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Abstract: This paper investigates the microeconomics of diversification, based on a two-period
model of an owner-managed firm facing uncertainty. The analysis utilizes a general state-
contingent representation of uncertainty and learning. Economies of diversification are
defined based on a certainty equivalent, which has three components: expected profit, the risk
premium (measuring the cost of risk aversion), and the value of information associated with
learning. The influence of scale effects, “trans-ray concavity” effects, and income effects on
economies of diversification are examined in detail. We argue that, while scope economies
and risk aversion can provide general incentives for diversification, information and learning
can have the opposite effect. By integrating scope, risk, and the role of information, our
analysis provides new insights on existing economic tradeoffs between firm diversification

and specialization.
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On the Microeconomics of Diversification under Uncertainty and Learning

1. Introduction

This paper integrates three economic rationales for diversification by economic agents: scope,
risk management, and learning. Scope economies and risk management have been distinct foci of
extensive microeconomic research related to diversification. Starting with the seminal work of Baumol,
Panzar, and Willig, economies of scope, which measure the cost reduction or profit gain associated with
multi-output production or marketing processes,' have been broadly applied to understand the
organization and performance of many sectors and industries, including higher education (e.g., Cohn et
al.; De Groot et al., Foltz et al.), telecommunication (e.g., Evans and Heckman), banking (e.g., Berger et
al.; Dietsch; Ferrier et al.; Lang and Welzel; Huang and Wang), R&D (e.g., Henderson and Cockburn;
Klette), biotechnology (e.g., Arora and Gambardella), and health care (e.g., Prior).”> These models
examine the cost properties of multi-output production processes, looking for evidence of scope
economies while abstracting from portfolio-risk considerations in the evaluation of diversification choice.

Risk management in portfolio theory is exemplified by the aphorism: “Don’t put all your eggs in
one basket”. The analysis is typically based on risk aversion and the incentives it can provide to diversify
among risky prospects (e.g., Markowitz; Tobin; Samuelson, 1967).% This approach has generated useful
insights on the role of risk in many economic and financial decisions.” Yet, it is surprising that scope and
risk rationales for diversification have not been integrated (as far as we know) in theoretical or applied
microeconomics. If both scope and risk considerations are at play simultaneously in an economic agent’s
decision, it would seem crucial to identify properly their relative effects in microeconomic decision-
making. For example, two activities in an agent’s portfolio could have both scope economies and risk-
reducing features, which would provide reinforcing motivations for pursuing them jointly to improve
profits and reduce risk. Alternatively, diseconomies (economies) of scope and risk reduction
(augmenting) features could cut against each other, making diversification decisions more complex in a

way that a single rationale could not explain. At both theoretical and empirical levels, this suggests a need



to incorporate both scope and risk rationales into the analysis of diversification choices in order to
properly identify their individual roles and cumulative effects.

Integrating scope and risk in a microeconomic model is a central goal of this paper. Yet, the
analysis of risk effects raises the question: how does a particular decision maker come to assess her
uncertain environment? This typically takes place through learning. But can learning also play a role in
diversification decisions? We argue that it can and does. As such, we add learning as a third major
rationale for (or against) diversification in economic analysis. We show how learning can affect the
incentive to diversify. To do so, we develop a model representing individual learning under bounded
rationality. Bounded rationality means that, in complex environments, obtaining and processing
information is difficult, making it infeasible for the decision maker to obtain perfect information about
technology and market conditions (e.g., Simon; Conlisk; Gabaix et al.). This assumption is relevant for
agents facing significant changes in their economic environment (e.g., technology, market conditions).
And, it seems particularly important for entrepreneurs involved in innovations, i.e. in the discovery of
knowledge leading to new technology, new products, and improved use of current resources. We argue
that, under bounded rationality, learning plays an important role in diversification strategies: difficulties
in information processing tend to have adverse effects on the incentive to diversify.” It means that, in
addition to scope and risk management, learning also affects diversification decisions, and thus the
primary focus of the article is to develop an integrated microeconomic model of diversification choices
made by an owner-manager. The model provides new insights into diversification strategies, with
implications for financial management, firm structure, household choices, and the economics of
entrepreneurship.

Our analysis is also motivated by some of the difficulties economists face in explaining observed
diversification choices. Indeed, discrepancies between theory and observed behavior have generated
several “puzzles”. Here, we focus attention on two puzzles. One relates to the observed prevalence of
investors holding poorly diversified portfolios (e.g., Blume and Friend; Calvet et al.; Campbell; Curcuru

et al.; Goetzmann and Kumar; Kelly). Why are so many households willing to hold under-diversified



portfolios? This is a challenge to portfolio theory which stresses the benefits of diversification. The
empirical evidence also shows much variability in diversification strategies among households. For
example, Goetzman and Kumar find that younger, less wealthy, and less sophisticated investors exhibit
greater under-diversification. Explaining such heterogeneity remains challenging, as illustrated by our
second puzzle: should a senior widow(er) accept the same level of risk exposure as a young entrepreneur?

Financial planners have long argued that very risky investments that appear suitable for young
entrepreneurs should be avoided by widow(er)s, Yet, Samuelson (1969) showed that, under constant
relative risk aversion, a young entrepreneur and a senior widow(er) with the same wealth should select
exactly the same exposure to risk. We call this discrepancy between “conventional wisdom” on
diversification and Samuelson’s theoretical result the “Samuelson puzzle.” We argue below that the
Samuelson puzzle can be explained by introducing the role of learning in diversification strategies.® This
means that traditional approaches to diversification focusing on scope and/or risk alone may be too
narrow. An integrated approach also capturing the effects of learning is needed.

Our integrated approach also provides some new and useful insights into the economics of
entrepreneurship. Entrepreneurs require refined knowledge and skills to learn about their environment and
identify useful innovations related to technology, new products, and/or improved use of resources. This
clearly involves risk management. But perhaps more importantly, this requires learning. Since good
entrepreneurs can be distinguished by their ability to obtain and process information, entrepreneurial
learning is crucial. Finally, entrepreneurs must try to integrate information about their economic
environment in a useful way, which fits Lazear’s ‘jack of all trades’ description of entrepreneurs. These
lessons have two important implications. First, the economic functions of entrepreneurs are complex and
cannot be reduced easily to simple roles. Second, all three components of our analysis (scope, risk and
learning) appear to be important aspects of entrepreneurial activities. This suggests that our integrated
approach to diversification will help provide new insights into the economics of entrepreneurship, or

more generally into the economics of human capital (Schultz).



This article develops a dynamic model of a price-taking, owner-operated firm that explicitly
incorporates all three diversification rationales: scope, risk and learning. The analysis is presented in the
context of a two-period model under a state-contingent representation of uncertainty (Debreu; Chambers
and Quiggin). The dynamic model provides a general representation of learning (including learning-by-
doing; see Arrow, 1962). The focus on an owner-operated firm allows us to capture bounded rationality
issues at the micro level, while setting aside the potential interactive and strategic effects that may arise in
multiple agent environments. The microeconomic model is general and flexible.

Our analysis of diversification outcomes relies on a “certainty equivalent” representation which is
introduced in section 3. The certainty equivalent approach is used in section 4 to propose a measure of
economies of diversification and in section 5 to identify its three components: expected discounted profit
(scope), a risk premium (capturing the role of risk aversion), and the value of information (capturing the
benefit of learning process). In section 6, our analysis further decomposes each of these three
components into scale effects, “trans-ray concavity” effects, and income effects. We show that, when
applied to economies of scope, such a decomposition reduces to the analysis presented by Baumol and
Baumol et al. However, the identification of scale effects and trans-ray concavity effects related to risk
and learning are apparently new results. We then develop several conjectures about the nature and
direction of these effects and explore in Section 7 their implications for diversification choices. In
particular, we evaluate the implications of scale effects in risk management. We also discuss how the
trans-ray concavity/convexity of the value of information affects diversification choices. Under bounded
rationality, we conjecture that, through the trans-ray convexity of the value of information, learning tends
to have adverse effects on diversification incentives. This is a key finding that helps to explain why
entrepreneurs often hold highly specialized investments, and indicates that, while economies of scope and
risk management may favor diversification, leaning effects will often favor specialization. These
conjectures help to provide an answer to the “Samuelson puzzle.” They also provide other new and useful

insights into economic tradeoffs involved in diversification choices.



