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Abstract

There is increasing interest in biomass crops as an alternative farm enterprise.

However, given the relatively low uptake of these crops in Ireland, there is limited

information concerning the risk associated with their production and its potential

impact on returns. The uncertainty surrounding risky variables such as the costs of

production, yield level, price per tonne and opportunity cost of land make it difficult

to accurately calculate the returns to biomass crops. Their lengthy production lifespan

may only serve to heighten the level of risk that affects key variables. A stochastic

budgeting model is used to calculate the returns from willow and miscanthus. The

opportunity cost of land is accounted for through the inclusion of the foregone returns

from selected conventional agricultural activities. The potential for bioremediation to

boost returns is also examined. The NPV of various biomass investment options are

simulated to ascertain the full distribution of possible returns. The results of these

simulations are then compared using their respective CDF’s and the investments are

ranked using Stochastic Efficiency with Respect to a Function (SERF).

Keywords: Biomass, Bioremediation, Stochastic Budgeting, NPV, SERF

1. Introduction:

While risk is an intrinsic component in decision-making in all businesses it is viewed

as being particularly important in agriculture, an industry that is especially exposed to

variability (Thorne and Hennessy 2005; Richardson 2006). Farmers face uncertainty

about the economic consequences of their actions due to the difficulties of predicting

the outcome of factors such as weather, prices and biological responses to different

farming practices all of which will have an impact on their level of returns earned. In

recognising this feature of farming, studies addressing risk and uncertainty are

common in the agricultural economics literature (Pannell et al. 2000), with risk widely

seen as an issue of critical importance to farmers’ decision making and to policies

affecting those decisions (e.g. Anderson et al., 1977; Boussard, 1979; Anderson,

1982; Robison and Barry, 1987). Hence, risk should be explicitly considered in

studies of agricultural production choices (e.g., Reutlinger, 1970; Hardaker et al.,



3

2004a, Richardson et al., 2006). From the perspective of the analysis of economic

returns, risk refers to the potential variability of outcomes from a decision alternative

(Anderson 2003). Similar to Hardaker et al. (2004a), we define uncertainty as

imperfect knowledge and risk as uncertain consequences, particularly exposure to

unfavourable consequences.

Despite being used as an energy source for centuries (Rosillo-Calle et al. 1999), it is

only recently that the potential of biomass as an alternative to fossil fuels and

conventional agriculture has been examined. The Net Present Value (NPV) approach

to calculate the returns generated by perennial biomass crops such as willow and

miscanthus has been prevalent in the literature (e.g., Goor et al., 1999; Heaton et al.,

1999; Toivonen and Tahvanainen, 1998; Rosenqvist and Dawson, 2005; Styles et al.,

2008; Clancy et al., 2009) These papers used sensitivity analysis to examine the

effects of variation in key parameters such as yield level, discount rate, price per

tonne, harvest cycle and subsidies. The literature indicates that the economics of

growing biomass crops is marginal. Consequently, Rosenqvist and Dawson (2005)

suggest that any value which can be added to the crops by giving them a dual function

would greatly enhance their economic sustainability. Increasing interest is being given

to the concept of disposal of agricultural and municipal wastes on energy crops. This

potentially provides organic matter and nutrients needed for crop growth at a low cost

(ADAS 2002). The ability to attract a gate fee for the recycling of wastes also has a

significant effect on the returns that can be expected from biomass crops (Dawson

2007). Therefore, the use of bioremediation as a means to boost biomass crop

profitability and reduce the risk of generating a negative investment return is also

examined in this analysis.

However, perennial energy crops may have a greater number of uncertainties than

exist with conventional agricultural activities (Meijer et al., 2007). The question

marks which remain over the agronomic characteristics and economic returns of

willow and miscanthus make them risky alternatives compared with long established

farm enterprises such as beef or cereal production. For example, the lack of

information regarding the crops’ suitability to country-specific soil and climate

conditions means that yield levels are difficult to predict. Moreover, the lengthy
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production lifespan and extremely long payback periods to recoup establishment costs

in biomass crops serves to heighten the level of risk associated with key parameters.

Uncertainty about critical variables such as yield level and price per tonne make it

difficult to accurately calculate the returns of such investments (Clancy et al. 2009).

