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On Microeconomic Efficiency and Entrepreneurship  

under Bounded Rationality 

 

1. Introduction 

As a primary measure of welfare outcomes, the concept of efficiency dominates neoclassical 

economic inquiry. Efficiency at the producer level involves assessing whether agents are operating on the 

production frontier (technical efficiency) and at the optimal point on the frontier (allocative efficiency). 

Following Debreu (1951), Koopmans, Farrell and others, economists have examined both types of 

efficiency outcomes.1 However, theoretical and empirical analyses of efficiency have typically assumed 

perfect information.2  

Most economic agents (e.g., entrepreneurs, farmers, prospectors, innovators) confront imperfect 

information about technology, production conditions, and/or market possibilities. In particular, economic 

agents may find it difficult or costly to gather and process information about technology, production, or 

market conditions, in which case their decisions can be modeled as ones made under bounded rationality 

(Simon; Conlisk).3 The basic challenge that incorporating bounded rationality creates for the standard 

concept of efficiency is that it becomes a “conditional measure”, one that depends on the agent’s 

knowledge of the underlying (and potentially evolving) technology, production conditions, and market 

possibilities. And, because knowledge acquisition is a process the producer can manage through learning, 

conventional efficiency (and productivity) concepts may need to be modified to incorporate the role of 

learning under conditions of bounded rationality.   

Learning is a dynamic process (one that generally takes time and effort) and a heterogeneous one 

(agents vary in their capacity to learn and their ways of learning). Under bounded rationality, the dynamic 

nature of learning may call into question unconditional, static statements about firm efficiency outcomes, 

because learning activities in the current period have the potential to shape productivity outcomes in 

future periods. The heterogeneous nature of learning also raises questions about standard measures of 

efficiency, because individual differences in human capital shape the capacity of economic agents to 
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acquire knowledge about technologies, production conditions, and market possibilities (Schumpeter, 

1934, 2005; Schultz, 1975, 1981; Nelson and Winter).  

More explicit attention to the role of learning under bounded rationality has the potential to 

broaden our understanding of efficiency and entrepreneurship. This paper pursues that objective by 

developing a single-agent model of an owner-operated firm facing uncertainty and bounded rationality. 

Uncertainty and bounded rationality are interwoven: a critical aspect of imperfect information is the 

degree of knowledge that an agent has about future production and marketing conditions. They are 

integrated here to include risk preferences, which also play a role in dynamic decisions under uncertainty 

(e.g., entrepreneurial activities). In that sense, this paper extends the seminal work of Kihlstrom and 

Laffont on the role of risk and risk preferences in entrepreneurship by incorporating the role of learning. 

The explicit focus on learning adds a micro-foundation to the general insights of Schumpeter (1934, 

2005), Schultz (1981), Lazear, Kirzner, and others regarding the role that differences in human capital 

play in the success of entrepreneurs.  

Learning is treated in a general fashion in the model, which incorporates both “learning-by-

doing” (Arrow, 1962) and investment decisions under uncertainty (Arrow and Fisher, Henry, and Pindyck 

and Dixit). Uncertainty is represented using a general state-contingent approach (Debreu, 1959). In 

complex economic environments, bounded rationality reflects the fact the evaluation of state-contingent 

decisions becomes difficult, forcing the decision maker to use crude decision rules. In this context, we 

show that the decision maker’s problem can be formulated as one of maximizing his/her “certainty 

equivalent” (CE). We then use this CE to study efficiency outcomes. Under bounded rationality using the 

CE formulation, firm-level economic efficiency can still be decomposed into two parts: technical 

efficiency, and allocative efficiency.4 Efficiency outcomes are further decomposed into three parts: 

expected net income, a risk premium (measuring the implicit cost of private risk bearing), and a 

conditional value of information.  . 

The first two components of this efficiency measure are not novel, but the third one about the 

conditional value of information apparently is. Assuming heterogeneity of human capital among 
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economic agents, we are able to develop several potentially valuable insights into the role of learning in 

efficiency and productivity assessment. One insight is that previous measures of technical inefficiency are 

likely to be biased upwards because of their omission of the role of learning under bounded rationality. 

Another is that these learning processes about production technologies may be the micro-theoretic 

underpinnings of what Leibenstein labeled as X-inefficiency and Stigler critiqued for its lack of clear 

microeconomic foundations. A third concerns the microeconomics of entrepreneurship. We analyze the 

dual role of entrepreneurs, both in discovering new technologies (yielding productivity gains) and in 

improving  allocative efficiency through more judicious choice of inputs and products mix.  Finally, 

building on Schumpeter (1934, 2005) and Schultz (1975, 1981), our investigation emphasizes the 

fundamental role of human capital in shaping learning processes, productivity change, and entrepreneurial 

success. The paper closes with reflections on how extending the model to a multi-agent setting might 

deepen our capacity to understand the roles of markets, institutions, and contracts in the process of 

productivity change and entrepreneurial activities.  

 

2. The Model 

Consider an economic agent making decisions for a firm over time. For simplicity, we focus our 

attention on a two-period model with production/investment decisions in both periods. Using the netput 

notation (where outputs are positive and inputs are negative), denote by x1 = (x11, …, xnt) ∈ ℜn the n-

vector of netputs chosen at time t = 1 and by x2 = (x12, …, xm2) ∈ ℜm the m-vector of netputs chosen at 

time t = 2. The agent faces uncertainty which comes from the production technology as well as market 

conditions. Production uncertainty, represented by R possible states, r = 1, …, R, reflects all uncertain 

factors related to the production process, ranging from imperfectly understood aspects of the technology 

to stochastic factors (such as unforeseen weather effects, possibility of strikes, or equipment breakdown). 

Market uncertainty, represented by S possible states, s = 1, …, S, reflects all factors that generate 

uncertainty about market conditions and future market prices.  Note that the number of states can be quite 
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large. For example, if production uncertainty is generated by 10 random variables, each one taking one of 

10 possible values, then R = 1010. Dealing with a large number of states can be quite difficult and 

problematic for the agent and the economic analyst (e.g., Simon). This “curse of dimensionality” 

motivates the introduction below of a certainty equivalent approach for the assessment of efficiency. In 

addition, the model assumes incomplete risk markets, where risk exposure cannot be transferred entirely 

to other agents.  

The economic agent is assumed here to be an owner-operator (e.g., entrepreneur).  While period-

two decisions can depend on the information that becomes available about the states of nature, all period-

one decisions are made ex ante.  

At time t, the agent has a fixed amount of time T to allocate between leisure Let, labor input in the 

firm Lat, and wage activities Lwt spent working outside the firm and earning a wage rate pLt. At time t, the 

time constraint is  

T = Lat + Lwt + Let, (1) 

with Lat ≥ 0, Lwt ≥ 0, and Let ≥ 0, t = 1, 2.5 At time t, the agent also chooses a consumption good ct, t = 1, 

2. He/she faces price pct > 0 for consumption ct, a wage rate pLt for wage labor Lwt, and prices pxt ≡ (px1t, 

px2t, …) for netputs xt, where pxit > 0 is the market price of xit, t = 1, 2. Being the residual claimant, the 

owner receives the period-one firm profit (px1 ⋅ x1).6 In period one, the agent also chooses to invest an 

amount I into an asset yielding a unit return of [1 + ρ(s)] in period two. It follows that the period-one 

budget constraint is  

pc1 c1 ≤ w + pL1 Lw1 + px1 ⋅ x1 – I,  (2a) 

where w denotes initial wealth, (pL1 Lw1) is wage income, and (px1 ⋅ x1) is the firm profit at time t = 1.    

