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Abstract  

This paper addresses the challenge of developing a ‘bottom-up’ marginal abatement cost 

curve (MACC) for greenhouse gas emissions from UK agriculture. A MACC illustrates the 

costs of specific crop, soil, and livestock abatement measures against a ‘‘business as usual’’ 

scenario.   The results indicate that in 2022 under a specific policy scenario, around 5.38 

MtCO2 equivalent (e) could be abated at negative or zero cost. A further 17% of agricultural 

GHG emissions (7.85 MtCO2e) could be abated at a lower unit cost than the UK 

Government’s 2022 shadow price of carbon (£34 (tCO2e)-1). The paper discusses a range of 

methodological hurdles that complicate cost-effectiveness appraisal of abatement in 

agriculture relative to other sectors.  
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1 Introduction 

Greenhouse gas (GHG) emissions from agriculture represent approximately 8% of UK 

anthropogenic emissions, mainly as nitrous oxide and methane. Under its Climate Change Act 

2008, the UK Government is committed to an ambitious target for reducing national 

emissions by 80% of 1990 levels by 2050, with all significant sources coming under scrutiny. 

The task of allocating shares of future reductions falls to the Committee on Climate Change 

(CCC), an independent government agency responsible for setting economy-wide emissions 

targets (as emission ‘budgets’) and to report on progress.   

 

The CCC recognises the need to achieve emissions reductions in an economically efficient 

manner and has adopted a ‘bottom-up’ marginal abatement cost curve (MACC) approach to 

facilitate this. A MACC shows a schedule of  abatement measures ordered by their specific 

costs per unit of carbon dioxide equivalent (CO2e)2 abated, where the measures are additional 

to mitigation activity that would be expected to happen in a ‘business as usual’ baseline.  

Some measures can be enacted at a lower unit cost than others, while some are thought to be 

cost-saving, i.e. farmers could implement some measures that could simultaneously save 

money and also reduce emissions.3  Thereafter the schedule shows unit costs rising until a 

comparison of the costs relative to the benefits of mitigation show that further mitigation is 

less worthwhile. A MACC illustrates either a cost-effectiveness or cost-benefit assessment of 

measures, where the benefits of avoiding carbon emission damages are expressed by the 

shadow price of carbon (SPC) developed by Defra (2007). Alternatively, unit abatement costs 

can be compared with the emissions price prevailing in the European Trading Scheme (ETS). 

An efficient ‘budget’ (as the target level of emissions to be achieved4) in a given sector, such 

as agriculture, is implied by the implementation of efficient measures, where efficiency 

considers mitigation costs in other sectors as well as the benchmark benefits defined by the 

SPC or the ETS price. 

 

 
2 The release of greenhouse gases from agriculture (predominantly nitrous oxide, methane and carbon dioxide) is 
typically expressed in terms of a common global warming potential unit of carbon dioxide equivalent (CO2e). 
3 The fact that some apparently cost-saving measures have not been adopted may be due to a number of reasons, 
e.g.  farmers may not be profit-maximising, or they may be exhibiting risk aversion behaviour in response to fear 
of yield penalties. Alternatively, farmers may be behaving rationally, but the full costs of the measures have not 
been captured. 
4 The CCC defines the carbon budget as: “Allowed emissions volume recommended by the Committee on 

Climate Change, defining the maximum level of CO2 and other GHG's which the UK can emit over 5 year 
periods.” (http://www.theccc.org.uk/glossary?task=list&glossid=1&letter=C, accessed 17.05.10) 

http://www.theccc.org.uk/glossary?task=list&glossid=1&letter=C
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This paper outlines the construction of a ‘bottom-up’ MACC for UK agriculture as an 

estimate of the emissions abatement potential of the industry. The methodology for estimating 

abatement potentials and the associated costs was developed with guidance from the CCC so 

as to be consistent with MACC analysis in other sectors of the economy.    The next section 

outlines the MACC approach adopted by the CCC to determine mitigation budgets across the 

main non-ETS sectors in the UK, including agriculture. Section 3 summarises the methods 

used to gather and estimate abatement potentials and costs to populate the CCC MACC 

framework.  Subsequent sections outline the specific mitigation measures identified for the 

agricultural sub-sectors of crops soils and livestock (beef, dairy, pigs and poultry). The 

application highlights several outstanding issues that complicate MACC analysis in 

agriculture relative to other sectors, where technologies are less variable. Section 7 presents 

the resulting abatement potentials and costs as MACCs, and section 8 concludes.  

 

2 MACC analysis  

MACC analysis is a tool for determining optimal levels of pollution control across a range of 

environmental media (Beaumont and Tinch 2004, McKitrick 1999).  MACC variants are 

broadly characterised as either top-down’’ or ‘‘bottom-up’’. The ‘top-down’ variant describes 

a family of approaches that typically take an externally determined emission abatement 

requirement that is allocated downwards through aggregations of modelling assumptions 

based on Computable General Equilibrium models, which in turn characterize 

industrial/commercial sectors according to simplified production functions that are assumed 

to apply commonly throughout the sector (if not the whole economy). In agriculture, this 

approach ultimately implies a degree of homogeneity in abatement technologies, their 

biophysical potential and implementation cost (see for example De Cara et al 2005). For 

many industries, this assumption is appropriate. For example, power generation is 

characterised by fewer firms and a common set of relatively well-understood abatement 

technologies.  In contrast, agriculture and land use are more atomistic, heterogeneous and 

regionally diverse, and the diffuse nature of agriculture can alter abatement potentials and 

hence cost-effectiveness. This suggests that different forms of mitigation measure can be used 

in different farm systems, and that there may be significant cost variations and ancillary 

impacts to be taken into account.   