2. The Model
Consider a manager making decisions for a firm over time. For simplicity, we focus our attention

on a two-period model. The firm is involved in a production process producing m outputs using n inputs

at time t = 1 and time t = 2. The vector of m outputs chosen at time t is Y, = (Y1, ..., ym) € R , and the

vector of n inputs chosen at time t is X; = (X, ..., Xar) € R i, t =1, 2. The manager faces uncertainty. The

uncertainty comes from the production technology as well as market conditions. Production uncertainty,
represented by R possible states, r =1, ..., R, reflects all uncertain factors related to the production
process, ranging from imperfectly understood aspects of the technology to stochastic factors (such as
unforeseen weather effects, possibility of strikes, or equipment breakdown), all of which affect production
possibilities. Market uncertainty, represented by S possible states, s =1, ..., S, reflects all factors that
generate uncertainty about market conditions and future market prices. Note that the number of states can
be quite large. For example, if production uncertainty is generated by 10 random variables, each one
taking one of 10 possible values, then R = 10", a very large number. Dealing with a large number of
states can be quite difficult and problematic for the manager as well as for the economic analyst (e.g.,
Simon; Magill and Qinzii). Section 3 explores the implications of this “curse of dimensionality” for the
assessment of diversification. We focus our attention on situations of incomplete risk markets, where risk
exposure cannot be transferred entirely to other agents.

We consider the case where the manager is also the owner of the firm. While period-two
decisions can depend on the information that becomes available about the states of nature, we assume that
all period-one decisions are made ex ante. At time t, the owner-manager has a fixed amount of time T to
allocate between leisure L, labor input in the firm L,, and wage activities L, spent working outside the
firm and earning a wage rate pr,. At time t, the manager’s time constraint is

T=Ly+Ly+Le, (M
withL;>0,Ly>0,and L >0,t=1, 2.7 At time t, the owner-manager also chooses a consumption good

¢, t =1, 2. He/she faces price p. > 0 for consumption c,, a wage rate pr, > 0 for wage labor Ly, prices py



= (Pyits ---» Pym) € R, for outputs y,, prices Px = (Pxiv, ---» Pxr) € R, for inputs x,, t =1, 2. Being the
residual claimant, the owner-manager receives the period-one firm profit (pylT Yi-Px X1).F In period
one, the owner-manager also chooses to invest an amount [ into an asset yielding a unit return of [1 +
p(s)] in period two. It follows that the owner-manager’s period-one budget constraint is

Pt €1 SWFpLi Lyt + Py Vi- P’ X1 -1, (2a)
where w denotes initial wealth, and (pr; L) is wage income at time t = 1.

At time t = 2, the owner-manager chooses netputs X,, consumption good c¢,, along with the time
allocation L, L,; and L. Under market condition s, the owner-manager faces market price pc(s) > 0 for
Cy, @ Wage rate pro(s) for Ly, and prices px(s) for netputs X,. Being the residual claimant, the owner-
manager receives the period-two firm profit (pyzT Vs - Pxa’ X2). Denote by co(r, s), Xa(r, s) and Lys(r, s) the
period-two decision for c,, X, and Ly, respectively, under state (r, s). It follows that the owner-manager’s
period-two budget constraint is

pea(s) €a(r, ) < pra(s) Lua(r, 8) + Pya(s)" Y2 (1, 8) - Pra(s)" Xa(r, 8) + [1 + p(s)] 1. (2b)
Substituting (2a) into (2b) gives the manager’s overall budget constraint

pea(s) Ca(r, ) < [1 + p($)][W + pri Lyt + Pyi’ Yi-Put’ X1 - Per ©1]

+pra(s) Lya(T, 8) + Pya(s)" Y2 (1, 8) - Peals)’ Xat, 8). (3)

The period-two decisions for consumption and leisure under state (r, s) are respectively cy(r, s)

and Le(r, s). The associated decision rules under all possible states are ¢, = (cy(1,1), ..., c2(R, S)) and

Eez = (Leo(1,1), ..., La(R, S)). Using a state-contingent approach, the manager’s preferences are

represented by the ex ante utility function u(cy, Lei, €, , iez ). Note that this includes as a special case the
J ~ = R S

expected utility (EU) model. Indeed, under the EU model, u(c;, Le;, ¢,, L,) = Zer 23:1 Pr(r, s)

U(cy, Ley, co(r, 8), Lea(r, 8)), where Pr(r, s) is the probability of facing the state (r, s) and U(c,, Le, ¢z, Le)

is a von Neumann-Morgenstern utility function representing the manager’s risk preferences. However, the

state-contingent utility u(cy, Le, 52 , L., ) applies under conditions much broader than the EU model. For



example, it includes as special cases weighted utility (Chew), rank-dependent expected utility (Quiggin),
prospect theory (Kahneman and Tversky), and general smooth preferences (Machina). Unlike the EU
model, this allows for preferences that are not linear in the probabilities. And more generally, the state-

contingent approach does not even require that the manager formulates a probability assessment of the

states (Debreu). Throughout, we assume that u(cy, L, C,, L, ) is strictly increasing in (c;, C, ). This

implies that the owner-manager’s preferences are non-satiated in the consumption goods (c;, C, ).
As noted above, the decisions made at time t =1 (i.e., Y1, X1, La1, Lwi1, Le1, ¢; and I) are chosen ex
ante. This means that they do not depend on the states (r, s). However, the decisions made at time t =2

can depend on the states. This includes the period-two consumption and leisure decisions €, = (cx(1,1),

..., 2(R, S)) and I:ez = (Leo(1,1), ..., La(R, S)). The nature of state-contingency reflects the amount of
the manager’s learning about his economic environment. Below, we assume that the period-two
consumption/leisure decisions (c,, L) are made ex post. It means that cy(r, s) and Le(1, s) can be different
across each state (r, s). However, we want to capture the role of the learning process for other period-two

decisions. This includes the output decisions Y, = (ya(1,1), ..., Y2(R, S)), the input decisions X, =
X(1,1), ..., Xa(R, S)), and the labor decisions L_, = (Lyo(1,1), ..., Lo(R, S)) and L, = (Lya(1,1), ...,

sz(R, S)) Let 22 = (yz, Xz, La2, sz) = (le, N Zm+n+2,2) (S “Rmﬂﬁz, Wlth ,22 = (22(1,1), . Zz(R, S)) (S

RIRS We allow the decisions z, to reflect different amount of learning. This is done by considering

different partitions of the state space P = {1, ..., R}x{1, ..., S}. Let P; be a partition of P, i.e. a collection
of disjoint subsets of P whose union is P. Assume that z;, (the i-th decision variable in z, = (Y,, Xz, La»,
Ly»)) is chosen based on the information partition P; such that

Zi(1, 8) = zp(r’, 87) if (1, s) and (1, s’) are in the same element of P;, 4
i=1, ..., ntm+2. Equation (4) means that, when choosing z;,, the manager cannot distinguish between
states that are in the same elements of the partition P;. This can represent different amount of information

available. At one extreme, perfect information corresponds to P;=P" = {(1, 1), ..., (R, S)}, where P" has




RS elements with each element corresponding to a state (r, s). Then, P; = P" implies that the manager
chooses z;; ex post. At the other extreme, no information corresponds to P; = P" = {P}, where P has only
one element. Then, P; = P" implies that the manager chooses z;, ex ante. And partial learning corresponds
to intermediate situations where the number of elements in P; is greater than 1 but less than RS.

Denote by P = (Py, ..., Pyans2) the information structure supporting the second-period decisions z,
= (X2, Laz, Lu2) = (212, - -+, Znrmi22)- T investigate the role of the learning process, we allow P to be
endogenous. That is, we consider situations of active learning, where the manager uses the resources
he/she controls to obtain information about his/her economic environment.

R mIRS

For a given information structure P, let the feasible set F(P) — represent the firm

technology, where (Y1, X1, La1, L1, Y5, X5, L iwz) € F(P) means that netputs (Y, X;, La1, Lw1, ¥, ,

a2’

X,, L, L,,) are feasible under the information structure P. Note the generality of this characterization.

It guarantees feasibility for (y;, Xi, Lai, Lwi, ¥, X,, iaz , sz) across all possible states. It allows for

production as well as investment activities (where the first-period decisions generate uncertain second-

period payofY). It allows for jointness between choosing (Y, X, La1, Ly, )72 ,Yz, L, ., L,,)and learning

(the choice of P) about both technology (represented by the states r =1, ..., R) and market conditions
(represented by the states s =1, ..., S). As such, it can represent situations of active learning (including
learning-by-doing; see Arrow, 1962). Under active learning, we assume that F(P) — F(P’) for any
information structure P’ that is at least as fine as P. Then, F(P’) - F(P) represents the set of resources
required to learn so as to replace P by P’. And the benefits obtained from the new information are
associated with equation (4) (which becomes less restrictive). The feasible set F(P) also allows for the
possibility that labor activities outside the firm (L., L) can affect the productivity of labor within the
firm (L,;, Ly;). And it can reflect contractual and institutional restrictions imposed on labor choices both

within and outside the firm. Finally, the characterization allows the amount of learning to be specific to



each decision z;,. This can represent situations where information processing requires the use of resources

. . . 9
but with a learning process that varies across z;,’s.