At time t = 2, the agent chooses netputs x2, consumption good c2, along with the time allocation 

Le2, La2 and Lw2. Under market conditions, he/she faces market price pc2(s) > 0 for c2, a wage rate pL2(s) 

for Lw2, and prices px2(s) for netputs x2. Being the residual claimant, he/she receives the period-two firm 
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profit (px2 ⋅ x2). Denote by c2(r, s), x2(r, s) and Lw2(r, s) the period-two decision for c2, x2 and Lw2, 

respectively, under state (r, s). It follows that the agent’s period-two budget constraint is 

pc2(s) c2(r, s) ≤  pL2(s) Lw2(r, s) + px2(s) ⋅ x2(r, s) + [1 + ρ(s)] I.   (2b) 

Substituting (2a) into (2b) gives the overall budget constraint 

pc2(s) c2(r, s) ≤ [1 + ρ(s)][w + pL1 Lw1 + px1 ⋅ x1 – pc1 c1]  

+ pL2(s) Lw2(r, s) + px2(s) ⋅ x2(r, s).   (3) 

The period-two decisions for consumption and leisure under state (r, s) are respectively c2(r, s) 

and Le2(r, s)). The associated decision rules under all possible states are 2c~  ≡ (c2(1,1), …, c2(R, S)) and 

 ≡ (Le2L~ e2(1,1), …, Le2(R, S)). Using a state-contingent approach, the agent’s preferences are represented 

by the ex ante utility function u(c1, Le1, 2c~ , ). Note that this includes as a special case the expected 

utility (EU) model. Indeed, under the EU model, u(c

e2L~

1, Le1, 2c~ , ) = e2L~ ∑ =

R

1r ∑ =

S

1s
 Pr(r, s) U(c1, Le1, 

c2(r, s), Le2(r, s)), where Pr(r, s) is the probability of facing the state (r, s) and U(c1, Le1, c2, Le2) is a von 

Neumann-Morgenstern utility function representing the agent’s risk preferences. However, the state-

contingent utility u(c1, Le1, 2c~ , ) applies under conditions much broader than the EU model (Debreu, 

1959; Chambers and Quiggin). For example, it includes as special cases weighted utility (Chew), rank-

dependent expected utility (Quiggin), and general smooth preferences (Machina). Unlike the EU model, 

this allows for preferences that are not linear in the probabilities. And more generally, the state-contingent 

approach does not even require that the agent formulates a probability assessment of the states (Debreu, 

1959). Throughout, we assume that u(c

e2L~

1, Le1, 2c~ , ) is strictly increasing in (ce2L~ 1, 2c~ ).  

As noted above, the decisions made at time t = 1 (i.e., x1, La1, Lw1, Le1, c1 and I) are chosen ex 

ante. This means that they do not depend on the states (r, s). However, the decisions made at time t = 2 

can depend on the states. This includes the period-two consumption and leisure decisions 2c~  ≡ (c2(1,1), 

…, c2(R, S)) and  ≡ (Le2L~ e2(1,1), …, Le2(R, S)). The nature of state-contingency reflects the amount of 
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the agent’s learning about his economic environment. Below, we assume that the period-two 

consumption/leisure decisions (c2, Le2) are made ex post. It means that c2(r, s) and Le2(r, s) can be different 

across each state (r, s). However, we want to capture the role of the learning process for other period-two 

decisions. This includes the netput decision 2
~x  ≡ (x2(1,1), …, x2(R, S)), and the labor decision  ≡ 

(L

a2L~

a2(1,1), …, La2(R, S)) and  ≡ (Lw2L~ w2(1,1), …, Lw2(R, S)). Let z2 ≡ (x2, La2, Lw2) = (z12, …, zm+2,2) ∈ 

ℜm+2, with 2
~z  ≡ (z2(1,1), …, z2(R, S)) ∈ ℜ(m+2)RS. We allow the decisions z2 to reflect different amounts 

of learning by considering different partitions of the state space P ≡ {1, …, R}×{1, …, S}. Let Pi be a 

partition of P, i.e. a collection of disjoint subsets of P whose union is P. Assume that zi2 (the i-th decision 

variable in z2 ≡ (x2, La2, Lw2)) is chosen based on the information partition Pi such that  

zi2(r, s) = zi2(r’, s’) if (r, s) and (r’, s’) are in the same element of Pi, (4) 

i = 1, …, m+2. Equation (4) means that, when choosing zi2, the agent cannot distinguish between states 

that are in the same elements of the partition Pi. This can represent different amount of information 

available. At one extreme, perfect information corresponds to Pi = P+ ≡ {(1, 1), …, (R, S)}, where P+ has 

RS elements with each element corresponding to a state (r, s). Then, Pi = P+ implies that the agent chooses 

zi2 ex post. At the other extreme, no information corresponds to Pi = P- ≡ {P}, where P- has only one 

element. Then, Pi = P- implies that the agent chooses zi2 ex ante. And partial learning corresponds to 

intermediate situations where the number of elements in Pi is greater than 1 but less than RS.  

Denote by P = (P1, …, Pm+2) the information structure supporting the second-period decisions z2 ≡ 

(x2, La2, Lw2) = (z12, …, zm+2,2). To investigate the role of the learning process, we allow P to be 

endogenous. That is, we consider situations of active learning, where the agent uses the resources he/she 

controls to obtain information about his/her economic environment.  

For a given information structure P, represent the firm technology by the feasible set F(P) ⊂ 

ℜn+2+(m+2)RS, where (x1, La1, Lw1, 2
~x , , ) ∈ F(P) means that netputs (xa2L~ w2L~ 1, La1, Lw1, 2

~x , , ) 

are feasible under the information structure P. Note the generality of this characterization. It guarantees 

a2L~ w2L~
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feasibility for (x1, La1, Lw1, 2
~x , , ) across all possible states. It allows for jointness between 

choosing (x

a2L~ w2L~

1, La1, Lw1, 2
~x , , ) and learning (the choice of P) about both technology (represented 

by the states r = 1, …, R) and market conditions (represented by the states s = 1, …, S). As such, it can 

represent situations of active learning (including learning-by-doing; see Arrow, 1962). Under active 

learning, we assume that F(P) ⊂  F(P’) for any information structure P’ that is at least as fine as P. Then, 

F(P’) - F(P) represents the set of resources required to learn so as to replace P by P’. And the benefits 

obtained from the new information are associated with equation (4) (which becomes less restrictive). The 

feasible set F(P) also allows for the possibility that labor activities outside the firm (L

a2L~ w2L~

w1, Lw2) can affect 

the productivity of labor within the firm (La1, La2). And it can reflect contractual and institutional 

restrictions imposed on labor choices both within and outside the agent’s firm. Finally, the 

characterization allows the amount of learning to be specific to each decision zi2. This can represent 

situations where information processing requires the use of resources but with a learning process that 

varies across zi2’s. 7  

Let Lt ≡ (Lat, Lwt), t = 1, 2. Under economic rationality, the agent’s decision is represented by the 

optimization problem:  

Max {u(c1, Le1, 2c~ , ): equations (1), (2a), (2b) and (4);  e2L~

(x1, La1, Lw1, 2
~x , , ) ∈ F(P)}.  (5)  a2L~ w2L~

The utility function u(c1, Le1, 2c~ , ) being strictly increasing in (ce2L~ 1, 2c~ ), the budget constraint 

(3) is always binding under each state (r, s). Below, we assume for simplicity that leisure is always 

positive, with Le1 > 0 and Le2(r, s) > 0. Then, after substituting (1) and (3) into the utility function, the 

optimization problem (5) can be alternatively written as 

Max  {u[cPLxLx ,~~,,, 0,0c 22111 ≥≥ 1, T – La1 – Lw1, …,  

[w + pL1 Lw1 + px1 ⋅ x1 – pc1 c1][1 + ρ(s)]/pc2(s)  

+ [pL2(s) Lw2(r, s) + px2(s) ⋅ x2(r, s)]/pc2(s), …, T – La2(r, s) – Lw2(r, s), …]:  
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(x1, La1, Lw1, 2
~x , , ) ∈ Z(P)},  (6)  a2L~ w2L~

where Z(P) ≡ {(x1, La1, Lw1, 2
~x , , ): equation (4) evaluated at P; (xa2L~ w2L~ 1, La1, Lw1, 2

~x , , ) ∈ 

F(P)} denotes the feasible set, and (

a2L~ w2L~

2
~x *, *

2
~L , x1

*, L1
*, c1

*, P*) are the optimal decisions in (6).  

 

3. Certainty Equivalent 

Under incomplete risk markets, the agent cannot transfer his/her risk exposure entirely to other 

agents. Thus, risk exposure and related information are expected to affect the welfare of the agent. If so, 

how do risk and information affect production decisions? This section first explores under what conditions 

period-one netputs would be chosen in a way consistent with standard profit maximization and then 

modifies the approach to a certainty equivalent so as to allow a way of dealing with the “curse of 

dimensionality.”    

