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REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS
Vol. 43, No. 4 (December, 1975)

ON THE USE OF DETERMINISTIC LINEAR
PROGRAMMING FOR PLANNING IN A
NON-CERTAIN ENVIRONMENT#*

P. L. Nuthallt and D. J. MofTatt?

Farm planning in the non-certain world is complex so that models which
adequately represent this situation are difficult and expensive to experiment
with. Thus a range of linear programming models based on simplifications
has been suggested for planning under non-certainty. This discussion
reviews the problem of farm system infeasibility which can arise from the
use of these models and suggests an alternative approach.

1 INTRODUCTION

An individual farmer’s managerial problem is one of deciding upon, and
implementing, a course of action in the current period of time in order
to achieve certain objectives. The optimal course, or courses as there
may be alternatives, will be unique to his situation and will depend on
the current state of the farm and his estimates of future conditions.
Plans for future periods of time must be in the form of strategies to be
implemented according to the conditions which eventuate once the future
period becomes the current one. Such strategies may also change as
expected future conditions change.

This problem is undoubtedly extremely complex. The economic size of
the majority of farms means that the potential rewards to detailed and
sophisticated planning are usually insufficient to warrant such complicated
models being developed for individual farms. There are also problems
for which economists do not have the techniques to adequately represent,
or the computational facilities to solve. It is true that dynamic
programming and stochastic linear programming [10] appear to provide
model frameworks which are very similar to reality, however, dynamic
programming is incapable of representing a detailed whole farm model
due to the dimensionality problem. Similarly, stochastic linear
programming must recognize only a very small number of states of nature
and periods if the model is to be tractable. Simulation techniques can
be realistic but they must rely on an experimental approach in obtaining
tmproved systems and are therefore costly and beyond use by individual

* Manuscript received September, 1975.
T Lincoln College, New Zealand.

T F. A. O., Rome (from whose Master's thesis the example given was taken).
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enterprises.! Taken together this means advisers will frequently need to
rely upon representative farm type work using less realistic models for
some time to come. Many such models will produce, hopefully, optimal
solutions for a given set of conditions but will not consider transition
problems of moving from the current system to the optimal (which may
well be different next period). Advisers will need to extrapolate to
individual farms and subjectively allow for the dynamic nature of the
problem,

For this type of work there are available a range of models which
transform to linear programming problems, recognizing non-certainty?
in a variety of ways. Examples are quadratic programming [2, 5] and
MOTAD programming [3] which relate expected income to variance and
mean absolute deviation respectively. Other examples are the range of
models which use game theory criteria as the objectives [6, 11, 2] and
chance constrained {13] and focus-loss [13, 4] type models. These
latter models are designed to maximize expected income subject to
various risk constraints and minimum income levels.

A potential problem with all these models is that all non-certainty is
assumed to be reflected in the net revenues of the activities. Such models
can generally be described by the following statements:

(a) find a vector x of activity levels which maximises or minimizes some
function containing, or derived from, the activity net revenues (vector ¢);

(b) this vector must satisfy resource and other restrictions (4x = b,
where A4 is a matrix of input-output coefficients and b is a vector of
requirements);

(c) in some cases this vector must also satisfy restrictions derived from
¢ (minimum income requirements);

(d) all the non-certainty exists within the components of the vector c.

The components of 4 and b are assumed to be deterministic.*>  For some
problems this assumption will be realistic. The land restraint in most
farm problems is an example where supply and requirements by activities
are deterministic. However, in the majority of problems there wiil be
resource relationships involving such factors as, for example, stock feed
demand and supply, working cash demand and supply and labour demand
and supply. In these cases it is unlikely that the demand and supply
coefficients will be known with certainty so that the deterministic
assumption is violated and the solution vector x will be infeasible under
some states of nature.

' A compromise which may be useful under some circumstances is a stochastic
programming-simulation combination [12].

