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Unbalanced Nested Component Error Model and the Value of Soil Insecticide and 

Bt Corn for Controlling Western Corn Rootworm 

 

 

Abstract 

We describe four recently developed panel data estimators for unbalanced and nested 

data, a common problem for economic and experimental data.  We estimate a western 

corn rootworm damage function with each estimator, including separate parameters for 

random effects from year, location, and experimental errors.  We then use each estimator 

to assess the cost of the western corn rootworm soybean variant and the net benefit of soil 

insecticide and Bt corn for controlling this pest.  At current prices, we find that soil 

insecticide generates a net loss ranging about $0.50-$3.25/ac, while Bt corn generates a 

net benefit ranging $2.50-$7.00/ac.   

 

Keywords: Diabrotica spp., panel data, pest damage function, random effects, root 

rating, soybean variant. 



Panel data methods have become increasingly popular for empirical research (Baltagi 

2001; Solon 1989; Wooldridge 2002).  Original panel data models assumed balanced 

panels, but in many empirical settings, cross sectional units are pooled over unequal time 

lengths, creating unbalanced (or incomplete) panels.  In response, unbalanced panel 

regression methods have been developed as useful tools for applied analysis (Baltagi and 

Chang 1994; Biørn 2004; Searle 1987; Wansbeek and Kapteyn 1989).  Following this 

work, many empirical studies have used unbalanced panel regression on a wide variety of 

topics (e.g., Druska and Horrace 2004; Evans 1998; Kniesner and Ziliak 2002).  

In addition to being unbalanced, panel data in many empirical applications also 

exhibit a nesting structure—for example, micro-level firm data may be grouped by 

industry or location.  In this case, controlling for group and sub-group effects requires a 

nested model.  Though many econometric studies have explored the unbalanced panel 

application, few have focused on models that are both unbalanced and nested, which 

would allow identification and estimation of group and sub-group effects not possible in 

pure unbalanced panel models.  Exceptions are Baltagi, Song, and Jung (2001) and 

Antweiler (2001), who developed single and double-nested unbalanced models 

respectively.  However, the empirical investigation of these estimators is limited to the 

analysis in these papers.  To help fill this void, we use Baltagi, Song, and Jung’s (2001) 

unbalanced single-nested component error model to estimate a pest damage function.   

Lichtenberg and Zilberman (1986) originally developed primal methods that use 

observed yield and pesticide application data to estimate production functions that 

implicitly incorporate pest damage functions.  Alternatively, the approach we use here, 

experimental data can be used to directly estimate a pest damage function that determines 
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yield loss as a function of plant damage or pest density (Hurley, Mitchell, and Rice 2004; 

Mitchell et al. 2002; Mitchell, Gray, and Steffey 2004).   

Experimental data are commonly nested—experiments are often conducted in 

different locations, with different hybrids, different pesticides, or different management 

regimes.  Furthermore, missing data that create unbalanced panels are common—

locations, hybrids, pesticides, and management regimes change over the course of the 

project, so that the number of replicates for each grouping variable is unequal.  Thus, the 

unbalanced nested component error model developed by Baltagi, Song, and Jung (2001) 

can be useful for such data to estimate nested random effects with unbalanced panels.   

Our first goal is to describe unbalanced nested panel data estimators and to 

illustrate their application by estimating a pest damage function.  With unbalanced data, 

OLS regression coefficient estimates are still unbiased and consistent, but their standard 

errors are biased (Moulton 1986), so that incorrect conclusions may result concerning 

model structure and risk due to pest damage.  Relative to OLS, the unbalanced nested 

component error model improves the accuracy of estimated standard errors, plus 

estimates the magnitude of random effects from factors such as location and year on the 

distribution of pest damage.   

Our second goal is to assess the use of the component error model for estimating 

and removing the effect of experimental errors when estimating a pest damage function 

with experimental data.  When using OLS to estimate a pest damage function with 

experimental data, a single error term is used that attributes all variability in yield loss to 

the pest.  However, the component error model estimates random location and year 

effects separate from effects due to experimental errors, measurement errors, and similar 

 2



factors.  As a result, after removing the effect of experimental errors, the damage function 

is still stochastic.  This ability to separately estimate and remove desired variance 

components is important when using an estimated damage function for economic analysis, 

especially when assessing changes in risk from a pest or pest control input.  Mitchell, 

Gray, and Steffey (2004) adapted a mixed distribution used for estimating technical 

efficiency to develop a composed error model for this same purpose.  Hence, the 

component error model described here is also an alternative to their method.   

We first present a general unbalanced nested random effects panel data model, 

and then describes four estimators for the regression coefficients and variance 

components based on the work of Baltagi, Song, and Jung (2001).  We then estimate a 

western corn rootworm damage function as an empirical application and use it to assess 

the cost of the western corn rootworm soybean variant in Illinois and the net benefit of 

soil insecticide and Bt corn for controlling this pest.  Finally, we compare this model to 

Mitchell, Gray and Steffey’s (2004) method for estimating pest damage functions.   

 
Unbalanced Nested Component Error Model 

Grouping variables for panel data analysis of data from field experiments are usually 

clear.  For example, data from field experiments can be grouped by year, location, crop, 

hybrid, or pesticide.  If the data can be grouped by more than one such index, they are 

nested.  For this description of the unbalanced nested error component model, the 

grouping variables are year t = 1 to T, location l = 1 to Lt ∀t, and replicate r = 1 to Rt ∀t.  

The data can be unbalanced in the index l and/or in the index r, i.e., have a different 

number of locations each year and/or a different number of replicates each year.  

Replication is part of standard experimental design, but field experiments often do not 
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have the same number of replicates across years and locations—replicates are lost 

because of weather events, accidents, and similar factors.  The data can also become 

unbalanced in the nested index l (here location) because of changes in funding, 

technology, or the availability of labor or land.   