First, we consider whether profit maximization applies to period-one netputs?  With the utility 

function u(c1, Le1, 2c~ , ) being strictly increasing in (ce2L~ 1, 2c~ ), note that the optimization with respect to 

x1 in (6) implies the profit maximization problem 

π(px1, La1, Lw1, 2
~x , , , P) = Max  {pa2L~ w2L~

1x x1 ⋅ x1:  

(x1, La1, Lw1, 2
~x , , ) ∈ Z(P)},  (7) a2L~ w2L~

where x1
π(px1, La1, Lw1, 2

~x , , , P) is the optimal solution for xa2L~ w2L~ 1, and π(px1, La1, Lw1, 2
~x , , 

, P)  is a restricted profit function. The profit function π(p

a2L~

w2L~ x1, La1, Lw1, 2
~x , , , P) is 

homogenous of degree one and convex in p

a2L~ w2L~

x1. Equation (7) is thus a standard profit maximization 

problem conditional on period-two state-contingent decisions ( 2
~x , , ) and on the information 

structure P. However, the conditionality on (

a2L~ w2L~

2
~x , , ) has important implications. The state-

contingent choices (

a2L~ w2L~

2
~x , , ) control for the distribution of risk across all possible states. This a2L~ w2L~
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control for risk exposure is the key reason why risk preferences do not play any role in (7) and 

conceptually can be seen as a significant advantage of (7): it applies irrespective of risk preferences. 

However, making equation (7) empirically tractable can be quite challenging, because it requires 

identifying the decisions (xa, La2, Lw2) under all possible states. When the number of states is large, 

identifying these decisions becomes very demanding or perhaps infeasible. This “curse of dimensionality” 

is the main reason why the state-contingent approach has not been used much in the analysis of 

production decisions under risk, and we are left with three important implications. First, equation (7) 

shows that the maximization of profit remains a valid motivation for a firm under very broad conditions. 

Second, the problem with profit maximization under risk is not in its conceptual validity but rather in its 

empirical tractability. Third, an alternative approach is needed to move forward, and one way is to 

introduce a “certainty equivalent” formulation with an explicit treatment of risk preferences in the agent’s 

initial decision choice.8

We start the certainty equivalent approach by introducing q2(s) as  the discounted prices for x2 

under state s, and writing it as: q2(s) = px2(s)/[1 + ρ(s)], s = 1, …, S, with 2
~q = (q2(1), …, q2(S)). Let   

v(…, w + px1 ⋅ x1 + q2(s) ⋅ x2(r, s), …, ⋅)  

≡ u[c1, T – La1 – Lw1, …, [w + pL1 Lw1 + px1 ⋅ x1 – pc1 c1][1 + ρ(s)]/pc2(s)  

+ [pL2(s) Lw2(r, s) + qx2 [1 + ρ(s)] ⋅ x2(r, s)]/pc2(s), …, T – La2(r, s) – Lw2(r, s), …],  (8)  

where “⋅” denotes other arguments that are suppressed to simplify the notation. Using equation (8), define 

the certainty equivalent as the sure monetary value CE which satisfies  

v(…, w + px1 ⋅ x1 + q2(s) ⋅ x2(r, s), …, ⋅) = v(…, w + CE, …, ⋅),  (9) 

where the other arguments “⋅” are being held constant (including c1, La1, Lw1,  and ). Denote by 

CE(w + p

a2L~ w2L~

x1 ⋅ x1, 2
~q , 2

~x , ⋅) the solution of (9) for CE. It is conditional on the period-one netput x1 and on 

the state-contingent period-two netputs 2
~x . Starting from a situation with zero profit, the certainty 

equivalent CE measures the agent’s ex ante willingness to pay for the state-contingent discounted profit 
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(px1 ⋅ x1 + q2(s) ⋅ x2(r, s)) across all states.  With the utility function u(c1, Le1, 2c~ , ) being strictly 

increasing in (c

e2L~

1, 2c~ ), it follows that v(⋅) in (9) is strictly increasing in w. Comparing equations (6) and 

(9) generates the following result.  

Proposition 1: The production/investment decisions (x1, 2
~x ) in (7) satisfy 

CE*(w, px1, 2
~q , P, ⋅) = Max  {CE(w + p

21,xx ~ x1 ⋅ x1, 2
~q , 2

~x , ⋅):  

(x1, La1, Lw1, 2
~x , , ) ∈ Z(P)},  (10) a2L~ w2L~

Equation (10) shows that the certainty equivalent CE(w + px1 ⋅ x1, 2
~q , 2

~x , ⋅) along with the 

feasible set Z(P) provide all the information necessary for the production/investment decisions (x1, 2
~x ). 

Note this representation is very general. It applies under any specification of risk preferences and learning 

process. It applies even if the agent decides to work only in the firm, i.e. if he/she chooses Lwt = 0, t = 1, 

2. And it also applies irrespective of the feasible set for Lt = (Lat, Lwt), t = 1, 2. This allows for situations 

where labor contracts are not flexible and impose restrictions on the choice of (Lat, Lwt).9 As such, the 

certainty equivalent given in (9) provides a broad characterization of the factors affecting period-one 

netput decisions x1.  

Proposition 1 implies the following result that will prove useful in our analysis, as it makes 

explicit the role of information P.   

Corollary 1:  

CE*(w, px1, 2
~q , P, ⋅) = Max  {CE(w + p

1x x1 ⋅ x1, 2
~q , 2

~x c(w + p  ⋅ x , x , x1 1 1 2
~q , P, ⋅), ⋅)},  (11) 

where 2
~x c(w + p  ⋅ x , x , x1 1 1 2

~q , P, ⋅) ∈ argmax  {v(…, w + p  ⋅ x  + q (s) ⋅ x (r, s), …, ⋅): (x , 

L , L , 

2x~ x1 1 2 2 1

a1 w1 2
~x , , ) ∈ Z(P)} ≡ argmax {CE(w + p  ⋅ x , a2L~ ~

w2L
2x~ x1 1 2

~q , 2
~x , ⋅): (x , L , L , 1 a1 w1 2

~x , 

, ) ∈ Z(P)}.   a2L~ ~
w2L
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4. Economic Efficiency under Bounded rationality 

How much learning typically takes place? When the economic environment of the firm is simple, 

assessing the uncertainty facing the agent may be reasonably easy. Under such circumstances, obtaining 

perfect information may be attainable (provided that the decisions maker is willing to spend resources in 

the learning process). However, the economic environment of firms can be complex especially early in 

the development of a given sector or during periods of significant technological, market, or institutional 

change. This complexity provides many opportunities for learning, and could arise naturally in situations 

where the number of states R and S is large. In this context, information acquisition and processing may 

prove difficult. When R and S are large, we define bounded rationality as any situation where F(P+) = ∅ 

where P+ represents perfect information. This means that making all period-two decisions ex post is not 

feasible. Under such circumstances, while extensive learning remains feasible, perfect learning becomes 

impossible (Simon). In that context, our analysis provides a basis to investigate the economics of bounded 

rationality.  

Proposition 1 provides a basis for conducting efficiency analysis for the firm under bounded 

rationality. It indicates that the certainty equivalent can be used as a measure of welfare for the agent and 

in the evaluation of the efficiency of production/investment decisions. For any (x1, La1, Lw1, 2
~x , , 

) ∈ Z(P), equation (10) suggests the following measure of firm economic efficiency  

a2L~

w2L~

EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) = CE*(w, px1, 2
~q , P, ⋅) – CE(w + px1 ⋅ x1, 2

~q , 2
~x , ⋅) ≥ 0.  (12) 

EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) in (12) is the welfare loss facing the firm when the choice of (x1, 2
~x ) 

is not efficient under information P. It states that economic efficiency for the firm is satisfied at (x1, 2
~x , 

P) if and only if EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) = 0. Alternatively, finding EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) > 0 

means that (x1, 2
~x ) is not efficient under information P.   

Note that EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) in (12) provides an overall measure of firm efficiency. In 

general, it will be of interest to obtain additional insights into the source of possible inefficiency. In this 
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context, let g ∈ ℜ  – {0} be some reference bundle of period-one netputs. For (xn
+ 1, La1, Lw1, 2

~x , , 

) ∈ Z(P), define  

a2L~

w2L~

D(x1, 2
~x , P, ⋅) ∈ argmaxβ {CE(w + px1 ⋅ [x1 + β g], 2

~q , 2
~x , ⋅):  

(x1 + β g, La1, Lw1, 2
~x , , ) ∈ Z(P)},  (13) a2L~ w2L~

D(x1, 2
~x , P, ⋅) in (13) measures the number of units of the reference bundle g that moves point x1 

to the upper bound of the feasible set under information P. Both (x1, 2
~x ) and (x1 + D(x1, 2

~x , P, ⋅) g, 2
~x ) 

being feasible under information P, equation (13) implies that D(x1, 2
~x , P, ⋅) ≥ 0. Note from (9) that 

CE(w + px1 ⋅ [x1 + D(x1, 2
~x , P, ⋅) g], 2

~q , 2
~x , ⋅) = D(x1, 2

~x , P, ⋅) px1 ⋅ g + CE(w + px1 ⋅ x1, 2
~q , 2

~x , ⋅). 

