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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS
VOL. 43, No. 2 (JUNE, 1975)

FORECASTING CROP QUALITY*

G. J. Rylandt

The need for a forecasting system of biological quality arises as a result
of the price-quality payment schemes in grower and processor contracts
which operate in many agricultural cropping industrics. The seasonal
nature of the series of vertical quality height gives rise to questions as
to the repetitive pattern of the shape and trend translation of the series.
These hypotheses can be tested using conventional statistical methods.
For non-stationary series, however, a Box-Jenkins type dynamic
seasonal model is proposed. These forecasting procedures are applied to
a series of sugar cane guality.

1 INTRODUCTION

Quality analysis and economic theory are normally associated with
product differentiation and monopolistic competition which are usually
analysed within a static framework. In a dynamic economic environment,
the importance of product quality variation, or the manner in which
consumers adjust ruling market prices over time in response to changes
in quality over time of a single product, has recently been demonstrated
by Cowling and Rayner [2] in their “demand for brands” analysis of
Great Britain’s tractor market. Besides this recent study very little
empirical work has been done on the dynamic aspects of the quality
variation problem. The main reason, of course, is the multi-
dimensional character and intangible nature of quality which arises
even in the absence of price and time effects. In agricultural
production, however, many field crops contain a dominant but quite
fundamental and naturally occuring quality attribute which is both
measurable and time dependent.

Differences in biological quality of many crops can be measured
empirically in terms of a single vertical quality attribute which may be
contrasted with the sometimes intangible horizontal and vertical quality
differences. For example, in the production of wheat the percentage
of gluten or wheat protein can be measured and in oil seeds production
the percentage of the oil recovered, while in sugar cane production, the
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commercial cane sugar content can be obtained. The biological quality
attribute, which varies with time and location, is translated into
differences in factor market prices by purchasers of raw material. In
the case of integrated industries, forward contracts between growers and
processors usually provide for payment per unit of raw material
supplied based on quality.

When changes in growers returns over time are reflected by changes in
quality over time in the above manner, we see the need for a forecasting
system of crop quality at three levels. First, at the level of the
individual producer, forecasts of crop quality can be used to prepare his
annual budgets and to make decisions with respect to the optimum
allocation of production among different quality grades. Similarly
individual processors can make use of the anticipated quality cycle in
order to establish the appropriate length of processing season. Guise
and Ryland [8] have used the crop quality cycle phenomenon to
determine the optimum period of production in the case of a single
raw sugar manufacturer. Second, at the industry level the determination
of the optimum quality mix of a particular commodity could offer
several advantages. Matsumoto and French [11] have recently shown
how the optimum quality distribution of brussel sprouts in a timeless
and spaceless economic environment can be determined when demand
and quality cost of each grade are included. Using a quite different
approach, Ryland and Guise [12] have shown the importance of
quality differences over both time and space when prices are fixed for
determining the optimum competitive schedule of sugar cane production
through cane processing plants. Third, there seems a mneed to
investigate regional differences in crop quality so that any potential
regional trading advantages which may arise as a result of demands
for different qualities may be realized.

Given the need for a forecasting system of crop quality it is necessary
to distinguish between two broad groups of available systems which
are by no means mutually exclusive. Firstly, there are those techniques
which study the influence of independent or exogenous variables on
the dependent series and, secondly, those methods which examine the
previous behaviour of the series itself.

The first type of forecasting system generally involves the correlation
of such variables as rainfall, temperature and soil moisture with the
level of crop quality in any given time period. In order to forecast
crop quality in any given time period with this approach, we require
forecasts of the level of the independent variables. Unfortunately,
predictions of naturally occurring phenomena such as amount of
rainfall and temperature over time are relatively unreliable:  The forecast
error using this system is compounded by the error of the forecasts
made for each independent variable. To overcome this difficulty it is
possible to analyze the behaviour of crop quality by using discrete time
periods, for example, weeks as a surrogate for average weekly rainfall, soil
moisture and temperature. The level of crop quality in each discrete
time period can then be expressed as a function of the time period over
which observations were obtained. Given the time period, forecasts
can be made using this method provided that the series can be regarded
as repetitive with constant amplitude from one season to the next.
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Associated with the previous method is a related system in which the
dependent series is influenced by a single variable whose level is
controlled by the forecaster. Control variables in crop quality prediction
could be amount of fertilizer or volume of irrigation water applied
from the viewpoint of the single producer. In this case the level of
crop quality in each time period could be set as a function of the level
of control variables and perhaps lagged values of the series of crop
quality.

