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differentiated products in a single demand system. We applied our model to estimate the 
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A Hedonic Metric Approach to Estimating the Demand for Differentiated Products: 

An Application to Retail Milk Demand 

 

A significant amount of empirical research concentrates on estimating price elasticities of 

demand between products of similar types. In traditional models such as the Almost Ideal 

Demand System (AIDS) and the Rotterdam model, the time-series relationship between 

prices and market shares is exploited to estimate the own-price, cross-price and income 

elasticities. Although theoretical restrictions reduce the number of parameters to be 

estimated, as the number of goods gets large, the number of parameters to be estimated 

increases exponentially.  

In recent years, random utility models have been a popular alternative to 

estimating demand elasticities. In this approach, the utility maximizing consumer chooses 

the products that give the maximum utility derived from the commodity attributes. 

Random utility models that extend the simulated maximum likelihood approach of Berry, 

Levinsohn, and Pakes (1995) reflect characteristic differences in elasticities yet they are 

very computationally complex to estimate. (Hendel 1999; Nevo 2001; Chan 2006) A 

simpler Distance Metric (DM) approach by Pinske, Slade, and Brett (PSB, 2002) uses 

spatial distances to estimate price elasticities between different locations. Their model is 

simple enough to be estimated without simulations, yet flexible enough to characterize 

the substitution patterns between differentiated products.  

Rojas and Peterson (2008) apply this new method to the retail beer market using 

alcohol content as the main distance measure along with different distance combinations. 

However, their choice of distances is ambiguous and depends on prior judgments about 

the data. The Hedonic Metric (HM) method proposed in this article alleviates this 

ambiguity while reducing the number of parameters to estimate.  

Our methodology is based on a two-stage estimation technique. In the first stage, 

we estimate a hedonic equation to obtain the price of each attribute available in the 

product. For retail markets, the information on the labels is a good choice for attributes. 

The differences in the attributes of product varieties are exploited to create a hedonic 
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matrix based on hedonic distance. These measures are based on pair-wise comparisons of 

Euclidean distances where the amount of each characteristic in the product is weighted by 

its hedonic price. Once we allocate each differentiated product into the hedonic space, the 

distances are used to estimate the demand elasticities.  

 For comparison, the model was also estimated using the DM approach of Rojas 

and Patterson (2008). The models are evaluated through comparison of the elasticities 

estimated using the retail milk market data.  Each metric method (HM, DM) is evaluated 

with regard to closeness of its elasticities to the original model where elasticities are not 

approximated by either method. Our method is shown to outperform the DM 

methodology.  Moreover, the results were found to be close to the original model whether 

we used the AIDS or Rotterdam model. Given space restrictions, we report only the 

results for the Rotterdam model.  

 

Model Specification 

 

The Rotterdam model is derived by totally differentiating the Marshallian demand 

functions and substituting the Slutsky equation to derive the relationship between market 

shares and prices in a demand system such that for n goods: 

𝑤𝑖𝑑 log 𝑞𝑖 = 𝑏𝑖𝑑 log 𝑋 +  𝑐𝑖𝑗 𝑑 log 𝑝𝑗

𝑗

  𝑤𝑒𝑟𝑒 𝑖 = 1 …𝑛 𝑎𝑛𝑑 𝑗 = 1 …𝑛 (1)  

𝑤𝑡 = 0.5(𝑤𝑡 + 𝑤𝑡−1), 𝑑 log 𝑋𝑡 = 𝑑 log 𝑋𝑡 −  𝑤𝑡𝑑 log 𝑝𝑗𝑡𝑗 ,  𝑑 log 𝑝𝑗𝑡 = log 𝑝𝑗𝑡 −

log 𝑝𝑗𝑡 −1 and 𝑋𝑡  refers to the total expenditure on products at time 𝑡. Theoretical 

restrictions can be imposed in the form of adding up,   𝑏𝑖 = 1𝑗  ∀𝑖,  𝑐𝑖𝑗 = 0𝑖  ∀𝑗; 

homogeneity,  𝑐𝑖𝑗 = 0𝑗  ∀𝑖  ; and symmetry, 𝑐𝑖𝑗 = 𝑐𝑗𝑖  ∀𝑖, 𝑗(𝑖 ≠ 𝑗).  Dividing each  𝑐𝑖𝑗  by 

the average own market share gives the compensated (Hicksian) price elasticity 𝑒𝑖𝑗 =

 𝑐𝑖𝑗 𝑤𝑖  ; dividing each 𝑏𝑖  by its average own market share gives the expenditure 
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elasticity  𝑒𝑖 = 𝑏𝑖 𝑤𝑖  ; and uncompensated (Marshallian) demand elasticities are 

recovered using the Slutsky equation  𝑒𝑖𝑗
𝑚 = 𝑒𝑖𝑗 − 𝑒𝑖𝑤𝑗  . 

 

Distance Metric Method 

 

The distant metric approach used by Rojas and Patterson is an approximation method to 

estimate the relationships between prices and market shares. The cross price coefficients 

(𝑐𝑖𝑗  ∀ 𝑖, 𝑗) are defined as functions of distant measures between products such that 

𝑐𝑖𝑗 =  𝜆𝑙𝑑𝑖𝑗
𝑙

𝐿

𝑙=1

 (2)  

where L is the number of attribute spaces and 𝑑𝑖𝑗
𝑙  is the distance between product 𝑖 and 

𝑗 in space 𝑙. These distant measures are based on the product attributes and can be 

continuous (content), discrete (type) or both. The continuous distance measures are 

defined as the inverse measure of Euclidean distance in attribute space between products. 