 

‘Bottom-up’ MACC approaches address some of this heterogeneity.  The ‘bottom-up’ 

approach can be more technologically rich in terms of mitigation measures, and can 
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accommodate variability in cost and abatement potential within different land use systems.  In 

contrast to the ‘top-down’ approach, an efficient ‘bottom-up’ mitigation budget is derived 

from a scenario that first identifies the variety of effective field-scale measures, and then 

determines the spatial extent and cost of applying these measures across diverse farm systems 

that can characterise a country or region.  In construction of the MACC, abatement measures 

are ordered in increasing cost per unit CO2e abated (the vertical axis). The volumes abated 

(the horizontal axis) are the annual emission savings for a given year generated by adoption of 

the measure. As such, the emission savings and associated costs are the difference between 

CO2e emitted in a baseline or ‘business as usual’ (BAU) scenario and the emissions and costs 

involved in the adoption of particular technology or abatement measure. This requires the 

definition of a counterfactual situation, represented by the adoption rates throughout the 

sector, which is subject to assumptions about, inter alia, prevailing incentive policies and 

market conditions. This ranking, expressed as the MACC, compares technologies and 

measures at the margin (i.e. the steps of the curve, representing adoption of increasingly 

costly abatement measures), and provides an invaluable tool for cost-effectiveness analysis. 

Figure 1 summarises the relationship between the constructed MACC (right-hand-side of the 

figure) and the identified emissions budget, as the difference in abatement potential between a 

baseline and a scenario under which efficient measures are adopted (left-hand part of the 

figure).   

 

The literature shows several attempts to develop MACCs for energy sector emissions and 

even global MACCs (McKinsey 2008, 2009).  MACCs for agriculture have used qualitative 

judgment ECCP (2001) and Weiske (2005, 2006), and more empirical methods (McCarl and 

Schneider, 2001, 2003; US-EPA, 2005, 2006; Weiske and Michael, 2007; Smith et al. 

2007a,b, 2008; Perez et al., 2003; De Cara et al. 2005; Deybe and Fallot, 2003).  This 

evidence does not yet provide a clear picture of the abatement potential for UK agriculture.   

 

3 Agricultural mitigation  

UK Agriculture contributes about 50 million tons (Mt) CO2e, or 8% of total UK GHG 

emissions (654 Mt CO2e in 2005), mainly as N2O (54%), CH4 (37%) and CO2 (8%)  

(Thomson and van Oije 2008). Within the farm-gate, emissions are dominated by methane 

from enteric fermentation by livestock, and nitrous oxide from crop and soil management. For 

the purposes of this analysis, the definition of “agriculture” includes all major livestock 

groups, arable and field crops and soils management. Our analysis does not include the 8% 
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CO2 emissions that arise from energy use in heating and transportation, including the majority 

of emissions from horticulture, farm transportation and some machinery emissions. These 

emissions are counted in MACCs developed by the CCC for the energy and transportation 

sectors. This analysis also ignores other CO2 emissions related to the pre or post farm-gate 

activities involving agricultural inputs and products.  

 

The CCC has  signalled a desire for the agricultural sector to contribute to reducing the UK’s 

emissions of greenhouse gases (GHGs) to at least 80% below 1990 levels by 2050.  The first 

challenge in determining a feasible budget for the agricultural sector is to identify which 

measures might be implemented, how these measures are ordered in terms of the volume of 

GHG emissions which could be abated by each measure and the estimated cost per tonne of 

CO2e of implementing each measure..  

 

There is an extensive list of technically feasible measures for mitigating emissions in 

agriculture. For example, ECCP (2001) identified a list of 60 possible options, Weiske (2005) 

considered around 150, and Moorby et al. (2007) identified 21. Smith et al. (2008) considered 

64 agricultural measures, grouped into 14 categories.  Measures may be categorized as: 

improved farm efficiency, including selective breeding of livestock and use of nitrogen; 

replacing fossil fuel emissions via alternative energy sources; and enhancing the removal of 

atmospheric CO2 via sequestration into soil and vegetation sinks. Some abatement options, 

typically current best management practices, deliver improved farm profitability as well as 

lower emissions, and thus might be adopted in the baseline without specific intervention, 

beyond continued promotion/revision of benchmarking and related advisory and information 

services. Estimated emissions in the sector have already fallen by around 6% since 1990, 

largely due to falling livestock numbers. Further reductions are anticipated over the next 

decade as animals become more productive through improved breeding and genetic selection 

(Amer et al 2007).   

 

However, many mitigation options entail additional cost to farmers. This raises questions 

about which measures can be implemented effectively in what conditions, and at what cost.  