* The term “‘non-certainty” is used to cover both risk and uncertainty in a loose
way. The latter is frequently converted to subjective risk through estimating
subjective distributions,

* A model based on game theory ideas which is an exception to this statement is
Maruyama’s [9] “Truncated Maximin” model. The conceptual problem with this
model will be referred to later. A practical problem relates to matrix size
problems. The model has constraints representing possible combinations of the
coefficients in 4, b and c.
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The farmer’s reaction to infeasibility is, for example, to buy additional
feed, borrow additional cash, to accept lower productivity from the stock
and so on.* These adjustments could be reflected in the distributions of
the individual components of the ¢ vector. Thus, it could be argued
that assuming a deterministic 4 matrix and b vector is acceptable where
the costs and returns resulting from ensuring feasibility under all
conditions are allowed for by assuming the correct distribution of the
components of ¢. The distribution of the components of ¢ will also, of
course, depend on the distributions of the physical levels of inputs and
output which can vary without affecting feasibility. Similarly, the
distributions of the per unit prices and costs will affect the distributions
of the net revenues even though such variations may not affect feasibility.
For example, the net revenue of a wheat activity in a mixed stock-crop
system can have two major components affecting its variability. First,
the variability due to such factors as the yield and price variability and
the requirement for weed control measures. These factors could be
independent of the stubble feed provided and such variations may not
require actions to ensure feasibility. If the feed supply represented in
the 4 matrix is assumed to be constant, the possible feed purchases and
other additional actions to ensure the activity provides a fixed supply
under all conditions gives rise to the second source of variability. The
activity could, therefore, implicitly assume a number of actions to allow
for all possible conditions.

The problem with this approach is that it assumes a series of optimal
actions which ensure feasibility under all conditions can be predetermined
before solving the problem. The predetermination then enables the
distributions of the components of ¢ to be calculated. Some workers for
example, [3], use historical series of gross margins to indicate the variability
of the components of ¢. The assumption in this case is that the farmers,
whose data are being used, have historically made the optimal infeasibility
adjustments decisions. This is a doubtful assumption, though in models
developed for predictive work it may be acceptable. However, shifts in
the price and cost situation may mean, of course, historical data should
be adjusted before use.

Whether or not predetermination of optimal infeasibility adjustments can
be accepted will depend on the problem. For problems where optimal
adjustments are a function of the actual activity mix in the solution
vector x predetermination cannot be accepted.

For example, in a problem involving stock and feed activities there are
at least four approaches to solving potential infeasibilities due to variation
in the feed supply. Firstly, feed supply variations can be accepted and
the feed intake per animal allowed to vary so that productivity varies.
This would mean the variability is accounted for in the stock activity’s
¢ component. Similarly, and secondly, feed intake can be made constant
by reducing stock numbers and this total product variability allowed for
in the relevant ¢ components. Thirdly, feed production variability can

4 Hanf [17] has discussed the general nature of this problem but did not show how
it can be solved.
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be assumed to be adjusted through feed purchasing to give a constant
effective supply. In this case the feed producing activities’ ¢ components
would reflect the variability. Fourthly, some combination of these
approaches can be assumed. The difficulty in this example is that an
optimal system to ensure feasibility cannot be predetermined. Whether
it is optimal to maintain stock productivity at a constant level or allow
it to vary will depend on the feed supply variability of the activities in
the solution and the solution activities cannot be predetermined in a
non-trivial problem. Similarly, the type of stock activities in the
solution should influence the optimal infeasibility adjustment procedure.

A somewhat different example is where, given a particular solution vector,
it may not be physically possible to make adjustments to give feasibility
under some states of nature. Consider a problem where monthly cash
reconciliation is necessary. The cost and return of monthly cash
requirement and supply variability could be allowed for in the ¢
components. However, there will be a physical limit on short-term
borrowing and whether this limit might be exceeded cannot be pre-
determined. It will depend on the particular activity combination
represented in the solution vector.

In problems where predetermination of an optimal adjustment procedure
is considered to be unacceptable a model must be developed which enables
the endogenous determination of such adjustments. One such model is
stochastic linear programming, with its associated size and cost problems.
An alternative is the relatively simple approach described below. Tt will
be seen to have simplifying assumptions and, therefore, will not necessarily
be more acceptable than the risk programming techniques discussed
above. It will depend on the particular case.

2 A DETERMINISTIC LINEAR PROGRAMMING APPROACH
ALLOWING FOR FEASIBILITY PROBLEMS

The basis of the system is to use a two-phase system. The first phase
consists of finding the optimal deterministic solution for each state of
nature assuming each state of nature can be predicted. This provides
up to k solutions if there are k states of nature. Each such solution
represents an alternative plan available for choice. Such plans, however,
are unlikely to be feasible under all states of nature. Thus, the second
phase consists of determining the optimal adjustment procedures for
each plan to ensure feasibility under each of the possible condition sets.
and to determine the associated objective function values. Where the
objective function used is net revenue the k2 values provide a net
revenue payoff matrix which then forms the basis for choice.