The standard OLS regression model for estimating a pest damage function is: 

(1)  ytlr = xtlr′β + utlr,  

where ytlr is yield loss, xtlr is a K x 1 vector of regressors (e.g., pest population densities, 

pest damage measures), β is a K x 1 vector of regression coefficients to estimate, and utlr 

is an independent and identically distributed mean zero, variance  error.  Thus OLS 

aggregates all experimental errors into the error term u and estimates its variance . 

2σu

2σu

The nested error component model uses a component error for utlr so that  

(2)  ytlr = xtlr′β + μt + νtl + εtlr.  

Here, μt is the tth unobservable random year effect, νtl is the unobservable nested random 

effect of the lth location within the tth year, and εtlr is the random disturbance.  Each 

component of the error term is assumed to be independent and identically distributed, 

with zero mean and respective variances , , and .  Maximum likelihood 

estimation also assumes these components have a normal (Gaussian) distribution.  Note, 

μ

2
μσ

2
νσ

2
εσ

t and νtl can be observable fixed effects, but the fixed effect estimator performs poorly 

when the ratio of either component error variance to the experimental error variance 

( , ) is small (Baltagi 2001).   2 2
μ εσ /σ 2 2

ν εσ /σ
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Before describing three ANOVA estimators and maximum likelihood estimation 

of the regression coefficients and the variance components, we first reformulate the 

model in matrix notation.  The OLS regression model in equation (1) is  

(3)  y = Xβ + u,  

where y is a N x 1 vector of yield losses, X is a N x K matrix of regressors, β is a K x 1 

vector of regression coefficients, u is a N x 1 vector of disturbances, and N =  is 

the number of observations.  Following Baltagi, Song, and Jung (2001), write the 

component error term for equation (2) as:  

1

T
t tt

L R
=∑

(4)  u = Zμμ + Zνν + ε,   

where μ is a T x 1 vector of year effects, ν is a L x 1 vector of location effects, and ε is an 

N x 1 vector of errors, i.e., μ′ = (μ1, …, μT), ν′ = 
111 1( , , , , )

TL TLν ν νK K , and 

, and L = 
1111 11' ( , , , , )

T TR TL R=ε ε ε εK K
1

T
tt

L
=∑ .  Also, Zμ = diag(

t tL R⊗l l ) and Zν = 

diag(
t tL R⊗I l ), where 

tLl  and are L
tRl t x 1 and Rt x 1 vectors of ones, 

tLI  is a Lt x Lt 

identity matrix, ⊗ is the Kronecker product, diag(
t tL R⊗l l ) is a block diagonal matrix 

with sub-matrices 
1 1

,...,
T TL R L⊗ ⊗l l l lR t

 on its diagonal, and diag(
tL R⊗I l ) is a block 

diagonal matrix with sub-matrices 
1 1

,...,
T TL R L R⊗ ⊗I l I l  on its diagonal.  Thus, Zμ and Zν 

are N x T and N x L block diagonal matrices, each with sub-vectors of ones of different 

lengths on their diagonals.   

As Baltagi, Song, and Jung (2001) report, with this reformulation, the disturbance 

variance-covariance matrix E[uu′] is  

(5)  Ω = ,  2 2 2
μ ν ε[σ ( ) σ ( ) σ ( )

t t t t t tL R L R L Rdiag ⊗ + ⊗ + ⊗J J I J I I ]
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where '
t t tL L L=J l l  and  are L'

t tR R R=J l l
t

t x Lt and Rt x Rt square matrices of ones and Ω is 

a block diagonal matrix with tth block Λt =  +  +  

∀ t = 1 to T.  Baltagi, Song, and Jung (2001) decompose Λ

2
μσ ( )

t tL R⊗J J 2
νσ ( )

t tL R⊗I J 2
εσ ( )

t tL R⊗I I

t as t =Λ 2
μσ ( )

t tt L RLR ⊗ +J J  

2 2
ν εσ ( ) σ (

t t tt L R L RR ⊗ + ⊗I J I I )
t

, where /
t tL L L=J J t , and /

t tR R tR=J J .  Substitute 

t t tL L= −E I JL  and 
t tR R= −E I J

tR

ε

μ νσ σt tLR R+ + 1 t tt L R= ⊗E

 into this equation and combine equivalent terms to 

decompose Λt as Λt = λ1tQ1t + λ2tQ2t + λ3tQ3t, where λ1t = , λ2
εσ 2t = , λ2 2

νσ σtR + 3t = 

, Q I , 2 2 2
εσ 2 tt L= ⊗Q E J

tR , and 3 t tt L= ⊗Q J JR .   

Using this decomposition and definitions, Baltagi, Song, and Jong (2001) write: 

(6)  Ω–1 = diag[λ1t
–1Q1t + λ2t

–1Q2t + λ3t
–1Q3t +],  

and, defining θ1t = 1 – σε/(λ2t)0.5 and θ2t = σε/(λ2t)0.5 – σε/(λ3t)0.5, they also write:   

(7)  σεΩ–1/2 = 1 2[ ] [θ ( )] [θ ( )
t t t t t tL R t L R t L Rdiag diag diag⊗ − ⊗ − ⊗I I I J J J ] .   

Equation (7) allows generalized least squares (GLS) estimation of regression coefficients 

by pre-multiplying equation (3) by σεΩ–1/2 and using OLS.  The variance of the estimated 

coefficients follows the GLS rule, so the variance-covariance matrix is (X′Ω–1X)–1.  

Lastly, define the following N x N block diagonal matrices for later use:  

(8)  Qi = diag(Qit), i = 1 to 3. 

The OLS estimator 1ˆ ( ' ) 'OLS
−=β X X X y  is still unbiased and consistent in 

unbalanced nested panel regression if the variance components are positive, but its 

standard errors are biased (Moulton 1986).  Denote OLS residuals as .  

