a
more negative skew because oneis converging on a censored (from the top) normal yield
distribution. An increase in the variance of one RA also tends to induce a more negative skew.
This is because the more dispersed distribution dominates in determining the left end of yield
density whereas the tightly dispersed distribution dominates in determining the right end of yield
density.

The case (p,0,,0,) =(0,1,2) merits attention. There, skewnessis -0.664 under ¢, =&, =10,

-0.246 under (¢,,&,) =(8,10) and -0.448 under (¢,,&,) = (12,10) . Skewness becomes less

negative when &, decreases from 10 to 8 and when &, increases from 10 to 12. At g, =8 then ¢,

and Glasserman 1997).
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isdominant in determining yield because it has lower mean and lower variance. So skewness
should move toward O, that of the univariate normal distribution. The move toward O skewnessis
not as pronounced when &, changes from 10 to 12 because the large variance of &, ensuresit can
still throw up agood draw such that &, narrowly distributed at the upper end of the yield range
will still be important.

Moving to positive correlation, with & =&, =10 then the effect on skewnessis clear. When
compared with p =0, skewnessis aways |less negative. Negative correl ation makes skewness
even more negative for any given set of RA mean and standard deviation parameters. The most
negative skew statistic ariseswhen (p, g,,¢,,0,,0,) =(-0.510,10,1,0.5) , followed closely by
(p.&,,¢,,0,,0,) =(-0.510,10,1,2) . Here, the common mean ensures that both marginals are
relevant. The negative correlation ensures that a moderately below-average draw from one

margina isvery likely to matter, thus facilitating a pileup of probability mass toward the RA

means. Variance heterogeneity allows for athinly spread out |€eft tail to the yield distribution.

Skewness and Raised Cosine Case

To further probe the conjecture that the distribution tail determines skewness, consider the raised

cosinedistribution. In thiscase, let y=min[g;,¢,] wherethe ¢, are independent with common

density f(g)=0.5Cos(¢,) on [-n/2,7/2], the cosine function’s domain of positive value.” The

w2

=2, The support was chosen for

"Here, 0.5 normalizes since J:ﬂIIZZCos(gi )de, =Sin(g,)|

analytic convenience. While it intersects the negative domain, remember that skewnessis
location independent. A location shift of support [-7/2,712] > [t -n/2,t+7/2], t>-7/2,

would not affect skewness.
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distribution is chosen because the power transformation 0.5Cos(¢, ) — x(a)[Cos(¢,)]“ thins out
the density tallswhen o > 1, and because the class of densitiesis analytically tractable. The
cumulative distribution for RA density f (&) =0.5Cos(¢;) is F(g)=[1+Sin(g;)]/2. From (3),

Cos(y)[1-Sin(y)l

(21)  a(y)= >

while momentsare 1, =-0.3927, E[y*]=0.4674, E[y’]=-0.3799, and y, = E[(y - u,)°]/ o]

y
=0.28.% By contrasting (20) with (21), it can be seen how tail thickness ensures positive

skewness for the first-order statistic in this case.

Instead, supposethe ¢, are independent with common density (0.57)"Cos’(g,) on
[-7/2,712], the cosine function’s domain of positive value.® Squaring the smaller values close
to the support boundaries thins out the tails. The cumulative distribution for a resource

availability is 0.5+ [¢, + Cos(g,)Sin(e; )]/ 7 . From (3), yield density is

(22)  ga(y)= 2Cos’(y){0.5— ([y + Cos(y)Sin(y)])/ =} ,

T

while momentsare 1, =-0.1623, E[y?]=0.1612, E[y’]=-0.1150, , =—0.9086. Thinning

out thetails of the RA distribution changes the yield skew from positive to negative.

Extreme Value Analysis
It was mentioned in Just and Weninger (1999) that crop yield statistics, being averages over

space and perhaps over time too, should comply with arelevant central limit theorem as the

® Integrations were performed with the assistance of the Wolfram Integrator webMATHEMATICA,
available at http://integrals.wolfram.com/index.jsp.
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limiting distribution. Bear in mind that the limiting distribution for the average of independently
drawn random variables (independence requirement) from a common distribution (homogeneity
requirement) is just the distribution mean with zero values for all centered higher-order moments.
Thisisdueto the strong law of large numbers under mild regularity conditions (Durrett 1996, p.