The list of cost-effective mitigation measures is likely to be significantly smaller than the 

technically feasible measures.  
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4. Methodological steps for developing an MACC for UK Agriculture 

In outline, the main steps of the MACC exercise are as follows:  

a. Identify the baseline ‘business as usual’ (BAU) abatement emission projections for the 

specified budgetary dates: 2012; 2017; 20225.   The BAU used in this study was based on 

an existing set of projections for the UK to 2025, provided by  ADAS et al.(2007).  This 

is outlined in section 6 (below).   

b. Identify potential additional abatement for each period, above and beyond the abatement 

forecast in the BAU, by identifying an abatement measures inventory. This includes 

measure adoption assumptions corresponding to: i) maximum technical potential  (MTP),  

as the maximum physical extent to which a measures could be applied; ii) central, iii) 

high; iv) low feasible potentials (CFP, HFP and LFP, with varying adoption rates 

reflecting alternative plausible policy and market scenarios offering varying adoption 

incentives). 

c. Quantify (i) the maximum technical potential abatement, and  (ii) cost-effectiveness (CE) 

in terms of £/tCO2e of each measure (based on existing data, expert groups review and 

the National Atmospheric Emissions Inventory) for each budget period, using the 

following process (Figure 2): 

 

i. Generate an initial (long) list of all the potential mitigation measures within each 

sub-sector (a. crops/soils; b. livestock); 

ii. Screen the initial list by removing measures that: (a) have low additional 

abatement potential in UK; (b) are unlikely to be technically feasible or acceptable to 

the industry. Some measures also aggregated at this stage; 

iii. Calculate the maximum technical (abatement) potential (MTP) of the remaining 

measures by estimating their abatement rate (based on evidence e.g. Smith et al. 

2008), and the areas or animal numbers to which measures could be applied in 

addition to their likely BAU uptake (see step b.) Remove measures with a reduction 

potential of <2% UK agricultural emissions, to generate a short list of measures;  This 

threshold is arbitrary and reduced the number of measures that could be considered 

within the constraints of this exercise. 

 
5 Five year budgetary periods have been determined by the CCC as a basis for periodic progress reporting on 
overall targets. For the purposes of this analysis the focus is on the achievable abatement by the third budget 
2017-2022, a period deemed sufficient to allow the accommodation of new technologies.  
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iv. Identify and quantify the costs and benefits and their timing, and calculate the 

effect of measures on farm gross margins using a representative farm scale 

optimisation model; 

v. Calculate the “stand-alone” cost-effectiveness (CE) and abatement potential (AP) 

of each measure (i.e. assuming that measures do not interact) to generate “Stand 

alone” MACCs; 

vi. Recalculate the CE and AP based on an analysis of the interactions between 

measures and produce a “Combined” MACC; 

 

d. Qualify the MTP MACC in terms of central, low and high estimates, based on a review of the 

likely levels of compliance/uptake associated with existing policies and alternative market conditions 

for agricultural commodities; 

 

 

5 Inventory of abatement measured for UK agriculture.  

A range of sub-sector specific abatement measures were identified from the literature that 

appear to be applicable to UK agricultural and land use conditions.  Abatement estimates from 

these measures were then discussed and screened in a series of expert meetings using six 

scientists6 covering livestock, crop and soil science.  Experts were asked to refine the 

estimates of abatement potential: specifically, the extent to which measures would be 

additional to a “BAU” baseline, the extent to which a measure could work as a stand-alone 

technology, or whether its wider use would interact with other measures when applied in the 

field, and implementation issues.  

 

5.1 Crops and soils  

Agricultural soils account for around half of the GHG emissions from agriculture. Crops and 

grass are responsible for the exchange of significant quantities of greenhouse gases in the 

form of CO2 and N2O. Carbon dioxide is removed from the atmosphere by photosynthesis, 

which may lead to carbon sequestration in soils (Rees et al. 2004). Carbon dioxide can also be 

lost from soils as a consequence of land use change and soil disturbance.  
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An initial list of measures was drawn up from the literature review and input from the project 

team (further details of the method and results for the crops/soils sub-sector is given in 

MacLeod et al. 2010a). This was reviewed by Defra scientists, who added further measures. 

The resulting long list had a total of 97 measures (Appendix 1, table 1). The initial list was 

discussed at an expert meeting, and measures were removed that were considered: (a) likely to 

have very low additional abatement potential in the UK (e.g. already current practice, or only 

applicable to a very small percentage of land); or (b) unlikely to be technically feasible or 

acceptable to the industry. 

 

Developing MACCs for the crops and soils sub-sector was particularly challenging for a 

number of reasons, including: (a) the large number of potential mitigation measures; (b) the 

lack of relevant data, particularly on the costs of measures; (c) the fact that the effectiveness 

of many measures depend on interaction with other measures. To cope with these problems, 

the range of measures was reduced to a more manageable number through the screening 

exercises, with scientists providing best-estimates in the absence of existing data, and 

providing informed judgements on the extent of interactions between the measures. In 

addition some measures were aggregated, giving an interim list of 35 measures. The 

abatement potential of these measures was estimated so that measures with small abatement 

potential could be identified. The interim list was then reduced to a short list of 15 (see Table 

1) by eliminating measures with minor to insignificant abatement potential. Several measures 

with small (<2% of sub sector potential) abatement potential were retained in the crop/soil 

short list; in particular some measures between 1 and 2% which are likely to have negative 

costs were included.  

 

Costs 

Existing estimates of abatement measure costs were used where available (e.g. Defra 2002). 