In this form, these measures range between 0 and 1. Since the inverse of the distance 

measures are used for parameterization, the distance measure refers to the closeness of 

these products such that a higher index (close to 1) implies closer products whereas a 

lower measure (close to 0) implies distant products. For an n-dimensional attribute space, 

the distance 𝑙 between two products 𝑖, 𝑗 can be defined as  

𝑑𝑖𝑗
𝑙 =

1

1 +   𝛿𝑖𝑗
1  

2
+  𝛿𝑖𝑗

2  
2

+. . + 𝛿𝑖𝑗
𝑛  

2
 

(3)  

where δij
k
  is the distance measure in dimension k. For example, the closeness index 

between 2% milk and 1% milk based on a three-dimensional fat-organic-size (FOS) 

attribute space is calculated as 

𝑑2%,1%
𝐹𝑂𝑆 =

1

1 +   𝛿2%,1%
𝐹𝐴𝑇  

2
+  𝛿2%,1%

𝑂𝑅𝐺𝐴𝑁𝐼𝐶  
2

+  𝛿2%,1%
𝑆𝐼𝑍𝐸  

2
  

(4)  
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 The continuous distances between products are scaled by dividing the differences 

in contents with the maximum amount of content available in any product. For example, 

the fat distance between 2% Milk and 1% Milk is calculated as  

𝛿2%,1%
𝐹𝐴𝑇 =

𝐹𝑎𝑡 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 2% 𝑀𝑖𝑙𝑘 − 𝐹𝑎𝑡 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 1% 𝑀𝑖𝑙𝑘

𝐹𝑎𝑡 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 3.25% 𝑀𝑖𝑙𝑘 
 (5)  

 The discrete distances can be based on type of the product depending on whether 

they are in the same classification or not. In that form, they are either equal to 1 (same 

classification) or 0 (different classification). Also, a product is the nearest neighbor (NN) 

of another product if it has the highest closeness index for a given attribute space. By 

construction, the discrete distance measures are normalized to one such that for a given 

attribute space, the sum of distance measures for each product type equals one.  

 The own-price coefficients are also specified in terms of product attributes. 

However, this time, the actual product attributes interact with the own-price coefficients.  

𝑐𝑖𝑖 = 𝛽0 +  𝛽𝑗𝜒𝑖
𝑗

𝐶

𝑗 =1

 (6)  

where  𝛽0 is the constant coefficient on the own-prices and 𝜒𝑖
𝑗
 is the content of 

characteristic 𝑗 in product 𝑖 that interacts with the price.  

 Incorporating these parameter approximations to the Rotterdam model gives us 

the following empirical Distance Metric approximated Rotterdam model (DM-RM): 

𝑤𝑖𝑑 log 𝑞𝑖 = 𝑏𝑖𝑑𝑙𝑜𝑔 𝑋 + 𝛽0 dlog 𝑝𝑖

+  𝛽𝑘𝜒𝑖
𝑗

dlog 𝑝𝑖 +

𝐶

𝑘=1

   𝜆𝑙𝑑𝑖𝑗
𝑙

𝐿

𝑙=1

𝑑 log 𝑝𝑗

𝑗≠𝑖

 ∀𝑖, 𝑗 
(7)  

Since different approximation techniques are used for own-price and cross-price 

coefficients, the corresponding elasticities are calculated based on the approximation 

technique: The Hicksian own-price elasticity, 𝑒𝑖𝑖 = 𝛽0 +  𝛽𝑗𝜒𝑖
𝑗𝐶

𝑗=1 𝑤𝑖  ; the Hicksian 

cross-price elasticities, 𝑒𝑖𝑗 =  𝜆𝑙𝑑𝑖𝑗
𝑙𝐿

𝑙=1 𝑤𝑖 ; Income (expenditure) elasticities are 

calculated as in the original Rotterdam Model as 𝑒𝑖 = 𝑏𝑖  𝑤𝑖  ; and the Marshallian 

elasticities are recovered using the Slutsky equation in elasticity form. 
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Hedonic Metric Method 

 

The hedonic metrics proposed in this article is a better alternative to the distance metric 

estimation since we alleviate the ambiguity in the choice of distances. In both approaches, 

the elasticities between differentiated products are approximated using the distance 

measures between products. However, in the DM approach these distances are based on 

pre-imposed specific attributes, whereas we allocate each product in the multidimensional 

hedonic space. In order to create distances between products, first a hedonic regression is 

estimated to get the hedonic prices of each attribute. 

According to hedonic theory, each consumer is trying to maximize his/her own 

utility that depends on the product attributes (Lancaster 1966). Therefore, the consumer 

maximizes utility by selecting products that maximize the sum of utilities derived from 

each attribute (Rosen 1974).  Based on the hedonic model, the price of each good can be 

characterized by the set of its attributes that comes with the product. Defining this set 

as 𝑥 =  𝑥1, … , 𝑥𝑘  , the functional relationship between the price of a good and its 

characteristics vector 𝑋 can be stated as 𝑝 = 𝑓 𝑥 + 𝜇 where 𝜇 is the error vector.  

 If the relationship between prices and attributes is assumed to be linear then the 

price of a good 𝑖 can be derived as the sum of the attribute values (Ladd and Suvannunt 

1976). Thus the retail price of the product is equal to the sum of monetary values of 

product attributes where the total value of each attribute is equal to the quantity of the 

attribute multiplied by the implicit price of that attribute. This implies 

𝑃𝑖 =  𝑥𝑗𝑖 𝛽𝑗 + 𝐸𝑖 + ∈𝑖

𝑗∈𝐽

 𝐽   is the set of product attributes (8)  

where 𝑥𝑗𝑖  is the amount of attribute 𝑗 in product 𝑖 and 𝐸𝑖  is the unique characteristic of the 

product.  The implicit prices of characteristics can be calculated as the partial derivatives 

of the hedonic functions. 

𝜕𝑝

𝜕𝑥𝑗
=

𝜕𝑓(𝑥)

𝜕𝑥𝑗
= 𝛽𝑗   ∀𝑗 (9)  
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Thus, in the linear model, the coefficients on the attributes give us the hedonic prices for 

these attributes. The value added for each attribute is calculated by multiplying the 

implicit price by the attribute quantity. For product 𝑖, the value added from attribute 𝑗 

is 𝑣𝑖𝑗 = 𝑥𝑗𝑖 𝛽𝑗 . 