A second type of forecasting system which does not use a behavioural
model, as such, involves an analysis of the time series taken out of
context. That is, the only input to the forecasting system is the
previous history of the series itself. Forecasts are made by projecting
forward on the basis of relationships among previous occurrences. A
forecasting model which reproduces previous patterns can then be used
to forecast future values within a predetermined degree of reliability,
The identification of such a model requires a close examination of the
effect of lagged dependent variables on the current observation.

The choice of a forecasting system (assuming cost considerations are
negligible) depends on the purpose for which the forecasts are intended
and the amount of information available to the forecaster. For
example, a forecasting model for the individual grower might include a
behavioural model associated with a control variable such as fertilizer.
On the other hand regional crop quality forecasts would include the
series itself (and perhaps the time period in which observations were
obtained) as it is impossible to place controls in any aggregative
fashion. OQur aim is to develop an appropriate forecasting system to
handle the latter situation.!

2 SOME IMPORTANT PROPERTIES OF A REGIONAL FORE-
CASTING SYSTEM FOR CROP QUALITY

Several desirable properties of a forecasting model for crop quality
could be summarized as follows:

(i) The model selected from a finite range of alternative
formulations is that one which minimizes the error between
previous estimated values and actual observations.

(ii) The number of pieces of information required to produce an
estimate must be kept to a minimum.

(iii) For ease of subsequent calculations the estimating equation
should be continuous and differentiable with respect to
time.

H_owever, for forecasting to various lead times, the above properties
might conflict with the most desirable property of any forecasting
system which is to produce good forecasts. For example, a first-order

t Spivey and Wecker [14] have recently reviewed the type of forecasting models
applicable to regional economic forecasting. They carefully distinguish between
the behavioural or extrinsic models and intrinsic models which extrapolate using
the previous values of the series itself.
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autoregressive model may be all that is required for making forecasts
at a lead time of one period. For longer lead times a more complex
model may be more appropriate. Thus to choose among competitive
forecasting models at different lead times we require a criterion by
which it is possible to compare relative forecasting efficiency. For
this purpose we adopt the Thiel coefficient, U, with:

U - J 2Py — Ap)?
Zy( Ay — Ai_p)?

where Py = predicted value at time ¢, and 4; = actual observation.
The objective is to choose that forecasting model which minimizes U
over a range of different lead times for some base period change,
(4: — A1_p).2

3 A SUGGESTED PROCEDURE FOR FORECASTING
REGIONAL CROP QUALITY

Before it is possible to outline the technical procedures involved in
forecasting crop quality, we require a fundamental interpretation of the
seasonal quality series to be compared with the usual class of time series
normally available. An observed time seriecs may be defined as an
ordered sequence of observations taken from an infinite population at
equidistant points in time. The difficulty of treating the seasonal crop
quality series as a typical observed time series arises because
observations on crop quality are normally only available throughout
the harvesting season each year which varies with the type of crop and
the particular region. In the case of wheat, harvesting operations
each year are usually confined to a short period of I-month duration
compared with sugar cane which is harvested over a 6-month period.
In addition to the problem associated with the truncated nature of the
observed series of crop quality each year, is the practical one of
relating observations in one season to correspond with observations in
successive seasons recorded during the same time interval, as harvesting
is not confined exactly to the same period from season to season.
Thus we require assumptions relating to the occurrence of missing
observations during the non-harvest period and for standardizing the
length of the harvesting period each year.

The missing observations on crop quality during the non-harvest period
are not random occurrences but are deliberaiely planned for in the
course of farming operations. Consequently these missing observations
have zero expectation and may be omitted. On the other hand the
variable length of the harvesting season each year may be regarded as
a random occurrence as the choice of the harvesting season is usually
constrained by seasonal factors. On this basis we can standardize the
time period and the length of the harvesting season each year by filling
In the missing observations which occur either at the commencement or
the completion of the harvesting period.