56). Central limit theorems convey the way in which convergence to this distribution mean

occurs, and scaling by root sample size N°° is necessary to avoid a degenerate limiting
distribution.

While accepting that central limit theorems are relevant, our intent is to set aside aggregation
issues by considering a sufficiently small and homogeneous area so that all relevant stochastic
realizations and consequences are the same. Returning to (1), and primarily as a theoretical

counterpoint to the Just and Weninger argument, assume the ¢, are independently, identically

drawn while N islarge. Yield being the first-order statistic, we are now not in the realm of
limiting distributions for arithmetic averages but rather in that of limiting distributions for
extreme order statistics (Coles 2001; de Haan and Ferreira 2006; Bain and Engelhardt 1992).%°
The relevant distribution for convergence is that of the generalized extreme value distribution
(Coles 2001, p. 47; de Haan and Ferreira 2006, p. 6).* If it exists, then the limiting distribution

for the minimumis, in genera form, that of Von Mises and is called the Generalized Extreme

® The normalizing constant is 0.5z since J'::/zz Cos’(g)de, =0.5¢ + Cos(¢, )Sin(e, )]|:/j ,=057.
1% A theory of central limits for statistical aggregates that encompasses both averages (the usua
case) and extreme values has been developed; see Schlather (2001) and Bogachev (2006).

't Aswith the central limit theorem for averages, the limiting distribution of the minimum for
independent draws from a common distribution istrivially degenerate. The distribution at issueis

for N large but not too large.
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Value distribution (Castillo 1988, p. 108; Coles 2001, p. 53):*?
1ie u -1/c } ~

(23) J(y)=1—eH (6j }; 0>0; 1+(%}czo.
In this three-parameter family, 4 and 6 may be viewed (loosely) as location and scale
parameters while ¢ determines shape. The minimum of independent identical draws cannot have
[imiting distribution other than this form, just as the normal can be the only limiting distribution
for averages. Its attractive property isreplicability or min-stability whereby the minimum of
independent draws from the distribution follows the same distribution up to location and scale.*®

This distribution can take one of three specific forms, depending on the value of parameter c.
These are Fréchet for ¢ >0, Weibull for c< 0, and Gumbel for ¢ =0, where the convergence

limitin (23) as ¢ — 0 is(Castillo 1988, p. 185)

(24) Gumbel : J(y)=l—e’e{T], yeR,

with mean value 1 —0.57775 , median A —0.36655 , variance 7°5° /6, and skewness -1.1396.
Each of these specific distributions has a domain of attraction, i.e., adistribution function
domain such that the first-order statistic of a set of independent draws converges to this form.
The case of ¢> 0 isruled out from consideration because the minimum of draws from a
distribution with finite lower bound, as with resource availabilities, cannot converge to the
Fréchet distribution (Castillo 1988, p. 102). Upon considering (3), (14), (20), and (21), it should

be no surprise that the determinant of which form, if any, a given distribution is attracted to is tail

2 Aswe will see below, the similarity of the exponent with the HARA utility specification is not
incidental.

3 The literature generally refers to the counterpart for the maximum extremum, max-stability.
But max[e,, ... ,&y] =—min[-¢,, ... ,—&, ], ensuring the solutions are almost identical.
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behavior in thetail of interest (Castillo 1988, pp. 100-120; de Haan and Ferriera 2006, pp. 33).
Thick tails, as with the uniform distribution, should be expected to behave differently when
compared with thin tail distributions such as the normal.

Specifically, anecessary and sufficient condition for convergence to the Gumbel as limiting

distribution is that (Castillo 1988, p. 102)

(25)  Limy, F(F_l(t){F_lt(t/e)_F_l(t)}z) —e

When z=0, then F[F *(t)]/t doesequal 1. Noticetoo that F™*(t)+[F *(t/€)— F (t)]z may
be viewed as a directed first-order Taylor series expansion of quantile function F™(-) around t.