But there is a lack of up-to-date cost estimates for most measures.  As an alternative, each 

measure was discussed with the same scientific experts, who identified the on-farm 

implications and likely costs and benefits. The costs and benefits were translated into terms 

that could be entered into the SAC farm-scale Linear Programme model, used to provide a 

consistent opportunity cost estimate of the adoption of measures into specific farm types   

 
6 Scientists used in the stages of estimation were drawn from the Scottish Agricultural College, and North Wyke 
Research.  Estimates were subsequently reviewed separately by ADAS and scientists from the University of 
Reading.   
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The farm scale model was parameterised and validated for the main robust farming types, as 

defined by Defra (Defra, 2004), using a combination of agricultural census, farm accounts 

data and input from farming consultants from the four UK countries. Separate models were 

run for three regions for England, i.e. North, East and West, plus 1 region for each of Wales, 

Scotland and Northern Ireland. The model aims to optimise gross margins subject to detailed 

constraints and prices.  To calculate costs for the relevant future budget periods, price 

forecasts were provided by the BAU scenarios. 

 

Abatement rate and potential 

In order to calculate the total UK abatement potential for each measure over a given time 

period, the following information is required: 

 the measure’s abatement rate (tCO2e/ha/ year) 

 the additional area (over and above the present area) that the measure could be applied 

to in the period considered.  

 

The additional areas for the maximum technical potential were based on the judgments of the 

aforementioned scientific experts.  A maximum technical potential identifies the maximum 

upper limit that would result from the highest technically feasible7 level of adoption or 

measure implementation in the subsectors. Most crop/soil or livestock measures are only ever 

likely to be adopted by some percentage of all producers that could technically adopt the 

measures. A maximum technical potential therefore sets a limit on the abatement potential, 

but this limit is not informed by the reality of non-adoption (or the associated regulatory 

policy or socio-economic conditions and contexts). Our procedures therefore also identified 

high, central and low potential abatements (Figure 2); these are levels thought most likely to 

emerge in the time scales and policy contexts under consideration.   

 

The assumed potentials were based on a consideration of potential uptake/compliance with 

existing policies such as Nitrate Vulnerable Zones. For the purposes of specifying abatement 

possibilities at specific dates in the future, we assume that measures are adopted at a linear 

trend between current levels of adoption and the MTP. Thus lower feasible potentials are 

defined relative to this trajectory. . 

 
7 Where relevant assumptions were developed using the scientific expert groups 
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Existing global evidence on the abatement rates (see in particular Smith et al. 2008) was 

combined with expert judgment to generate estimates of the abatement rates of each of the 

measures on the shortlist (see Table 1).  Where measures lead to abatement of CO2 emissions 

over a period of years (for example as a consequence of a new rotational management), 

emission reductions are expressed on an average annual basis. 

 

Cost-effectiveness (CE) and the effect of interactions between measures 

An abatement measure can be applied on its own, i.e. stand-alone, or in combination with 

other measures. The stand alone CE of a measure can be calculated by simply dividing the 

weighted mean cost (£/ha/year) by the abatement rate (tCO2e/ha/year). However, when 

measures are applied in combination, they can interact, and their abatement rates and cost-

effectiveness change in response to the measures with which they combine. For example, if a 

farm implements biological fixation, then less N fertiliser will be required, lessening the 

extent to which N fertiliser can be reduced. The extent to which the efficacy of a measure is 

reduced (or in some cases, increased) can be expressed using an interaction factor (IF). Each 

time a measure is implemented, the abatement rates of all of the remaining measures are 

recalculated by multiplying them by the appropriate IF.  It is clearly possible to define a 

variety of IF’s to reflect the biophysical complexity that is both measure and context specific. 

For the purpose of this exercise, IF’s were initially defined based on known pair-wise 

interactions with recalculation of remaining abatement potentials accruing to successive 

measures that remain feasible in application8. Appendix 2 provides further details on the IF 

assumptions.  

 

  

5.2 Livestock  

Livestock are an important source of CH4 and N2O. Methane is mainly produced from 

ruminant animals by the enteric fermentation of roughages. A secondary source is the 

anaerobic breakdown of slurries and manures. Both ruminant and monogastric species 

produce N2O from manure due to the excretion of nitrogen in faeces and urine. The main 

abatement options for the livestock sector, independent of grazing/pasture management (dealt 

 
8 To perform this repeated calculation, a routine was written in PERL http://www.perl.org/ 
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with under the crops and soils element of the exercise), are through efficiencies in ruminant 

animal utilisation of diets, and manure management.  

 

A literature review highlighted an array of abatement options for the livestock industry. These 

fall into two broad categories: animal and nutrition management; manure management.  

Measures were reviewed and ranked on their likely uptake and feasibility over the 3 budget 

periods. Certain options were considered similar in mode of action and likely outcome, and 

were therefore reduced to a single option. Animal management options for sheep/goats were 

not considered in the present exercise, since traditional sheep management systems mean that 

any potential abatement measures would be virtually impossible to apply across the UK flock. 

Options that included a simple reduction in animal numbers and/or product output, above and 

beyond those assumed by the BAU scenario, were also ignored, on the grounds that reducing 

livestock output domestically would simply displace GHG emissions overseas (albeit with 

some un-estimated consequences for global emissions). Livestock land management options 

(e.g. spreading of manures on crop/grassland) are dealt with in the crop/soil management 

options. The final table of 15 abatement options examined here for livestock are shown in 

Fehler! Verweisquelle konnte nicht gefunden werden.2 a-c.  Livestock measures were 

screened using a similar process as outlined for crop and soil measures, with a key distinction 

being the application to current livestock numbers rather than crop areas.   