2 Schmitz and Watts [13] have also used Thiel’s coefficient to compare the
accuracy of their forecasting models relative to a naive or ‘“rule of thumb”
forecasting technique.
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To provide estimates of the missing observations on crop quality at the
end of the harvesting season each year we require to estimate a relation
which faithfully reproduces the intraseasonal behaviour of crop quality.
At the regional level, this can be done by setting quality as a function
of the parabolic time trend and estimating, using ordinary least squares,
an equation of the form:

O =7 + w N )
where Q; = unit of quality measurement in period ¢.

f(t) = parabolic function of the time trend variable ¢, where
t=1,. . ,T

and u; = random error term,

One of the problems associated with the fitting of a parabolic time
trend of the form given by equation (1) is the problem of auto-
correlation among the residuals which give inefficient estimates of the
partial regression coefficients. However my experience with auto-
correlation with this type of estimation problem is that the fitting of a
spliced polynomial time trend continuous at the join points, such as
those discussed by Fuller [5], not only overcomes the problem of
autocorrelation but also considerably improves the significance of the
estimates. Estimates obtained using this form of estimating equation
can be used to fill in the missing observations at the end of the harvesting
season so as to standardize the length of the harvesting period each year.

The slope and trend parameters for each year’s fitted function of the
form of equation (1) can be compared using an extended dummy
variable regression model in the conventional manner. If there is no
significant difference in the trend and slope parameters each year
compared with a selected base year, there is no need to proceed
further. In this case the forecasting function would simply be the
function fitted to crop quality data over all seasons.

When there are significant differences in the slope and trend
coefficients each year we require a forecasting system which is able to
handle non-stationary seasonal series.> While there is a divergent
stream in the literature on time series analysis to handle the estimation
of seasonal series,® we have used a mixed autoregressive-integrated
moving average (ARIMA) seasonal model (of the type discussed by
Box and Jenkins [1]) applied to the output from an appropriate linear
filter of the original crop quality series.

2 An alternative way of viewing the significance of the coefficients in the dummy
variable regression model is that the series could be a possible candidate for
variance components analysis with random time effects of the type recently
discussed by Maddala [10]. Variance components models with random time
effects assume a stationary series with random variation over time about a fixed
mean. A broader and less restrictive class of models is the linear homogeneous
non-stationary models for which stationarity can be induced by a suitable linear
filter. We adopt Box and Jenkins’ suggestion that it is much more realistic to
specify, at least initially, a stochastic non-stationary trend when random changes
in the level of the series are observed.

E4.]S‘ee, for example, Hannan [9], Terrel and Tuckwell [15] and Doran and Quilkey
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In order to fit a stable model to the series of sugar cane quality the
Box-Jenkins iterative model building procedures are employed. These
stages are:

(i) Model Identification: The series is differenced using a suitable
differenced operator, y? y¢ Q; (where D, d is of low order and s is the
seasonal frequency) and the sample autocorrelation and partial auto-
correlation functions of the differenced series are examined. A
tentative model is selected usually at that level of differencing which
reduces variability and induces stationarity in the differenced series.

(ii) Fitting: The parameters of the chosen model are estimated by
least squares.?

(i) Diagnostic Checking: Residual Analysis is applied to check the
adequacy of the model as a stationary stochastic process.

(iv) Forecasting Performance: Postsample forecasting at various lead
times is conducted to evaluate the adequacy of the model as a
forecasting system. We have used Theil’s Inequality Coefficient for
comparing the mean square forecasting error of alternative models for
a range of different lead times.

When forecasting performance is the sole objective of the analyst, the
choice of an appropriate forecasting system must ultimately depend on
its ability to provide good forecasts. The steps above are repeated for
alternative models so as to assess the sensitivity of forecasts to changes
in model structure for different lead times.

4 AN EMPIRICAL EXAMPLE

The above procedures were used to establish an appropriate forecasting
system for Commercial Cane Sugar (C.C.S.) content of sugar cane
which follows a distinct parabolic seasonal pattern. The C.C.S. series
or maturity cycle of sugar cane for a particular sugar district in
Australia for 1971 season is graphed in figure 1. The graph of average
weekly C.C.S. plotted over time shows that C.C.S. at first slowly
increases, reaches a maximum in mid-October and then falls rather
sharply towards the end of the harvesting season. This pattern of rise
and fall in sugar content is duplicated in almost all sugar-producing
districts where there is a clearly defined Winter and Summer harvesting
season. To approximate this behaviour, Guise and Ryland [8] have
used a quadratic function of time of the form:

C.CS. = ao + ait + ayt¥(aga; > 00,0, <00) . . . (2
where:

C.C.S.; = average C.C.S. in time ¢, at some plant expressed as
a percentage.