Obtain the within (fixed effects) estimator by pre-multiplying equation (3) by Q

ˆ OLS =u ˆ
OLS−y Xβ

1 and 

then using OLS.  Pre-multiplying by Q1 removes μt and νtl whether they are fixed or 
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random effects, since Q1u = Q1(Zμμ + Zνν + ε) = Q1ε.  Thus , the K – 1 vector of 

within coefficient estimates without the intercept, is  

ˆ
wtnβ

(9)  1
1 1

ˆ ( ' ) 'wtn s s s
−=β X Q X X Q y ,  

where Xs is the N x K – 1 matrix of regressors without the intercept.  Within residuals are  

(10)  ,  ˆˆˆ αwtn wtn N s wtn= − −u y l X β

where ˆα̂ swtn wtn= −y X β  is the within intercept estimate (bars indicate averaging) and lN is 

a N x 1 vector of ones.   

 
Unbalanced Nested Component Error Model Estimators 

This section reports three ANOVA estimators and a maximum likelihood estimator for 

the regression coefficients β and the variance components , , and .  Baltagi, 

Yong, and Jung (2001) report derivations for each, so we only report formulas for use by 

practitioners.  The ANOVA estimators are termed modified estimators because each 

extends a balanced panel estimator to the unbalanced case.  Each estimator inserts 

variance components estimates into the variance-covariance matrix and uses GLS to 

estimate regression coefficients.   

2
μσ

2
νσ

2
εσ

 
ANOVA Estimators 

The modified Wansbeek and Kapteyn (1989) (WK) estimators are derived by equating 

transformations of the within residuals (  for i = 1 to 3) to their expected 

values and solving for the variance components, which gives:  

ˆ ˆ'wtn i wtnu Q u

(11a) , 2
ε 1ˆ ˆ ˆσ ' /(wtn wtn N L K= −u Q u 1)− +

2 −(11b) , ( )2 1
ν 2 1 2 εˆ ˆ ˆ ˆσ ' {( ' ) ( ' )}σ /( )wtn wtn s s s sL T tr N R−= − + −u Q u X Q X X Q X
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(11c)  (2 1
μ 3 1ˆ ˆ ˆσ ' [ 1 {( ' ) 'wtn wtn s s s sT tr −= − − +u Q u X Q X X Q X3 }

    ) ( )1 2 2 2 2
1 ε ν1 1

ˆ ˆ{( ' ) ' }]σ [ / ]σ / /T T
s s s N s t tt t

tr R L R N N L R N−
= =

− − − −∑ ∑X Q X X J X 2 , 

where JN = lNlN′ is an N x N matrix of ones, /N N N=J J , and R = 
1

T
tt

R
=∑ . 

Substitute these variance components in the required equations to obtain σεΩ–1/2 

in equation (7), then the GLS estimator with the modified WK variance components is  

(12)  1/ 2 1/ 2 1 1/ 2
ε ε ε

ˆ ˆ ˆ ˆ( '(σ ) '(σ ) ) '(σ ) 'WK
− − − −=β X Ω Ω X X Ω y .   

Use equation (6) for Ω–1, or use Ω–1 = ( )( ).  Standard errors are 

the square root of the diagonal elements of the variance-covariance matrix (X′Ω

1/ 2
ε εˆ ˆσ /σ−Ω 1/ 2

εσ̂ /σ−Ω εˆ

ˆ i

1)− +

–1X)–1.   

The modified Swamy and Arora (1972) (SA) estimator uses residuals from three 

regressions.  Specifically, multiply equation (3) by Qi and obtain OLS residuals  for i = 

1 to 3.  Again, transformations of these residuals (  for i = 1 to 3) are equated to 

their expected values and solved for the variance components, which gives: 

ˆ iu

ˆ 'i iu Q u

(13a) , 2
ε 1ˆ ˆ ˆσ ' /(wtn wtn N L K= −u Q u

(13b) 
2

2 2 2 2 ε
ν 1

2 2

ˆ ˆ ˆ' ( 1)σσ̂
{( ' ' )( ' ) }s s s

L T K
N R tr −

− − − +
=

− − v v

u Q u
X Z Z Q X X Q Xs

, 

(13c) 
2 1

2 3 3 3 ε 3 3 ν
μ 1

3

ˆ ˆ ˆ ˆ' ( )σ [ {[ ' ' )( ' ) }]σσ̂
{( ' ' )( ' ) }

T K R tr
N tr

−

−

− − − −
=

−
v v

μ μ

u Q u X Z Z Q X X Q X
X Z Z X X Q X

2

.   

Because  = , the SA estimator for  is the same as for the WK estimator.  Also, 

the same GLS procedure gives the regression coefficients  and their standard errors.   

1û ˆ wtnu 2
εσ

ˆ
SAβ

This modification of the Henderson Method III estimator developed by Fuller and 

Battese (1973) (HFB), uses three different residuals, specifically , , and , ˆ wtnu 2u% ˆ OLSu
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where  are the OLS residuals after pre-multiplying equation (3) by (Q2u% 1 + Q2).  Again, 

transformations of these residuals are equated to their expected values and solved for the 

variance components, which gives: 

(14a) , 2
ε 1ˆ ˆ ˆσ ' /(wtn wtn N L K= −u Q u 1)− +

(14b) 
2

2 2 2 ε
ν 1

2 1 2

ˆ' ( 1)σσ̂
{( ' ' )[ '( ) ] }s s s

N T K
N R tr −

− − − +
=

− − +v v

u u
X Z Z Q X X Q Q X
% %

s

, 

(14c) 
2 1

2 ε ν
μ 1

ˆ ˆ' ( )σ { [( ' ' )( ' ) ]}σσ
{( ' ' )( ' ) }

OLS OLS N K N tr
N tr

−

−

− − − −
=

−
ν ν

μ μ

u u X Z Z X X X
X Z Z X X X

2

   

Again,  is the same as for the WK and SA estimators and the same GLS procedure 

gives the regression coefficients 

2
εσ̂

ˆ
HFBβ  and their standard errors.   