It has been argued that uncertainty is a key barrier to the successful uptake of

emerging renewable technologies such as bioenergy (Kemp et al., 1998; Foxon et al.,

2005), principally because it hinders the fulfilment of entrepreneurial activities

(Jacobsson and Bergek, 2004). In order for entrepreneurs to act, motivation needs to

outweigh perceived uncertainty and so identifying dominant sources of uncertainty

can deliver valuable insights (Meijer et al., 2007). Various studies of farmers’

attitudes to risk have generally found that farmers are risk averse (e.g., Brink and

McCarl 1978; Chavas and Holt 1990; Schurle and Tierney 1990; Pope and Just 1991)

so given the uncertainty that exists over the returns from biomass, an analysis of the

risk from adopting biomass crop production needs to be conducted.

In this paper a stochastic budgeting model, including stochastic costs, yields and

prices is used to calculate the financial returns from willow and miscanthus. The

opportunity cost of land is accounted for through the inclusion of foregone returns

from a conventional agricultural activity, such as spring barley, winter wheat or store

to finished beef. The NPV of the cash flow from the stochastic biomass returns minus

the stochastic superseded enterprise gross margins is used to simulate the financial

performance of alternative investment options over a 16 year planning horizon. The

results of this simulation are then compared using their respective CDF’s and the

enterprises are ranked using Stochastic Efficiency with Respect to a Function (SERF).

The following section of the paper gives a background to the area of stochastic

modelling and risk ranking, with the method of analysis and the data and assumptions

employed described in section 3. Section 4 details the results of the analysis while a

discussion of these is contained in section 5. Finally, section 6 summarises the

research findings and draws conclusions from the results.
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2. Background:

Existing empirical analyses of land use conversion typically assume deterministic

decision making based on the NPV of returns to alternative land uses (Schatzki 2003).

Traditionally, a deterministic approach which uses a set of predefined parameters as

certain input data is formulated (D’Ovidio and Pagano 2009). Estimates of these

parameters, typically the mean, must be used as the values which will actually occur

are not known with certainty. Regardless of the estimate selected, in reality many of

the events and conditions planned for will not turn out as assumed, leading to an

estimated result significantly different to the one actually experienced (Milham 1998).

Therefore, the deterministic approach is not adequate to consider model uncertainties,

as the nature of several model parameters is random (D’Ovidio and Pagano 2009).

Sensitivity analysis, while a valid and useful technique for determining the range of

feasible outcomes from a model, does not give any indication of the likelihood of

particular results being achieved (Milham and Hardaker, 1990).

Instead, evaluation under uncertainty or a stochastic environment should be

conducted, where stochastic modelling of the future prices and costs from all

management activities plays an important role (Yoshimoto and Shoji 1998). Milham

(1998) argued that since farm financial planning decisions are made in a dynamic and

uncertain environment, attempts to model such decisions should be conducted in a

stochastic framework. Risk assessment is a process for identifying adverse

consequences and their associated probabilities (McKone, 1996). D’Ovidio and

Pagano (2009) observed that in recent years probabilistic approaches have been

widely used to characterize the inherently random nature of renewable energy

sources. Therefore, in order to examine the economic viability of biomass as energy

resource in an unpredictable context, a stochastic approach can be formulated.

Stochastic budgeting is an improvement on the traditional deterministic approach as it

involves attaching probabilities of occurrence to the possible values of the key

variables in a budget, thereby generating the probability distribution of possible

budget outcomes. A stochastic budget will typically have a deterministic equivalent in

the form of a conventional budget under assumed certainty (Hardaker et al. 2004a).
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Stochastic budgeting involves developing a model that mimics the operation of a

business and provides projections of financial performance while taking account of

the uncertainty inherent in many aspects of the decisions (Milham, 1998).

After using a simulation model to analyse alternative enterprises, you are faced with

the problem of which one is best (Richardson 2003). To evaluate the relative risks of

alternative farming systems appropriately we need to consider the whole range of

outcomes, good and bad, and their associated probabilities (Lien et al. 2007a). Risk

ranking procedures such as mean variance, mini-max and the coefficient of variation

rely solely on summary statistics, and so a superior procedure which utilises all

simulated outcomes and so considers the full range of possible outcomes rather than

just the mean or standard deviation is required (Richardson 2003).

To present the financial feasibility of alternative strategies, CDF’s of the performance

measure are informative (Lien 2003). A CDF contains all of the information on the

output distribution of the risky prospects and, therefore, is useful for decision making

(Evans et al. 2006). Therefore the CDF of the various biomass investment options are

included in the results so as to highlight the likelihood of each of project being

profitable, and to allow for a comparison between options. Although possible to graph

the CDF’s and visually pick the preferred choice (the one that is furthest to the right),

this procedure lacks rigour and fails when the distributions cross (Richardson 2003).