¢t = units of one week with some clearly defined origin.

® The preliminary identification procedures above may suggest the inclusion of
moving average or autoregressive disturbance terms which require non-linear least
squares estimation methods, Alternative algorithms for handling this type of
estimation problem have recently been discussed by Goldfeld and Quandt [7].
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ccs.

:

FIGURE 1. Maturity Cycle of Sugar Cane Central District of Queensland (1971)

June July August Septemtier QOctober November December

An equation typical of the form of (1) fitted to twenty-four observations
of weekly average C.C.S. data for a particular plant in the Central
District of Queensland in the 1971 season is:

C.CS.. = 11-86587 + 0-51107¢ — 0-01838¢2 ... (Ga)
(9.80506)  (0-76645)
R? = 0-8221
d = 0-5522
C.CS.; = 9-63952 + 0-80130¢ — 0-0272172 .. . (3b)
(4-39695)  (5-09854)
R2 = 0-6610
d = 1874

{ = units of one week with origin at 12 noon, Wednesday 16th June,
1971.

In equations (3a) and (3b), the values in parenthesis under each
coefficient are ““#> values obtained when each coefficient is tested against
the zero-valued null hypothesis. Clearly, a non-zero significant partial
regression coefficient is hypothesized at least 95 per cent of the time in
all cases. The Durbin-Watson statistic, d, detects a significant positive
autocorrelation effect in equation (3a) and one available remedy is to
transform the original series into a related series by a first order
probability difference operation. Equation (3b) was derived using a
simple Cochrane-Orcutt transformation scheme.

The behavioural pattern of C.C.S. using equation (3b) provides quite
reliable estimates if the degree of explanation R? is regarded as the
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criteria for best fit. However equation (3b) is somewhat of a
disappointment when compared with the actual observations. Firstly,
equation (3b) consistently underestimates the actual observations recorded
towards the end of the season. Secondly, equation (3b) fails by over
2 weeks to predict the turning point of the cycle (maximum value of
C.C.S. occurs at r = 14-72 weeks using equation (3b), while in 1971
week 17 using our arbitrary origin recorded the maximum value of
C.C.S.). Both these points serve to cast doubt on the reliability of
equation (3b) and the form of equation (2) in adequately reproducing
the C.C.S. cycle for the single season.

From the graph of average weekly C.C.S. (figure 1) observations on
C.C.S. seem to follow a linear trend between commencement of harvesting
up to a certain time period, say K;. After K, is reached the points
form a semi-ellipse around the maximum value until a time period,
say K,, where a persistent linear trend downwards can be observed.
To obtain a single equation continuous at K; and K, we can, following
Fuller [5], estimate an equation which is linear up to K;, quadratic
between K; and K, and linear after K, of the form:

CCSi=ay+ ayit + b Z, + b,7, N €Y
where:

Zy=(— K)PforK, <t<K,

Zy, = (K2 — K?) + 2(K, — D))t for t > K,.

The overall improvement from splicing the original quadratic equation
(2) can be gauged by the increase in its explanatory power given by RZ
Also since we are interested in minimizing the error between the actual
and estimated observations reflected by the improvement in R? a search
for the optimum integer value for K, and K, where R? is maximized
may also be made.® Using the same raw data on C.C.S. as that which
was used to estimate equations (3a) and (3b), three variations of the
model outlined in equation (4) were analysed. These were a linear
followed by a quadratic segment, quadratic then linear, in addition to
the completely specified model. For each equation optimal integer
join points were determined. The results of this analysis for the 1971
data are given in table 1; of the three variations of equation (4) tested,
the completely specified model with K; = 14 and K, = 22 was globally
optimum having an R? of 0-9575. The equation estimated for K, = 14
and K, = 22 is as follows:

C.C.S.; = 13-11821 + 0-16046¢ — 0-03047Z, — 0-04086Z, . . . (5)
(15-13349)  (8-52752)  (20-15239)
R?® = 0-9575
d = 1-6886

¢ Recently, Gallant and Fuller [6] have developed a non-linear least squares
algorithm for computing the optimum (not necessarily integer) join point. The
importance of the integer requirement in our case may be gauged by the sensitivity
of the sum of squares surface to changes in the level of join points about the
computed optimum. From table 1 we may observe that this variation is small
indicating a relatively “flat” surface about the optimum,
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where:
Zy = (t — 142 for 14 <<t < 22, and
Zy, = —288 + 16¢ for r > 22.