For any (x1, La1, Lw1, 2
~x , , ) ∈ Z(P), it follows from (10) and (13) that  a2L~ w2L~

CE*(w, px1, 2
~q , P, ⋅) ≥ CE(w + px1 ⋅ [x1 + D(x1, 2

~x , P, ⋅) g], 2
~q , 2

~x , ⋅)  

≥ CE(w + px1 ⋅ x1, 2
~q , 2

~x , ⋅).  (14) 

This suggests the following decomposition of economic efficiency. 

Proposition 2: For (x1, La1, Lw1, 2
~x , , ) ∈ Z(P), the economic efficiency measure EE(w, pa2L~ w2L~ x1, x1, 

2
~q , 2

~x , P, ⋅) in (12) can be written as :  

EE(w, px1, x1, 2
~q , 2

~x , P, ⋅) = TE(px1, x1, 2
~x , P, ⋅) + AE(w, px1, x1, 2

~q , 2
~x , P, ⋅),  (15) 

where  

TE(px1, x1, 2
~x , P, ⋅) ≡ CE(w + px1 ⋅ [x1 + D(x1, 2

~x , P, ⋅) g], 2
~q , 2

~x , ⋅)  

- CE(w + px1 ⋅ x1, 2
~q , 2

~x , ⋅),  

= D(x1, 2
~x , P, ⋅) px1 ⋅ g ≥ 0, (16a) 

and  

AE(w, px1, x1, 2
~q , 2

~x , P, ⋅) ≡ CE*(w, px1, 2
~q , P, ⋅)  
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- CE(w + px1 ⋅ [x1 + D(x1, 2
~x , P, ⋅) g], 2

~q , 2
~x , ⋅) ≥ 0. (16b) 

 

Equation (15) decomposes the economic efficiency measure EE(⋅) into two additive parts: TE(⋅) 

in (16a) reflecting technical efficiency; and AE(⋅) in (16b) reflecting allocative efficiency. Equation (16a) 

states that the technical efficiency measure TE(px1, x1, 2
~x , P, ⋅) is proportional to D(x1, 2

~x , P, ⋅) given in 

(13). Given (x1, La1, Lw1, 2
~x , , ) ∈ Z(P), note that D(xa2L~ w2L~ 1, 2

~x , P, ⋅) in (13) can be alternatively 

written as 

D(x1, 2
~x , P, ⋅) = Maxβ {β: (x1 + β g, La1, Lw1, 2

~x , , ) ∈ Z(P)}.  (13’) a2L~ w2L~

The function D(x1, 2
~x , P, ⋅) in (13’) is the directional distance function proposed by Chambers et 

al. It is also the negative of the shortage function proposed by Luenberger. Luenberger (p. 20-22) and 

Chambers et al. have provided a detailed analysis of the properties of D(x1, 2
~x , P, ⋅). In particular, D(x1, 

2
~x , P, ⋅) can be used to assess technical efficiency.10 Some key properties of the distance function D(x1, 

2
~x , P, ⋅) are:  

o (x1, La1, Lw1, 2
~x , , ) ∈ Z(P) implies that D(xa2L~ w2L~ 1, 2

~x , P, ⋅) ≥ 0.  

o Under free disposal in x1,11 Z(P) = {z: D(x1, 2
~x , P, ⋅) ≥ 0}.  

o Finding D(x1, 2
~x , P, ⋅) > 0 implies that (x1, 2

~x ) is not technically efficient.  

o When D(x1, 2
~x , P, ⋅) is strongly decreasing in (x1, 2

~x ),12 then (x1, 2
~x ) is technically 

efficient if and only if D(x1, 2
~x , P, ⋅) = 0.  

This indicates that D(x1, 2
~x , P, ⋅) provides a convenient measure of technical efficiency. In 

addition, D(x1, 2
~x , P, ⋅) is closely related to other measures of technical performance (e.g., Farrell; 

Shephard; Grosskopf) that have appeared in the literature (see Chambers et al.; Färe and Grosskopf), and 

have been used in empirical analyses of production efficiency (Coelli et al. review this literature). The 
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formulation of D(x1, 2
~x , P, ⋅) in (13’) includes as special cases most measures of technical efficiency that 

have been proposed in the literature.13 Combining these results with (16a), we obtain:  

Proposition 3:  

o In general, TE(px1, x1, 2
~x , P, ⋅) ≥ 0 if the point (x1, 2

~x ) is feasible,   

o TE(px1, x1, 2
~x , P, ⋅) > 0 implies technical inefficiency, 

o When D(x1, 2
~x , P, ⋅) is strongly decreasing in (x1, 2

~x ), technical efficiency holds if and only 

if TE(px1, x1, 2
~x , P, ⋅) = 0,  

 

Proposition 3 shows that finding TE(px1, x1, 2
~x , P, ⋅) > 0 implies that the firm is technically 

inefficient. In this case, TE(px1, x1, 2
~x , P, ⋅) measures the increase in the certainty equivalent that can be 

obtained by moving from point (x1, 2
~x ) to the production frontier under information P.   

Next, AE(w, px1, x1, 2
~q , 2

~x , P, ⋅) ≥ 0 in (16b) provides a measure of allocative efficiency. It 

measures the improvement in the certainty equivalent that can be obtained starting from point (x1 + D(x1, 

2
~x , P, ⋅) g, 2

~x ) under information P. Since this point is always on the frontier of the feasible set, it 

follows that AE(⋅) measures the improvement in the certainty equivalent moving along the upper bound of 

the feasible set.  

 

5. Implications for productivity assessment 

The measurement of technical efficiency under bounded rationality can be challenging, because it 

requires a clear understanding of the information set available to economic agents and such information 

may vary across individuals due to heterogeneity in their learning capacity. In this section, we use two 

conjectures to guide our exploration of the implications of bounded rationality for productivity 

assessment beginning with a more careful look at technical efficiency.  Along the way, we suggest that 

the learning process that emerges under bounded rationality provides useful insights on productivity 
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assessments and technological progress. Since a large part of economic growth comes from technological 

progress (as identified by Solow), economists continue to seek to understand the origins of productivity 

improvements (e.g., Romer).  

There is considerable evidence that productivity can vary a lot both over time and across firms. In 

this context, Leibenstein has presented two arguments: 1/ Technical efficiency can vary a lot across firms; 

and 2/ Improving technical efficiency is a major way of improving economic efficiency. The empirical 

evidence generally supports these arguments (e.g., Frantz; Coelli et al.). But why would any firm choose 

to exhibit technical inefficiency? As argued by Stigler and Schultz (1975, 1981), economic rationality 

suggests that producers typically make efficient choices given the information available to them. The 

missing link explored below is that, under bounded rationality, heterogeneous agents with disparate 

learning capacities might have different information available to them about efficient netput 

combinations, both in a static and dynamic sense. This disparity means that producers might be 

technically efficient given their human capital but not as productive as others with higher learning 

capacity. Such arguments also appear relevant in studying entrepreneurship. Indeed, successful 

entrepreneurs may be agents with high learning capacities about changing technologies and markets 

(Kirzner; Minniti and Bygrave, 1999, 2001) which allow them to play a leading role in productivity 

improvement.  

In the evaluation of firm productivity, we start with the following conjecture:  

Conjecture C1: Under bounded rationality, TE(px1, x1, 2
~x , PP

*, ⋅) = 0, where (x , 1 2
~x ) are observed 

production/investment decisions made by the agent. 

Conjecture C1 states that, under bounded rationality, the agent chooses production/investment 

decisions that are on the upper bound of his/her feasible set. From Proposition 3, choosing otherwise 

would imply technical inefficiency, i.e. a decline in the firm certainty equivalent. Conjecture C1 simply 

states that the agent would have no reason to choose (x1, 2
~x ) in a way that would violate TE(px1, x1, 2

~x , 
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P*, ⋅) = 0. This is consistent with Stigler’s critique of Leibenstein’s arguments. And it is consistent with 

Schultz’s view on  the role of human capital.  

Under C1, bounded rationality implies restrictions on production/investment behavior. The key is 

that TE(px1, x1, 2
~x , P*, ⋅) = 0 in C1 applies only at PP

*, i.e. at the optimal information structure defined in 

(6).  But, then what happens to TE(p , x , x1 1 2
~x , P, ⋅) when P ≠ P*? To explore this issue, we analyze what 

happens in the model when we neglect bounded rationality.   

Our measurement of technical efficiency TE(px1, x1, 2
~x , P, ⋅) in (15) relied on the distance 

function D(x1, 2
~x , P, ⋅) in (13) or (13’) and is conditional on the amount of information P available for 

the period-two decisions. We have argued that, in complex situations, perfect information P+ is not 

feasible under bounded rationality. In this context, the information structure P must be coarser than P+.  