According to expected utility theory, the decision maker’s utility function for

outcomes is needed to assess risky alternatives as the shape of this function reflects an

individual’s attitude to risk (Hardaker et al. 2004b). In practice however, this rarely

holds true. Efficiency criteria allow some ranking of risky alternatives when the

preferences for alternative outcomes of decision are not exactly known (Grove 2006).

Risky outcomes are measured in terms of the probability distribution of the returns

from each enterprise, defined here as the annual gross margin. To assess and compare

the risk efficiency of willow and miscanthus relative to conventional agricultural

enterprises we have used stochastic efficiency with respect to a function (SERF)

(Richardson et al. 2000, Hardaker et al., 2004b, Lien et al. 2007a).
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SERF is a procedure for ranking risky alternatives based on their certainty equivalents

(CE). The certainty equivalent1 values show the amount of money that the decision

maker would have to be paid to be indifferent between the particular scenario and a

no-risk investment. The value of the certainty for any given risky alternative is

dependent upon the expected utility function of the decision maker and the decision

maker’s level of risk aversion. The principle is the same as that used with expected

utility, i.e., more is preferred to less (Hardaker 2000). Lien et al. (2007a) used SERF

to measure the risk efficiency of two alternative farming systems (organic and

conventional farming systems) in terms of the probability distribution of current

wealth from farming, defined as the NPV of farm equity at the end of the planning

horizon. SERF has also been applied to analyse optimal farm strategies (tree planting

on harvested land) for a specified range of attitudes to risk (Lien et al. 2007b). This

method lends itself to the analysis of biomass crop production in Ireland where data

on individual farmers risk preference is non existent.

3. Materials and Methods:

3.1 Stochastic Budgeting

Richardson (2003) outlines the steps for developing a production-based economic

feasibility simulation model, which were used in this analysis. First, probability

distributions for all risky variables must be defined, parameterized, simulated, and

validated. Second, the stochastic values from the probability distributions are used in

the accounting equations to calculate production, receipts, costs, cash flows, and

balance sheet variables for the project. Stochastic values sampled from the probability

distributions make the financial statement variables stochastic.

Third, the completed stochastic model is simulated many times (1,000 iterations)

using random values for the risky variables. The results of the 1,000 samples provide

the information to estimate empirical probability distributions for unobservable Key

1 See Hardaker et al. (2004b) for a detailed description of how Stochastic Efficiency with Respect to a
Function uses Certainty Equivalents to rank risky alternatives
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Output Variables (KOV’s), so potential adopters can evaluate the probability of

success for a proposed enterprise. Fourth, the analyst uses the stochastic simulation

model to analyze alternative enterprises, with the results provided in the form of

probabilities and probabilistic forecasts for their respective KOV’s (gross margins).

The model was programmed in Microsoft Excel and simulated using the Excel Add-

In, Simetar.

3.2 Estimation of Stochastic Biomass Returns

Hardaker et al. (2004a) stated that the selected variables to be added stochastically

should comprise those that will have the largest effect on the level of risk of a certain

outcome. Therefore, the stochastic variables included in the biomass model are costs,

yields and prices, each of which can have a large effect on the returns from biomass

crops as demonstrated by various studies (eg. Toivonen and Tahvanainen (1998),

Rosenqvist and Dawson (2005), Styles et al. (2008), Clancy et al. (2009)). Another

key issue in multi-parameter studies is to find appropriate mathematical methods to

handle the determinations of the values of risk parameters (Anderson 2003), as

beneficial simulations can only be achieved when meaningful estimates of the input

stochastic variables are used in the model (Evans et al. 2006). This section describes

the estimation of the stochastic variables used in the calculation of biomass returns in

greater detail. Figure 1 depicts a flow chart of this section of the model, illustrating

the major components and their interrelationships.

[INSERT FIGURE 1 ABOUT HERE]

3.2.1 Stochastic Biomass Costs and Prices

Both biomass direct costs2 and prices received per tonne are assumed normally

distributed around a stochastic time trend, with the hierarchy of variables approach

(Hardaker et al. 2004a) used to account for this. This approach indirectly establishes

the relationship between each pair of correlated variables (Milham 1998) and requires
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the selection of a macro-level variable to which all types of costs or prices can be

expected to be correlated (Lien 2003). The macro-level variable which biomass costs

are assumed to be correlated to was the price index of agricultural inputs, while

biomass prices are assumed to be correlated to the price index of solid fuels. These

indices were produced by the Central Statistics Office over the period 1995 – 2008.