 
Maximum Likelihood Estimation 

Following Baltagi, Song, and Jung (2001), define  and the variance ratios 

 and .  Rearranging equation (5) with these definitions gives 

 diag[Q

2
εσ=Ω Σ

=

2 2
1 μ ερ =σ /σ 2 2

2 ν ερ =σ /σ

2
ε/ σ=Σ Ω 1t + (Rtρ2 + 1)Q2t + (2Rtρ1 + Rtρ2 + 1)Q3t], which implies  

(15)  1
1 2

2 1 2

1 1[ ]
( ρ 1) (2 ρ ρ 1)t t

t t t

diag
R R R

− = + +
+ + +

Σ Q Q 3tQ .   

The log-likelihood function after removing constants is (Baltagi, Song, and Jung 2001): 

(16) 2
ε 1 2

1

1ln ( ) lnσ ( ρ ρ 1)
2 2

T

t t t
t

NL L R
=

⋅ = − − + +∑ R  

               1 2
2 ε

1

1 1( 1) ln( ρ 1) ' / 2σ
2 2

T

t t
t

L R −

=

− − + −∑ u Σ u .   

Solving first order conditions for β and  as functions of ρ2
εσ 1 and ρ2 gives: 

 9



(17a)  , 1 1 1ˆ ( ' ) 'ML
− − −=β X Σ X X Σ y

(17b)  .   2 1
ε

ˆ ˆσ̂ ( ) ' ( )ML ML N−= − −y Xβ Σ y Xβ /

First order conditions for ρ1 and ρ2 then implicitly define ρ1 and ρ2, given β and : 2
εσ

(18a)  1 1
2

1 ε

ln ( ) 1 1( ' ) ( ) ' ' (
ρ 2 2σ
L tr − −∂ ⋅

= − + − −
∂ μ μ μ μZ Σ Z 1 )−y Xβ Σ Z Z Σ y Xβ  = 0, 

(18b)  1 1
2

2 ε

ln ( ) 1 1( ' ) ( ) ' ' (
ρ 2 2σ
L tr − −∂ ⋅

= − + − −
∂ v v v vZ Σ Z 1 )−y Xβ Σ Z Z Σ y Xβ  = 0.   

Solving first order conditions (18) for the variance ratios ρ1 and ρ2 requires a numerical 

method since no analytical solution exists.  We summarize the Fisher scoring procedure 

described by Baltagi, Song, and Jung (2001).   

Beginning with initial values of and , calculate updated values as follows: 1ρ̂ 2ρ̂

(19)  

12 2

2 2
1 1 21 1 1

2 2
2 21

2
21 2 2

ln ( ) ln ( ) ln ( )E E
ρ ρ ρˆ ˆρ ρ ρ

ˆ ˆρ ρ ln ( )ln ( ) ln ( )E E ρρ ρ ρ
j j

jj

L L L

LL L

−

+

⎡ ⎤⎡ ⎤ ⎡ ⎤∂ ⋅ ∂ ⋅ ∂ ⋅⎡ ⎤− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ∂ ⋅⎢ ⎥⎡ ⎤ ⎡ ⎤∂ ⋅ ∂ ⋅⎣ ⎦ ⎣ ⎦ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ∂∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

.   

The subscript j denotes the iteration.  Equations (18) give the elements of the gradient 

vector using equations (17) for ˆ
MLβ  and .  The elements of the information matrix are: 2

εσ̂

(20a)  
22

2 2 2
11 2

(2 )ln ( ) 1E
ρ 2 (1 ρ 2ρ )

T
t

t t t

RL

1R R=

⎡ ⎤∂ ⋅
− =⎢ ⎥∂ + +⎣ ⎦

∑ , 

(20b)  
22

2
11 2 2 1

2ln ( ) 1E
ρ ρ 2 (1 ρ 2ρ )

T
t

t t t

RL
R R=

⎡ ⎤∂ ⋅
− =⎢ ⎥∂ + +⎣ ⎦

∑ , 

(20c)  
2 22

2 2 2 2
1 12 2 2

ln ( ) 1 1E
ρ 2 (1 ρ ) 2 (1 ρ 2ρ )

T T
t t

t tt t

R RL

1 tR R R= =

⎡ ⎤∂ ⋅
− = +⎢ ⎥∂ + + +⎣ ⎦

∑ ∑ .   
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Iteration continues until the values of and  converge, then the associated 1ρ̂ 2ρ̂ ˆ
MLβ  and 

 can be determined.  Standard errors for the regression coefficients are the square root 

of the diagonal elements of the variance-covariance matrix (X′Σ

2
εσ̂

2
εσ̂

–1X)–1.   

 
Empirical Application 

As an empirical illustration, we estimate a pest damage function for the western corn 

rootworm.  To illustrate the economic relevance of differences between estimators, we 

use each to assess the cost of the western corn rootworm soybean variant in first-year 

corn in Illinois and the value of soil insecticide and Bt corn for corn rootworm control.   

Corn rootworms, a group of related insect species, are a serious corn pest, with 

yield losses and control costs estimated to exceed $1 billion annually in the U.S. (Metcalf 

1986).  The most problematic species are the western and the northern corn rootworm, 

though other species are important in some areas.  Corn rootworm larvae hatch in the soil 

during the spring and feed almost exclusively on corn roots.  Adults emerge from the soil 

in summer and lay eggs in the soil to continue the cycle (Levine and Oloumi-Sadeghi 

1991).  Larval feeding causes yield loss by disrupting plant functions and making plants 

more likely to lodge (Gray and Steffey 1998).  Because corn rootworms typically lay 

eggs only in existing corn fields, crop rotation is an effective and widely used control 

strategy in much of the Corn Belt.  For non-rotated corn, the most common control 

strategies are soil insecticides applied at planting to control larvae and aerial applications 

in summer to control adults (Fernandez-Cornejo and Jans 1999; Wilson et al. 2005).   