The marked improvement in the explanatory power of equation (5)
compared with the simple quadratic relationship, equation (3), gives an
overall improvement of approximately 30 per cent in explanatory power
and this improvement is certainly worth the additional computational
effort involved. The improved estimating power of equation (5) may
be gauged from the margin of error in predicting the turning point of
the C.C.S. cycle. The maximum value of C.C.S. using equation (5) is
reached at time period r = 16-63 weeks which may be compared with
t = 17 weeks from the raw data. The use of equation (3) rather than
equation (5) would tend to overstate revenue per tonne of sugar cane
particularly in the latter periods of the harvest if C.C.S. forecasts were
to be put to this purpose.

TABLE 1
Results of Search for Best Fitting Spliced Polynomial with Integer Join Pointst

| | , ' |
Model K, Ky =211 K, =22 ‘ K, =23 | K, > 27
— ' j
Linear-Quadratic. . .. T 0-9478
6+ ..o Looo L 0-9607
B ) T 0-9441
Linear-Quadratic-Linear : 13 09194 = 0-9574 0-9550
£ 14 0-9250 0-9575* 0-9566
15 | 09310 | 09570 0-9571
16 0-9368 | .... 0-9552 |
17+ 09405 ! v
18 0-9385 | |
Quadratic-Linear. . .. 0 . 08766 | 09422 0-9302
. I

* Global optimum.

T Improvement in R® (adjusted for degrees of freedom) was taken as the
criterion for best fit. All equations satisfied the Durbin-Watson test for positive
autocorrelation and in each equation all partial regression coefficients were
significant.

Before it is possible to use equation (5) as a predictive tool, it is necessary
to determine whether the C.C.S. cycle is in fact stable from season to
season. We can do this quite simply by extending the spliced Polynomial
model, equation (4), to include proxy or shift variables for intercept
and slope coefficients for each season compared with the average over
all seasons with 1971 set as the base year. These proxy variables gauge
the differences up or down which have taken place in the level of these
coefficients between seasons. Those years in which the regression
coefficients for the intercept and slope parameters were not significant
were omitted after the initial equation was formed and the significant
estimates only were obtained. These procedures result in the regression
coefficients given in table 2.
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Two major points may be inferred from table 2. Firstly, there is an
apparent significant divergence between seasons in the linear trend
effect or translation of the series. A priori, one would expect a continual
upward trend in vertical quality height reflected in the negative sign of
each trend coefficient for each season prior to 1971. This is not the
case indicating that seasonal effects are of overriding importance in
determining vertical quality height.

Secondly, the linear slope coefficients are only significant for two years
out of the previous ten (1963 and 1968). The significance of those
coeflicients reflect the unusually high incidence of rainfall experienced
during the harvesting period in these years. This implies that the slope
of the C.C.S. curve in normal seasons is virtually stable while the only
non-stationary aspects of the C.C.S. series is the translation or vertical
quality height. These conclusions suggest the degree and type of
differencing which would be required to induce stationarity. As only
the trend is non-stationary, a first difference may be a stationary model.

Before it is possible to operate on the entire series of sugar cane quality
it is necessary to standardize the series in terms of the length of the
harvesting period. The missing observations were estimated using the
best fitting form of the spliced polynomial model, equation (4), applied

TABLE 2

Comparative Statistical Analysis of the C.C.S. Cycle for a Particular Plant in the
Central District 1961-71%*

Regression [ |t value

Term 1 |
| coeflicient i (246 observations)
Average Intercept .. .. .. 12-16903
Significant Differences— |
.. .. .. .. 1-19903 9-8850
1963 ., .. .. .. .. 1-22382 4730
1966 .. .. .. .. .. 0-51925 4:2566
1968 .. .. .. .. o 0-64916 : 27788
1965 ., .. .. .. . ‘ —0-51637 4-0259
1970 .. .. .. .. .. 0-94624 7-:00689
|
Average Linear Slope (1) .. .. .. 0-22233
Significant Differences— !
1963 .. .. .. .. . 0-08979 4-45424
1968 .. .. N 0-02885 AU
Average Quadratic Slope (Z;) ' —0-03768
l
Average Linear Slope (Z,) .. .ol —0-03980 el
. R* = 0-8130

* No test for significant differences over time in Z, and Z, were conducted because
of the sparse data towards the end of season.
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to each seasons data with the origin for each season established at 12
noon on the Wednesday of the second week in June.”