Estimation of the stochastic costs and prices follow the same steps, so just the

calculation of the stochastic costs are detailed here

A regression relationship for each of the costs against this independent variable is

derived. Forecast values of the independent variable are then entered into these

equations to provide estimates of the various costs (Milham 1998) in biomass

production. Following the approach used by Lien (2003), the first step was to derive

the time trend through the regression of the macro level price index, Y, against time, t:

Yt = β + δt + ut ut ~ N (0, σ2
Y), t = (1,…, 14) (1)

In the next step, Eq. (1) was used to predict the price index of agricultural inputs, Y,

for every year in the biomass plantation lifespan. The predicted means from Eq. (1)

[where t = (15,…,30) for the planning years 2009-2024] were assumed to be the

means of normal distributions, with the standard deviations of error component, σ2
Y,

used as the standard deviation of the normal distribution. The price indices for

agricultural services, Z1, seed, Z2, plant protection, Z3, and other costs, Z4, were

regressed against Y:

Zit = xt + viYt + uit uit ~ N (0, σ2
Zi), t = (1,…, 14), i = (1,…, 4) (2)

where i is the type of direct cost index, Zi. Finally, the predicted stochastic time trend

from the second step was used in Eq. (3) to forecast price indices of future costs for

each i. The error component from Eq. (2) with mean zero and standard deviation, σ2
Zi,

was included to account for normally distributed costs for each i:

2 To avoid problems of allocation of fixed costs associated with owned machinery, calculations assume
contractor charges for all field operations. All machinery and labour costs are therefore assumed to be
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Zit = xi + viYt + N (0, σ2
Zi)

Zit = (xi + viβi) + viδt + N (0, vi σ
2

Y + σ
2

Zi), t = (15,…, 30) (3)

From Eq. (3) observe that the predicted price index of each fixed cost i has a different

constant term, a different drift term and different variance, despite the fact that these

terms for each index depend partly on the predicted trend in the macro level variable,

Y. The hierarchy of variables procedure implies an assumption that the stochastic time

trend in the macro-level variable experienced in the historical reference period will

continue, and that all stochastic effects derived from national data are applicable to

the individual case farm (Lien 2003).

The figures in Table 1 are based on those used in a deterministic model by Clancy et

al. (2009) and form the baseline on to which the stochastic trends calculated through

the Hierarchy of Variables approach described above, are added.

[INSERT TABLE 1 ABOUT HERE]

3.2.2 Stochastic Biomass Yields

A mix of Irish (Clifton-Brown et al. 2007) and UK (Christian et al. 2008) data were

used for miscanthus yield levels. Insufficient Irish yield level data resulted in the use

of figures from the UK (DEFRA 2007) for willow. The similarity between the two

countries in terms of the range of soils and climatic conditions means that data in one

country should be applicable to the other. The trials from which the data was extracted

were conducted over relatively long periods of time (12 – 14 years) in multiple plots

distributed throughout both countries and with a mix of crop varieties used. Therefore

it is assumed they approximate the full range of possible yield level values. Table 2

details the summary statistics of the biomass yield level data used in this analysis.

[INSERT TABLE 2 ABOUT HERE]

variable costs.
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The unbalanced willow and miscanthus panel datasets were used to estimate the

following fixed effects model for each crop:

xit = u + ai + xit-1 + eit (4)

where xit is yield on farm i in year t (t = 1,…, 16), u is the general mean, ai is the

effect on yield due to farm i (variation between farms caused by different

management practices, soil, etc.), xit-1 is the previous years yield lagged. The residual

eit is a random variable, which upon testing, was shown to follow a beta distribution

for both crops. The resulting parameters were used in the estimation of stochastic

yield levels for each harvest during the project lifespan.

Both willow and miscanthus have a yield building phase of growth, experienced in the

first harvest, followed by a plateau during which yields are at their maximum level. In

order to replicate the lower yield in the first harvest, the intercept was multiplied by a

coefficient. The conservative 16 year lifespan assumed in this analysis insures that a

third phase during which yields could potentially deteriorate is not an issue. There

was no historical evidence of a link between their yields and therefore, no intra or

inter-temporal correlation in yield levels among the biomass crops was assumed in

this analysis.

3.2.3 Establishment Risk

Although establishment of willow may be slow on heavy clays (Tubby and Armstrong

2002), the growing of willow in Ireland since the mid-1970’s (Rosenqvist and

Dawson 2005, McCracken and Dawson 2007, Finnan 2010a) has resulted in a

relatively stable establishment rate for the crop, assuming best practice management

guidelines are adhered to (Finnan 2010b). However, for miscanthus field

establishment has often been poor or uneven (McKervey et al. 2008). Poor

establishment in miscanthus is generally due to poor over-wintering (Clifton-Brown

and Lewandowski 2008), which can make the crop susceptible to both frost damage

and disease attack (Thinggaard 1997). McKervey et al. (2008) have noted that

although a few studies have looked at aspects such as the effects of rhizome size,
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planting density and moisture status on establishment and early growth, overall, very

little agronomy research has been carried out on the crop.