Recently, the western corn rootworm soybean variant developed resistance to 

crop rotation by also laying eggs in soybeans and other crops (Levine et al. 2002).  Where 
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a corn-soybean rotation is common, eggs laid in soybeans hatch the next spring in corn 

and larvae cause yield loss.  The soybean variant first appeared along the Illinois-Indiana 

border in the mid-1990’s and has spread through the eastern Corn Belt (Onstad et al. 

1999).  As a result, more than one third of Illinois and Indiana farmers report using 

insecticide on first year corn to control rootworm larvae (Wilson et al. 2005).   

Bt corn for rootworm larval control was first available in 2003 and sales should 

continue to grow because of widespread economic damage from corn rootworm and the 

success of other Bt corn products (Wilson et al. 2005).  However, as with all new 

technologies, its value is somewhat unknown during its initial release.  Thus, we illustrate 

the economic implications of differences between the panel data estimators by using each 

to assess the value of soil insecticide and Bt corn for rootworm control in first year corn.   

 
Estimation Data and Results  

We use the component error model to estimate the proportional yield loss as a function of 

the root rating difference, just as Mitchell, Gray, and Steffey (2004).  Data were from 

field experiments conducted near Urbana and DeKalb, Illinois in 1994-1996 (Gray and 

Steffey 1998).  Whole plot treatments were 6-10 replicates for several commonly grown 

hybrids.  Sub-plot treatments were two rows treated with the soil insecticide Counter® 

and two untreated rows.  Collected data for each sub-plot included machine-harvested 

yield and the average root rating for five plants.  Root ratings are an index of root injury 

used to assess root injury from rootworms.  For the 1 to 6 scale of Hills and Peters 

(1971), the larger the root rating, the greater the damage.  A 1 indicates no rootworm 

feeding injury and a 6 indicates three or more root nodes completely destroyed.  The final 
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data are 574 observations of the yield and average root rating with soil insecticide and 

with no rootworm control, respectively denoted Ysi, Rsi, Yno, and Rno.   

Following Mitchell, Gray, and Steffey (2004), the dependent variable is 

proportional yield loss y = (Yt – Yc)/Yt and the independent variable is the root rating 

difference Xs = Rno – Rsi.  These observations then become the elements of the 574 x 1 

column vectors y and Xs.  The regressor matrix X has a column of ones for the intercept 

and the column vector Xs.  Nesting indices are year t = 1 to 3 (T = 3) and location l = 1 to 

2 (L = 2).  Because preliminary data analysis found no significant hybrid effect (also 

reported by Gray and Steffey (1998)), the hybrid index was dropped from the nesting 

structure.  The number of replicates each year is 108, 113, and 66 for 1994, 1995, and 

1996 respectively, so the unbalanced pattern is substantial.  Gauss 6.0 was used to 

perform all matrix calculations needed for estimation.   

Table 1 reports estimation results for each estimator.  For the intercept, the panel 

data estimators are fairly similar (between 0.103 and 0.111), while the OLS estimate is 

noticeably different (0.0225).  The same pattern occurs for the slope estimates and the 

experimental error , but for the year and location effects, the panel data estimators 

vary greatly.  None of the intercepts is significant at the 5% level for any estimator, 

which makes biological sense.  When the root rating difference is zero, the damage 

measure is the same for both plots, so that both should have the same expected yield, 

implying a zero intercept.  Hence, we estimate the models imposing a zero intercept.   

2
εσ

Table 2 reports estimation results without an intercept.  The OLS slope estimate 

again differs noticeably from the panel data estimators, but the SA estimator also differs 

from the other panel data estimators.  For the experimental error , all panel data 2
εσ
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estimators agree and differ noticeably from the OLS estimate.  Again, the estimated year 

and location effects vary among all estimators.   

These differences between the ANOVA and ML estimates are consistent with the 

Monte Carlo findings of Baltagi, Song, and Jung (2001).  In severely unbalanced panels, 

they found that ANOVA estimators compared well with ML estimation of the regression 

coefficients, but perform poorly for estimating the variance components.  Hence, we give 

the most credence to the ML estimates.  Our results also indicate that the SA estimator 

may perform poorly for estimating regression coefficients when no intercept is used, 

though additional analysis is needed for a more definitive conclusion.  Overall, these 

results imply that expected yield decreases about 5.5% for each one unit increase in the 

root rating.  However, substantial variability occurs around this expected decrease due to 

random year and location effects.  The economic relevance of these random effects and 

of the differences between the estimators remains to be examined.   

 
Empirical Model 

To assess the cost of the western corn rootworm soybean variant and the value of soil 

insecticide and Bt corn for rootworm control with each damage model in table 2, we 

develop a model of an Illinois corn farmer facing random loss from the soybean variant.  

Farmer profit ($/ac) with control technology i is πi = py(1 – λi) – Ci, where p is the corn 

price ($/bu), y is random pest-free yield (bu/ac), λi is random proportional yield loss from 

rootworm damage with technology i, and Ci is the cost of production ($/ac) using 

technology i, and i = {no, si, bt} for no control, soil insecticide, and Bt corn.  To maintain 

focus on yield risk, both p and C are non-random.  The 2004 marketing year average corn 

price received in Illinois was $2.51/bu, so p is $2.50/bu (Schnitkey et al. 2005).  2004 
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crop budgets report $318/ac as the non-land cost of production for corn in northern 

Illinois, including insecticide costs (Lattz 2004).  The cost for soil insecticides in 2004 

ranged $16/ac to $18/ac, while the cost for Bt corn was around $20/ac.  Thus, technology 

specific costs of production are Cno = $300/ac, Csi = $318/ac, and Cbt = $320/ac.   

A beta density is used for pest-free yield, a common assumption for crop yields 

(see Goodwin and Ker’s (2002) review).  Using USDA-NASS (2005) county average 

yields from 1980-2004, the 2004 linear trend yield for Iroquois County in northeastern 

Illinois is 159.7 bu/ac.  Hence, mean yield is 160 bu/ac.  The yield coefficient of variation 

is 20%, which Coble, Heifner, and Zuniga (2002) report as the yield coefficient of 

variation for Iroquois County based on crop insurance data.  Following Babcock, Hart 

and Hayes (2004), minimum yield is 32 bu/ac (the mean minus four standard deviations) 

and maximum yield is 224 bu/ac (the mean plus two standard deviations).   