 

5.3 On Farm Anaerobic Digestion (OFAD) and Centralised Anaerobic Digestion 

(CAD) 

The abatement from anaerobic digestion is based on: CO2 avoided from electricity generation 

(based on typical 0.43 kg CO2/kWhe), CO2 emissions from digester (40% of biogas, based 

on 1 tCO2 = 556.2 m3) and CO2 emissions from methane combustion (based on 0.23 kg 

CO2/kWh). Cost per tonne CO2e avoided over project lifetime is calculated as net emission 

saving divided by net project cost for each farm size band. 

 

The calculation of CAD potential takes a different starting point to that used for OFAD. The 

OFAD calculations were built up from the average herd size for each holding size category 

(small, medium or large) based on projected livestock and holdings numbers. IPCC emissions 

factors were then used to determine the CH4 emissions for the average holding and from that 

the potential AD generating potential was determined.  Costs, incomes and abatement 

potentials were then calculated for the average holding.  
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In the case of central anaerobic digestion (CAD) the starting point was a range of possible 

generator capacities between 1 and 5 MWh. This range of generating capacities allows an 

exploration of the scale efficiencies of CAD plants, primarily due to the reduction in per unit 

capital costs for larger plants. For each generator size the required volume of CH4 was 

calculated and IPCC emissions factors used to determine the number of livestock of each 

category required to produce that volume of CH4.  Average herd sizes were then used to 

determine the number of farms required to supply one CAD plant of each capacity and also 

the total number of CAD plants that could be supported by each sector.  

 

The CAD calculations also include the installation of CHP under the assumption that 50% of 

the heat generated by the plant will be exported to a local district heating installation. This 

provides a further income stream for each CAD plant. 

 

6 Further modelling assumptions  

A range of common assumptions define the additional abatement potential across the 

agricultural sector.  In each sub-sector, mitigation potential for the budgetary periods needs to 

be based on a projected level of production activity that constitutes the basis for estimating 

current (or ‘business as usual’) abatement associated with production, and for determining the 

potential extent of additional abatement above this level. The choice of baselines is therefore 

crucial, and it is important to determine whether the baseline is an accurate reflection of the 

changing production environment across agriculture. 

 

The agricultural baseline attempts to account for recent and on-going structural change in UK 

agricultural production. For this exercise, the main source of baseline information is a project 

that developed a UK ‘‘business as usual’’ projection (BAU3, ADAS et al., 2007).  BAU3 

covers the periods 2004 to 2025, choosing discrete blocks of time to provide a picture of 

change. The BAU3 base year was 2004; a period where the most detailed data could be 

gathered for the 4 countries of the UK.  Projections were made for the different categories of 

agricultural production contained within the Defra June census9, covering both livestock and 

crop categories, to a detailed resolution of activities, (e.g. beef heifers in calf, 2 years and 

over).  The projections cover the years 2010, 2015, 2020 and 2025. The exercise concentrated 

on general agricultural policy commitments that were in place in 2006, including those for 

 
9 http://www.defra.gov.uk/esg/work_htm/publications/cs/farmstats_web/default.htm 



future implementation. As BAU extended to 2025, the exercise also accommodated 

assumptions about some policy reforms that, due to current discussions, seemed likely, 

although not formally agreed at the time of writing. These mainly include the abolition of set-

aside and the eventual removal of milk quotas.  

 

Cost assumptions  

Most of the crops and soil measures and the animal management measures are annual 

measures, which mean that they do not require the farmer to commit himself in any way for 

more than one year. Other measures, specifically in manure management and drainage require 

longer-term commitments and capital outlays additional to baseline costs.  For these measures 

recurrent future investment costs were converted to an equivalent annual cost after converting 

flows to a present value.  

 

Further annual adoption costs derive from the displacement of agricultural production, which 

was estimated by using a representative farm-scale linear program used to calculate these 

costs consistently over farm types.  This model was based on a central matrix of activities and 

constraints for different farm types, and calculates the change in the gross margin of 

implementing a measure in the three time periods compared to the baseline farm activities. 

The model produced a snapshot of potential against the baseline for each year to 2022. Each 

abatement measure is evaluated with respect to the baseline. The difference between the 

baseline and the volume of emissions abated in the MACC gives the new abated emissions 

projection. 

 

Each measure (representing a step of the MACC) is calculated by combining separate data on 

abatement potential and costs as follows: 

 

optionabatementbaselineyear emissionsGHG emissionsGHGPotentialAbatement   

optionabatementbaseline

baselineoptionabatement

emissionsGHGLifetimeemissionsGHGLifetime

stco Lifetime  stco Lifetime
 essEffectivenCost




  
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MACCs present a picture for a single year of abatement potential against a cumulative 

baseline. This means that the approach adopted here takes account of abatement measures 

additional to the baseline which had already implemented in MACCs generated for previous 

years. The CCC approach of producing annual MACCs (i.e. a MACC for each year) should 

help to introduce some dynamics.   

 

The resulting abatement potentials are clearly influenced by levels of expected adoption of 

these measures. Accordingly, the analysis considers a range of adoption rates to approximate 

likely bounds on abatement potential.  