If the price attribute relationship is assumed to be in semi-log form (Nimon and 

Beghin 1999) , then instead of price, the log-price of the product is defined in terms of 

attributes such that 

log 𝑃𝑖 =  𝑥𝑖𝑗 𝛽𝑗 + 𝐸𝑖 + ∈𝑖

𝑗∈𝐽

  (10)  

In this form, the implicit price of the attribute is calculated by multiplying the coefficients 

on attributes with the price of the products 

𝜕𝑝

𝜕𝑥𝑗
=

𝜕𝑓(𝑥)

𝜕𝑥𝑗
𝑃𝑖 = 𝛽𝑗𝑃𝑖   ∀ 𝑗, 𝑖 (11)  

The value added term also accounts for the price of the product 𝑣𝑖𝑗 = 𝑥𝑗𝑖 𝛽𝑗𝑃𝑖 . The semi-

log form implies that the same amount of attribute can have a higher value if it is located 

in a product with a higher retail price. 

 The difference in the value added for each product is used to calculate hedonic 

distance in terms of a single attribute. Combining the sum of these price-weighted 

attribute distances and rescaling them to be between 0 and 1 gives us the continuous 

hedonic distance matrix. Similar to distance metrics, two products are nearest neighbors 

(NN) if they have the highest closeness index in hedonic space. Thus, the nearest 

neighbor concept is introduced as a discrete distance based on the hedonic distance 

matrix. The nearest neighbor matrix along with the hedonic distance matrix define the 

cross-price coefficients such that  

𝑐𝑖𝑗 = 𝜆𝑑𝑖𝑗
 + 𝜆𝑛𝑛 𝑑𝑖𝑗

𝑛𝑛  (12)  

where 𝑑𝑖𝑗

 refers to the hedonic distance and 𝑑𝑖𝑗

𝑛𝑛
 refers to the distance based on the  

nearest neighbor concept. Own-price coefficients are also approximated by interacting 



8 
 

product attributes with own-prices. They are estimated based on each product’s average 

market share and inverse of the hedonic distance vector (i.e., closeness index) 

𝑐𝑖𝑖 = 𝛽0 + 𝛽1𝑖
𝑠 + 𝛽2𝑖

𝑐  (13)  

where 
𝑖
𝑠 refers to the market share and 

𝑖
𝑐  is the closeness index of product 𝑖 . 

Putting these coefficients back in the original model, we get the following Hedonic 

Metric approximation to the Rotterdam model (HM-RM): 

𝑤𝑖𝑑 log 𝑞𝑖 = 𝑏𝑖𝑑 log 𝑋 + 𝛽0 dlog 𝑝𝑖 +  𝛽1𝜒𝑖
𝑠 + 𝛽2𝜒𝑖

𝑐  𝑑 log 𝑝𝑖 + 

  𝜆𝑑𝑖𝑗
 + 𝜆𝑛𝑛 𝑑𝑖𝑗

𝑛𝑛   𝑑 log 𝑝𝑗

𝑗≠𝑖

 ∀𝑖, 𝑗 
(14)  

In this form, the Hicksian own-price elasticity is 𝑒𝑖𝑖 =  𝛽0 + 𝛽1𝜒𝑖
 𝑠 + 𝛽2𝜒𝑖

𝑐 𝑤𝑖 ; the 

Hicksian cross-price elasticities can be calculated as 𝑒𝑖𝑗 =  𝜆𝑑𝑖𝑗
 + 𝜆𝑛𝑛 𝑑𝑖𝑗

𝑛𝑛  𝑤𝑖    

Income elasticities are calculated as in the original model as 𝑒𝑖 = 𝑏𝑖 𝑤𝑖  ; and the 

Marshallian elasticities are recovered using the Slutsky equation in elasticity form. 

 

Data 

 

Nutritional food attributes derived from the Nutrient Database and the marketing 

attributes derived from Homescan Data characterize milk products in hedonic space.

 Most of the attributes in Homescan data are based on nutritional claims such as 

organic label, soymilk, lactose free, cholesterol free, vitamin enrichment, and calcium 

enrichment. However as Stranieri, Baldi, and Banterle (2010) suggest, a significant ratio 

of consumers use nutritional labels while making purchase decision. Therefore 

information about attributes is enriched using the USDA Nutrient Database. In particular, 

continuous nutritional contents including protein, carbohydrate, fat amount, along with 

sodium and cholesterol contents are obtained. Combining these two databases gives us an 

exact set of attributes that are also available on the product labels.  
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While major nutritional components are measured in grams per serving, 

measurement units for vitamins and mineral are defined in different units. We 

transformed all values for vitamins and minerals into daily recommended intake (DRI) 

percentages provided in a serving size defined by the U.S. Federal Drug Administration 

(2008). The vitamin and mineral contents other than sodium are combined into a single 

vitamin-mineral index. Sodium and cholesterol are two important components listed on 

the product labels that may raise health concerns among consumers (Garretson and 

Burton 2000; Chema et al. 2006; Moon, Balasubramanian and Arbindra 2005).  In fact, 

studies show that they have a negative effect on the value of the product and consumers’ 

preferences (Harbor-Locure, McLean-Meyinsse and V. Bethea 2001; Peng, West and 

Wang 2006). Therefore, we excluded sodium from this index and included it as a separate 

component due to its differential effect. 

 

Product Attributes 

 

The final attribute space includes fat type, organic claim, soy dummy, promotion dummy, 

lactose/cholesterol free (LFCF), vitamin-mineral enhancement, and nutritional variables 

such as protein, carbohydrate, lipid (fat) content, percentage daily recommended intake 

(DRI) index of cholesterol, sodium, and vitamin/minerals along with the servings per 

package.  

The summary values for all components are given in table 1. Each milk category 

other than soy milk includes hundreds of different Universal Product Codes (UPC) where 

each UPC differs from another by at least one characteristic. While the dominant 

characteristic difference between different milk types is fat content, we observe a large 

variation in product characteristics between milk types and also within each milk type as 

well. Soymilk has a much higher organic ratio compared to other types of milk. It is also 

promoted more than other milk types and it is lactose/cholesterol free. Another 

distinguishing difference is in average serving size per package. On average, soymilk 

comes in smaller packages than cow’s milk. Among the dairy based milk types, skim 
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milk includes the most differentiated milk purchases. It has the highest protein per 

serving, and also highest ratio of vitamin-mineral enhancement. Moreover, almost 4% of 

skim milk is lactose-cholesterol free. Since lactose is naturally present in dairy products, 

the summary results show that skim milk is the most functionally enhanced type.  