As an approximation of risk preferences, we use negative-exponential utility.  

Following Babcock, Choi and Feinerman (1993), the coefficient of absolute risk aversion 

is chosen so the implied risk premium is a reasonable percentage of the profit standard 

deviation.  We use a 20% and a 40% risk premium for moderate and high risk aversion, 

which here imply coefficients of absolute risk aversion of 0.005346 and 0.01171.   

The results in table 2 are used to determine random proportional yield loss λ as a 

function of the root rating, which requires root ratings with no control and when using a 

soil insecticide and Bt corn.  We use Mitchell, Gray, and Steffey’s (2004) hierarchical 

model for the root rating with no control (Rno).  Specifically, Rno has a beta distribution 

with a minimum of 1, a maximum of 6, and with shape parameters α and ω that have a 
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bivariate normal distribution with means and variance-covariance matrix as reported by 

Mitchell, Gray, and Steffey (2004, p. 338).   

We updated Mitchell, Gray and Steffey’s (2004) model for the distribution of the 

root rating with a soil insecticide (Rsi) conditional on Rno using the additional data 

available for this study and new functional forms.  Specifically, Rsi has a beta distribution 

with a minimum of 1, a maximum of Rno, a mean of 1 + d1(1 – exp(–d2(Rno – 1)), and a 

standard deviation of s1(1 – exp(–s2(Rno – 1)).  Maximum likelihood parameter estimates 

with standard errors in parentheses are d1 = 1.467 (0.0496), d2 = 0.579 (0.0508), s1 = 

0.375 (0.0251), and s2 = 0.661(0.124).   

We used Bt corn field trial data to estimate a similar model for the distribution of 

the Bt corn root rating (Rbt) conditional on Rno, but functional forms were simpler since 

less data were available.  Specifically, Rbt has a beta distribution with a minimum of 1, a 

maximum of Rno, a mean of 1 + d1(Rno – 1), and a standard deviation of s1(Rno – 1).  

Available data were 31 observations of the average root rating with no control and with 

Bt corn from field experiments conducted in 1999 and 2000 in several states, plus six 

observations from Illinois field trials conducted in 2003 and 2004 (Estes 2004; Mitchell 

2002; Steffey 2003).  Maximum likelihood parameter estimates with standard errors in 

parentheses are d1 = 0.270 (0.0296) and s1 = 0.182 (0.0196).   

Closed form expressions for expected profit and expected utility do not exist for 

the specified model.  As a result, a C++ program uses algorithms from Press et al. (1992) 

to draw random variables from required distributions and solve integrals using Monte 

Carlo integration (Greene 1997, p. 192-195).  First α and ω are drawn from the specified 

bivariate normal distribution, and then each α and ω pair is used to parameterize a beta 
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density to draw Rno.  Next, each Rno is used to parameterize beta densities to draw Rsi and 

Rbt.  Since the minimum root rating is one, the root rating difference for technology i is Ri 

– 1 and yield loss for technology i is λi = β1(Ri – 1), where β1 is the slope coefficient 

reported in table 2.  Pest-free yield y is drawn from the specified beta density.  Random 

location and year effects are drawn from independent normal densities with mean zero 

and standard deviations reported in table 2.  Next, profit and utility are determined for 

each draw.  Finally, average profit and average utility for each control technology is the 

Monte Carlo estimate of expected profit and expected utility.  To ensure that estimates 

had stabilized, 100,000 random draws were used for each random variable.  

 
Empirical Results 

Table 3 reports the expected loss and the loss standard deviation due to soybean variant 

damage in first year corn using each damage model.  Just as the slope coefficients in table 

2, expected loss with OLS is more than twice the expected loss with the WK, HFB and 

ML estimates, while expected loss with the SA estimates is almost twice as large.  The 

loss standard deviations in table 3 follow the pattern of the sum of the year and location 

effects in table 2.  The sum of the year and location effects for the WK estimates is the 

largest, even exceeding the OLS estimated variance, while the same sum is the smallest 

for the SA estimates.   

To measure the cost of the soybean variant in Illinois, table 3 also reports the 

decrease in expected profit and certainty equivalents relative to no damage.  Results for 

the different models follow the pattern of expected losses.  The OLS estimates are around 

twice the WK, HFB, and ML estimates and the SA estimates also greatly exceed these 

three.  Following Baltagi, Song, and Jung (2001) and giving most credence to the ML 
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estimates, the cost of the western corn rootworm soybean variant is around $37-$48/ac 

depending on farmer risk aversion.  Estimates with the WK and HFB estimators are only 

slightly larger, while estimates with the SA and OLS estimators are about twice as large.   

Negative values in table 3 for the decease in the profit standard deviation imply 

that the soybean variant increases profit variance.  Pest damage increases or decreases 

yield variance depending on how random pest damage enters the production function and 

empirical cases of pest damage increasing yield variance have been reported (Feder 1979; 

Horowitz and Lichtenberg 1993, 1994; Mitchell et al. 2002).  As a result, the cost of the 

soybean variant increases as farmer risk aversion increases.   

Table 4 reports the net benefit of soil insecticide and Bt corn for controlling the 

western corn rootworm soybean variant in first year corn.  With the WK, HFB, and ML 

estimates, results for the risk neutral case indicate that soil insecticide at a cost of $18/ac 

is approximately a break even control technology.  As risk aversion increases, the net 

benefit decreases so that, for the highly risk averse case, the net benefit is a loss of about 

$2-$3/ac for the WK, HFB, and ML estimates.  Because losses without control are much 

larger with the OLS and SA estimates, the net benefit of soil insecticide is much larger.   