Under economic rationality, the manager’s decisions is represented by the optimization problem

W(w) = Max {u(cy, Le, 52 , iez ): equations (1), (2a), (2b) and (4);
(Y1, %15 Lats Luts Vs %55 Ly, Ly, € F(P)}. (5)

Under non-satiation in C, , note that the budget constraint (3) is always binding under each state

(r, s). Below, we assume for simplicity that leisure is always positive, with L, > 0 and Ley(t, s) > 0. Then,

after substituting (1) and (3) into the utility function, the optimization problem (5) can be alternatively

written as
W(w) =Max {u[ci, T = Loy — Lty ooy [W+ pri Lt + Pyi’ Yi - Pai” X1 - per ei][1 + p(8))/pea(s)
+ [pra(s) Lya(r, 8) + Pya(s)" Ya(t, 8) - Prals)’ Xa(T, $)1/pea(s), ..., T — Laa(r, 8) — Lya(r, 5), ... ]:
Ly>0,Ly>0,t=1,2; equation (4) evaluated at P;
1 X1s L, Lut, ¥ % L L) € FOP)L. (6)
Let L= (Ly, L), t =1, 2. Using backward induction, the optimization problem (6) can be

decomposed into two stages: first choose (Y», X,, L,), conditional on (yy, X;, Ly, ¢, P); and second choose

(Y1, X1, Ly, c1, P). The first stage decision is
u' (W, yi, X1, Li, e, P)=Max ;.o {ule;, T—La — Ly, ...,
[W +pri Lui + Py Vi - Pt Xi - per ¢1][1 + p(s)V/pea(s)
+ [pLa(s) Lua(r, 8) + Pya(s)' Ya(, 8) - Prals)" Xa(r, )1/pea(s), -, T = Laa(r, 8) — Lya(r, 8), ... ]:

equation (4) evaluated at P; (yy, X1, Lai, Ly1, ¥, %5, L,,, L,,) € F(P)}, (7a)

a2 >’
with ¥, “(w, yi, X1, L, c1, P), X, (W, y1, X1, Ly, ¢1, P) and L, “(w, yi, Xy, Ly, ¢1, P) being the
corresponding optimal decision rules. The second stage decision is

W(w)=Max, | o0 p {0 (W, Y1, X, Ly, e, P)}, (7b)



with (y,', X1, L, ¢", P) as corresponding optimal decisions.

How much learning typically takes place? When the economic environment of the firm is simple,
assessing the uncertainty facing the owner-manager may be reasonably easy. Under such circumstances,
obtaining perfect information may be attainable (provided that the decisions maker is willing to spend
enough resources in the learning process). However, the economic environment of firms can be complex,
especially during periods of significant market, technological, or institutional changes. Entrepreneurial
activities seem fraught with this kind of complexity and characterized by opportunities for learning,
where the number of states R and S is large. In this context, information acquisition and processing may

prove difficult. When R and S are large, we define bounded rationality as any situation where F(P") = &

where P" represents perfect information. Under bounded rationality, this means that making all period-
two decisions ex post is not feasible. Under such circumstances, while extensive learning remains
feasible, perfect learning is impossible (Simon). In this context, our analysis provides a basis to

investigate the economics of bounded rationality.

3. Certainty Equivalent under Uncertainty and Learning

Under incomplete risk markets, the owner-manager cannot transfer his/her risk exposure entirely
to other agents. This means that risk exposure and information are expected to affect the welfare of the
owner-manager. If so, how do risk and information affect production/investment decisions? This section
explores under what conditions period-one netputs would be chosen in a way consistent with standard
profit maximization. And if profit maximization does not apply, how can it be modified to account for risk
and information effects?

First, we address the question: Does profit maximization apply to period-one inputs and outputs?

Under non-satiation in (¢;, C, ), note that the optimization with respect to X; in (6) implies the profit

maximization problem

Tf(pyla pxly Lala LWI, Vz ) ’)\(42, Laz s sz s P) = Max Vi-X {ple yl - pxlT X:

10



(V1. Xt, Lat, Ly, ¥,, %,, L,, L.,) € F(P)}, )

where X;"(Py1, Pxi> Lat, Lwt, ¥, 5 X5, L.,.L P) is the optimal solution for X;, and T(Py1, Px1» Lat, Ly,

a2 w2

, X,, L,, L,,,P)isarestricted profit function. The profit function n(py1, Pxi, Lat, Lwi, ¥, , X,,

<!
(S

~

L

=

P) is homogenous of degree one and convex in (Py1, Px1). Equation (8) is a standard profit

a2 > w2

maximization problem conditional on period-two state-contingent decisions (Y, , X,, L ,, L ,)and on

the information structure P. However, the conditionality on (Y,, X,, L,, L ,) has important

a2
implications. The state-contingent choices (Y,, X,, L,, L ,) control for the distribution of risk across

all possible states. Controlling for risk exposure is the key reason why risk preferences do not play any
role in (8). This can be seen as a significant advantage of (8): it applies irrespective of risk preferences.
However, making equation (8) empirically tractable can be quite challenging. The reason is that it
requires identifying the decisions (Y,, X,, L., Ly») under all possible states. When the number of states is
large, this is very demanding. This “curse of dimensionality” is the main reason why this approach has
not been used much in the analysis of production/investment decisions under risk. This has two important
implications. First, equation (8) shows that the maximization of profit remains a valid motivation for a
firm under very broad conditions. Second, the problem with profit maximization under risk is not in its

conceptual validity but rather in its empirical tractability.

When evaluating the state-contingent choices (Y, , X,, L sz ) proves difficult, equation (8)

a2
will not appear very attractive to support empirical analyses. Then, is there another way to proceed? The
answer is yes, through the use of a “certainty equivalent.” But this will come at a cost: if we no longer
control for risk exposure, information and risk preferences will now play a role. To define a certainty
equivalent, we focus our attention on profit. The discounted value of profit over the two periods is: ple 4
-Px X+ [pyz(s)T Ya(r, 8) - Pxa(s)" Xa(r, $)J/[1+p(s)]. While there is no uncertainty about period-one profit,

ple Y1 - Pxi’ X1, the discounted period-two profit, [pyz(s)T Ya(T, S) - Pxa(8)" Xa(t, $)]/[1+p(s)], is subject to

11



uncertainty. Define the expected value of period-two discounted state-contingent profit by M(Y,, X,) =

Zil Zil Pr(, s) [pyz(s)T ya(r, 8) - Pra(s)” Xa(r, 8))/[1 + p(s)], where Pr(r, s) is the subjective

probability of facing the state (r, s).'® To define a certainty equivalent, consider a situation characterized

by: 1/ the replacement of discounted period-two profit by its expected value M(Y,, X, ); and 2/ no

learning. Associate the absence of learning with the information structure P, where P’ = (P, ..., P"), with
P having only one element. This means that, under the information structure P’, the period-two choice X,
and L, is made ex ante, i.e. without any learning. Then, define “certainty equivalent” CE as the sure
amount of income satisfying

Maxp {u’(w, yi, X1, Ly, ¢1, P)}

=Max, 1 5o {ulc;, T—La—Lwi, ..., [W+ CE+pri Lui + per ci][1 + p(s))/pea(s)

+ [pra(s) Lya(r, $)1/pea(s), ..., T — Lax(r, 8) — Lya(r, 8), ...1:

equation (4) evaluated at P (y,, X;, Lai, Lui, ¥, , X5, iaz , sz) e F(P%)}, ©)
where u’(w, y1, X1, Ly, ¢, P) is defined in equation (7a). Note that the right-hand side of equation (9) is
associated with no learning (as reflected by P%) and no uncertainty about py(s) or Xa(r, s). As such, all
uncertainty related to period-two production/investment decisions has been effectively eliminated.
Solving equation (9) for CE gives the certainty equivalent CE(y,, X;, o), where o = (w, L, ¢;).

From equation (7b), the period-one production/investment decisions (Yi, X;) involve the
maximization of the left-hand side in equation (9). But the period-one decisions (Y, X;) appear on the
right-hand side in (9) only through the certainty equivalent CE. And under non-satiation in c,, the right-
hand side in (9) is an increasing function of CE. Then, equations (7b) and (9) yield the following result.
Proposition 1: The optimal period-one decisions (Y, X;) satisfy

(Y1, X1) € argmax , - {CE(y;, X, @) }. (10)

Proposition 1 shows that the certainty equivalent CE(y;, X;, &) has two attractive characteristics.

First, being a sure amount of income, it provides a simple welfare measure of production/investment
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activities for the firm. Second, equation (10) shows that the certainty equivalent CE(y;, X;, a) provides all
the information necessary for the period-one decisions (Y, X;). Note that this representation is very
general. It applies under any specification of risk preferences and learning process, even if the owner-
manager decides to work only in the firm, i.e. if he/she chooses Ly =0, t =1, 2. It also applies
irrespective of the feasible set for L, = (L, Lyt), t =1, 2. This allows for situations where labor contracts
are not flexible and impose restrictions on the choice of (L., Ly). As such, the certainty equivalent CE
given in (9) provides a broad characterization of the factors affecting period-one netput decisions (Y, X;).