A total of 27 time periods was considered each year finishing in each case
on the Wednesday of the week prior to Christmas. The series from
1961-71, a total of 297 observations on C.C.S. was regarded as the fit
period while the data for the season 1971-3 became the test period for
assessing the adequacy of the fitted model as a forecasting system.

Prior to linear filtering, the fit period data were first transformed using
natural logarithms as it is the percentage fluctuations in the data which
are expected to be comparable.®

Zy = 1ln.C.C.S; . . . (6
where:
Z: = logged series of crop quality in each period 7.

To identify a stationary model for sugar cane quality the procedure is to
difference the series and then from the lagged autocorrelation coefficients
of the differenced series choose an appropriate model. Figures 2 and 3
supply, respectively the sample autocorrelation and partial auto-
correlation functions over 81 lags for the series Z;, vZ; and v,,Z;, as the
length of the seasonal frequency in this case is of order 27. The
differenced series which extracts the minimum variance component is
vZ:. At this level of differencing, the autocorrelation function gives
significant coefficients at lags 12, 27 and 54, at the 5 per cent level
(standard error of the autocorrelation coefficients is approximately 0-06).
On the other hand, the partial autocorrelation function for yZ: has a
non-zero coefficient at lag 54 which suggests an autoregressive operator
at this period lag. These preliminary identification procedures suggest
the following ARTMA model.

(I — 0By = (1 — 6,B% — 0,B* ) N 1))
where:

ot = (1 — B)Z; = v/ = Zt — Zey

a; = uncorrelated stationary stochastic process, and

B% = lag or shift operator of order k.

In addition to the model suggested in equation (7) (model A) three
alternative models were identified (models B, C and D). Model B is
simply the unlogged version of model A. While simple linear filtering
extracts the minimum variance component it is possible that this level
of differencing is too harsh given the inherent seasonal component in
the original series. Thus the seasonal differenced series of order 27,
V2o, was used to select models C and D, the logged and unlogged versions
of the seasonal differenced models.

7In all cases the best fitting model was a linear-quadratic-linear model with join
points K, == 10,. . ., 15 and K, = 22

8 In a recent empirical study by Chatficld and Prothero [3] using the Box-Jenkins’
seasonal models, good forecasts were not realized as a result of overtransformation
of the original series using logarithms. We compare forecasts using both logged
and unlogged data. However no attempt is made to determine the “optimal”
transformation which remains somewhat of a controversial matter.
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The autocorrelation function in figure 2 for the seasonal differenced
series shows the autocorrelation functions declining by a factor of
approximately 0-8 over a seasonal cycle indicating an autoregressive
operator of order 1. In addition a second autoregressive operator of
approximately —O0-5 at the seasonal frequencies is also evident, The
partial autocorrelation function tends to confirm these preliminary
identifications with non-zero coefficients at lags 1 and 27. Thus model
C selected from the class of seasonal models is an autoregressive (AR)
model of the form

(1 — 1B — 9,BF)v = a¢ N ¢
where:

ve = (I — B*Zy = Z: — Z1_y,

Model D was fitted as the unlogged analogue of model C.

As moving average terms were included in models A and B a non-linear
least squares method using Hartley’s algorithm?® was used to provide
least squares estimates of the parameters of each model. Prior to fitting
the models the effect of imposing the linear filter on the original series
was tested against the unconstrained autoregressive model. The auto-
regressive coefficients of ¢,B and ¢,B%7 were 0:999 and 0-993 for models
A and C respectively which confirms the linear homogeneous hypothesis
in each case.

The models specified in equations (7) and (8) and fitted to the data are
reported in table 3. For each model only the significant estimates are
supplied. A seasonal moving average term was included in models C
and D after the seasonal model, equation (8), was initially fitted in order
to accommodate a significant autocorrelation coefficient occurring at
lag 27 in the residual series, The effect of this adjustment was to
reduce to insignificance the seasonal autoregressive term.

The models summarized in table 3 were diagnostically checked for
significant period patterns (Kolgomorov-Smirnov) and for non-
randomness in the residuals (Box-Pierce). Both hypotheses were rejected
at the levels of significance commonly assumed. On both these criteria

as well as the residual standard error (o) it is not possible to choose
among the fitted models a model on which to base a suitable forecasting
system. To evaluate the forecasting ability of the models at different
lead times we chose as the naive “no change” extrapolation the values
of C.C.S. for the corresponding week in the previous season, for example,
the denominator of Thiel’s coefficient was 4¢ — A:_,..