Consider the case where bounded rationality is ignored and F(P) = F(P+) for all P. This amounts to 

assuming costless learning. Noting that F(P+) = Z(P+), it follows that F(P) = F(P+) = Z(P+). With Z(P) ⊂ 

F(P) for all P, this gives  

Z(P) ⊂ Z(P+). 

Using (13) and (16a), this generates the following result.  

Proposition 4: Neglecting bounded rationality implies that, for all P, 

TE(px1, x1, 2
~x , P, ⋅) ≤ TE(px1, x1, 2

~x , P+, ⋅).  (17) 

Note that, in the absence of learning cost, the optimal information structure in (6) would be given 

by PP

* = P+. It follows from (17) that TE(p , x , x1 1 2
~x , P, ⋅) ≤ TE(p , x , x1 1 2

~x , P*, ⋅) for all P. Thus, 

Proposition 4 states that neglecting learning costs (where P* ≠  P+) implies that technical inefficiency 

TE(⋅) tends to be overestimated. In other words, neglecting bounded rationality tends to generate upward 

biased estimates of technical inefficiency.14 Proposition 4 seems important to the extent that bounded 

rationality issues have typically been neglected in previous analyses of firm efficiency (as further 

discussed below).  
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Consider next the following conjecture: 

Conjecture C2: The capacity of economic agents to manage information varies across individuals.   

Conjecture C2 is motivated by the complexity and limitations of cognitive processes associated 

with human learning, as documented in psychology and neuroeconomics (e.g., Camerer et al.). Combined 

with Conjecture C1, C2 implies that technical efficiency in a given sector is expected to vary according to 

the range of managerial capacity to gather and process information. Thus, from C1, two producers could 

be technically efficient (each with their own optimal P *) using the same resources. Yet, under bounded 

rationality, one may produce more output(s) than the other due to a differential ability to learn about 

technology and/or market conditions under C2. During stable times or in a mature economic sector, 

similar P *’s might be attainable by most agents. However, during periods of technological or structural 

changes, from C2, the optimal P*s could vary significantly across agents. Then, as argued in Schultz 

(1975), agents with higher learning capacities would be the ones more successful at identifying what will 

prove to be better combinations of inputs to produce given outputs (or higher outputs for given inputs). 

This has two important implications. First, if bounded rationality were ignored, agents with poor learning 

ability would appear to technically inefficient (from Proposition 4). However, under C1, this appearance 

of technical inefficiency is false. To the extent that learning abilities are not easily transferable across 

agents, the apparent technical inefficiency is due to differing learning abilities. In this context, estimating 

high levels of technical inefficiency simply reflects that the ability to process information varies across 

individuals. In other words, the prevalence of technical inefficiency reported by Leibenstein, Frantz and 

others can be interpreted as evidence supporting conjecture C2. Second, under C1 and C2, improvements 

in learning abilities can contribute to improving productivity. Such improvements can come from various 

sources: improved learning-by-doing, information diffusion across agents, and/or entrepreneurial 

activities.  

These arguments provide a micro-theoretic basis for demonstrating how information processing 

and learning are likely to be an integral part of productivity improvements. They are novel, because 

previous theoretical and empirical studies of firm efficiency either have assumed full information and no 
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learning (e.g., Farrell) or lacked explicit attention to the role of bounded rationality (Leibenstein, Schultz, 

1975). Attempts have been made to relax the assumption that the production frontier is readily attainable 

(Coelli et al.). Among these attempts, most popular is the “stochastic frontier analysis” proposed by 

Aigner et al. and reviewed by Kumbhakar and Lovell. In the econometric estimation of the production 

technology, the method decomposes the error term into two statistically independent components, a 

measure of technical efficiency and a “measurement error.”. This decomposition provides a statistical 

method for identifying “unobserved” heterogeneity in production possibilities. As shown by Jondrow et 

al., it also provides an empirical framework to measure technical efficiency. However, this approach 

raises some important questions. One issue is the ability to identify technical inefficiency from 

measurement errors. Doing so requires imposing a priori restrictions on the distributions of these two 

terms. Typically, econometric identification is achieved by assuming a symmetric distribution for 

measurement errors but a skewed distribution for technical inefficiency (see Aigner et al.; Kumbhakar 

and Lovell). Unfortunately, there does not seem to be strong theoretical justification for such 

assumptions.15 Yet such assumptions are crucial to achieve identification of the technical inefficiency 

term.16 In addition, under conjecture C1 (and as argued by Stigler and Schultz), the error term reduces to 

measurement error (e.g., reflecting unobserved heterogeneity in learning abilities). In this case, the error 

term decomposition used in the stochastic frontier approach appears inappropriate. In the absence of good 

a priori motivations for this decomposition, the stochastic frontier model would likely be misspecified, 

thus raising questions about the validity of the resulting inefficiency estimates. Finally, stochastic 

frontiers have not explicitly incorporated risk17 or learning dynamics. As such, they fail to reflect the role 

of bounded rationality and learning in innovations and productivity improvements.  

 

6. A decomposition of efficiency  

Our proposed measures of firm efficiency given in (15)-(16) rely on the certainty equivalent 

CE(w + px1 ⋅ x1, 2
~q , 2

~x , ⋅) defined in (9). In this section, we examine a decomposition of CE and the 
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implications for efficiency. We focus our analysis on the case where the 2
~x  decisions are made 

optimally, with 2
~x c(w + px1 ⋅ x1, x1, 2

~q , P, ⋅) ∈ argmax  {v(…, w + p
2x~ x1 ⋅ x1 + q2(s) ⋅ x2(r, s), …, ⋅): (x1, 

La1, Lw1, 2
~x , , ) ∈ Z(P)} ≡ argmax {CE(w + pa2L~ w2L~

2x~ x1 ⋅ x1, 2
~q , 2

~x , ⋅): (x1, La1, Lw1, 2
~x , , ) 

∈ Z(P)},  as stated in Corollary 1. Define  

a2L~ w2L~

vc(w + px1 ⋅ x1, x1, 2
~q , P, ⋅) ≡ max  {v(…, w + p

2x~ x1 ⋅ x1 + q2(s) ⋅ x2(r, s), …, ⋅): (x1, La1, Lw1, 2
~x , 

, ) ∈ Z(P)}.  (18) a2L~ w2L~

Note that, with 2
~q > 0, the solution 2

~x c(w + px1 ⋅ x1, x1, 2
~q , P, ⋅) of (18) is necessarily on the 

upper bound of the feasible set { 2
~x : (x1, La1, Lw1, 2

~x , , ) ∈ Z(P)}. And when D(xa2L~ w2L~ 1, 2
~x , P, ⋅) is 

strongly decreasing in (x1, 2
~x ), the point (x1, 2

~x c) necessarily exhibits technical efficiency (as discussed 

above), with TE(p , x , x1 1 2
~x c, P, ⋅) = 0. This is consistent with conjecture C1. In addition, using (15) 

implies that EE(w, p , x , x1 1 2
~q , 2

~x c, P, ⋅) = AE(w, p , x , x1 1 2
~q , 2

~x c, P, ⋅). This means that the firm 

economic efficiency measure EE(⋅) reduces to the allocative efficiency measure AE(⋅). This section 

investigates the determinants of EE(⋅) by proposing a decomposition of EE(⋅) (or equivalently a 

decomposition of AE(⋅) under C1, when TE(⋅) = 0). Under bounded rationality and learning, this will 

provide new insights on the factors and economic rationale affecting the choice of a particular point on 

the frontier technology.    

 

6.1. The value of information  

Consider the case where the 2
~x  decisions are made without learning. Let the corresponding 

information structure be P0 = (P-, …, P-, Pm+1, Pm+2). With P- having only one element, this means that the 

period-two production/investment decisions x2 are made ex ante, while the period-two labor decisions La2 

and Pw2 are based on the information partitions Pm+1 and Pm+2, respectively. With P = (P1, …, Pm, Pm+1, 

Pm+2), it follows that P is at least as fine as P0, with F(P) ⊂ F(P0) and Z(P) ⊂ Z(P0).  
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Using (18), a monetary evaluation of the change from P to P0 is given by the conditional selling 

price of information V that satisfies18  

vc(w + px1 ⋅ x1, x1, , P, ⋅) = v2q~ c(w + V + px1 ⋅ x1 , , x1, , P2q~ P

0, ⋅). (19) 

Since v(⋅)is strictly increasing in w, it follows that vc(⋅) in (19) is also strictly increasing in w. Denote by 

V(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅) the solution of (19) for V. It is the smallest amount of money the agent is 

willing to receive ex ante to give up the information structure P and replace it by P0. From (11b), V(⋅) is 

the sure amount of money paid to the agent to induce her to make the  production/investment decisions 

ex ante. It is a 

2x~

conditional value of information since it depends on the decision x  and on information 

structures P and P0

1

P . Note that, in general, V(w + px1 ⋅ x1, x1, , P, P2q~ 0 , ⋅) can be either positive or 

negative. In the case where learning is costless, then F(P) = F(P0) and V(w + px1 ⋅ x1, x1, , P, P2q~ 0 , ⋅) ≥ 0, 

implying that the conditional value of information is non-negative. However, under active learning where 

information is costly, then F(P) ⊂ F(P0), and V(w + px1 ⋅ x1, x1, , P, P2q~ 0 , ⋅) can become negative when 

the resources used in learning [F(P0) - F(P)] are significant.  