We exploit these desirable characteristics below.

4. Diversification

We want to investigate whether the multiproduct firm would benefit (or lose) from reorganizing
its production/investment activities in a more specialized way. The reorganization involves breaking up
the firm into K specialized firms, 2 < K <m. To analyze the economics of diversification, we start with
the certainty equivalent of the original firm CE(y;, X;, o) defined in (9), with a = (w, L,, c;). Proposition
1 implies that (y;, X;) is chosen as follows:

Max, . {CE(y,Xi, @)} =Max, {p,i" i - DCy1, o)} (11a)

where

DC(y,, &) =-Max, {CE(y1, X, @)} + Py’ 1. (11b)

As further discussed in section 6.1 below, the function DC(Y;, o) can be interpreted as a
“discounted cost” function, which is conditional on period-one outputs Y.

Next, consider the K specialized firms created from the breakup of the original firm. Let the k-th
specialized firm produce period-one outputs y;* = (y1/", ..., ym") while facing o* = (W*, L\, ¢,*), k=1,
..., K. To guarantee that each of the K firms exhibit some form of specialization (compared to the original

firm), we assume below that ylk /K k=1, .., K.
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Definition 1: Economies of diversification (diseconomies of diversification) are said to exist if

S=CE‘(y;, @) - £, CE(y/", @) >0 (<0), (12)
where CE‘(y;, o) = Max X, {CE(Y), X1, @)}, and the ylk’s satisfy 2. sz1 ylk =V

The restriction >, E:l yi* =Yy, in (12) guarantees that the evaluation of diversification involves the

same aggregate period-one outputs Y, whether it is produced by the original firm or by the K specialized
firms. From equation (12), economies of diversification exist (with S > 0) if the certainty equivalent of
producing period-one outputs Y, is higher from an integrated firm as opposed to K specialized firms. This
identifies the presence of synergies or positive externalities in the production of outputs. Alternatively,
diseconomies of diversification exist (with S < 0) if the certainty equivalent of producing y; is lower
when such outputs are obtained from an integrated firm as opposed to K specialized firms. This reflects
the presence of negative externalities in the production process among period-one outputs.

Note that an alternative formulation for S in (12) exists. It is:
S=X,. DCYi", o) - DC(y1, @) > 0 (< 0), (127)
Since 2. szl yi* =Yy, it is clear from (11b) that expressions (12) and (12°) are equivalent. Then,

from equation (12’), economies of diversification exist (with S > 0) if and only if the cost of producing
period-one outputs Y, is lower from an integrated firm as opposed to K specialized firms. We will show in
section 5 below that S in (12”) reduces to the standard measure of diversification in the absence of risk

and dynamics (e.g., as discussed by Baumol et al.).
Note that S in equation (12) or (12”) is measured in monetary units. Given 2. ff:l yi* =y, relative

measures of economies of diversification can be defined as
S’ = S/CE“(y1, o) = [CE*(y1, &) - X, CE%(y,*, a")/CE(y1, o), (13)
assuming that CE‘(yy, a) > 0, and

87 =S/DC(y;, ) = [Z 1, DC(y1*, a*) - DC(y1, 0))/DC(y1, o), (14)
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assuming that DC(y;, &) > 0. Economies (diseconomies) of diversification corresponds to S* > 0 (< 0) in
(12°),and S”>0(<0) in (14). S* in (13) and S” in (14) are a unit-free measures. S’ reflects the
proportional increase in the certainty equivalent obtained by producing outputs y; in a single integrated
firm (as compared to K specialized firms). Similarly, S reflects the proportional decrease in cost
obtained by producing outputs Y, in a single integrated firm.

Given 2. kK:I yi*=yandy,* #y,/K, k=1, ..., K, equations (12) or (12”) allow for various forms
of specialization among the K firms. For example, at one extreme, the k-th firm can be completely
specialized in the j-th output in period one if yjlk =yj1, and lek, = ( for k” # k. In this case, the k-th firm is
the only specialized firm producing the j-th ouput. Alternatively, our definition of economies of
diversification in (12) or (12°) allows for partial specialization. Assuming that y;; # 0, j =1, ..., m, this
occurs for the k-th firm when lek #0,j=1, ..., m. Then, while ylk # Y1/K implies some form of
specialization for the k-th firm, this firm continues to produce non-zero quantities of all period-one
outputs. In general, economies of specialization S in (12) or (12”) will depend on the patterns of

specialization among the K firms.

5. A decomposition of the certainty equivalent

In this section, we investigate the sources of benefit/cost of diversification. This is done by
identifying the components of the certainty equivalent CE(y, X;, &) defined in (9).

5.1. The value of information

As discussed above, the information structure P° = (P, ..., PY) is associated with no learning, with
P~ having only one element. This means that, under the information structure P’, the period-two choices X,
and L, are made ex ante. A monetary evaluation of the change from P" e argmaxp {u*(w, V1, X1, Ly, ¢1,
P)} to P” is given by the conditional selling price of information V(yy, X;, o), where a. = (w, L1, ¢;)

(LaValle, chapter 8). This conditional value of information V(y, X;, @) is given by the monetary value V

which satisfies
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u'(w+V,y1, X1, Ly, ¢1, P’) = Maxp {u'(w, y1, X1, Ly, ¢, P)}. (15)
V(Y1, X1, &) defined in (15) is the smallest amount of money the manager is willing to receive ex
ante to give up the information structure P~ € argmaxp {u’(w, Y1, X, L1, ¢, P)} and replace it by P°. It is
a conditional value of information since it depends on the period-one decisions, including (y;, X;). Under

non-satiation in (¢, €, ), u'(w, -) is necessarily increasing in w. It follows from (15) that

V(y1, X1, @) 20, (16)

Equation (16) states that the conditional value of information is always non-negative. This result
applies for any risk preferences and any reference information structure P’. Given o = (w, Ly, ¢,), the
properties of the conditional value of information V(y,, X;, a) provide useful insights on the role of the
period-one decisions z; = (Y1, Xi, L) € RO Of special interest are the effects z;; (the i-th element of
z;) on V(yy, X1, @). If z;; has a positive effect on V(y;, X;, &), then the i-th netput would increase the value
of information. This can happen under two conditions: 1/ under active learning, z; is part of the firm’s
information gathering activities; or 2/ the use of z;; increases the options for the firm to adjust its period-
two decisions in response to new information. Note that this latter effect can be present with or without
active learning. Alternatively, if z;; has a negative effect on V(yi, X;, &), then the i-th netput would
decrease the value of information, again under two conditions: 1/ using z;; has adverse effects on the
learning process; or 2/ the use of z;; decreases the options for the firm to adjust its period-two decisions in
response to new information. This latter effect would arise when z;; is an irreversible decision that cannot
be undone either because reversing the decision is not feasible (Henry, and Arrow and Fisher) or because
of sunk costs (Pindyck and Dixit). For example, when (y;, X;) involves choosing between a reversible and
an irreversible decision, the associated change in the value of information V(y,, X;, a) reduces to Arrow
and Fisher’s “quasi-option value” under the reversible scenario.

5.2. Risk premium
Using (7) and (15), the first period decisions (Y, Xi, L, ¢;) in the optimization problem (5) or (6)

can be written as
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W(w)=Max, | o {u'(w + V(y1, X1, @), Y1, X1, Ly, ¢1, PO} (17)

Note that in equation (17), the manager makes period-two decisions without learning (as reflected
by P’) while being compensated for it (through V(-)). However, the manager still faces price and
production uncertainty. In general, the manager may want to manage his/her risk exposure using
insurance contracts. Here, we focus our attention on the case of profit insurance and an actuarially neutral

risk. Thus, we consider a profit insurance contract which replaces the period-two discounted state-

contingent profit [Pya(s)" Ya(t, 8) - Pxa(s) Xa(r, 8)]/[1 + p(s)] by its expected value M(V,, X,) =

33T i ) [Pa(s) Yaln 8) - Pral®) Xalr, S)VIT + p(s)]. Let o = (w, Ly, ¢1). The risk premium

for profit insurance Q(y;, X;, &) is defined as the sure amount of money Q which satisfies''

Max, | .o tuler, T—Lai =Ly, .oy [W+ VY1, Xi, @) - Q + M(V,, X,) + pri L

+ pxl : Xl - pcl CI][l + p(s)]/pCZ(S) + pLZ(S) LWZ(r3 S)/pCZ(S)> ceey T - LaZ(ra S) - Lw2(r9 S),

...]: equation (4) evaluated at P’; (X}, Lq;, L1, ¥,, X,, L,, L.,) € F(P")}

a2’

=u'(w+ V(W, Y1, X3, L1, 1), X1, Ly, ¢1, PY). (18)

The risk premium Q(Y;, X;, &) defined in (18) measures the smallest amount of money the
manager is willing to pay ex ante to replace period-two profit by its expected value. Note that the risk
premium Q(Y, X;, ) is conditional on the period-one decisions, including y; and X;. Since the risk
premium Q(Y, X;, o) measures the willingness-to-pay to eliminate profit risk, its sign can be used to
characterize the nature of the manager’s risk preferences: the manager is said to be risk averse, risk
neutral, or risk lover with respect to a profit risk when Q(y;, X;, &) > 0, = 0, or <0, respectively. Under
risk aversion, the risk premium Q(y, X;, &) measures the implicit cost of risk bearing for profit risk.