 

 

7 Results  

The combined (i.e. crop and livestock) sector total central abatement potential estimates for 

2012, 2017 and 2022 (discount rate 3.5%) are 2.68 MtCO2e, 6.27 MtCO2e and 9.85 MtCO2e 

respectively.  In other words, by 2012, and assuming a feasible policy environment, 

agriculture could abate around 6% of its current greenhouse gas emissions (which the UK 

National Atmospheric Emissions Inventory10 reported to be 45.3 MtCO2e in 2005, not 

including emissions from agricultural machinery). By 2022 this rises to nearly 22%, as 

adoption rates increase. The combined total MTP abatement estimates for 2012, 2017 and 

2022 higher by a factor of 2.22.  

 

The estimated CFP for 2022 is shown in Table 3 and Figure 3. The MACC shows a 

significant abatement potential below the x-axis, and further significant abatement just above 

the x-axis until measure EB (On Farm Anaerobic Digestion –Dairy (Medium)), after which 

the cost-effectiveness worsens markedly. The results suggest that both sub-sectors offer 

measures capable of delivering abatement at zero or low cost below thresholds set by the 

shadow price of carbon (currently £36/tCO2e for 2025).  Given a higher shadow carbon price 

(SPC) of £100/tCO2e
1, greater emission abatement becomes economically sensible, though 

would clearly need appropriate market conditions and policies for actual achievement.  

Importantly, this analysis shows that 5.38 MtCO2e (12 % of current emissions) might be 

abated at negative or zero cost, though this estimate raises the obvious question of why this is 

not already likely in the baseline projection.  

 
10 The SPC figure (http://www.naei.org.uk/) 
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The central feasible potential of 7.85MtCO2e (at a higher cut-off of £100 t-1) represents 17.3% 

of the 2005 UK agricultural NAEI GHG emissions. These results partly corroborate more 

speculative abatement potentials identified in IGER (2001) and CLA/AIC/NFU (2007) in 

relation to N2O.  

 

8 Discussion  

This exercise is the first attempt to derive an economically efficient greenhouse gas emissions 

budget for the agricultural sector in the UK.  The ‘bottom-up’ exercise raises a number of 

issues about the construction of agricultural MACCs.   

 

As noted, relative to other industries, the sector is biologically complex, with considerable 

heterogeneity in terms of implementation cost and measure abatement potential.  This 

suggests considerable scope for conducting sensitivity analysis of a range of variables that 

have been used to generate the abatement point estimates.   It also suggests that rather than 

one UK MACC based on a limited set of farm types, several MACCs can be defined to cover 

categories of farm types and regional environments.   The CCC has indicated that this is a 

longer term objective for refining an agricultural mitigation budget 

 

Such disaggregation does however raise a further challenge in relation to data availability, 

which in turn highlights the weakness of the ‘bottom-up’ approach.  This process relied on 

documented evidence from experimental trials that frequently covered limited field conditions 

for defining abatement potential.  It revealed numerous data gaps that could only be filled 

with scientific opinion, often unsubstantiated with published evidence.  The ability to 

extrapolate and validate this evidence in non-experimental conditions will be an increasing 

challenge for the construction of disaggregated MACCs.   This challenge of extracting and 

gaining consensus on these data is evidently a multi-disciplinary endeavour, which might 

include the development of a systematic review process of field level estimates.  Reducing 

uncertainty by improving the evidence base for the MACCs is an ongoing process, see 

MacLeod et al. (2010b) 

 

In its initial budget report (CCC 2008), the Committee recognised the specific challenges in 

the agricultural sector and indicated a need for further research to reduce the uncertainties that 

affect the shape and position of the MACC.  Some of the major issues have been have been 
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alluded to in other hybrid and ‘bottom-up’ exercises (e.g. McCarl and Schneider 2001, De 

Angelo et al 2006). The first is that the results do not include a quantitative assessment of 

ancillary benefits and costs, i.e. other positive and negative external impacts likely to arise 

when implementing some GHG abatement measures.  An obvious example would be to 

consider the simultaneous water pollution benefits derived from reduced diffuse run-off of 

excessive nitrogen application to land.  These impacts, both positive and negative, should be 

included in any social cost estimates.  

 

Secondly, as noted, there is an issue as to whether the consideration of abatement potential 

should go beyond the farm gate and extend to the significant lifecycle impacts implicit in the 

adoption of some measures.  Such an extension complicates the MACC exercise considerably, 

since some may occur beyond the UK.  However, for some measures (e.g. reduced use of 

nitrogen fertiliser), these impacts are likely to be particularly significant.  

 

A third point is that there is uncertainty about the extent to which some of the currently 

identified measures are counted directly in the current UK national emissions inventory 

format.  As currently compiled, inventory procedure is good at recognizing direct reductions 

(e.g. from livestock populations reduction) but bad at crediting measures which may only 

reduce emissions indirectly11.   This basically means that some cost-effective measures 

identified here cannot qualify to be counted under current inventory reporting rules.  Using 

the livestock example, a reduction in UK emissions will most likely be offset by ‘demand 

leakage’ - a corresponding increase in imports and emissions generated elsewhere. Not 

recognising indirect measures can have the effect of reducing sector abatement potential by 

around two thirds.  The extent to which measures are captured under different inventory 

methodologies is explored in more detail in MacLeod et al. (2010c). 

 

A final point to note is that the potentials have been developed largely ignoring other 

important elements of the climate change agenda that are unlikely to remain constant.  