Since t/e~t/2.7183<t, it followsthat F*(t/e) < F(t), the direction of the expansion isto

the left of the t-quantile, and the behavior at issueis on the left tail. Turning to the Weibull as
limiting distribution, a necessary and sufficient condition for convergenceis that (Castillo 1988,

p. 114)

F'(2t) - F ()

(26) Lim F2(4t) - F(2t)

<1

where the limit is required to exist. If adistribution has athick left tail then F(-) rises sharply

near its lower support so that F~*(2t) — F'(t) islikely to be small when compared with quantile

differences a little further from the left support.

For minima, the normal, lognormal and gamma distributions have the Gumbel distribution
given in (24) as limiting distribution whereas the uniform and exponential have Weibull as the
limiting distribution (Castillo 1988, p. 120). The Weibull distribution considered in (23) is not

that usually studied, as in Bain and Engelhardt (1992). Rather, it isthe mirror image up to re-

25



location from the origin.** By contrast with the Gumbel distribution for minima, the standard
Weibull distribution can have positive or negative skewness. So knowledge that the first-order
statistic of the uniform distribution has Weibull distribution as limiting distribution leaves us no
wiser without further information. Thus, there is some evidence to believe that a sufficiently thin
left tail on RA distributions will tend to support a negatively skewed crop yield distribution

whenever that distribution is determined by a LoM technol ogy.

Conclusion

This article has used the law of the minimum, or weakest-link crop production technology,
together with structure on the input-conditioned resource availabilities to seek a better
understanding of the stochastic attributes of crop yield distributions. Some curiosities have been
identified. For instance, when each applied input is matched to just one resource availability and
first-order dominating shifts are induced in the marginal, then negative correlation among
resource availabilities can never overturn the tendency for inputs to complement under LoM. The
role of stochastic dependence structures was investigated to provide precise conditions under
which positive dependency between given marginals for resource availabilities will increase
expected yield when compared with independence. In addition, it was shown that conditions exist
under which location-shifting heterogeneities in resource availabilities can increase expected
yield. This observation is perhaps surprising in light of the Liebig barrel analogy that so
beautifully characterizes the LoM under certain resource availabilities.

Yield skewness was considered for three types of resource availability distributions. It was

¥ For the maximum-order statistic, the relocated Weibull with usual orientation is the appropriate
[imiting distribution.
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shown that the LoM can support both positive and negative yield skewness. Location and scale
heterogeneities were studied to discern definite, but sometimes involved, patternsin their
implications for skewness. It was suggested that the |eft tail attributes of resource availability
distributions are key in determining yield skew, and a connection with extreme value theory was
provided. Again, this theory can support either positive or negative skewness for zero skew,
independent and identical resource availability distributions. If the crop production processis
quite tightly controlled, then the | eft tails of resource availabilities should be thin, and negative
skewness will be favored. This suggests that one should be more likely to compute negative
skewness when looking at yield data of more recent vintage, in prime growing areas, and in more

developed countries where market inputs are more readily available.
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Appendix
Proof of Proposition 1: We will use Sklar’s theorem (Nelsen 1999, p. 41), namely (as stated for
survival functions), the fact that any multivariate survival function with defined marginal surviva
functions F' (g, | x) can be represented in the copulaform of C[F*(s, | X), ... ,F" (g, | X)] where
the propertiesthat C[]: [0,4]" — [0,1] must satisfy include 2-increasing. A 2-increasing function
f(z,..,z,) isonethat satisfies f(...,2,...,z] .)+ (..., 7,..,Z, ..) = f (..., ..., Z] ...)
+1(...,2, ...,z .. Vi, jeQ,VZ'> 7, VZ] > 7, i.e, itis supermodular and would have non-
negative cross-derivatives were it twice continuously differentiable. From (2), our interest isin