Note that equation (19) applies for any risk preferences and any feasible information P. The 

properties of the conditional value of information V(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅) provide useful insights 

on the role of the period-one production/investment decisions x . Of special interest are the effects x  (the 

i-th element of x ) on V(w + p  ⋅ x , x , , P, P0

1 i1

1 x1 1 1 2q~ P  , ⋅). If xi1 has a positive effect on V(w + px1 ⋅ x1, x1, , 

P, P

2q~

0 , ⋅), then the i-th netput would increase the value of information. This can happen under two 

scenarios: 1/ under active learning, xi1 is part of the firm’s information gathering activities; or 2/ the use 

of xi1 increases the options for the firm in adjusting its period-two decisions in response to new 

information. Note that this latter effect can be present with or without active learning. Alternatively, if xi1 

has a negative effect on V(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅), then the i-th netput would decrease the value of 

information. This can happen under two scenarios: 1/ using x  has adverse effects on the learning 

process; or 2/ the use of x  decreases the options for the firm in adjusting its period-two decisions in 

i1

i1
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response to new information. This latter effect would arise when x  is an irreversible decision that cannot 

be easily undone either because reversing the decision is not feasible (see Henry, and Arrow and Fisher) 

or because it is costly (e.g., due to sunk costs; see Pindyck and Dixit). For example, when x  involves 

choosing between a reversible and an irreversible decision, the associated change in the value of 

information V(w + p  ⋅ x , x , , P, P0

i1

1

x1 1 1 2q~ P  , ⋅) reduces to Arrow and Fisher’s “quasi-option value” under the 

reversible scenario.  

 

6.2. Risk premium  

In the right-hand side of equation (19), the agent makes the decisions x2 under limited 

information (as given by PP

0) while being compensated for it (through V(⋅)). However, the agent still faces 

price uncertainty. Assume that the agent has a subjective probability assessment of the uncertainty, with 

Pr(r, s) denoting the probability of facing state (r, s). Let⎯q  = 2 ∑ =

S

1s ∑ =

R

1r
 Pr(r, s) q (s) be the expected 

discounted price of x (s).

2

2
19 Consider the case of profit insurance, which would replace the period-two 

discounted prices q (s) by their expected value⎯q . Using (11) and (19), the 2 2 risk premium for profit 

insurance is defined as the sure amount of money Q which satisfies20  

vc(w + V(⋅) + px1 ⋅ x1 , , x1, , P2q~ 0, ⋅) = vc(w + V(⋅) – Q + px1 ⋅ x1 , , x1,⎯q2 , …,⎯q2, P0, ⋅). (20) 

Let Q(w + px1 ⋅ x1, x1, , P, P2q~ 0 , ⋅) be the solution of (20) for Q. Equation (20) defines the risk 

premium Q(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅) as the smallest amount of money the agent is willing to pay ex 

ante to replace period-two discounted prices  by their expected value⎯q . Note that the  decisions 

are made ex ante (i.e. based on P0

2q~ 2 2x~

P ) in the right-hand side of (19). It follows that Q(w + px1 ⋅ x1, x1, , P, 

P

2q~

0 , ⋅) measures the willingness to pay to eliminate profit risk. In general, the risk premium Q(w + px1 ⋅ x1, 

x1, , P, P2q~ P

0 , ⋅) is conditional on the period-one decisions x . And its sign can be used to characterize the 

nature of the agent’s risk preferences: the agent is said to be risk averse, risk neutral, or risk lover with 

1
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respect to profit risk when Q(⋅) > 0, = 0, or < 0, respectively. Under risk aversion, the risk premium Q(⋅) 

measures the implicit cost of risk bearing for profit risk.21  

The properties of the risk premium Q(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅) provide useful insights on the 

role of the period-one netputs x  in risk management. Of special interest are the effects x  (the i-th netput 

in x ) on Q(w + p  ⋅ x , x , , P, P0

1 i1

1 x1 1 1 2q~ P  , ⋅). If xi1 has a positive effect on Q(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅), 

then the i-th netput would increase the implicit cost of risk bearing. For a risk averse decision maker (with 

Q(⋅) > 0), this means that the i-th netput is risk increasing. In this case, the agent has an incentive to 

reduce the use of z  so as to reduce its risk exposure and lower the risk premium. Alternatively, if x  has 

a negative effect on Q(w + p  ⋅ x , x , , P, P

i1 i1

x1 1 1 2q~ 0 , ⋅), then the i-th netput would decrease the cost of 

private risk bearing. For a risk averse decision maker (with Q(⋅) > 0), this means that the i-th netput is risk 

decreasing. In this case, the agent has an incentive to increase the use of z  so as to reduce its risk 

exposure and lower the risk premium.   

i1

 

6.3. Decomposition  

Proposition 1 shows that the choice of 2
~x  is consistent with the maximization of CE(w + px1 ⋅ x1, 

2
~q , 2

~x , ⋅). Using Corollary 1, let  

CEc(w + px1 ⋅ x1, x1, 2
~q , P, ⋅) ≡ Max  {CE(w + p

2x~ x1 ⋅ x1, 2
~q , 2

~x , P, ⋅):  

(x1, La1, Lw1, 2
~x , , ) ∈ Z(P)},  (21) a2L~ w2L~

which has for solution 2
~x c(w + px1 ⋅ x1, x1, 2

~q , P, ⋅) as stated in equation (11). Combining equations (6), 

(9), (11), (19), (20) and (21), we obtain the following result.  

Proposition 5: The certainty equivalent CEc(⋅) in (21) can be written as 

CEc(w + px1 ⋅ x1, x1, 2
~q , P, ⋅) = M(w + px1 ⋅ x1, x1,⎯q2 , …,⎯q2, P, PP

0 , ⋅)  

+ V(w + px1 ⋅ x1, x1, , P, P2q~ P

0 , ⋅) - Q(w + p  ⋅ x , x , , P, Px1 1 1 2q~ 0 , ⋅),  (22) 
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where M(w, px1, x1,⎯q2 , …,⎯q2, P, PP

0, ⋅) ≡ p  ⋅ x  +⎯q  ⋅ x1 1 2 2
~x c[w + V(⋅) - Q(⋅) + px1 ⋅ x1, x1,⎯q2 , 

…,⎯q2,  P0, ⋅] is expected discounted profit.  

Proposition 5 decomposes the certainty equivalent into three additive terms. Equation (22) shows 

that CEc(⋅) equals the expected discounted profit M(⋅), plus the conditional value of information V(⋅), 

minus the risk premium Q(⋅). In addition to expected profit, M(⋅), this shows that both the value of 

information V(⋅) and the cost of private risk bearing Q(⋅) affect the welfare of the firm and its owner-

manager. The former has a positive effect, stressing the importance of information processing in 

managerial decisions. And under risk aversion, the latter has a negative effect: it provides risk-averse 

agents an incentive to reduce their risk exposure.  

Combining equations (12), (21) and (22), we can decompose economic efficiency as follows:.  