  

Aggregate Data 

 

While it is preferable to use individual level purchase data to analyze household purchase 

behavior, we used aggregate data. It is possible to estimate the household level demand in 

traditional models and also hedonic metric approximations, but it is impossible to use 

distance metrics at the household level. The distance metric space is based on product 

characteristics which are different for each consumer. It will be extremely cumbersome to 

find the most feasible distance metric measures at the household level since each 

household would allocate the products in a different metric space. Moreover, whichever 

attribute list we use, there will be many attributes missing in distance space which creates 

another problem in estimation. Since our primary aim is to introduce hedonic metrics and 

compare them with distance metrics, we aggregated our data into weekly purchases made 

by all core households.  

The data contain information on weekly prices, quantities and expenditures on 

five different milk types between 2002 and 2005. The average market share of 2% Milk 

is highest with a 34% share, followed by Skim Milk with a 27% market share. Whole 

Milk (3.25%) and 1% Milk each have 18% market shares on average. The price of 

soymilk per serving is almost double that of other milk types. Because soymilk is 

primarily organic, lactose free, cholesterol free, and consumed in smaller (more 

convenient) packages, it has more desirable attributes than other milk types. Table 2 gives 

the price-quantity-market share statistics for each milk type.  

 

Distances 
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The data on prices and market shares are enough to estimate the price and income 

elasticities in the context of traditional demand models. However, defining distances is 

the most crucial part of DM and HM approximations. In this article, not only the cross-

price elasticities are recovered from these distance coefficient estimates, but so are the 

own-price elasticities. The most distinguishing characteristics of milk types are organic 

percentage, fat content, and container size. Thus, distances based on these characteristics 

are used in DM estimation. 

Purchasing organic milk could be a discrete decision for an individual for a 

specific purchase occasion. However, with aggregate data, organic percentage is another 

dimension that captures the substitution effects between milk products in organic market. 

If two milk types have both higher organic percentage ratios, they will be closer 

substitutes in the organic milk market and our model implements this interaction. The 

same idea applies to the size variable. Purchasing a specific size could also be a binary 

decision for a consumer at a specific occasion. However, in aggregate form, the size 

variable is an important dimension that shows the degree of substitution in different 

package sizes (Kumar and Divakar 1999). 

The continuous distance measures can be single dimensional based on these 

attributes (Fat, Organic, Container), two-dimensional based on pair-wise distances (Fat-

Organic, Fat-Container, Organic-Container), or three dimensional (Fat-Organic-

Container). The distance measures are calculated from the differences between milk types 

based on these measures. Following PSB’s methodology, a discrete distance based on 

nearest neighbor (NN) concept is also introduced for two-dimensional and three-

dimensional distances. Two products are nearest neighbors if they are next to each other 

in the attribute space. For the purpose of approximating own-price elasticities in DM, the 

contents based on market share (W), fat content (F), organic claim (O) and servings per 

package (S) are used to approximate these elasticities.  

The hedonic metric approach proposed in this article also uses distances between 

product attributes to approximate the cross-price and own-price elasticities. The 

distinction between these approaches is the distances used in the estimation. In the HM 
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approach, the products are located in the hedonic space which characterizes them. To get 

the location of each product type, implicit prices of the attributes that characterize the 

product are estimated using hedonic regressions. Using these implicit prices, the value 

added of each attribute is calculated for each milk type. For a linear hedonic model, the 

estimated coefficients in attribute quantities give us hedonic prices. For a semi-log model, 

these coefficients are multiplied by the prices to obtain the hedonic prices. 

 The difference in value added scaled by the prices of the attributes gives us the 

location of each product in hedonic space. Thus, the hedonic prices of the attributes scale 

the attributes according to their values. The nearest neighbor concept in HM approach is 

also based on hedonic distances. For estimating the own-price elasticities, a different 

measure based on the sum of total pair wise distances between each product is utilized. 

Since the distance measure is in inverse form, this measure acts as a total closeness index 

based on hedonic distance. For example, because soy is the most unique product in 

hedonic space, it has the lowest closeness index among all milk types. This closeness 

index based on the inverse of hedonic distance is used along with the product’s market 

share to estimate own-price elasticities for each milk type. 

  

Results 

 

The estimation results based on both methods closely resemble that of the original 

models. Because we reduced the number of parameters through approximations, the 

significance of elasticity estimates are higher in approximated models. However, the 

approximated elasticities that are derived from hedonic metrics outperform the distance 

metrics.  

 

Models without Elasticity Approximations 

 

The original models (without approximating elasticities with DM or HM) were estimated 

for the system of equations consisting of 2%, Skim, Full, 1% milk, and soymilk. The 
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equation for soymilk was dropped prior to estimation to avoid singularity.  The equations 

were estimated using the seemingly unrelated regressions method (SUR). The parameter 

estimates for the soymilk demand equation are obtained through application of the adding 

up, homogeneity, and symmetry restrictions. The Durbin-Watson statistics for each milk 

type indicate there is no autocorrelation in the residuals.  

All own-price elasticities and expenditure elasticities are statistically significant 

and the elasticity estimates are very close to each other. As can be seen from table 3, soy 

milk has the highest own-price elasticity followed by skim milk, 2% milk, 1% milk and 

whole milk. While whole milk has the highest average price among the dairy based milk 

types, it has the lowest own-price elasticity.  

 

Distance Metric Approximations 

 

To identify the most distinguishing distances, first we estimated the DM approximation to 

the Rotterdam model using only single continuous distances one-by-one. The results from 

these estimations in table 4 indicate that all distances are positive as expected. Since dairy 

based milk types are classified according to fat content, closeness in fat content space is 

included in the estimation. Organic percentage is also another distinguishing attribute 

along with the average serving size per package that identifies the milk type in the 

attribute space. A variety of different nearest neighbor distance combinations have been 

estimated to get the closest approximations to the original models. The three different 

distance measures that are used in estimation are Fat, Organic-Size, and NN for Fat-

Organic-Size space (F-OS-NNFOS); Fat, Organic-Size, and NN for Fat-Organic space (F-

OS-NNFO); and Fat, Organic, and NN for Fat-Organic space (F-O-NNFO). Since the 

estimation results are similar across these three versions, we report only the results for F-

O-NNFO space based on the lowest Akaike (AIC) and Schwartz Information Criteria 

(BIC). 