The net benefit for Bt corn for the WK, HFB, and ML estimates ranges $7-$8/ac 

for the risk neutral case and falls to $2.50-$4/ac for the highly risk averse case.  The net 

benefit for the OLS and SA estimates is again much larger.  Following Baltagi, Song, and 

Jung (2001) and using the ML estimates, results indicate that, at a cost of $20/ac, Bt corn 

generates a net benefit of about $2.50-$7/ac for controlling the soybean variant in first-

year corn in northeastern Illinois.  Because control costs are non-random and a negative 

exponential utility function is used, adjusting net benefits for different cost assumptions 
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requires adding the net decrease in the cost to the table 4 results.  For example, if Bt corn 

cost $19/ac instead of $20/ac, the net benefits for Bt corn in table 4 increase by $1/ac.   

 
Comparison with Mitchell, Gray, and Steffey (2004) 

Mitchell, Gray, and Steffey (2004) estimated expected loss from the soybean variant 

using data only from Urbana, while we used data from both Urbana and DeKalb.  They 

report an expected loss of 0.114 with a standard deviation of 0.117.  Our comparable 

results are 0.092 and 0.167 for the ML estimates in table 3.  The difference in expected 

loss largely results from different slope coefficient estimates (0.114 versus 0.0548).  This 

coefficient difference is not entirely from using different data, since OLS slope estimates 

are similar for both studies (0.127 versus 0.114), implying that the data are similar.  

Rather, it likely results because Mitchell, Gray and Steffey’s method pools the data and 

ignores year (and location) effects.   

Mitchell, Gray, and Steffey’s (2004) method has two advantages.  It estimates and 

removes effects from experimental errors, plus the resulting damage function restricts 

proportional losses to range within the logical limits of zero and one, even if the data 

contain negative losses due to experimental errors.  Negative losses imply that yield 

without control exceeds yield with a soil insecticide or Bt corn.  Since the soil insecticide 

has no reported phototoxic effects, nor has a “yield drag” been confirmed for Bt corn, 

negative losses only occur if experimental errors overwhelm the treatment effect.  

This panel data model not only estimates and removes random effects from 

experimental errors, but also estimates separate random year and location effects that 

Mitchell, Gray, and Steffey’s (2004) model aggregates into a single error.  However, this 

panel data model does not limit proportional losses to range between zero and one as 
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Mitchell, Gray, and Steffey’s (2004) model does.  As a result, our random draws of yield 

loss for the estimates in table 2 all have minimums less than zero, but Mitchell, Gray, and 

Steffey’s (2004) draws do not.  We could censor our random draws at zero, but censoring 

is inconsistent with the estimated model and would greatly change our results, since the 

probability of a negative loss ranges 17-46% for these models.  Modifying the panel data 

model to include censored random effects or non-normal errors is needed to eliminate 

negative random draws.  Regardless, because our estimators do not limit losses to range 

between zero and one, it is not surprising that the loss standard deviations in table 3 

exceed Mitchell, Gray and Steffey’s standard deviation of 0.117.   

One important weakness of Baltagi, Song, and Jung’s (2001) model needs to be 

highlighted.  The model indexes the number of replicates only by the year t and not also 

by the location l, i.e., the number of replicates at each location is Rt, not Rtl.  As a result, 

the number of replicates for each location must be the same each year.  Thus, the location 

with the least number of replicates in a year determines how many replicates all locations 

can have that year—locations with more replicates must drop observations.  For the data 

here, we had to drop 7 observations from Urbana in 1994, 4 from DeKalb in 1995, and 36 

from Urbana in 1996.  For this analysis, we randomly dropped different observations 15 

times and estimated all models.  The performance patterns of the estimators remained the 

same, but the magnitude of the parameter estimates varied.  The results in tables 1 and 2 

are for the data set that gave parameter estimates closest to the average over all data sets.  

Estimates did not vary tremendously between data sets, e.g., the coefficient of variation 

for all ML estimates was less than 5% and the range of ML slope estimates was 0.0505 to 
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0.0573.  Nevertheless, an improved model is needed that does not require dropping 

observations when data have a different number of replicates for each location and year.  

 
Conclusion 

Panel data methods have advanced to address unbalanced and nested data, a common 

problem for economic and experimental data.  We described four panel data estimators 

developed by Baltagi, Song, and Jung (2001) and used each to estimate a western corn 

rootworm damage function.  The description and illustration are meant to introduce the 

estimators to agricultural economists, to help practitioners assess their empirical 

performance, and to encourage development of new applications.  As a secondary goal, 

the panel data model is explored as an alternative to Mitchell, Gray, and Steffey’s (2004) 

method for estimating pest damage functions.   

Using Monte Carlo analysis, Baltagi, Song and Jung (2001) found that the three 

ANOVA estimators and the ML estimator performed well for estimating regression 

coefficients, but that the ML estimator performed best for estimating the variance 

components.  In our empirical analysis, two of the ANOVA estimators (WK and HFB) 

and the ML estimators provided comparable estimates for the regression coefficients, but 

the SA estimator gave a noticeably different estimate when an intercept term was not 

included, a case Baltagi, Song, and Jung did not investigate.  For the variance 

components, all estimates differed from each other, but following Baltagi, Song, and Jung 

(2001), we give more credibility to the ML estimates.   

We developed an empirical model for Iroquois County in northeastern Illinois to 

investigate the economic relevance of differences among estimators.  We use each to 

estimate the cost of the soybean variant in first year corn and the net benefit of using soil 
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insecticide and Bt corn.  Substantial differences exist in the estimated cost and net 

benefits for each estimator.  Giving most credence to the ML results, we conclude that, 

for controlling the soybean variant in first year corn, a soil insecticide generates a net loss 

ranging $0.50-$3.50/ac, while Bt corn generates net benefit ranging $2-$7/ac.   

Several caveats apply.  Lodging losses from rootworm damage are not included, 

but are of substantial concern to farmers (Wilson et al. 2005).  Adding lodging losses 

would increase the cost of the soybean variant and the net benefit of both soil insecticide 

and Bt corn to give results more consistent with observed farmer use of soil insecticides.  