2.1 THE FIRST PHASE

Where we let 55 and A% be the vector and matrix values for the sth state
of nature, s = 1, 2, . . . k, and ¢§ be a vector of net revenues (usually)
for the sth state of nature, the problem is to find the solution vector x*
which
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maximizes Z8f = ¢5 x5 N ()
subject to b5(= = =) A5 X S 7))
and x$ =0 N )

for cach s. Let Z5 be the optimal objective function value for the sth
state of nature.

2.2 THE SECOND PHASE

As Zs is unlikely to be achieved if x* is implemented for other states of
nature due to feasibility problems and net revenue changes, adjustment
activities to be associated with a particular state of nature must be
determined. Similarly, the associated objective function value must be
derived.  Let If* be the objective function value for a plan xf which is
optimal for the *h (z = 1, 2, . . . k) state of nature but is followed,
together with adjustments, under the st state of nature. For s = ¢,
Il = 75,

A number of approaches to determining 7/ and the associated adjustment
activities are possible. A simple approach would be to determine the
extent of any infeasibilities and to use comparative budgeting to estimate
a reasonable adjustment procedure. A complex procedure would be to
use a detailed simulation (policy experimentation) approach® and an
intermediate alternative would be the use of linear programming.

Using linear programming the problem is as follows:

Let
gs be a vector of adjustment activity levels for the s*h state of nature.
These activities would represent processes such as additional feed
purchasing, feed selling, stock buying and selling, reducing stock
productivity and so on.

Qs be a matrix of input-output coefficients associated with the
components of ¢s for the sttt state of nature.

rs be a vector of objective function coefficients associated with the
variables in gs.

Then, the problem is to find the vector ¢, for each ¢ and s combination,
except ¢ = s, which maximizes (recall that x? is the solution vector from
phase one for the 2 state of nature):

Il = ¢35 xt + rs gs A ()]
subject to

(l) bs (2 = é) AS xt -+ Qs s e (5)
(i) xt = I, xt where m is the order of x! A ()]
(i) gs = O N )

These k2 — k solutions together with the & solutions from the first phase
provide a payoff matrix with components /!, Whether linear
programming or an alternative approach is used to give I/, the
payoff matrix will have the form:

5 Similar to [12].
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State of Nature

1 2 e e k
| .
SRR/ me i
:

x2 . 12 i IL? Y /5

Plan xt ‘ |

| f
xk 1% ILF e e e e e o

2.3 USING THE PAYOFF MATRIX

In effect each row represents an alternative strategy which consists of a
basic plan together with actions to ensure feasibility. Using this payoff
matrix a choice between the basic plans x* can be made using any criteria
considered appropriate, provided such criteria are formed from the
objective function assumed in the linear programming problems. For
example, the game theory criterion maximizing the minimum income
could be used.®

Furthermore, as the basic plans together with the relevant adjustment
activities associated with the components of a row of the payoff matrix
are feasible for the particular state of nature, a convex combination of
the plans will similarly be feasible. Such combination therefore forms
alternative plans for consideration according to the relevant criteria.

2.4 PROBLEMS OF THE APPROACH

The suggested approach clearly has a number of imperfections. As the
plans and associated adjustments for each state of nature are not
simultaneously selected and not directly chosen on the basis of the
particular objective which might be applied to the payoff matrix, they are
unlikely to be optimal for the particular objective. However, where it
is assumed only one objective is relevant this could be used in phase one,
and two in some cases. Where the objective used in the linear
programming models is maximum net revenue, the system provides a
number of probably new optimal strategies to choose between.
Furthermore, it is assumed that some basic plan is followed through all
states of nature with appropriate adjustment, whereas in the dynamic
re1l world there will be cases where major adjustments through time

¢ Tadros and Casler [11] use a payoff matrix in this way though their payoff matrix
is constructed without considering feasibility problems.
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may be appropriate, particularly with respect to an individual farm’s start-
ing state for example, fodder reserves. This is, of course, one of the
problems associated with using the results of a case study for general
use. It should also be noted that the system makes no assumptions
about changing the basic plan according to the predicted state of nature.
Such predictions are, of course, impossible in general. However, while
the adjustment processes are activated depending on how the season
progresses there could be problems of premature adjustments.