Specifically, mitigation potential will be vulnerable to warming and climate extremes.  There 

is currently very little research that addresses how mitigation measures can be made more 

resilient to these potential impacts.      

 

 
11 Here, “indirect” refers to a measure that reduces emissions, but which is not currently recognised 
under inventory protocol.  As an example, a reduction in herd populations is a direct measure that is 
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Despite these outstanding issues, the mitigation budgets estimated by this exercise have been 

endorsed by the CCC and have largely been accepted by industry stakeholders who now have 

a clearer view of the relevant high-abatement and low-cost measures. In practical terms, the 

estimates are currently being used as a basis of discussion for the development of a policy 

route map with Defra and key industry stakeholders in the shape of a Rural Climate Change 

Forum. Relevant policies include the development of voluntary approaches (i.e. improved 

farm advice and codes), and the exploration of the potential for emissions trading within the 

sector. The Scottish government has adopted key elements from the MACC directly into a 

five point plan on abatement, which is currently being extended to the sector12. Meanwhile, 

further research is currently investigating alternative strategies to unlock additional emissions 

reductions through the accelerated development and deployment of existing abatement 

measures, and through the creation of new techniques.  The identification of apparent win-win 

measures also suggests that there a need for understanding farmer behaviors in relation to the 

management of greenhouse gas emissions.   

 

 

 

 

recognised as an emissions reduction.  Making an alteration to the animal (e.g. genetics), may deliver 
the same reduction in an indirect way, but may not be recognised.  
12  Farming for a Better Climate http://www.sac.ac.uk/climatechange/farmingforabetterclimate/ 



 19

 

References 

 

ADAS, SAC, IGER & AFBI (2007) Baseline Projections for Agriculture (‘business as usual’ III).  Final report to 

Defra, London 

http://www.defra.gov.uk/evidence/statistics/foodfarm/enviro/observatory/research/documents/SFF0601SID5FIN

AL.pdf 

 

Amer PR, Nieuwhof GJ, Pollott GE, Roughsedge T, Conington J and Simm G  (2007) Industry benefits from 

recent genetic progress in sheep and beef populations. Animal 1: 1414-1426. 

 

Beaumont, N and R.Tinch (2004) Abatement cost curves: a viable management tool for enabling the 

achievement of win–win waste reduction strategies?  Journal of Environmental Management,   Volume 71, Issue 

3, Pages 207-215  

 

Choudrie S.L., Jackson J., Watterson J.D., Murrells T., Passant N., Thomson A., Cardenas L., Leech A., Mobbs 

D.C. & Thistlethwaite G. (2008) UK Greenhouse Gas Inventory, 1990 to 2006: Annual Report for submission 

under the Framework Convention on Climate Change. AEA Technology, Didcot, Oxfordshire, UK. 243 pp. 

http://www.airquality.co.uk/archive/reports/cat07/0804161424_ukghgi-90-

06_main_chapters_UNFCCCsubmission_150408.pdf  

 

CLA/AIC/NFU (2007) Part of the Solution: Climate Change, Agriculture and Land Management. Report of the 

joint NFU/CLA/AIC Climate Change Task Force. Country Land and Business Association, Agricultural 

Industries Confederation, and National Farmers’ Union 

http://www.agindustries.org.uk/document.aspx?fn=load&media_id=2926&publicationId=1662 

 

Committee on Climate Change (2008) Building a low-carbon economy – the UK’s contribution to tackling 

climate change, http://www.theccc.org.uk/ 

 

DeAngelo, B.  J.; De la Chesnaye, Francisco C.; Beach, Robert H.; Sommer, Allan; Murray, Brian C.(2006)  

Multi-Greenhouse Gas Mitigation. Energy Journal, , Vol. 27, p89-108, 

 

De Cara S., Houzé M., Jayet P.A. (2005) Methane and Nitrous Oxide Emissions from Agriculture in the EU: A 

Spatial Assessment of Sources and Abatement Costs" Environmental & Resources Economics, vol. 32, n., pp. 

551-83. 

 

Defra (2002) CC0233 Scientific Report London: Defra 

 

Defra (2007) The Social Cost Of Carbon And The Shadow Price of Carbon: What They Are, And How To Use 

Them In Economic Appraisal In The UK, Economics Team Defra, London  

http://www.airquality.co.uk/archive/reports/cat07/0804161424_ukghgi-90-06_main_chapters_UNFCCCsubmission_150408.pdf
http://www.airquality.co.uk/archive/reports/cat07/0804161424_ukghgi-90-06_main_chapters_UNFCCCsubmission_150408.pdf
http://www.agindustries.org.uk/document.aspx?fn=load&media_id=2926&publicationId=1662


 20

 

Deybe D., Fallot A. (2003) "Non-CO2 greenhouse gas emissions from agriculture: analysing the room for 

manoeuvre for mitigation, in case of carbon pricing" 25th International Conference of Agricultural Economists, 

August 16th - 22th, 2003 ed.: Durban. 

 

ECCP (2001) Agriculture. Mitigation potential of Greenhouse Gases in the Agricultural Sector. Working Group 

7, Final report of European Climate Change Programme, COMM(2000)88. European Commission, Brussels. 

http://ec.europa.eu/environment/climat/pdf/agriculture_report.pdf  

 

Ellerman, A.D. and Decaux, A. 1998, Analysis of Post-Kyoto CO2 emissions trading Using Marginal Abatement 

Curves, MIT Joint Program on the Science and Policy of Global Change, Report 40, Cambridge MA.  