® Hartley’s algorithm is a modified Newton-type Gradient Method using a quadratic
approximation to determine the optimal step length at each iteration. With
respect to the latter, Hartley’s technique bears a family resemblance to those
iterative non-linear least squares methods discussed by Quandt and Goldfeld [7].
A practical computational problem which we have found with this technique is
singularity of the matrix which, of course, inhibits further iteration. One way to
overcome this problem is by the use of a more robust matrix inversion technique.
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TABLE 3
Summary of Box-Jenkins Seasonal Models Fitted to Sugar Cane Quality Series*
! | A
Model No. of | Para- !Coeﬁicients |t 0 G
observ- | meters values |
ations | !
’ E
A o+ pwi_s + @ ’ 242 P 0-46985 8-143 | 37-20 | 0-040
+ 04,45 P0 ‘—0-11721 1-981
B ol = pol s + a 242 @ t 044960 7-755 | 40-76 | 0-530
+ Ba;_1, ‘ 6 |—0-14221 2-201
C v=ovw,+a 269 ¢ | 081703 | 22:903 | 47-73|0-039
-+ Oa,_g i |0 —0-84159 | 23-537
D v =gy, + a 269 | ¢ 083449 | 24497 | 4715 | 0-525
+ Day_op : 0 :—0-82520 | 22-113
| . |
*w = (1 — B)Zy, ol = (1 — B) C.CS.,
v = (1 — B*)Z, vt = (1 — B*") C.CS..

Over the test period (1971-3) the one step ahead forecasts for each
model gave similar “U” coeflicients (table 4) and hence are the same in
terms of forecasting accuracy. Thus for one step ahead forecasts and
for adaptively revising intraseasonal forecasts either form of model is
suitable. For interseasonal forecasts, however, the first differenced
models are clearly inferior relative to the seasonal differenced models
as models for adequately reproducing the secasonal series. Thiel’s
coefficient for the seasonal differenced models are approximately half
those of the first differenced models at the extended lead times but are
nearly three times that of the coefficient calculated for the lead time of
one period. The sensitivity of forecasting performance to changes in
model structure over different lead times, which we have shown, suggests
that a model which may prove adequate for forecasting one period
ahead may be clearly inferior at extended lead times. The culprit in
this test case was first differencing which, although extracting the
minimum variance component of the original series, dominated the
inherent seasonal frequency in the model.

TABLE 4
Thiel’s Coefficient Calculated at Different Lead Times over the Test Period 1971-1973

i

Lead times (weeks)

Model i
‘ 1 27 | 54
! [
A 0-28 1-61 j 162
B 0-25 162 163
C 0-30 ‘ 0-84 | 085
D 0-29 0-84 ' 085
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5 CONCLUDING DISCUSSION

The forecasting techniques which we have used to forecast biological
crop quality have also been appiied to forecasting crop yields [13] but
with limited success. This is probably due to the less variability
associated with the quality attribute series compared with yields and
the aggregative nature of the study with which the latter was primarily
concerned. A seasonal model which we have fitted to the crop quality
series would also probably produce adequate yield forecasts.
Unfortunately in many rural industries, yields are subject to regulatory
controls and this factor would not permit a proper evaluation of the
seasonal component of the yields only series.

Our specific conclusions as they relate to sugar cane quality forecasting
are that the fitting of an ARIMA model with or without seasonal
differencing (logged or unlogged) performs quite adequately for making
routine forecasts confined within a single harvest as indicated by Thiel’s
coefficient. For interseasonal forecasts a model differenced at seasonal
frequencies is required. An autoregressive-moving average model
selected from the class of seasonal models reduces the mean square
forecasting error by approximately 15 per cent relative to a ““no change”
seasonal extrapolation.

The procedures for making reliable projections of crop quality have
been discussed using aggregate crop quality data generated over time
at the regional level. Consequently there is a need to refine the
technique to include control variables relevant to the individual
forecaster. When control variables are explicitly included in the
forecasting system it is then possible to predetermine the responsiveness
of quality improvement to changes in the level of the control parameters.
Economic optimal control : quality improvement relationships can then
be determined,
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