The properties of the risk premium Q(y,, X;, &) provide useful insights on the role of the period-
one netputs X; in risk management. Of special interest are the effects x;; (the i-th intput in X;) on Q(Y1, X,

a). If x;; has a positive (negative) effect on Q(y;, X;, ), then the i-th input would increase (decrease) the
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implicit cost of risk bearing. For a risk averse decision maker, if Q(-) > 0, the i-th input is risk increasing,
and the manager has an incentive to decrease the use of x;;.. Alternatively, for a risk averse decision
maker, if Q(-) <0, the i-th input is risk decreasing, and the manager has an incentive to increase the use of
xi1. Note that similar interpretations apply to period-one outputs V.
5.3. The components of CE under uncertainty and learning
Combining equations (7a)-(7b) and (18) gives
Maxp u'(W, Y1, Xi, Ly, c1, P)

= Max Y2,Xs,Ly20 {U[Cl, T- Lal — Lwla ceey [W + V(yl, X1, (X) - Q(yl, X1, (X) + M( Vz s 3(2)

+ pri Lwi + ple Yi-Pu’ Xi - par i][1 + p(s))/pea(s) + pra(s) Lya(r, 8)/peas),
woey T—=La(r, 8) — Lya(r, ), ...]
: equation (4) evaluated at P%; (yy, X1, Lai, Ly, ¥, X, L in) e F(PY}. (19)

a2’

s

Denote by (¥, ", X,", L,") the solution of the maximization problem on the right-hand side of
(19). Then, under non-satiation in c¢,, comparing equations (9) and (19), we obtain the following result.
Proposition 2: The certainty equivalent CE(y;, X;, o) satisfies

CE(Y1, X1, @) = M (Y1, X1, @) + Pyt Vi - Pat” X1 + V(y1, X1, @) - QY1, X1, @), (20)

where M'(y1, X1, @) = M(¥, "(W, Y1, X1, L1, ¢1), X, (W, Y1, X1, Ly, ¢1)) is the expected period-two

discounted profit, and oo = (w, Ly, ¢;).

Proposition 2 shows that the certainty equivalent CE(y;, X;, ) is the sum of four components.
From equation (20), CE(y,, X;, &) equals the expected period-two discounted profit M'(y;, X;, o), plus the
period-one profit ple Vi - pxlT X1, plus the conditional value of information V(y;, X;, &), minus the risk
premium Q(y;, X, @). In addition to expected profit, M (y;, X, &) + ple Y1 - Pxi’ X1, this shows that both
the value of information V(y,, X;, &) and the cost of private risk bearing Q(y1, X;, ) affect the welfare of

the firm and its owner-manager. The former has a positive effect, stressing the importance of information
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processing in managerial decisions. And under risk aversion, the latter has a negative effect: it provides

risk-averse managers an incentive to reduce their risk exposure.

6. A decomposition of economies of diversification
Combining equations (12) and (20) gives the following result.

Proposition 3: Economies of diversification (diseconomies of diversification) exist if

S=S,+So+Sy>0(<0), (21)
with  Sy=n(y, o) - 21, n(y" ab), (22a)
So=-Q(y1, @) + X1, Q(yi", a), (22b)
Sv= VYL o) - i, VS, o), (22¢)

where 1°(y;, o) = M*(Yl» Xi“(y1, @), @) - pxlT X1“(Y1, &), Q°(Y1, @) = Qy1, Xi°(Y1, @), &), Vi(y1, &) =

VY1, Xi°(Y1, @), &), X;(Y1, o) € argmax N {CE(Y1, X1, )}, oo = (w, Ly, ¢;), and the ylk’s satisfy

Z ]]le ylk = yl-
Note that n°(y;, o) in (22a) is a measure of expected profit defined as the discounted period-two
expected profit M (yy, X;, o) minus the period-one cost Py " Xy, both evaluated at X,°(y;, @) €

argmax {CE(y;, X1, &)} (as in (11b)).

Proposition 3 shows that S, the economy of diversification measure, has three additive
components: S, in (22a) reflecting the effects on expected profit; Sq in (22b) reflecting the effects on the
cost of risk bearing; and Sy in (22¢) reflecting the effects of information and learning. In the absence of
uncertainty and risk, Q°(y;, o) = 0 and V°(y,, &) = 0, implying that Sq = 0 and Sy = 0. It follows from (21)
that, in the absence of risk, S = S;. Thus, without risk, the profit effect S, in (22a) captures all the
economic effects of diversification. Such effects have been analyzed in detail in previous literature (e.g.,
Baumol et al.). We will show below that, in a riskless situation, our analysis indeed includes as a special

case well-known results on the economics of diversification. However, proposition 3 goes beyond
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previous literature by showing how risk (through the term Sq, in (22b)) and learning (through the term Sy

in (22c¢)) can affect the economies of diversification. Next, we present a further decomposition of the

terms in (21)-(22) into scale effects, concavity/convexity effects, and income effects which we use to

develop conjectures about the nature of these effects and their implications for diversification strategies.
6.1. Expected profit effects

Proposition 3 identifies the role of diversification on expected profit through the term S, = n(y,

) -2 sz1 Te(y,¥, a). It shows that profit effects contribute to economies of diversification if S; = n°(y,,

a) -2 szl n°(y*, o) > 0, where Zle y1*=1y,. This corresponds to a scenario where expected profit n°(yj,

a) is higher under an integrated firm than under K specialized firms.
The following decomposition of S, in (22a) will prove useful.

Lemma 1: The profit effect S, in (22a) can be written as

S:=S;1+ S+ S, (23)
where S, =7n(y;, a) - Kn°(y/K, o), (24a)
Sn=K'(y/K, a)- X, n°y" ), (24b)
Su=Xr, myt a)- T, my, o). (24c)

Lemma 1 decomposes the profit effect S, into three additive components: S,; reflecting scale
effects (24a), S,, reflecting trans-ray concavity effects (24b), and S,; capturing income effects (24c¢).
First, consider S,;. Note from (24a) that S,; = 0 when (Y}, &) is linear homogeneous in y;. Then, S;; =0
corresponds to situations where [1°(A Y, a)/A] is a constant for all A > 0. Define the ray-average profit as

RAP(M, y)) = (A y1, a)/A, where A is a positive scalar reflecting the scale of period-one outputs. Define

increasing returns to scale (IRTS)
constant returns to scale (CRTS)  as situations where the ray-average profit RAP(, y,) is

decreasing returns to scale (DRTS)
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increasing
constant  in A > 0. It follows that S;; = 0 under CRTS. Alternatively, S;; in (24a) is non-zero only

decreasing

when there is a departure from CRTS.

We make the following conjecture about S,;:

Conjecture C,;: For each y; > 0, there is a scale Ay(Yy;) > 0 such that the scale term is positive, Sy [A Y1, -]
>0, for all A e (0, Ao(y1)].

C. states that the term S, is positive for small scales of operation. As just discussed, this means
that the technology exhibits increasing returns to scale (IRTS) in the region of “small scales.” It is well
known that a sufficient condition for a small firm to exhibit IRTS is the existence of fixed cost. Our
conjecture C,; can be motivated by the prevalence of fixed cost in production/marketing/investment
decisions. Since S;; > 0 contributes to economies of diversification, it follows from the conjecture C,
that the scale effect S;; provides an incentive for small firms to diversify. It remains possible for “large

firms” to produce at a scale where CRTS applies, i.e. where the scale effect vanishes (with S;; = 0).

The term S, in (23) and (24b) reflects a concavity effect. To see that, note that ©°(2 f:l O yi¥, o)

> concave
=t X5, 0 m(y)S, o) if the function n°(y,, ) is { linear | iny;, for any 6y € [0, 1] satisfying X, 6,
< convex

vV

= 1. Choosing 6y = 1/K and using 2. le ylk =Yy, it follows from (24b) that S, 0 if the function

concave
n°(y1, -) is < linear ¢ inYy;. In other words, from (23), the concavity of n(y;, -) in y; contributes to

convex

economies of diversification. The concavity of n°(yy, -) in y; reflects diminishing marginal productivity

with respect to period-one outputs. This means that diminishing marginal productivity contributes to
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economies of diversification. In addition, note that the concavity of ©°(yy, -) in (24b) is evaluated along a
hyperplane (since y; = 2, sz1 y1). Following Baumol et al. (p. 81), a function is said to be trans-ray

concave (trans-ray convex) if it is concave (convex) along a hyperplane. Thus, the concavity (convexity)

properties just discussed are in fact trans-ray concavity (trans-ray convexity) of the expected profit

function (Y1, -) along the hyperplane defined by y; = 2. sz1 y,*. It follows from (24b) that trans-ray

concavity of (Y, -) (along the hyperplane satisfying 2. ff:l y\* =y,) contributes to economies of

diversification.