The estimated Marshallian and Expenditure elasticities for DM-RM models can 

be found in table 5. The estimated expenditure elasticities match closely with the 
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traditional models where the elasticities are not approximated. All possible continuous 

distance combinations (Fat, Organic, Size, Fat-Organic, Fat-Size, Organic-Size, and Fat-

Organic-Size) along with the NN distances for Fat-Organic, Fat-Size, and Fat-Organic-

Size are included in the full model. The NN for Organic-Size dimension is not included 

since it allocates milk types in the same way they are allocated in the Fat-Size dimension. 

The full model gives the lowest AIC and BIC scores; however none of the estimated 

approximation parameters are significant. We fail to reject the equivalence of own-price 

elasticities for all milk types at the 5% significance level. The cross price elasticities that 

measure the effect of soymilk prices on the market shares of 1% milk, and full-fat milk 

(𝑒1%,𝑆𝑜𝑦   
𝑚 𝑎𝑛𝑑 𝑒𝐹𝑢𝑙𝑙  ,𝑆𝑜𝑦  

𝑚 ) are statistically different from the original elasticities between 

these products. Moreover, the high degree of correlation between distance measures 

suggests use of only the most important characteristics as distances.  

 If we use a subset of distances based on important characteristics, it is observed 

that related own-price and expenditure elasticities are significantly different from zero. 

Moreover all approximated elasticities are within the 95% confidence interval of the 

original elasticities. The own-price coefficient terms based on market share, fat content, 

and organic claim are not statistically significant, whereas the constant price coefficients 

are significantly negative indicating a negative relationship between own prices and 

market shares. 

 Similar to the results for non-approximated elasticities, soy milk has the highest 

uncompensated own-price elasticity, yet the rest of the own-price elasticities differ 

significantly. The DM method underestimates the own-price elasticities for 2% milk and 

skim milk and it overestimates the cross-price elasticities for full milk and 1% milk. In 

version F-O-NNFO, the order of own-price elasticities can be ranked as soy milk, followed 

by 1% milk, full fat milk, 2% milk and skim milk. Although the models approximate the 

own-price elasticities for 1% milk and soymilk well, they underestimate these elasticities 

for 2% milk, and skim milk and overestimate that of full fat milk.  The coefficient on the 

organic distance is also significantly positive indicating the positive relationship between 
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distances in organic percentage space and substitutability of the milk types regarding 

organic dimension.   

  

Hedonic Metric Approximations 

  

The monetary values of product attributes are estimated using both linear and semi-log 

hedonic regressions. The results are summarized in table 6. Regardless of the choice of 

model, the most distinguishing attribute is the Lactose-Free/Cholesterol-Free label 

followed by the Organic claim. Soy attribute is highly influential in the product price. A 

vitamin mineral enhancement label has a positive effect on price; however if a product is 

discounted, we expect to see a reduction of 1-2 cents in price per serving (or 8-16 cents 

per ½ Gallon package). Among the nutritional attributes, protein has the highest value 

followed by carbohydrate and fat content. Both cholesterol and sodium contents have 

significantly negative effects on the product values. Vitamin and mineral content are 

highly valued while an increase in size reduces the price per serving. 

 The estimated compensated price elasticities and expenditure elasticities along 

with summary of estimation results for HM-RM models are shown in table 7. Regardless 

of the initial hedonic regression version, the estimated expenditure elasticities match 

almost perfectly with the original models. All own-price elasticities and expenditure 

elasticities are significant and their signs are as expected. Moreover, the coefficient on the 

inverse of the hedonic distance terms is negative indicating products closer in hedonic 

space are close substitutes. The substitution effect declines as the distance between 

products in hedonic space increases. In addition the price interaction coefficient on the 

hedonic uniqueness term is also negative. This implies more unique product types have 

higher own-price elasticities. This is true in the case of the own-price elasticity for soy 

milk since soy milk has the highest uncompensated own-price elasticity among all milk 

types. In the linear hedonic based model, the own-price elasticity for soymilk is highest 

followed by that of 1% milk, full-fat milk, skim milk and 2% milk. In the semi-log 

hedonic based model, the own-price elasticity of full-fat milk is slightly higher than that 
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of 1% milk yet the order of other own-price elasticities are not different than the linear 

model. All of the estimated elasticities (estimated at the mean values) are within the 95% 

confidence interval of the original Rotterdam Model results. This indicates that the 

Hedonic Metric based approximation to the Rotterdam model performs very well. 

 

Conclusions 

 

In this article we compare the Distance Metric (DM) method with the Hedonic Metrics 

method (HM) regarding their performance in approximating the elasticities estimated by 

the Rotterdam and LA/AIDS models. The data used in our estimation are AC Nielsen 

Homescan data, which record household level purchases, and the USDA Nutritional 

Database, which provides detailed nutritional facts about individual products. Combining 

these sources and aggregating consumption on a weekly basis gives us time-series 

quantity-price and market share data that are used to estimate demand for different milk 

types. The uncompensated cross-price elasticities indicate that the soymilk prices do not 

affect the market shares of dairy based milk types, yet the inverse might not be true.  

 The DM approximation based on all possible combinations of distance measures 

give non-conforming estimates for some cross-price elasticities which might be due to 

high correlation between some measures. Thus, some elasticity estimates do not fit in the 

95% confidence interval of those estimated by the traditional model. Also, the order of 

estimated own-price elasticities based on the DM approximation is different than the 

original model. The significant inverse distance coefficient is positive suggesting that 

closer product types are closer substitutes.  

 The HM approximations are based on hedonic distances calculated as the sum of 

the pair wise differences in the value added of each attribute for each product type. 

Therefore it eliminates the need to search for significant characteristics and has a stronger 

foundation than the DM method. The calculated elasticities are very similar to the actual 

ones. In fact, all mean elasticities fit into the 95% confidence interval of original 
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estimation results. The coefficient on the hedonic uniqueness parameter is negative 

suggesting unique products have higher own-price elasticities. 