In order to address the added risk of miscanthus failing to establish, a discrete

(Bernoulli) probability distribution was used to simulate the occurrence of crop

establishment failure. This should improve the accuracy of modelling the downside

risk of miscanthus. The effect of a failure on the budget was threefold: (1) a replanting

cost, without the benefit of an establishment grant, was accrued, (2) the revenue from

the first harvest was lost and (3) the lower yield level was applied in year 3, with the

plateau yield level pushed back until year 4 of the project.

3.2.4 Bioremediation

From an agronomic viewpoint, treated sewage sludge from sewage or wastewater can

improve soil structure and supply nutrients, therefore becoming a beneficial material

for application to energy crops (Plunkett 2010). The application of sewage sludge

provides energy crop fertilisation at little to no cost (Finnan 2010a). However, despite

these benefits the low uptake of biomass crops necessitates other incentives from

which additional economic benefits can accrue from growing willow and miscanthus

(Bullard and Nixon 2002). In this context, the possibility of using bioremediation as a

means to boost the returns from willow and miscanthus was investigated through the

incorporation of a stochastic gate fee.

While theoretically a farmer accepting sludge from a treatment plant could be paid up

to the alternative cost of conventional treatment, in practice it is likely society would

try to profit from a new treatment system by lowering the payment for disposal of

waste (Rosenqvist and Dawson 2005b). The market for bioremediation in Ireland is

not yet fully established, and so the gate fee received per tonne of sludge could vary

from a positive value in the case of escalating costs and legislative pressures for

treatment plants to dispose of waste, to a negative value in the case of farmers

purchasing sludge in order to reduce fertiliser costs and increase yields (Finnan

2010b). In this analysis, the uncertainty regarding the price per tonne received for the

application of sludge was modelled using a triangular distribution. The minimum was



13

set as zero, with the maximum being the price offered by the leading bioremediation

company operating in Ireland.

However, the spreading of sludge of municipal or industrial origin on agricultural land

can impact on animal health, the environment and food safety, and consequently there

are a number of legislative restrictions on the use of sludge in agriculture (Plunkett

2010). The extent of bioremediation usage per hectare is difficult to ascertain, as it is

not appropriate or practical to provide examples of application rates for sludge’s or

effluents as each situation will be highly individual and dependent on the nature of the

waste, the nutrients it contains and the soil and climatic conditions in which it is

applied (Dawson 2007). In this analysis the application rate of sludge per hectare was

assumed to be triangularly distributed between a range of 0 – 14 tonnes. These figures

were based on the latest available best practice guidelines (Dawson 2007).

3.4 Estimation of Stochastic Returns from Superseded Enterprises

The opportunity cost of land is accounted for through the inclusion of foregone

returns from a conventional agricultural activity, in this case land rental, spring barley,

winter wheat and store to finished beef. The estimation of parameters of the

probability distribution for the stochastic superseded enterprise gross margins (GM)

was empirically based, with Irish National Farm Survey (NFS) data used to estimate

historical GM variations of enterprises within farms between years. Each enterprises

financial performance, measured as GM per hectare, was calculated from historical

data from 1998 – 2008. This unbalanced panel data was then used to estimate the

following fixed effects (FE) model for each enterprise:

git = c + bi + git-1 + rit (5)

where git is GM on farm i in year t (t = 1,….., 16), c is the general mean, bi is the

effect on GM due to farm i (variation between farms caused by different management

practices, soil, etc.), git-1 is the previous years GM lagged. The residual rit is a random

variable, and after testing was shown to be normally distributed for land rental and

winter wheat, with the beta and double exponential distributions fitting best for spring
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barley and store to finished beef respectively. The resulting parameters were used in

the estimation of stochastic gross margins for each superseded enterprise in each year

of the project lifespan.