Proposition 6:  

EEc(w, px1, x1, 2
~q , 2

~x , P, ⋅)  

≡ EE(w, px1, x1, 2
~q , 2

~x c[w + V(⋅) - Q(⋅) + px1 ⋅ x1, x1,⎯q2 , …,⎯q2,  P0, ⋅], P, ⋅) 

= EEM(⋅) + EEV(⋅) + EEQ(⋅) ≥ 0,  (23) 

where 

EEM(⋅) ≡ M(w, px1, x1
c,⎯q2 , …,⎯q2, P, P0, ⋅) - M(w, px1, x1,⎯q2 , …,⎯q2, P, PP

0, ⋅),  (24a) 

EEV(⋅) ≡ V(w + px1 ⋅ x1
c, x1

c, , P, P2q~ 0 , ⋅) - V(w + px1 ⋅ x1
c, x1

c, , P, P2q~ 0 , ⋅),  (24b) 

EEQ(⋅) ≡ -Q(w + px1 ⋅ x1
c, x1

c, , P, P2q~ 0 , ⋅) + Q(w + px1 ⋅ x1
c, x1

c, , P, P2q~ 0 , ⋅),  (24c) 

with x1
c ∈ argmax  {Max  {CE(w + p

1x 2x~ x1 ⋅ x1, 2
~q , 2

~x , P, ⋅): (x1, La1, Lw1, 2
~x , , ) ∈ 

Z(P)}}.  

a2L~ w2L~

Equation (23) decomposes firm economic efficiency EEc into three additive parts: a part related to 

expected profit, EEM; a part related to the value of information, EEV; and a part related to the risk 

premium, EEQ. The first term (expected profit) is a standard part of efficiency analysis for a neoclassical 

firm. However, the second and third terms are perhaps less common. Our analysis shows that they are 
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integral parts of the welfare assessment of the firm in any setting where information is not perfectly 

known across all states of nature and time. In particular, the information term EEV reflects the importance 

of information and learning in efficiency analysis. And the third term EEQ reflects the role of risk 

exposure.  

Proposition 6 identifies three sources of possible inefficiency: low expected profit, low value of 

information V, or high risk premium Q. Each measure depends on the first-period production/investment 

decisions x1. In other words,, the choice of x1 is inefficient when x1 ≠ x1
c. Then, equations (23)-(24) show 

the choice of x1 can be inefficient in three possible ways: through a sub-optimal expected profit, through a 

sub-optimal value of information, or through a sub-optimal risk premium. Alternatively, the 

decomposition shown in Proposition 6 offers three possible paths to improve firm efficiency.  

Proposition 6 shows that risk and risk preferences play a role in the evaluation of firm allocative 

efficiency. This suggests a need to incorporate such factors in the empirical analysis of firm efficiency. 

Kumbhakar has proposed an econometric methodology for doing so. Under the expected utility model, he 

incorporates the role of risk and risk aversion into a stochastic production function approach. As noted 

above, the error term decomposition used in the stochastic frontier approach appears problematic. In 

particular, under conjecture C1, the error term would be due entirely to measurement errors, raising 

questions about the validity of the resulting econometric estimates.22  

The decomposition of efficiency outcomes developed in Proposition 6 provides a useful contrast 

with Kumbhakar. First, unlike Kumbhakar’s approach, our model is presented in a dynamic rather than a 

static context. Including dynamics highlights the role of learning, including the prospect of learning about 

risk exposure or state contingent production possibilities in efficiency analysis. Second, the model also 

reveals the fundamental role that learning and risk play for agents in their pursuit of both technical and 

allocative efficiency. And, it does so without imposing arbitrary assumptions on the structure of risk, risk 

preferences, production technology, or market conditions, let alone the agent’s knowledge about his or 

her human capital capacities.  
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Finally, the decomposition of allocative efficiency presented in Proposition 6 suggests how issues 

such as organizational skills, marketing expertise, and product-service differentiation might be more 

explicitly captured in an economic model of an agent or a firm’s behavior. The three components of firm 

allocative efficiency (learning, risk, and profit) provide a basis for investigating behavioral heterogeneity 

that may arise along the frontier technology because of differences in human capital, risk preferences, 

and/or state contingent possibilities.  

 

7. Implications for the economic analysis of entrepreneurship 

Our explicit treatment of bounded rationality in a single-agent dynamic decision-making model 

provides three types of advances in economic analysis. The first is to expand the concept of efficiency 

beyond the standard terrain of expected profit and risk management to include the role of information and 

learning. As argued above, this expansion has important implications for the assessment of technical 

efficiency and our understanding of productivity improvements (including the potential for bias in 

measuring technical efficiency outcomes when the costs of learning and differential capacities of 

producers to learn are ignored). The second contribution relates to the role of risk and learning in firm 

allocative efficiency, and suggests how human capital in the form of better organizational skills, 

marketing, or improved product-service differentiation might also be captured by this integrated modeling 

approach. While the role of expected profit (and to a lesser extent of risk) is well understood, the 

importance of information and learning has received less attention.  

 The role of information and learning is particularly illuminating when we focus our attention on 

entrepreneurship. Successful entrepreneurs can be identified as those with superior information 

processing abilities (Kirzner; Minniti and Bygrave, 1999; Lazear). In turn, such entrepreneurs play an 

important role shaping efficiency and technological change outcomes in the economy. Kihlstrom and 

Laffont provide a useful take-off point for evaluating what our model adds to formal economic modeling 

of entrepreneurship. Kihlstrom and Laffont investigate how risk aversion can affect the choice to be an 

entrepreneur. They show how in the presence of heterogeneous risk preferences, the less risk-averse 
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individuals tend to self select into becoming entrepreneurs because their lower risk aversion gives them 

an advantage in facing the risk associated with being residual claimants. In contrast, more risk-averse 

agents choose to be wage workers. Such results are consistent with our analysis: under risk aversion, the 

risk premium Q provides a disincentive to face risky outcomes.    

Under bounded rationality and dynamic choice options, our model extends the analysis of 

entrepreneurial choice to incorporate explicitly the learning challenges that decision makers face and 

manage in dynamic and risky situations. One obvious conclusion from the model is that agents with 

higher capacities to acquire and process information are more likely to be entrepreneurs (agents 

discovering better combinations of inputs in a technical and allocative sense) because of their capacity to 

secure a more refined information structure at a lower cost. Under learning, this means that both 

information and residual risk exposure now become subject to management. While this does not eliminate 

the role of risk (e.g., as analyzed by Kihlstrom and Laffont), this stresses the importance of information. 

We suspect that the most important characteristic of successful entrepreneur may not be their risk 

preferences per se but their capacities to more fully assess the profitability and uncertainty they face 

(Minniti and Bygrave, 2001).  In turn, such superior abilities may induce entrepreneurs into taking 

particular risks. However, attributing this risk-taking behavior to lower risk aversion may be 

inappropriate. To a large extent, entrepreneurs’ risk-taking behavior may simply reflect their superior 

learning abilities about both technology and market conditions. In summary, once the dynamics of risk 

and learning are integrated in a model of bounded rationality, they interact and shape entrepreneurial 

choices in ways where learning might substitute for what would otherwise appear to be risk-taking 

behavior. Capturing the role of entrepreneurs in the process of innovating requires uncertainty, dynamics 

and learning. And bounded rationality also becomes a requirement if we want to provide a realistic 

representation of the complexity of innovation processes. In this context, our analysis stresses the role of 

information. This is just another way to say that the ability to process information is a critical if not the 

defining characteristic of a good entrepreneur.  
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The discussions of technical efficiency and allocative efficiency in sections 5 and 6 also have 

implications for how we think of entrepreneurship. In the former, the capacity of certain agents with 

higher learning capacities to discover more efficient combinations of inputs highlights the role that 

entrepreneurs can play in terms of helping to drive the process innovation side of technological change.  

In the latter, the capacity of certain agents to find better places on the frontier technology can be 

associated with improved management of differentiated goods and services, improved organizations, and 

institutional innovations. Fundamental to both results though is that the leading agents of efficiency 

improvements are ones with the human capital or learning capacity to discover the better states and to 

manage the full range of learning dynamics involved from learning-by-doing to refined investment 

choices. The very general formulation of our model incorporates this range and provides a structure for 

integrating it with standard profitability and risk considerations. It provides a general framework to 

examine in more detail the actual dynamics of particular situations where economic agents are making 

choices under bounded rationality. 

 

8. Conclusion 

This article develops a model of economic behavior of a firm owner-manager under bounded 

rationality, and explores the implications for the assessment of economic efficiency and entrepreneurship.  

Our primary modeling strategy is to use the certainty equivalent measure to study the optimal behavior of 

the agent, which in turn allows explicit treatment of the risk and learning components that, in addition to 

standard profitability outcomes, can influence the behavior of agents in a world of uncertainty and 

bounded rationality. Providing explicit attention to the role of learning in efficiency measurement and 

productivity assessment is at a theoretical level the novel contribution of this paper, though integrating it 

with risk management provides additional reflections on the potential interactions among these two 

components. At a broader level, the core contribution of this article is its effort to recast the 

microeconomic analysis of efficiency and entrepreneurship in a fashion that integrates standard profit 

analysis, risk management, and learning in a coherent and flexible fashion.    
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Four major insights emerge from this theoretical and conceptual foray. One is that learning plays 

a fundamental role in how we assess technical efficiency. In particular, because of fundamental 

differences in learning capacities (or human capital) across agents, information likely varies across 

agents. This focuses attention on a key feature of good entrepreneurs: their high capacity for learning 

about technology. A second and related insight is that empirical analyses of technical efficiency that fail 

to allow for the role of learning under bounded rationality are likely to be biased. This applies to most 

previous empirical analyses of firm efficiency (e.g., stochastic frontier analysis and Kumbhakar’s recent 

integration of risk preferences into technical efficiency analysis). This insight also provides a way to 

reconcile the X-inefficiency idea of Leibenstein, the empirical evidence supporting it, and the critiques 

levied by Stigler and Schultz questioning why agents would choose to be technically inefficient.  