The question of adjusting plans as outcomes are observed gives rise to
the problem of Maruyama’s [9] model. This model assumes the
components of A, b and ¢ are random variables and has constraints for
each possible state of nature so that feasibility is ensured under all
conditions. However, the real case of being able to make adjustments
as the period progresses is not allowed for.

Where linear programming is used in the second phase there are k2 — k
solutions to be obtained giving rise to an appreciable computing cost.
In some cases, however, comparative budgeting may be sufficiently
accurate to provide acceptable adjustment procedures for infeasibility
problems.

3 AN EXAMPLE

The method was applied to a representative farm selected from an area
close to Roma in Queensland. The purpose of the exercise was to
produce information on alternative short-run basic plans which could
then be used by extension workers in the area. The area is bisected by
the 575 mm annual rainfali isohyet and experiences considerable rainfall
variability from season to season and year to year. Eighty years of
annual rainfall records indicate that the distribution of annual rainfall
records is relatively flat.  Similar observations apply to seasonal rainfall.
As rainfall is a major determinant of productivity, it was considered
necessary to allow for non-certainty in formulating plans.

The soils in the area exhibit a relatively high natural fertility. This
factor combined with down type topography of the area means that a
large number of production activities are possible. These include both
summer and winter cash and feed cropping possibilities as well as a range
of sheep and cattle activities. Given this range of production processes
and the extreme rainfail variability, feasibility problems were considered
to be an important consideration, particularly with respect to feed supplies
and planting rains. This meant a simple linear programming approach
was unlikely to be useful. Instead a two phase system involving the
use of linear programming to determine the plans for each state of nature
in the first phase and comparative budgeting to estimate the adjustments
activities for other states of nature was used.

In order to select a representative farm to obtain input-output and
resource information, a survey of all farms in the area was carried out.
The farm selected was modal with respect to size, soil type, cultivable
area and technical competence as reflected by crop yields.
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Cash feasibility was not considered to be a major problem and the results
were intended for use in the year following the analysis. Accordingly
the variability of prices and costs around expected values would be small.
For this reason this variability was largely ignored. Allowances for
non-certainty in terms of defining the possible states of nature was,
therefore, restricted to physical non-certainty. Some allowance was
made, however, in the comparative budgeting for prices which are
correlated with the season such as the cost of purchased hay.

Nine states of nature were recognized. The planning year was divided
into two periods based on the times at which major decisions have to
be made, particularly with respect to summer and winter cropping
decisions. For each period three climatic states of good, average (which
was in fact roughly the mode and median) and bad were recognized.
Thus, as the type of season in each period was not correlated, this gave
nine combinations of good/good, good/average, good/bad, etc., whole
year climatic states.

The phase one linear programming matrix for the average/average state
of nature was of order 96 x 149. The b and ¢ vectors and the A matrices
were different for each state of nature. The ¢ vector consisted of gross
margin components. Some components of b were varied as, for example,
maximum limits on planting and harvesting areas were dependent on the
type of season. The components of ¢ were varied as, for example, the
yields and prices of some activities were likewise dependent on the type
of season.

The phase two procedure consisted of taking each phase one plan and for
this estimating the total net revenue for each alternative state of nature.
The constraint violations or surpluses were also estimated for each state
of nature. Comparative budgeting was then used to determine what
appeared to be the optimal way of making the plan feasihle or to utilize
surplus resources depending on the case. The cost (or return) of these
adjustments was then added to the recalculated net revenue to give /1y .

While it is not the purpose of this discussion to consider the detail of the
plans determined,? it is interesting to consider the payoff matrix obtained.
This is presented in Table 1.

The payoff matrix does not exhibit a completely regular pattern. This
follows from the fact that the plans place a different emphasis on the
general types of activities included so that some tend to dominate in
better seasonal situations while being poor in others. An example of
an apparent anomaly is given by the payoffs for the good/good state of
nature. Plan x,, for example, has a greater payoff than plan x,, which
is specifically designed for the good/good state of nature. The reason
for this is that the high rainfall in this state of nature gives rise to harvesting
and underground grain storage problems. The diagonal elements give
the returns for the state of nature for which the plans have been specifically
designed but clearly these are exceeded under some conditions. Using

7 Appendix 1 contains some sample plans to indicate the type of plan variation.
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the conservative criterion of maximizing the minimum income, plan x, is
preferred. But the higher minimum income is achieved at the expense
of relatively low incomes in better seasons. Where fixed costs are high
other plans worth considering would be x,, x; and x4 as their minimum
incomes tend to be relatively high and they also have relatively high
payoffs in good states. For many farmers a consideration of the chances
of each season occurring would be important. For example, if the
probability on the seasons average/bad and bad/bad were low the x,
plan could be attractive as the two low incomes occur in these seasons.