Finally, consider the term S in (23) and (24c). It reflects the effects of heterogeneity in the o*’s
in (24c¢). Indeed, if ok = o, k=1, ..., K, then S;; = 0. Thus, it is only when the a®’s differ among
specialized firms that the S5 can be non-zero. In addition, note that the effects of a = (w, L1, ¢) reflect
income effects (e.g., as captured by initial wealth w). This means that the term S5 in (23) and (24c)
capture the heterogeneity of income effects in the evaluation of economies of diversification. This term
could be of special importance in certain contexts including ones with high poverty incidence and
variation in wealth/income.

How does Lemma 1 relate to previous research? To answer that question, consider a situation
where dynamics are neglected, i.e. where M'(+) = 0. If, in addition, risk is neglected, then V(-) = 0 and

Q(-) = 0. In this case, it follows from (20) that CE = ple Y1 - Pxi" Xy, and from (11b) that DC(y,, o) =

Min {Pu’ Xi: (Y1, X;) feasible} = -n(y;, a). Then, DC(y;, @) in (11b) becomes the standard cost

function. And S in (12”) and S/DC in (14) reduce to the standard cost-based measures of economies of
diversification found in the literature (e.g., Evans and Heckman; Baumol; Baumol et al.). In this case,
note that S;; = 0, implying that S, = S;; + S, from (23). Then, the roles of scale effect and of trans-ray
convexity reduce to the analysis of diversification presented by Baumol and Baumol et al. In particular,
Baumol and Baumol et al. showed that complementarity among outputs contributes to the trans-ray

convexity of the cost function and the presence of economies of scope. Using (11), this means that output
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complementarity contributes to the trans-ray concavity of profit n°(y, -), thus providing incentives to
diversify. This shows how our approach extends previous literature on the economics of the multiproduct
firm.

6.2. Risk effects

Proposition 3 shows that risk effects contribute to economies of diversification if Sq = -Q°(y;, @)
+2 5:1 QC(Y1k, Otk) >0, where 2, ]]le ylk =Y,. This corresponds to a scenario where the risk premium Q is

lower under an integrated firm than under K specialized firms. In a way similar to Lemma 1, we have the
following result.

Lemma 2: The risk effect Sq in (22b) can be written as

So=Sqi + Sq2 + So3 (25)
where Sq1 =-Q(y1, ) + K Q(y/K, a), (26a)
S =-K QY/K, &) + X&) Q¥ v, (26b)
Se3=-2 iy Qi @)+ X, Qv a). (26¢)

Lemma 2 decomposes the risk effect Sq, into three additive components: Sq, reflecting scale
effects (26a), Sq, reflecting trans-ray convexity effects (26b), and Sq3 capturing income effects (26c¢).
First, consider Sq;. Note from (26a) that Sq; = 0 when Q°(y;, ) is linear homogeneous in y;. Then, Sq; =
0 corresponds to situations where [Q°(A y;, at)/A] is a constant for all A > 0. Define the ray-average risk
premium as RAR(A, y;) = Q°(A yi, a)/A, where A is a positive scalar reflecting the scale of period-one
outputs. It follows that Sq; = 0 when the ray-average risk premium RAR(, -) is constant. And under a U-
shape RAR(A, -), being in the region where the ray-average risk premium is declining (increasing) implies
Sq1 > 0 (< 0). Thus, an increasing ray-average risk premium implies that So; <0, i.e. that the scale of

operation provides a disincentive for risk diversification. We make the following conjecture:

Conjecture Coi: S < 0.

To motivate Cq;, consider situations where the risk premium takes the form
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Ou O || Yn
C —
Q1 )=p [YU Yi2 ] G Opn || Y| 27)
Gy On
where 3 > 0 reflects risk aversion and | 6,, ©,, ---| is the variance-covariance matrix of net returns

per unit of y; = (y11, Y12, ...). Under the expected utility model, the specification (27) corresponds to
situations of normal distributions and constant absolute risk aversion (see Freund; Pratt). More generally,
(27) applies as a “local measure” of the risk premium in the neighborhood of the riskless case (Pratt).
Under the specification (27), we have Sq;1 = Q“(y1, -) (1-K)/K < 0. Thus, under risk aversion, a local
measure of the risk premium implies Sq; < 0. The conjecture Cq; simply states that this local result may
hold in general. It indicates that scale effects have in general a negative effect on diversification
incentives.

The term S, in (25) and (26b) reflects a trans-ray convexity effect. To see that, note from (26b)

< concave
that Sq; 1= 0 if the function Q°(y;, -) is { linear  iny;."* Since the concavity/convexity is evaluated
> convex

along a hyperplane (where 2. ]]le yi*=Yy)), it follows from (26b) that the trans-ray convexity (trans-ray

concavity) of Q(yy, -) in y; implies that Sq, > 0 (< 0). We make the following conjecture:
Conjecture Cqo: Sqo > 0.

To motivate Cq,, consider the case where the risk premium takes the form (27). As noted above,
equation (27) provides at least a local measure of the risk premium (Pratt). Noting that Q°(yy, -) in (27) is
(trans-ray) convex in Y, it follows that S, > 0, implying that risk exposure provides an incentive to
diversify. The conjecture Cq, simply states that this local result may be expected to hold in general. In

other words, under Cqy, the risk premium Q°(y,, -) is expected to be trans-ray convex (along the

hyperplane satisfying > 11521 yi* =Yy)), implying that risk aversion generates incentives for diversification.
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Under conjectures Cq; and Cq,, the scale effect Sq; and the trans-ray convexity effect Sq, work
against each other: the latter in favor of diversification, the former against it. Which one dominates
depends on the nature of risk exposure. To illustrate, consider the specification (27) where the y,*’s
involve complete specialization (with y,' = (y11, 0,0...), yi* = (0, y15, 0, ...), etc.). This gives Sq; + Sg2 = -
B 2 2+ Oj ¥ij i~ Given B> 0 and Yy, > 0, it follows that (Sq; + Sq2) is positive (negative) when all
covariances oj are negative (positive). This gives the well-known result that, among risk-averse decision
makers, negative (positive) covariances tend to stimulate (dampen) the incentive to diversify (e.g.,
Markowitz; Tobin; Samuelson, 1967). Thus, the net effect of Sq; and Sq, on diversification incentives is
largely an empirical matter, but the result also shows that our state contingent approach extends previous
analyses of the role of risk aversion in diversification strategies.

Finally, the term S in (25) and (26¢) captures how the heterogeneity of income effects
contributes to the risk premium and the incentive to diversify.

6.3. Information effects

Proposition 3 shows that information effects contribute to economies of diversification if Sy =
Ve(y, a) - Zle VE(y¥, a¥) > 0, where Y, 11(<=1 y,* =y,. This corresponds to a scenario where the value of

information V is higher under an integrated firm than under K specialized firms.

Lemma 3: The information effect Sy in (22¢) can be written as

Sv=Syi + Svz2 + Svs, (28)
where Sy, = Vc(yl, (X,) -K VC(Y1/K, a)a (293)
sz = K Vc(y]/K, a) - Z kK:1 Vc(ylka a), (29b)
Svi=2 sz1 VC(Y1k, a) -2 sz1 VC(YIk, ak)- (29¢)

Lemma 3 decomposes the information effect Sy into three additive components: Sy, reflecting

scale effects (29a), Sy, reflecting trans-ray concavity effects (29b), and Sy; capturing income effects.
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First, consider Sy;. Again, note from (29a) that Sy; = 0 when V°(y;, a) is linear homogeneous in
1. Then, Sy; = 0 corresponds to situations where [V(A y;, a)/A] is a constant for all A > 0. Define the
ray-average value of information as RAV(A, y;) = V°(L y;, a)/A, where A is a positive scalar reflecting the
scale of period-one outputs. It follows that Sy; = 0 when the ray-average value of information RAV(A, -)
is constant. And under an inverted U-shape RAV(A, ), being in the region where the ray-average value of
information is increasing (decreasing) implies that Sy; > 0 (< 0), meaning that the scale of operation
strengthens (weakens) the information incentive for diversification. We make the following conjecture:
Conjecture Cy;: For each y; > 0, there is a scale Ao(Y;) > 0 such that the scale term is positive, Syi[A Y, -]

>0, for all A e (0, Ao(y1)].

Cy; states that the term Sy, is positive for small scales of operation, which means that the ray-
average value of information RAV(A, -) is increasing in the region of “small scales.” Similar to the
conjecture C,1, this conjecture can be motivated by the presence of fixed costs in learning activities. Since
Svi1 > 0 contributes to economies of diversification, it follows from the conjecture Cy; that scale effects
related to learning provide an incentive for small firms to diversify. It remains possible for “large firms”
to produce at a scale where Sy, = 0 (where the scale effect vanishes).