3.5 Risk Ranking of Alternative Investment Options

Since we do not know farmers utility functions, an efficiency criterion that allows a

partial ordering of the risky alternatives when the exact degree of risk aversion is not

known must be used (Lien et al. 2007). Risk Aversion Coefficients (RAC’s) are used

to define groups of decision makers, so that within a certain range all decision makers

will have the same preferences (Pratt, 1964). The use of risk aversion bounds allows

one to draw inferences about how different groups might rank risky choices for

business or policy purposes (Richardson 2003). However, there is a degree of

difficulty in specifying the value of the RAC’s (Richardson, 2000). McCarl and

Bessler (1989) describe how the RAC bounds depend upon the coefficient of variation

and the standard deviation for the distributions being analysed. Following one of their

suggested methods, the RAC level is calculated as follows:

RAC =5.0 / std. dev (6)

To further refine the specification of the RAC’s, Anderson and Dillon (1992)

proposed a classification of RAC levels based on magnitudes about 1, with 0.5 being

hardly risk averse and 4.0 being extremely risk averse. As suggested by Richardson

(2000), in this analysis the Anderson and Dillon (1992) scale is used to define the

relative levels of risk aversion about RAC’s formulated through the method outlined

in McCarl and Bessler (1989). So, for example, if Eq. (6) suggests a RAC of 0.04,

then 0.02 is hardly risk averse and 0.16 is extremely risk averse.

The software computer program developed by Richardson et al. (2000) was used for

the computational task of ranking the alternative investments using the SERF

approach. The negative exponential utility function assumes constant absolute risk

aversion and increasing relative risk aversion (Hardaker 2000). As stated earlier,

various studies have generally found farmers to be a risk averse group and so under
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this criterion, the negative exponential utility function is used in the implementation

of the SERF procedure for this analysis. Figure 2 depicts a flow chart of this section

of the model, illustrating the major components and their interrelationships.

[INSERT FIGURE 2 ABOUT HERE]

4. Results:

4.1 Baseline Results

The CDF’s of the stochastic NPV’s from the alternative biomass investment scenarios

are presented in Figure 3. The graph shows that three of the four willow investment

projects fail to generate a positive NPV as the entire CDF lies to the left of the point

representing a return of zero. This suggests that these investments are not

economically viable and so should not be considered. An investment in willow which

supersedes a store to finished beef enterprise is also relatively risky, with only a 30

percent probability of generating a positive return. All things considered, the risk of

making a loss is likely to be a major barrier to farmers planting willow, and may be a

reason for the low adoption rates of this crop in Ireland thus far.

[INSERT FIGURE 3 ABOUT HERE]

Although an investment in miscanthus superseding a winter wheat enterprise has an

extremely high probability of producing a negative return, the other miscanthus

projects seem to be economically viable investments. High probabilities of making a

profit are recorded on the remaining three investments, although the added risk as a

result of uncertain establishment in Ireland does allow the possibility of negative

returns being generated. The kink in the distribution of the returns from the various

miscanthus investment options is as a result of the greater downside risk resulting

from the possibility of the crop failing to establish. The effect is a much wider

distribution, and subsequently increased risk, for miscanthus than willow.
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However, as stated earlier, the CDF graph procedure does not always result in an

unambiguous ranking of the alternative options as when the graphs cross there is no

clear ranking (Richardson 2003). For example, in Figure 3 an investment project in

which miscanthus supersedes winter wheat has an upper tail greater than and a lower

tail less than that of projects in which willow supersedes spring barley or land rental.

Therefore, which of the alternatives a farmer would prefer may depend on a

comparison in terms of overall risk efficiency (Lien et al. 2007a), and so Stochastic

Efficiency with Respect to a Function is used to produce a ranking of the alternative

enterprises. A certainty equivalent chart, which shows the amount of money that the

decision maker would have to be paid in to be indifferent between a particular

scenario and a no-risk investment (Richardson 2003), is detailed in Figure 4.

[INSERT FIGURE 4 ABOUT HERE]

Farmers with a negative risk aversion coefficient are willing to take on risk in an

investment if the returns from the investment are high enough. From the figure above,

it is apparent that even these farmers would be unwilling to invest in a project in

which willow superseded winter wheat, spring barley or land rental. The lack of

interest in these investment options is magnified as you move to the right of the graph

and farmers have a higher risk aversion coefficient, with this group also unwilling to

invest in a willow project in which store to finished beef was superseded. Miscanthus

fares marginally better, in terms of the certainty equivalent required to be indifferent

with a no-risk investment, however most farmers with positive levels of risk aversion

would not make an investment in miscanthus given the available returns.

4.2 Bioremediation

The effect of bioremediation on the investment returns of willow and miscanthus

projects was also examined, with the CDF’s presented in Figure 5. The positive effect

of the gate fee was a shift to the right in each project CDF. However, the probability

of generating a negative return remains extremely high for three of the four willow

projects, with store to finished beef being superseding the only one with a high
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probability of making a profit. The positive returns from miscanthus were further

boosted by the incorporation of a gate fee from bioremediation, although this extra

source of revenue was insufficient to make superseding winter wheat with miscanthus

a viable investment. SERF was again used to rank the competing investment options

and generate certainty equivalents. The results are presented in Figure 6.