While both methods give confirming results, in the DM methodology the choice 

of distances is ambiguous and depends on prior judgments about the data, and trial and 

error. Consequently, it requires a cumbersome elimination method to test for different 

distance combinations in order to determine the best measure. Our approach is practical, 

eliminates the need to search for significant characteristics and has a stronger theoretical 

foundation. Thus we alleviate the ambiguity while significantly reducing the number of 

parameters. However, it is not necessarily the case that distances based on hedonic 

metrics give the best distance measurement. Future research is needed to find the optimal 

set of distances to model consumer’s allocation.  

While it is preferable to use individual level purchase data to analyze their 

purchase behavior using traditional demand models, it is impossible to use distance 

metrics at the household level. Since one of our primary motivations was to compare both 

methods, we used aggregate data. However, in the future, it will be possible to use 

hedonic metrics to segment consumers into different groups and create a separate hedonic 

space for each consumer group. Therefore, we can incorporate consumer demographics 

into the hedonic equations and estimate the elasticities based on not only product 

characteristics but also consumer characteristics in a simple manner. In this case, 

products targeting specific consumer profiles will be closely located in hedonic space 

which will result in higher cross-price elasticities between these products. That sort of 

research can further assist producers and marketers of differentiated products to 

effectively price and position their products within the market.  

The metric model applied in this paper can be applied to any market where 

product differentiation exists. Although we applied our model to fluid milk products at 

retail level, our model makes it possible to estimate the elasticities between differentiated 

products in any market. In many industries such as the automotive industry or household 

appliances, we observe both close and distant competition which is difficult to model. 

Using hedonic metrics, we can accommodate this behavior in a robust and simple way.   
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Table 1 

Mean Attribute Values by Milk Type 

 

 

Milk Types 

Attributes All 0% 1% 2% 3.25% SOY 

Organic Claim (%) 2.44 0.58 1.01 0.48 0.61 63.81 

 

 

(15.49) (7.56) (9.9) (6.89) (7.76) (48.05) 

Promotion (%) 8.67 7.90 9.29 9.76 6.27 14.16 

 

 

(28.09) (26.96) (29.03) (29.67) (24.23) (34.86) 

CFLF (%) 5.04 3.87 1.19 2.21 0.94 98.99 

 

 

(21.94) (19.29) (10.83) (14.69) 9.62 (10.02) 

Vitamin-Mineral Label (%) 96.79 98.69 96.88 97.53 97.18 

 

68.99 

 

 

(17.48) (11.34) (17.39) (15.53) 

 

 

 

 

 

) 

(16.56) (46.25) 

Protein per Serving 8.40 8.81 8.41 8.54 8.04 5.07 

 

 

(0.72) (0.22) (0.11) (0.38) (0.03) (1.56) 

Carbohydrate per Serving 13.09 12.69 13.54 13.15 12.23 18.88 

 

 

(3.40) (1.54) (3.67) (3.71) (3.56) (4.01) 

Fat per Serving 3.68 0.53 2.26 4.77 8.15 2.41 

 

 

(2.73) (0.17) (0.64) (0.36) (0.08) (1.29) 

Cholesterol DRI 4.89 1.68 4.01 6.55 8.44 0.10 

 

 

(2.68) (0.09) (0.49) (0.74) (0.41) (0.98) 

Sodium DRI 4.97 5.29 4.75 5.24 4.30 4.40 

 

 

(0.67) (0.48) (0.49) (0.57) (0.51) (0.95) 

Vitamin-Mineral DRI 11.50 12.02 11.35 11.92 10.54 8.71 

 

 

(1.07) (0.16) (0.11) (1.25) (0.06) (1.63) 

Servings per Package 14.71 14.93 14.69 15.63 13.66 8.40 

 

 

(4.72) (10.25) (9.02) (10.48) (9.68) (5.73) 

Unique UPC Codes 860 142 200 225 262 31 

Note: All DRI values are calculated as percentages of values provided per serving. Values in parenthesis 

represent standard deviations. 
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Table 2 

Price, Quantity and Market Share Statistics by Milk Type 

Milk Type: 2% 0% 3.25% 1% 0% 

Quantities 
     

Mean 12925.71 10524.45 6345.95 6526.62  615.31 

Std Dev 725.88 623.34 611.65 409.16  142.79 

Prices 
     

Mean 17.82 17.45 19.35 18.33  34.85 

Std Dev 1.33 1.14 1.59 1.26  2.02 

Market Shares           

Mean 34.00% 27.13% 18.07% 17.66%  3.14% 

Std Dev 0.96% 0.88% 1.02% 0.76%  0.58% 

Note: Prices are measured in cents per serving. A gallon of milk has 16 servings in a single package. 



22 
 

Table 3 

Rotterdam Model, Elasticity Estimates at Sample Means, N=208 

Hicksian (Compensated) Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

PERCENT2 -0.4781* 0.150 0.2708* 0.111 0.1196 0.096 0.1704* 0.084 -0.0052 0.052 

SKIM 0.33953* 0.139 -0.575* 0.166 0.0912 0.113 0.0877 0.086 0.0757 0.070 

FULLFAT 0.22503 0.180 0.1369 0.169 -0.5249* 0.159 0.0741 0.137 0.1523 0.084 

PERCENT1 0.32803* 0.162 0.1347 0.133 0.0759 0.140 -0.6361* 0.172 -0.0825 0.106 

SOY -0.0562 0.57 0.6558 0.608 0.8793 0.486 -0.4653 0.599 -1.0135* 0.261 

Marshallian (Uncompensated) Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

PERCENT2 -0.8179* 0.148 -0.0002 0.112 -0.061 0.097 -0.0061 0.085 -0.0365 0.057 

SKIM -0.047 0.140 -0.8832* 0.170 -0.1149 0.111 -0.1130 0.087 0.0401 0.075 

FULLFAT -0.054 0.177 -0.0857 0.172 -0.6733* 0.160 -0.0708 0.137 0.1266 0.083 

PERCENT1 0.0061 0.160 -0.1221 0.138 -0.0952 0.141 -0.8031* 0.173 -0.1121 0.101 

SOY -0.4497 0.593 0.3419 0.611 0.6701 0.493 -0.6697 0.602 -1.049* 0.254 

Expenditure Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

Estimate 0.9993* 0.068 1.1366* 0.085 0.8210* 0.0915 0.9467* 0.0923 1.1571* 0.353 

Note:  an asterisk (*) denotes significant at the 5% level; PERCENT2 denotes 2%, SKIM 0%, FULL FAT 