Furthermore, farmers consider reduced insecticide exposure for themselves and the 

environment a major benefit of Bt corn for rootworm control, benefits not included here 

(Alston et al. 2002; Wilson et al. 2005).  Lastly, rootworm Bt corn is relatively new and 

its performance under the wide variety of agronomic conditions that can occur has yet to 

be observed, as its problematic performance in some Illinois locations in 2004 indicates 

(Steffey and Gray 2004).   

Finally, we discussed the advantages of this panel data model for estimating pest 

damage functions with experimental data relative to Mitchell, Gray, and Steffey’s (2004) 

composed error model.  Both estimate and remove variability due to experimental errors, 

but this panel data method also separately estimates random year and location effects and 

likely gives better estimates of regression coefficients.  However, unlike the composed 

error model, this panel data method does not limit yield losses for the stochastic damage 

function to the logical range of zero to one and may require dropping observations.  

Hence, we conclude that unbalanced nested panel data model show promise for empirical 

applications in economics, but require more work to fulfill this promise.   
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Table 1. Parameter estimates for western corn rootworm damage function for different unbalanced nested component error 

model estimators (standard errors in parenthesis) for the linear model with an intercept.   

 
 

Estimator 

 
Intercept 

β0

 
Slope 
β1

Year 
Effect 

2
μσ  

Location 
Effect 

2
vσ  

Experimental 
Error 

2
εσ  

Ordinary Least Squares (OLS) 0.0225 

(0.0185) 

0.104 

(0.00868) 

-- -- 0.0381 

 

Wansbeek and Kapteyn (WK) 0.103 

(0.0762) 

0.0555 

(0.00993) 

0.0138 

 

0.00489 

 

0.0225 

 

Swamy and Arora (SA) 0.112 

(0.0965) 

0.0506 

(0.0101) 

0.0122 

 

0.0291 

 

0.0225 

 

Henderson and Fuller and Battese (HFB) 0.111 

(0.0689) 

0.0511 

(0.0101) 

0.0391 

 

0.0183 

 

0.0225 

 

Maximum Likelihood (ML) 0.110 

(0.0608) 

0.0517 

(0.0101) 

0.00314 

 

0.0134 

 

0.0225 
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Table 2. Parameter estimates for western corn rootworm damage function for different unbalanced nested component error 

model estimators (standard errors in parenthesis) for the linear model without an intercept.  

 
 

Estimator 

 
Slope 
β1

Year 
Effect 

2
μσ  

Location 
Effect 

2
vσ  

Experimental 
Error 

2
εσ  

Ordinary Least Squares (OLS) 0.113 

(0.00382) 

-- 

 

-- 

 

0.0382 

 

Wansbeek and Kapteyn (WK) 0.0569 

(0.00979) 

0.0385 

 

0.00489 

 

0.0225 

 

Swamy and Arora (SA) 0.0905 

(0.00827) 

0.0187 

 

0.000343 

 

0.0225 

 

Henderson and Fuller and Battese (HFB) 0.0564 

(0.00970) 

0.0117 

 

0.00887 

 

0.0225 

 

Maximum Likelihood (ML) 0.0548 

(0.00981) 

0.0143 

 

0.0128 

 

0.0225 
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Table 3. Expected loss, loss standard deviation, and decrease in expected profit, profit standard deviation, and certainty 

equivalents due to the western corn rootworm soybean variant in first year corn in Illinois for the different estimators.   

   --------- Decrease Relative to No Damage --------- 

Certainty Equivalent ($/ac)  
Estimator 

Expected 
Loss 
(%) 

St. Dev. 
Loss 
(%) 

Expected 
Profit 
($/ac) 

St. Dev.  
Profit 
($/ac) Moderatelya 

Risk Averse 
Highlyb 

Risk Averse 
Ordinary Least Squares (OLS) 19.0 20.4 76.12 –25.41 86.03 91.90 

Wansbeek and Kapteyn (WK)  9.6 21.0 38.35 –32.19 51.84 60.94 

Swamy and Arora (SA) 15.3 14.6 60.99 –10.13 63.97 63.83 

Henderson and Fuller and Battese (HFB)  9.5 14.6 37.99 –13.91 42.81 44.73 

Maximum Likelihood (ML)  9.2 16.7 36.91 –19.66 44.29 48.28 

a Coefficient of absolute risk aversion 0.005346, implying a risk premium is approximately 20% the profit standard deviation. 

b Coefficient of absolute risk aversion 0.01171, implying a risk premium is approximately 40% the profit standard deviation. 
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Table 4. Net benefit ($/ac) of soil insecticide and Bt corn for controlling the western corn rootworm soybean variant in first 

year corn in Illinois for the different estimators.   

 ------------- Soil Insecticide ------------- ----------------- Bt Corn ----------------- 

Certainty Equivalent Certainty Equivalent  
Estimator  

Expected 
Profit 

Moderatelya 
Risk Averse 

Highlyb  
Risk Averse 

 
Expected 

Profit 
Moderatelya 
Risk Averse 

Highlyb  
Risk Averse 

Ordinary Least Squares (OLS) 17.88 16.29 14.61 35.56 32.18 28.61 

Wansbeek and Kapteyn (WK)  0.07 –1.10 –2.31  7.98  5.98  3.91 

Swamy and Arora (SA) 10.74  9.10  7.02 24.49 21.44 17.74 

Henderson and Fuller and Battese (HFB) –0.09 –1.34 –2.86  7.73  5.61  3.09 

Maximum Likelihood (ML) –0.60 –1.80 –3.21  6.94  4.91  2.58 

a Coefficient of absolute risk aversion 0.005346, implying a risk premium is approximately 20% the profit standard deviation. 

b Coefficient of absolute risk aversion 0.01171, implying a risk premium is approximately 40% the profit standard deviation. 
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