On the basis of rainfall records probabilities were placed on the states of
nature. These are given in Table 1. Where the low income possibilities
are important useful information is the chance of a plan achieving a
particular level of income or greater (similar to chance constrained
programming). An example of this information is given in table 2, which
also contains the expected income and standard deviation of the plans.

TABLE 2

Parameters of the Income Distributions of the Plans

i i |
* Chance of achieving at least a ‘

~given level of total gross margin ! Expected |  Standard
Plan ~ s income ! deviation of

: ; . $ : income

f $4,000 : $12,000 : $

\ : [

r i T ‘
X1 : 60 | -48 ‘ 10,421 ; 12,434
X -86 -48 ‘ 10,132 : 11,474
X3 ; ‘74 -35 1 11,637 12,464
X4 ! 74 62 | 14,536 ] 12,601
X5 | 72 ‘ -48 * 12,894 ‘ 10,694
X8 ‘ 74 j -35 8,501 : 11,311
X7 : 62 ; -62 J 12,945 ‘ 12,179
x5 : 72 , 60 : 14,375 | 9,811

Xo 1 [-00 23 | 10,731 | 3,561

The method of using this information will depend on the objectives.
Two examples are:

(a) If achieving $4,000 was the primary aim plan x, would be chosen,
(b) Taking $12,000 as the desired level of income x, would dominate .x-.

Such figures, however, ignore other important parameters of the
alternatives. Two of these are the expected income and standard
deviation. Plan x, has the greatest expected income but also the highest
standard deviation though this must be weighed against the reasonable
chances of achieving the $4,000 and $12,000 levels. Considering all
these parameters x, is also attractive, with its near optimal expected
income but lower standard deviation.

The data presented indicate the useful range of information that can be
estimated. But this is achieved, of course, at the expense of a considerable
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time input. In this example case nine linear programming solutions
were obtained for constructing the payoff matrix though many more
were obtained for other reasons. [n most linear programming probiems
experimentation would normally require at least this number of solutions.
If linear programming had been used in the second phase an additional
seventy-two solutions would have been required. Thus it is important
that careful consideration be given to the importance of the infeasibility
problem and, therefore, whether the imperfections of the risk models
discussed earlier could be accepted in view of the cost of overcoming
them. Another possibility that should also be considered is the use of
nine simplified two-stage stochastic programming models.® This is a
model where decisions are determined in the first stage before the outcome
of the random variables are known. In the second stage a set of decisions
to ensure feasibility is determined for each possible state of nature, the
two stages being solved simultaneously. This model suffers from size
problems in a similar way to stochastic linear programming [10]. The
approach presented in this paper achieves similar ends but reduces the
size of each problem at the expense of more problems. Furthermore,
the two-stage model does not produce a payofl matrix, the advantage of
which is to allow a range of objectives to be used.

8 Wagner [13, p. 658] discusses such a model. Madansky [7} also discusses the
two-stage model compared with the use of coefficient expected values.
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APPENDIX 1

A Summary of Optimal Plans for a Range of Example States of Nature

Plan details

State of nature

GOOD AVERAGE BAD
Native pasture (ha) - 413 413 413
Continuous grain oats (ha . 40 .. .-
Continuous grain sorghum (ha) . . 19 84

Continuous sunflower seed (ha) . . {13 40 ..
Continuous grain wheat (ha) 138 45 78
Wheat (grain)—Ilucerne rotation (ha) . .. 40
Crop area grazed (ha) 64 157 113
Wheaten Hay (ha) 16 : . 44
Lucerne Hay (ha) .. .. ' 58 54
Silage-—oats (ha) .. .. .. 76
Silage—sorghum (ha) . 13 : 20 .
Merino ewes (fat lamb sire) 750 i 750 750
Merino replacements purchased 210 | 210 337
Xbred lambs—fat at 9 months 305 ‘ 175 62
Xbred lambs—sold at stores 265 ‘ 320 118
Cows—calves sold at 8 months .. 26 i .. 17
Replacement cows 6 ! .. 21
Weaners crop fattened 48 ' 30 38
Steers crop fattened .. 30 30
Steers grain fattened 30 30 ..
Hay sold (tonnes) .. 30 80 80
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