3.25%, PERCENT1 1%, and SOY soymilk. Results are derived from (1). 
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Table 4 

Single Dimensional Distance Parameter Estimates 

One Dimensional 

Distance Estimate S.E. Log L 

1 : Market Share 0.0239* 0.0039 2729 

2  : Fat Content 0.015* 0.0029 2726 

3  : Organic Percentage 0.0312* 0.0045 2735 

4  : Size 0.0197* 0.0032 2730 

Two Dimensional 

Distance Estimate S.E. Log L 

5  : Fat-Organic 0.0336* 0.0055 2730 

6  : Fat-Size 0.0236* 0.0037 2731 

7  : Organic-Size 0.0333* 0.0048 2735 

Three Dimensional 

Distance Estimate S.E. Log L 

8  : Fat-Organic-Size 0.0356* 0.0058 2731 

Note:  an asterisk (*) denotes significant at the 5% level; Log L is the log of the likelihood function. 

Results are derived from (2).  
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Table 5 

DM Distance Parameter Estimates and Elasticities for Rotterdam Model 

Distance Parameter Estimates 

Full Set of Distances 

 

Estimate S.E 

 

 

1  : Market Share -0.0745 0.1188 LogL 2740.689 

2  : Fat Content -0.079 0.260 Parameters 

Estimated 

 

3  : Organic Percentage 1.187 1.343 23 

4  : Size -4.232 5.756 N 208 

5  : Fat-Organic 7.107 15.305 AIC -5435.378 

6  : Fat-Size 5.998 7.8858 BIC -5428.063 

7  : Organic-Size -2.691 3.1506   

8  : Fat-Organic-Size -7.095 15.478  

NNFO: NN in Fat-Organic Space -0.014 0.036  

NNFS: NN in Fat-Size Space -0.034 0.055  

NNFOS: NN in Fat-Organic-Size Space -0.038 0.027  

β0: Own-Price Coefficient -0.242 0.457  

β1: Market Share Own-Price Term 0.1046 0.649  

β2: Fat Content Own-Price Term 0.001 0.012  

β3: Organic Percentage Own-Price Term 7.632 33.906  

    

Distance Version: F/O/NNFO 

 

Estimate S.E 

 2: Fat Content -0.0026 0.0079 LogL 2734.468 

3: Organic Percentage 0.0418* 0.0103 Parameters 

Estimated 

 

NNFO: NN in Fat-Organic Space -0.0194 0.0165 15 

β0: Own-Price Coefficient -0.2838* 0.143 N 208 

β1: Market Share Own-Price Term 0.3959 0.2963 AIC -5438.936 

β2: Fat Content Own-Price Term 0.0054 0.0051 BIC -5434.165 

β3: Organic Percentage Own-Price Term 8.8648 9.1188  

Note:  an asterisk (*) denotes significance at the 5% level. A product type is the Nearest 

Neighbor (NN) of another if it is the closest neighbor in the distance space.  
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Table 5.  (Cont.)  

DM Distance Parameter Estimates and Elasticities for Rotterdam Model 

Rotterdam Model (All Distances) 

Marshallian (Uncompensated) Elasticities 

  PERCENT2     SKIM     FULLFAT     PERCENT1     SOY     

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

PERCENT2 -0.6787 ✓* 0.13 -0.1602 ✓ 0.11 0.0628 ✓ 0.11 -0.1348 ✓ 0.12 0.0079 ✓ 0.12 

SKIM -0.1122 ✓ 0.14 -0.8869 ✓* 0.18 -0.0525 ✓ 0.10 -0.0807 ✓ 0.08 0.0416 ✓ 0.07 

FULLFAT -0.1205 ✓ 0.22 -0.0076 ✓ 0.16 -0.6510 ✓* 0.17 -0.2439 ✓ 0.34 0.3173 X 0.31 

PERCENT1 0.0745 ✓ 0.18 -0.0643 ✓ 0.13 -0.0595 ✓ 0.16 -0.8157 ✓ 0.48 0.1003 X 0.11 

SOY -0.4181 ✓ 0.61 0.3516 ✓ 0.61 0.6836 ✓ 0.49 -0.6988 ✓ 0.61 -1.0743 ✓* 0.27 

Expenditure Elasticities 

  PERCENT2     SKIM     FULLFAT     PERCENT1     SOY     

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

Estimate 1.0119 ✓* 0.07 1.123 ✓* 0.09 0.8606 ✓* 0.09 0.9029 ✓* 0.09 1.1561 ✓* 0.35 

Rotterdam Model (Distance Version: F/O/NNFO) 

Marshallian (Uncompensated) Elasticities 

  PERCENT2     SKIM     FULLFAT     PERCENT1     SOY     

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

PERCENT2 -0.5763 ✓* 0.09 -0.1533 ✓* 0.03 -0.0631 ✓* 0.03 -0.1179 ✓* 0.04 0.003 ✓ 0.02 

SKIM -0.2347 ✓* 0.04 -0.7586 ✓* 0.11 -0.0532 ✓ 0.04 -0.1251 ✓* 0.05 0.0115 ✓ 0.01 

FULLFAT -0.1692 ✓* 0.08 -0.0007 ✓ 0.05 -0.7813 ✓* 0.13 0.0749 ✓ 0.05 0.044 ✓* 0.02 

PERCENT1 -0.0928 ✓ 0.06 -0.1387 ✓ 0.07 0.0594 ✓ 0.05 -0.7955 ✓* 0.12 0.0406 ✓ 0.03 

SOY -0.6395 ✓ 0.41 0.0908 ✓ 0.15 0.1952 ✓ 0.13 0.1889 ✓ 0.16 -0.996 ✓* 0.25 

Expenditure Elasticities 

  PERCENT2     SKIM     FULLFAT     PERCENT1     SOY     

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

Estimate 1.0041 ✓* 0.07 1.1292 ✓* 0.08 0.8369 ✓* 0.09 0.9320 ✓* 0.09 1.1605 ✓* 0.35 