The other two insights concern the analysis of entrepreneurship once we explicitly integrate 

learning and risk into standard efficiency (profitability) analysis. Just as learning and risk interactions can 

affect the design of productivity assessment, they can also affect how entrepreneurs are understood.   

Entrepreneurs are frequently viewed as agents with a higher propensity for taking risks. While our model 

incorporates that explanation in its decomposition of efficiency outcomes, it also underscores the potential 

for agents with higher learning capacities to better uncover the return and risk structure associated with 

certain activities. The superior capacity of good entrepreneurs to acquire and process information allows 

them to make more refined assessments of their uncertain economic environment. What looks like risky 

entrepreneurial behavior may just reflect better information about the distribution of returns associated 

with particular actions. Finally, the model provides a micro theoretic basis (through the allocative 

efficiency decomposition) for a common argument that successful entrepreneurs are also economic agents 

who are better at discovering how to organize, market, or differentiate their product-service so as to locate 

at more desirable points on the frontier technology.  

While providing new directions for improved efficiency analysis, our approach raises a number of 

empirical challenges. For example, estimating technical efficiency of firms under uncertainty and learning 

can be problematic when using cross-section data. First, at a given point of time, each decision maker 
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may have access to different information about technology and/or market conditions. Second, even if 

access to information is the same, the ability to process it can vary across individuals (depending on 

education, experience, etc.). When using panel data, the prospects for assessing the complexities of 

human learning improve: following particular decision makers over time can provide the measurements 

needed to examine how individuals learn. Such measurements should help refine our understanding of the 

factors contributing to firm efficiency and productivity growth.  

Note that our analysis could be extended in several directions. First, when applied to multi-output 

firms, our approach to risk and information issues can be used to investigate the economics of 

specialization and diversification, with an emphasis on developing insights into the economics of industry 

structure, mergers, and divestitures. Second, introducing agency issues (such as separation of ownership 

and control or interactions in learning within a team as in Radner) would be valuable for understanding 

the role of contracting and other institutions that shape efficiency and other welfare outcomes in multiple 

agent contexts under bounded rationality. Third, it would be useful to expand our two-period analysis to a 

multi-period context. Finally, further investigation of the implications of risk and information for 

economic efficiency in a general equilibrium context could enhance the modeling of endogenous growth 

by focusing on the role and value of learning under bounded rationality. These appear to be good topics 

for future research.   
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Footnotes 
                                                 
1 See Coelli et al. and Kumbhakar and Lovell for an overview of this literature.  

2 A notable exception includes Kumbhakar, which will be discussed below.  

3 Compared to “full rationality”, bounded rationality has been found to provide a better representation of  

human behavior (e.g., Gabaix et al.). 

4 Note that such a decomposition of firm-level efficiency is not new. It was first proposed by Farrell under 
“full rationality.” Our contribution is to show how to extend it under uncertainty and bounded 
rationality.  

5 Thus, wage income at time t is pLt Lwt = pLt (T – Let – Lat). It follows that when Lwt is positive, the wage 
rate pLt measures the unit opportunity cost of both Let and Lat.  

∑6 In our notation, “⋅” denotes the inner product, with px1 ⋅ x1 ≡ 
=

n

1i

2

pxi1 xi1.  

7 How individuals process information is complex. While neuroscience is making significant progress on 
this issue (e.g., Camerer et al.), developing a scientific understanding of how the brain processes 
information and makes decisions remains a very challenging task. In this context, our state-contingent 
approach is interpreted simply as a reduced-form representation of individual learning.  

8  Note that the certainty equivalent approach is not new. For example, it has been at the heart of the 
analysis of risk behavior under the expected utility model (Arrow, 1965; Pratt; Sandmo) and under a 
state-contingent approach (Quiggin and Chambers). The analysis presented here applies in the more 
general case of learning under bounded rationality.  

9 In the special case where labor contracts are flexible and the owner-manager chooses Lw1 > 0, then both 
firm labor La1 and leisure Let would have an opportunity cost measured by the wage rate pL1. This 
corresponds to the specification analyzed by Becker. However, note that our model applies under 
more general conditions: it does not require that the opportunity cost of firm labor La1 and leisure Let 
be equal to the wage rate pL1.  

~x a2L~ w2L~ 2, , ) ∈ Z(P) under information structure P, the point (x1, ~10 For any (x1, La1, Lw1, x

2x a2
~

w2L~ 2
~x

2
~x 2

~x 2
~x

2x a2L~ w2 2
~x

a2L~ w2L~ 2
~x

) is said to 

be technically efficient if there is no (x1’, La1, Lw1, ~ ’, L , ) ∈ Z(P) satisfying (x1’, ’) ≠ (x1, 

) and (x1’, ’) ≥ (x1, ).   

11 Z(P) exhibits free disposal in x1 if, for any (x1, La1, Lw1, ~ , , L~ ) ∈ Z(P), then (x1’, La1, Lw1, , 

, ) ∈ Z(P) for any x1’ ≤ x1. Note that this implies that D(x1, , P, ⋅) is non-increasing in x1.  
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~x 2
~x 2

~x
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~x 2

~x 2
~x

2
~x

2
~x

2
~x

12 D(x1, ~ , P, ⋅) is strongly decreasing in (x1, ~ ) if D(x1’, ’, P, ⋅) < D(x1, , P, ⋅) for any (x1’, ’) 

≠ (x1, ) satisfying (x1’, ’) ≥ (x1, ).  

13 First, consider the case where the reference bundle g is defined such that inputs in g are zero and  

outputs are equal to the period-one outputs. Then, with a focus on period-one outputs, Shephard’s 

output distance function is obtained as 1/(1 + D(x1, , P, ⋅)) (Shephard; Färe and Grosskopf). 

Second, consider the case where the reference bundle g is defined such that outputs in g are zero and 
inputs are equal to the period-one inputs. Then, with a focus on period-one inputs, Shephard’s input 

distance function is obtained as 1/(1 – D(x1, , P, ⋅)) (Shephard; Chambers et al.). And Farrell’s 

measure of technical efficiency is obtained as (1 – D(x1, , P, ⋅)) (as Farrell’s measure is the inverse 

of Shephard’s input distance function) 

14 Using a state-contingent approach, O’Donnell and Griffiths present supporting empirical evidence.  

15 Also there does not seem to be strong theoretical justification why the two components of the error term 
would be independently distributed.  

16 For example, technical inefficiency would be underidentified if the inefficiency term and the 
measurement error terms are both normally distributed.   

17 One exception is the approach proposed by Kumbhakar that will be discussed below.  

18 Equation (19) is presented under a state-contingent approach. It includes as a special case the value of 
information analyzed under the expected utility model (e.g., LaValle).   

19 This assumes that the subjective probabilities Pr(r, s) have been assessed. In cases where such 
assessment proves difficult and probabilities are not known, our analysis would still apply but with 

⎯q2 being interpreted simply as a measure of "central tendency" of q2(s), s = 1, …, S.   

20 Equation (20) is presented under a state-contingent approach. It extends the analysis of the risk 
premium developed by Arrow (1965) and Pratt under the expected utility model.  

21 Note that there are alternative ways of defining the risk premium. For example, in the context of 
income insurance, the risk premium could be defined at the sure amount of money Q’ that the 
decision maker is willing to pay to replace the period-two discounted state-contingent income [pL2(s) 

Lw2(r, s) + px2(s) ⋅ x2(r, s)]/[1 + ρ(s)] by its expected value. Note that, except in the case where pL2(s) = 

pL2 and ρ(s) = ρ for all s, the risk premium Q’ would in general differ from Q defined in (20).  

22 In addition, Kumbhakar (in his footnote 3) assumes that technical inefficiency is unknown to the agent. 
Assuming that the agent is uninformed about his/her managerial abilities seems peculiar. 

 34


	stp515cover.pdf
	     Staff Paper No. 516                                                October 2007