G(y|x)=C[F*(y|X),...,E"(y|x)], or dong the copulabisector y=¢, Vi € Q, . The cross

differentiation with respect to x and x; gives

Ary ol : N 2_|+ 2A 1+ N — | - — -
N OC[u, ... ,u ] 0°F (y|X) N <N O°C[u, ..., u ] oF (y|x) oF"(y|x)
A > . s oAy >0,
ou OX,0X; ou ou OX OX;

where u* = F*(y|x ). Given twice continuous differentiability of G(y|x) and i)-ii), (A1) must
betrueover ye[0,y"]. That isal we need to provein light of (2) and (4).
Proof of Proposition 3: Ostrowski’s criterion (Marshall and Olkin 1979, p. 57) assertsthat a

continuously differentiable function h(z): 1, — 1,,I, cR",I, =R is Schur-concave whenever

0z 0z,

J

(A2) ( J(;—zj)go,

and Schur-convex whenever the inequality in (A2) is reversed. In our case of expected yield
E[y|x] in (9), and common distribution up to location shift, when u, = z,teQ, , then (A2)

becomes
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fly—m 10 fy=u1%)
Fly—m 10 Fly—1%)

(A3) (uf—uan( JIIMQNﬁ(y—;a|mdyso

Statement (A3) is true whenever

fy—mlx) _ fO-u1%)
Fly—m 10 Fly—m 1%

(Ad) (ui—uj)( ]SO vy e[0,y"].

Under IFR then Ln[F(y— u|X)] isconcavein y for any relevant u <R . So IFR asserts that
f(y—u|x)/F(y—pu|X) isincreasingin y and decreasing in location parameter u . If 1 <(>)
u; then

F=—m %) o oy PO 1%)

(A5) — > (<) =
F>y—11%) F>y—u; [¥)

<0 Vye[0,Vy"],

and (A4) follows. The assertion for DFR follows from the Schur-convexity version of inequality

(A2).



Table 1. Yield Moments When Resour ce Availabilities Are Jointly Normally Distributed

p— Yied -0.5 0 0.5
momentsy
(14, 14,) = (10,20) | (8,10 (12,210) | (10,20) | (8,10) (12,10) | (10,20) | (8,10) | (12,10)
(05,0,) | Mean 9305 | 7.894 | 9891 | 9435 | 7950 9949 9600 |7.990 | 9.991
- (1Y) Std. Dev. 0.721 0.885 0.880 0.827 0.959 0.938 0.912 1.000 | 0.988
Skewness -0.341 {-0335 {-0.341 {-0.131 -0.122 {-0.144 :-0.028 |-0.022 {-0.022
(0,,0,) Mean 8.933 7.661 9.652 9.108 7.780 9.782 9.300 7.894 | 9.895
-(12) Std. Dev. 1.179 0.934 1.592 1.303 1.020 1.696 1.420 1.077 {1835
Skewness -0.923 | -0.463 | -0.658 | -0.664 |-0.246 |-0448 |-0.561 | -0.229 @ -0.272
(0,,0,) Mean 8.605 7.379 0.398 8.864 7.593 9.609 90.201 7.826 | 9.830
-(2,2) Std. Dev. 1.452 1.555 1.537 1.642 1.751 1.744 1.829 1.908 | 1.915
Skewness -0.365 {-0.379 |-0416 |-0.177 !-0.191 {-0.176 |-0.042 |-0.049 |{-0.056
(0,,0,) Mean 9.470 7.963 9.963 9.550 7.983 9.985 9.653 7.997 | 9.997
~(L0.5) Std. Dev. 0.584 0.936 0.473 0.654 0.963 0.492 0.707 0.999 | 0.503
Skewness -0.935 | -0.275 {-0.148 | -0.671 |-0.149 :-0.029 |-0.623 | -0.052 | -0.006
(0,,0,) Mean 9.685 7.997 9.996 9.719 7.999 10.000 | 9.800 8.000 | 10.000
_ (0505 Sd.Dev. 0361 10488 0494 0416 0500 0500 0459 0499 | 0504
Skewness -0.375 {-0.064 |-0.070 {-0.144 -0.010 |-0.011 |-0.041 0.000 | 0.000