The term Sy, in (28) and (29b) reflects a trans-ray concavity effect. Note from (29b) that Sy,

> concave
=+ 0 if the function V°(yj, -) is { linear } iny;. Since the concavity/convexity is evaluated along a
< convex

hyperplane (where X kK:I yi*=v)), it follows from (29b) that the trans-ray concavity (trans-ray convexity)

of VE(yy, -) in y; implies that Sy, > 0 (< 0). Thus, a trans-ray concave (convex) value of information V*(yj,
-) would contribute positively (negatively) to economies of diversification. While identifying the exact
nature of such effects remains an empirical matter, we make the following conjecture:

Conjecture Cy,: Sy, <0.
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Cy; states that Sy, is likely to be negative. This is motivated as follows. In complex
environments, bounded rationality is expected to limit the ability of decision makers to process
information. Greater diversification typically exposes the decision maker to additional sources of risk,
implying more complex uncertainty. This suggests that, under bounded rationality, the value of
information would tend to be higher under specialized activities and would decline under increased
diversification, implying Sy, < 0. Under such a conjecture, the value of information V(y,, -) tends to be
trans-ray convex in Y, in which case information provides a disincentive for diversification. This issue is
further discussed in section 7.2.

Finally, the term Sy; in (28) and (29¢) captures how the heterogeneity of income effects shapes
the value of information and the incentive to diversify.

6.4. Combined effects
Using Lemma 1, 2 and 3, Propositions 3 generates our main result.

Proposition 4: Economies of diversification (diseconomies of diversification) exist if

S=S,+S,+8;>0(<0), (30)
with Sy =S + So1 + Svi, (31a)
S>=Sm+ Sq+ Sva, (31b)
S3 =Sz + Sqs + Svs, (31c)

where S, = CE‘(y), &) - K CE“(y,/K, o) represents a scale effect, S, = K CES(y/K, a) - X 1,

CE‘(y\", &) represents a trans-ray concavity effect, and S; =X | CE‘(y,*, a) - X, CE(y/", o)

is an income effect.

Proposition 4 decomposes the economies of diversification S into all its components. Along the
lines discussed in Lemma 1-3, equation (30) shows that S can be decomposed into three components: the
scale effect S, the trans-ray concavity effect S,, and the income effect S;. Equation (31a) shows that the
scale effect S, is the sum of the scale effects associated with expected profit Sy, risk Sq;, and information

Svi. This indicates that the scale of operation can affect the motivation for diversification in multiple
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ways: through their effects on expected profit, on the risk premium, as well as the value of information.
From conjectures C;;, Cq and Cy,, we expect S;; > 0 for small firms, Sq; <0, and Sy, > 0 for small
firms, which means that the net effect of scale on diversification incentives is indeterminate. For small
firms, if the terms S;; and Sq, are sufficiently large, then the scale of small firms would give them an
extra incentive to diversify. Alternatively, for large firms, if the terms S;; and Sq, are close to zero, then
Sq1 <0 would imply that scale gives large firms an extra incentive to specialize.

Similarly, equation (31b) implies that the trans-ray concavity effect S, is the sum of the
corresponding effects associated with expected profit Sy,, risk Sq,, and information Sy,. Again, this
means that the trans-ray concavity effects matter in multiple ways: through their effects on expected
profit, on the risk premium, as well as the value of information. While the role of trans-ray concavity (or
rather trans-ray convexity of the cost function) has been identified in the literature on scope economies
(e.g., Baumol; Baumol et al.), our analysis shows that such effects are relevant as well in assessing the
role of risk and information in diversification strategies. From conjectures Cq, and Cy», we expect Sq, >
0, and Sy, < 0 which means that the net effect of trans-ray convexity on diversification incentives is
indeterminate. If the term Sy, is sufficiently large, then the certainty equivalent CE(Y,, -) may be trans-ray
concave, implying a stronger incentive to diversify. This could occur in situations of extreme risk
aversion or strong negative covariance among distinct activities. Alternatively, if the term Sy, is negative
and sufficiently large, then the certainty equivalent CE(y,, -) may be trans-ray convex, implying an extra
incentive to specialize. Under bounded rationality, this would occur in situations where the decision
maker finds it difficult to obtain and/or process information.

Finally, equation (31c) shows that the income effects S; is the sum of the income effects
associated with expected profit S;;, risk Sq3, and information Sys. 13 Overall, Proposition 4 shows that the
economies of diversification haves nine components, each reflecting different effects (as discussed
above). Interestingly and conveniently, each effect takes a simple additive form in (30) and (31). The

broader economic significance of these results for diversification outcomes is discussed next.
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7. Economic Implications of an Integrated Approach to Diversification

Our economic model provides a nuanced picture of the potential factors influencing diversification
outcomes in an owner-operated firm. Previous analyses have typically focused on one of the three
components of scope, risk, and learning, and up to two of the effects. For example, the analysis of
economies of scope has focused on the scale effect S;; and trans-ray concavity/convexity effect S, (see
Baumol; Baumol et al.). Yet, we have identified (in Proposition 4) up to nine separate effects that can
influence the diversification decision of an owner-operator under uncertainty and learning. Thus, the
economics of diversification may often be more complex than previously assumed. This creates a
significant challenge to economic analysis. Among the nine factors, which ones are likely to be
economically important? The answer will depend both on the refinement of applied theoretical models
and corresponding empirical analysis. To the extent that the nature and magnitude of these nine effects
may vary depending on the firm, the industry and the economic context, their evaluation is in large part an
empirical issue. However, in section 6, we developed specific conjectures about several of these effects.
Below, we discuss the implications of these conjectures in the analysis of diversification strategies, with
applications to the fields of finance, development economics, agricultural economics, and
entrepreneurship. Since our analysis has stressed the presence of three possible rationales (scope, risk and
learning), we begin our discussion by considering the increased explanatory power obtained from linking
initially linking two of the three rationales at a time.

First, what new insights can be obtained from considering the joint effects of risk and learning on
diversification strategies? We find that our integrated approach can help to resolve important debates in
the financial economics and risk management literature. Consider again the “Samuelson puzzle” that,
under constant-relative risk aversion, age should not affect risk management/diversification decisions. If,
however, diversification choices are analyzed from the perspective of both learning and risk rationales,
then we obtain a new explanation for why entrepreneurs might find it optimal to undertake specialized
investments. It can be deduced from our conjecture Cy,: under bounded rationality, limitations in

information processing lead to the trans-ray convexity of the value of information V(yj, -), which provides
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extra incentives for specialization or away from diversification. Assume that the value of information is
more important for entrepreneurs (compared to other investors) as entrepreneurs have a superior ability to
process information (Zeckhauser). This implies that the portfolios of entrepreneurs are expected to be
more specialized (compared to other investors) because of a stronger trans-ray convexity effect. Thus,
introducing learning in the analysis of diversification provides a solution to the Samuelson puzzle: under
bounded rationality, learning may provide a disincentive for diversification and especially so for
entrepreneurs.

Learning can also help to explain the prevalence of under-diversification in portfolio selection.
Indeed, poorly-diversified portfolios are commonly observed in both developed countries (e.g., Blume
and Friend; Calvet et al.; Campbell; Curcuru et al.; Goetzmann and Kumar; Kelly) as well as in
developing countries (e.g., (Banerjee and Newman; Barrett et al.; Binswanger; Dercon; Eswaran and
Kotwal; Rosenzweig and Binswanger; Udry; Townsend; Zimmerman and Carter). Our analysis shows
that, under bounded rationality, learning provides incentives for specialization (from our conjecture Cy,).
This outcome is consistent with the evidence that links investor cognitive abilities, financial market
participation, and under—diversification decisions (e.g., Calvet et al.). Another explanation for under-
diversification in the activity portfolio of poor households in developing countries might be related to the
scale effect of risk Sq;. As stated in conjecture Cq;, small scales of operation are expected to have adverse
effects on the incentive to diversify (with S, < 0). We note that this effect is likely to become more
important under high levels of risk aversion. Many farms in developing countries are small and support
poor households who are likely to be highly risk averse. This empirical regularity suggests that the scale
effect related to risk, Sqi, could help to explain why small farms in developing countries often exhibit
relatively little diversification. Note that this effect of scale and the cost of risk aversion on diversification
choices appear to be new, and illustrates the usefulness of our decomposition of economies of

diversification.
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Consider next the interactions of scope and risk on diversification decisions. Agricultural contexts
are fraught with the presence of significant weather and market risks. This risk exposure has long been
linked to the fact that farms are typically diversified multi-output enterprises (Schultz). In the absence of
complete risk markets, risk-averse farmers have an incentive to diversify to reduce their risk exposure.
Introducing farmer’s risk management strategies helps to explain observed farm diversification choices
(e.g., Lin et al.). Yet, many farm activities also involve considerable potential for scope economies based
on ecological, logistical, and management considerations (Chavas; Chavas and Aliber; Fernandez-
Cornejo et al.). One example is given by crop rotations and the potential benefit of reducing pest damages
(by suppressing pest populations). Another rotation benefit is the productivity-enhancing effect between
nitrogen-using and nitrogen-fixing crops (e.g., corn-soybeans, corn-alfalfa). Scope economies in
agriculture are also likely on integrated livestock-crop operations. Grain and forage produced on the farm
can be fed to livestock that produce meat, milk, off-spring and manure, the last of which can be returned
as soil nutrients to improve land productivity for the next round of crops. In addition, management and
labor can be spread between crop and livestock activities across days and seasons, which may increase
management and labor productivity. Of course, there is also potential for these multiple farm activities to
be risk-mitigating. Hence, it is surprising to note that an integrated analysis of risk and scope effects in
agriculture has yet to be done. Our analysis suggests that proper attention given to scale and trans-ray
concavity/convexity effects, for both risk and scope, are likely to be crucial to understand optimal
diversification strategies in agriculture.