[INSERT FIGURE 5 ABOUT HERE]

[INSERT FIGURE 6 ABOUT HERE]

The incorporation of a gate fee from bioremediation has a considerable effect on the

willingness to invest in willow projects, as farmers with negative risk version

coefficients have positive certainty equivalents for all but the option in which winter

wheat is superseded. However, even the additional returns generated would not

persuade farmers with a high risk aversion coefficient to invest in willow. A similar

boost in interest is noted for miscanthus investment options. The miscanthus

superseding store to finished beef option has a positive certainty equivalent for all

levels for risk aversion, while miscanthus projects in which spring barley or land

rental are superseded are only negative for those at the ‘very risk averse’ and

‘extremely risk averse’ levels. Miscanthus superseding winter wheat is deemed to be a

worthwhile investment for those at the lower risk aversion levels, but has a

considerable negative certain equivalent for those with higher levels of risk aversion.

5. Conclusions

Since farming is a risky business it is important to account for risk in planning.

Information from an ordinary deterministic budgeting model done on the basis of

point estimates of uncertain variables may inform investment and management

decisions on a farm; however they fail to capture the effect that risk may have on the

investment decision. The uncertainty surrounding the risky variables involved in
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producing biomass crops, such as the yield level and energy price, make it difficult to

accurately calculate the returns of such a project. A stochastic budgeting approach

may give more realistic and more useful information about alternative decision

strategies (Lien 2003) and so is used in this analysis to account for risk in biomass

crop investment decisions.

This paper found that accounting for risk underlined the results of the baseline

economics from Clancy et al. (2009), who found that under typical costing

assumptions, miscanthus had a greater level of returns than willow. While the

distributions of investment returns for miscanthus are wider than those of willow,

implying greater uncertainty, the results from the SERF analysis show miscanthus

generally has higher certainty equivalents. This indicates that farmers would be more

likely to switch to miscanthus production rather than willow. Despite the wider

distribution of returns, the SERF analysis suggests that a greater level of risk is

associated with willow than with miscanthus. The results suggest that the potentially

higher returns from miscanthus outweighed the downside risk associated with the

possibility of the crop failure to establish. The disparity in the level of risk is likely

due to the superior yield potential, annual production cycle and cash flow profile of

miscanthus compared to willow. Evidence of this can be found in the fact there was

much greater uptake of miscanthus than in willow in Ireland during the 2007 – 2009

period (Caslin 2010).

Accordingly, it can be expected that more risk averse farmers are unlikely to find

willow an attractive alternative to conventional agricultural systems during the

pioneer stage of the bioenergy market in Ireland. Ekboir (1997) noted that when

decisions are irreversible and risky, investment by individual firms is known to be

sporadic. Due to the level of risk involved in growing willow, widespread adoption in

Ireland is only likely when the economic merits of these crops have been proven over

an extended period (Clancy et al. 2009). Therefore, while miscanthus investments can

generate positive returns, it is important to bear in mind that the risk associated with

the extremely long payback periods necessary to recoup initial investment costs would

be a concern to most investors.
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The failure of willow to generate the same level of returns as miscanthus may be as a

result of willow’s multi-year harvest cycle, which takes longer to produce a positive

net value in comparison to miscanthus with its annual harvest cycle. The length of the

harvest cycle may also account for the lower level of risk associated with miscanthus.

An annual income stream as opposed to a lump sum every two to three years would

help reduce the variability in returns. The reduction of the harvest cycle length for

willow is seen as fundamental in making it competitive with both conventional

agricultural enterprises and miscanthus. Better crop management techniques

developed as expertise in the area grows could potentially increase yield levels and

thereby reduce the variability of these yields between harvest cycles, decreasing risk

significantly.
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7. Tables and Figures

Table 1: Model cost and revenue assumptions for willow and miscanthus

Willow Miscanthus

Maximum Production Period 16 Years 16 Years

Number of Harvest Cycle 7 Harvest Cycles 15 Harvest Cycles

Establishment Grant
3 €1450 (75% payable in year

1, 25% in year 2)

€1450 (75% payable in year

1, 25% in year 2)

Harvest Strategy Stick harvested, naturally

dried, stored outdoors then

chipped

Baled harvest, naturally

dried, stored outdoors

Moisture Content 25% 20%

Price per Tonne €55 €60

Establishment Costs €2575 €3130

Harvest Costs €747 €216

Crop Removal €562 €225

3 The establishment grant and costs are detailed on a per hectare basis

Table 2: Summary Statistics of biomass yield level data (dmt.ha-1yr-1)