Note:  Asterisk (*) and double asterisk (**) denote variables significant at 5% level and 10% respectively; a 

check mark (✓) indicates that the estimated parameter is within the 95% confidence interval of the original 

model.  Parameter estimates and elasticities are derived from (7). (F-O-NNFO) denotes Fat, Organic, and 

NN for Fat-Organic space. A product type is the Nearest Neighbor (NN) of another if it is the closest 

neighbor in the distance space. 
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Table 6 

Hedonic Attribute Estimates 

 

Linear Semi-Log 

Variable 

Parameter 

Estimate 

Std. 

Error 

Parameter 

Estimate 

Std. 

Error 

Intercept -20.627 0.367 1.667 0.018 

Marketing Organic Claim 10.962 0.090 0.428 0.004 

Marketing Soy Dummy -9.351 0.155 -0.367 0.008 

Marketing Promotion Dummy -1.583 0.026 -0.100 0.001 

Marketing Lactose Cholesterol Free 23.537 0.069 0.857 0.003 

Marketing Vitamin Mineral Index 4.497 0.077 0.140 0.004 

Nutrient Protein Content (g) 2.734 0.042 0.085 0.002 

Nutrient Carb Content (g) 0.991 0.007 0.033 0.000 

Nutrient Lipid (Fat) Content (g) 0.861 0.014 0.032 0.001 

Nutrient Cholesterol DRI Max -0.358 0.014 -0.011 0.001 

Nutrient Sodium DRI  Max -2.010 0.027 -0.060 0.001 

Nutrient Vit-Min Percentage Index 0.789 0.016 0.020 0.001 

Purchased Serving Size Quantity -0.106 0.001 -0.005 0.001 

Adjusted R-Square Value 0.3666 
 

0.2872 
 

Note: All estimates are significant at 1% level. Linear parameter estimates are derived from 

(8) whereas semi-log parameter estimates are derived from (10). 
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Table 7 

Hedonic Metric Parameter Estimates and Elasticities 

Rotterdam Model (Semi-Log)  Rotterdam Model (Linear) 

Parameter Estimate S.E 

  

  

  

  

  

  

Parameter Estimate S.E 

𝜆* 0.0453 0.009 𝜆* 0.0488 0.011 

𝜆𝑛𝑛 ** -0.0281 0.014 𝜆𝑛𝑛 ** -0.0290 0.014 

β0 0.2147 0.836 β0 -0.1237 0.336 

β1 0.1218 0.176 β1 0.1679 0.169 

β2 -1.0149 2.443 β2 -0.0305 0.953 

LogL 2733.933 

 

Log L 2733.662   

Parameters 

Estimated   

Parameters 

Estimated 

    

13 

 

13   

N 208 

 

N 208 

 AIC -5441.866 

 

AIC -5441.324 

 BIC -5437.7312 

 

BIC -5437.1892 

                        Hedonic Metric Approximated Elasticities for Rotterdam Model 
Semi-Log 

Marshallian (Uncompensated) Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

PERCENT2 -0.5822 ✓* 0.073 -0.1543 ✓* 0.032 -0.0622 ✓* 0.029 -0.1396 ✓* 0.026 0.0146 ✓ 0.01 

SKIM -0.2376 ✓* 0.041 -0.6617 ✓* 0.069 -0.0685 ✓* 0.031 -0.1516 ✓* 0.033 0.0211 ✓ 0.012 

FULLFAT -0.2159 ✓* 0.055 -0.0227 ✓ 0.045 -0.7638 ✓* 0.102 0.0674 ✓ 0.045 0.0573 ✓* 0.017 

PERCENT1 -0.0850 ✓ 0.057 -0.1778 ✓* 0.052 0.0522 ✓ 0.049 -0.7481 ✓* 0.099 0.0575 ✓* 0.018 

SOY -0.8041 ✓* 0.397 0.1659 ✓ 0.138 0.2660 ✓* 0.118 0.2771 ✓* 0.118 -1.1004 ✓* 0.223 

Expenditure Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

 

1.0016 ✓* 0.066 1.1314 ✓* 0.084 0.8358 ✓* 0.089 0.9284 ✓* 0.09 1.1958 ✓* 0.349 

Linear 

Marshallian (Uncompensated) Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

PERCENT2 -0.5627 ✓* 0.071 -0.151 ✓* 0.035 -0.0673 ✓* 0.03 -0.1377 ✓* 0.022 0.0172 ✓ 0.011 

SKIM -0.2416 ✓* 0.039 -0.6368 ✓* 0.068 -0.0846 ✓* 0.028 -0.1592 ✓* 0.033 0.0254 ✓ 0.013 

FULLFAT -0.2344 ✓* 0.054 -0.0431 ✓ 0.043 -0.7254 ✓* 0.089 0.0560 ✓ 0.044 0.0639 ✓* 0.02 

PERCENT1 -0.2448 ✓* 0.046 -0.0222 ✓ 0.06 0.0401 ✓ 0.051 -0.755 ✓* 0.099 0.0687 ✓* 0.022 

SOY 0.1139 ✓ 0.168 0.2035 ✓ 0.153 0.3023 ✓* 0.133 -0.5883 ✓ 0.349 -1.2373 ✓* 0.21 

Expenditure Elasticities 

  PERCENT2 SKIM FULLFAT PERCENT1 SOY 

 

Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. Estimate 

 

S.E. 

 

0.9902 ✓* 0.068 1.1439 ✓* 0.086 0.8347 ✓* 0.09 0.9302 ✓* 0.092 1.2058 ✓* 0.346 

Note:  an asterisk (*) denotes significant at the 5% level; a check mark (✓) indicates that the estimated parameter is 

within the 95% confidence interval of the original model. Parameter estimates and elasticities are derived from (14). 

 