Another potentially fruitful link between scope and risk issues could emerge from a reappraisal of
the diversification issues surrounding seasonal migration, especially by rural people in developing
countries.'* Seasonal migration could have significant scope effects if the operator can realize better
returns on production, marketing, and investment activities by improving market access or the direct sale
of its products. Note that such scope effects may vary with the scale of the operation of the owner-
operator. Again, as suggested by our analysis, scale effects and trans-ray concavity/convexity effects

related to both risk and scope may be important aspects of seasonal migration decisions.
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Seasonal migration can also be used to illustrate the role played by our third rationale: learning.
Indeed, beyond generating higher expected returns and modifying risk exposure, seasonal migration
might also involve learning about technological options and market conditions. To the extent that the
value of information plays a role in diversification strategies, this suggests that learning would also affect
seasonal migration decisions. More specifically, our analysis indicates that both scale effects and trans-
ray convexity effects related to learning may also shape migration choice.

Finally, consider the case of entrepreneurship. It provides a good example where all three of our
rationales for diversification (expected profit, risk and learning) appear to be important. As such, our
integrated analysis provides new and useful insights into the economics of entrepreneurs. The role of risk
in entrepreneurship has been analyzed by Kihlstrom and Laffont. They point out that entrepreneurs would
self-select out of the least risk averse individuals in society, since this gives them some advantage in
facing entrepreneurial risk (because of a lower risk premium Q). However, to the extent that risk aversion
is commonly found among most decision makers, this feature may not explain why many entrepreneurs
are found to be overly specialized (e.g., Gentry and Hubbard; Goetzmann and Kumar; Moskowitz and
Vissing-Jorgensen).

Our analysis suggests that their over-specialization can be explained through the learning
dimension. Note that concern with the role of learning in entrepreneurial activities is not new. It dates
back to Schumpeter, but also to Schultz and Kirzner. What is new is that, even if entrepreneurs are seen as
having a superior ability to process information, such ability remains constrained by bounded rationality
issues. This is at the heart of our conjecture Cy; (stating that the value of information V(yy, -) is trans-ray
convex, implying an incentive to specialize), and is important for three reasons. First, bounded rationality
helps to explain why entrepreneurs tend to hold very specialized portfolios. Second, it suggests that
information effects may typically work against scope and risk effects in diversification decisions, which
indicates the need for an explicit analysis of the role of learning in investment decisions. Third, it puts the
role of entrepreneurs under a new light. While managing their risk exposure, entrepreneurs must integrate

knowledge (suggesting the importance of scope economies of management a la Lazear’s ‘jack-of-all-
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trades’ conceptualization) while dealing with their own bounded rationality (which likely pushes them
toward some specialization). The key to entrepreneurial success seems to involve finding proper tradeoffs
between these conflicting directions. Note that such tradeoffs likely vary across firms and industries
(depending on the quality of human capital and the complexity of the underlying technology). Yet,
understanding these tradeoffs should help to assess the relative economic efficiency of alternative patterns
of diversification or specialization. To the extent that entrepreneurship is one of the engines of
technological progress and economic growth, refined analyses of these tradeoffs should help to generate
new insights into the process of economic growth. In this context, our analysis of the role of expected
profit, risk and learning in diversification strategies (along with their scale and trans-ray convexity

components) should prove useful.

8. Concluding remarks

We have developed a model of economic behavior of a firm owner-manager under bounded
rationality, with implications for the assessment of diversification strategies. The model relies on a
general two-period model of an owner-managed firm facing uncertainty. The analysis is based on a
general state-contingent representation of uncertainty and learning. We analyze economies of
diversification based on a certainty equivalent, and investigate the role of expected profit, the risk
premium (measuring the cost of risk aversion), and the value of information associated with learning. The
influence of scale effects, “trans-ray concavity” effects, and income effects on economies of diversity are
examined in detail. We argue that, while scope economies and risk aversion can provide general
incentives for diversification, learning processes can have opposite effects. By identifying the role of
information and integrating these three rationales for diversification, our analysis provides new insights
on diversification and specialization choices with applications to a wide range of fields in economic
study.

Our analysis of a firm owner-manager could be extended in several directions. First, it would be

useful to extend it to more than two periods to deepen the dynamics. Second, introducing agency issues
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(such as separation of ownership and control or interactions in learning within a team) would be valuable
for understanding efficiency and other welfare concerns that are likely to arise with multiple agents under
bounded rationality, including for example the question of scope versus specialization in firms
undergoing mergers or acquisitions. Finally, further investigation of the implications of scope, risk and
information for economic efficiency in a general equilibrium context could enhance our models of
endogenous growth by focusing on the value of learning and specialization/diversification independent of

increasing returns (Schultz). These appear to be good topics for future research.
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Footnotes

' Note that Baumol et al. characterized economies of scope involving complete specialization schemes.
Below, we interpret economies of scope in a broader context that also allows for partial specialization
(as discussed by Evans and Heckman, Berger et al., Ferrier et al. and others).

? This has shed new lights on the existence, nature and role of synergies and complementarities between
production processes (e.g., Anbarci et al.; Antoneli; Arora and Gambardella; Baumol et al.; Desruelle
et al.; Milgrom and Roberts; Topkis).

3 While portfolio theory was originally developed in a mean-variance context (Markowitz; Tobin), it has
been extended to capture the role of skewness (e.g., Mitton and Vorkink). Also, while risk aversion
was first characterized in the context on the expected utility model (e.g., Arrow, 1965; Pratt),
extensions to non-expected utility models have been developed (e.g., Chambers and Quiggin; Chew;
Kahneman and Tversky; Machina; Quiggin).

* Risk management has provided useful insights into financial and investment decisions under
uncertainty. For example, the presence of significant weather and price risk in agriculture has helped
explain why most farms are multi-output enterprises (e.g., Lin et al.).

> As further discussed below, our conjecture that learning has adverse effects on the incentive to diversify
is supported by the empirical evidence that some investors under-diversify when they have superior
information (e.g., Goetzman and Kumar).

% Note that other explanations have been explored in the literature. They include the presence of liquidity
constraints and their effects on diversification choices (e.g., Gollier).

" Thus, wage income at time t is pr¢ Lyt = pre (T — Let — Ly). It follows that when L, is positive, the wage
rate pr, measures the unit opportunity cost of both L and L.

¥ In our notation, vectors are treated as column vectors. The superscript — denotes the transpose (e.g.,

implying that py," x; = z; Pxil Xi1)-

? How individuals process information is complex. While neuroscience is making significant progress on
this issue (e.g., Camerer et al.), developing a scientific understanding of how the brain processes
information and makes decisions remains a very challenging task. In this context, our state-contingent
approach is interpreted simply as a reduced-form representation of individual learning.

' In the case where probability assessment is not possible, note the analysis presented below can still hold
after replacing M(Y,, X,) by some measure of central tendency of discounted period-two profit.

" This is consistent with the characterization of the risk premium proposed by Arrow (1965) and Pratt
under the expected utility model. Equation (18) is a generalization of the Arrow-Pratt measure under
a state-contingent approach.

> concave
K
"2 Note that Q°(X 1, 6k i, a) =¢ X k=1 0, Q%(y,*, @) if the function Q%(y,, -)is { linear ¢ iny,, for
< convex

any 0 € [0, 1] satisfying Zle 0, = 1. Choosing 6, = 1/K and using X sz1 yi* =y, yield the desired
result.

13 Note that we do not have strong a priori information on the income effects S3, Sq3 and Sys. The exact
nature and magnitude of these effects seem to be largely an empirical matter.

' Rural-urban migration by family members could be treated analogously to the seasonal migration
example. However, household migration choices involve multiple agents and raise contracting and
learning dynamic issues that reach beyond the scope of the current model.
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