Willow Yield Miscanthus Yield

Mean 8.92 12.63

Std. Dev 3.38 2.94

CV 37.87 23.31

Min 0.60 6.93

Median 8.58 13.53

Max 24.33 17.69

Table 3: Working capital released per hectare for the superseded enterprises

Grazing Land

Rental Value

Spring Barley Winter Wheat Store to

Finished Beef

Working capital

released1

- €240 €295 €787

1 Working capital released is the average capital tied up in stock and variable inputs for each enterprise



Figure 1: Flow Chart of Biomass Returns Calculation
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Figure 2: Flow Chart of Risk Ranking Procedure and Investment Decision
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Figure 3: Cumulative distribution of alternative willow and miscanthus

investment option returns
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Figure 4: Certainty Equivalent’s of alternative willow and miscanthus investment

options for different degrees of risk aversion
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Figure 5: Cumulative distribution of alternative willow and miscanthus

investment option returns with gate fee from bioremediation included
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Figure 6: Certainty Equivalent’s of alternative willow and miscanthus investment

options with gate fee from bioremediation for different degrees of risk aversion
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8. Appendix: Stochastic Variables and Equations for Biomass Investment Model

(Variables in bold are stochastic, or a function of a stochastic variable)

Costs

Cultivation1 = Cost1 * [Price Index for Agricultural Services1] (1)

Cuttings/Rhizomes1 = Cost1 * [Price Index for Seed1] (2)

Spraying1 = Cost1 * [Price Index for Crop Protection1] (3)

Miscellaneous1 = Cost1 * [Price Index for Other Expenses1] (4)

Establishment1 = [Cultivation1 + Cuttings/Rhizomes1 + Spraying1 +

Miscellaneous1] (5)

Harvesting/Mowingt = Costt * [Price Index for Agricultural Servicest] (6)

Dry/Transportt = Costt * [Price Index for Agricultural Servicest] (7)

Harvestt = [Harvesting/Mowingt + Dry/Transportt] (8)

Sludge Applicationt = TRIANGULAR [min, max, mode] (9)

Total Costst = [Establishment1 + Harvestt + Sludge Applicationt] (10)

Revenue

Grant1 = [Grant * 0.75] (11)

Grant2 = [Grant * 0.25] (12)

Subsidies = [Grant1 + Grant2] (13)

Yieldt = [(Constant * 0.6) – Lagged Yield Coefficient + BETA (Error)] (14)

Yieldt = [Constant – (Lagged Yield Coefficient*Lagged Yieldt) + BETA (Error)] (15)

Pricet = Costt * [Price Index for Solid Fuels] (16)

Salest = [Yieldt * Pricet] (17)

Sludge Volumet = TRIANGULAR [Min, Max, Mode] (18)

Gate Feet = TRIANGULAR [Min, Max, Mode] (19)

Bioremediationt = [Sludge Volumet + Gate Feet] (20)

Total Revenuet = [Subsidies + Harvestt + Bioremediationt] (21)

Biomass Returnst = [Total Revenuet – Total Costst] (22)

Cashflow

Superseded Enterprise GMt = [Constant + (Lagged GM Coefficient * Lagged GMt)

+ NORMAL or BETA or DOUBLE EXPONENTIAL (Error)] (25)

Profit/Losst = [Biomass Returnst – Superseded Enterprise GMt] (26)
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In the Event of Miscanthus Establishment Failure

Costs in Year 2: IF (BERNOULLI (0.2) = 1, (5), (8)) (27)

Harvest in Year 2: IF (BERNOULLI (0.2) = 1, 0, (17)) (28)

Yield in Year 3: IF (BERNOULLI (0.2) = 1, (14), (15)) (29)

Key Output Variables

Capital Invested1 = [Establishment1 – (Grant1 + Bioremediation1)] (30)

Net Cash Flowt = [(- Capital Invested1) + Biomasst] (31)

Discount Factor = [1/ (1 + Discount Rate) ^ Year] (32)

Present Value of Cash Flow = [Net Cash Flowt * Discount Factor] (33)

Net Present Value = ∑t [Present Value of Cash Flow] (34)

Internal Rate of Return = [(Net Cash Flowt/ (1 + r)t = 0] (35)

Amortization Factor = [Discount Rate/ (1 – (1 + Discount Rate) – t (36)

Annual Equivalent Value = [Net Present Value * Amortization Factor] (37)

Risk Ranking

Cumulative Distribution Function = [1000 * Net Present Value] (38)

Risk Aversion Coefficient Bounds = [5.0 / std. dev] (39)

Stochastic Efficiency with Respect to a Function = [] (40)