 

IGER (2001) Cost curve assessment of mitigation options in greenhouse gas emissions from agriculture. Final 

Project Report to Defra (project code: CC0209).  

http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectI

D=8018 

 

MacLeod, M.,  Dominic Moran , Vera Eory, R.M. Rees, Andrew Barnes, Cairistiona F.E. Topp, Bruce Ball, 

Steve Hoad, Eileen Wall, Alistair McVittie, Guillaume Pajot, Robin Matthews, Pete Smith, Andrew Moxey  

(2010a) Developing greenhouse gas marginal abatement costs curves for agricultural emissions from crops and 

soils in the UK Agricultural Systems 103  198–209 

 

 MacLeod, M.,  Dominic Moran, Alistair McVittie, Bob Rees, Glyn Jones, David Harris, Steve Antony, Eileen 

Wall, Vera Eory, Andrew Barnes,  Kairsty Topp, Bruce Ball, Steve Hoad  and Lel Eory (2010b) Review and 

update of UK marginal abatement cost curves for agriculture Final report London: Committee on Climate 

Change 

 

MacLeod, M., Alistair McVittie, Bob Rees, Eileen Wall, Kairsty Topp, Dominic Moran, Vera Eory, Andy 

Barnes, Tom Misselbrook, Dave Chadwick, Andrew Moxey, Pete Smith,  John Williams and David Harris 

(2010c) Roadmaps Integrating RTD in Developing Realistic GHG Mitigation Options from Agriculture up to 

2030 Project Code: FFG 0812 Final Report  London: Defra 

 

McCarl, B.A. &  Schneider, U. (2001) Greenhouse gas mitigation in U.S. agriculture and forestry. Science, 294, 

2481-2482. 

 

McCarl, B.A. &  Schneider, U. (2003) Economic Potential of Biomass Based Fuels for Greenhouse Gas 

Emission Mitigation, Environmental and Resource Economics 24, 4  pp 291-312 

 

http://ec.europa.eu/environment/climat/pdf/agriculture_report.pdf
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=8018
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=8018


 21

McKinsey  & Company (2008) An Australian cost curve for greenhouse gas reduction  

http://www.mckinsey.com/clientservice/ccsi/pdf/Australian_Cost_Curve_for_GHG_Reduction.pdf 

 

McKinsey  & Company (2009) Pathways to a low-carbon Economy – Global Greenhouse Gases (GHG) 

Abatement Cost Curve”, http://globalghgcostcurve.bymckinsey.com/    Version 2 of the Global Greenhouse Gas 

Abatement Cost Curve - January 2009 

 

McKitrick, R (1999) A Derivation of the Marginal Abatement Cost Curve Journal of Environmental Economics 

and Management Volume 37, Issue 3, May 1999, Pages 306-314  

Moorby J., Chadwick D., Scholefield D., Chambers B. & Williams J. (2007) A review of research to identify 

best practice for reducing greenhouse gases from agriculture and land management, IGER-ADAS, Defra 

AC0206 report. 

 

Moran, D., MacLeod, M., Wall. E., Eory, V., Pajot, G., Matthews, R., McVittie, A.., Barnes, A., Rees, B., 

Moxey, A., Williams, A.. & Smith, P. (2008) UK Marginal Abatement Cost Curves for Agriculture and Land 

Use, Land-use Change and Forestry Sectors out to 2022, with Qualitative Analysis of Options to 2050, Final 

Report to the Committee on Climate Change, London  http://www.theccc.org.uk/reports/supporting-research/ 

 

Moxey A. (2008) Reviewing and Developing Agricultural Responses to Climate Change. Report prepared for 

the Scottish Government Rural and Environment Research and Analysis Directorate (SG-RERAD) Agricultural 

and Climate Change Stakeholder Group (ACCSG). Report No. CR/2007/11. Pareto Consulting, Edinburgh. 59 

pp. 

 

NERA (2007) Market Mechanisms for Reducing GHG Emissions from Agriculture, Forestry and Land 

Management London: National Economic Research Associates, project undertaken for Defra 

 

Pérez I., Holm-Müller K. (2005) "Economic incentives and technological options to global warming emission 

abatement in European agriculture" 89th EAAE Seminar: " Modelling agricultural policies: state of the art and 

new challenges", February 3th - 

5th, 2005 Parma 

 

Rees R.M., Bingham I.J., Baddeley J.A. & Watson C.A. (2004) The role of plants and land management in 

sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma, 128, 130-154. 

 

Smith, P.,  Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P.,  McCarl, B., Ogle, S., O’Mara, F., Rice, C.,  

Scholes, B., Sirotenko, O. (2007a) Agriculture. In B. Metz, B., Davidson, O., Bosch, P., Dave, R., &  Meyer, L.  

(eds, 2007), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment 

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA.  

http://www.mnp.nl/ipcc/pages_media/FAR4docs/final%20pdfs%20of%20chapters%20WGIII/IPCC%20WGIII_

chapter%208_final.pdf  

http://www.theccc.org.uk/reports/supporting-research/
http://www.mnp.nl/ipcc/pages_media/FAR4docs/final%20pdfs%20of%20chapters%20WGIII/IPCC%20WGIII_chapter%208_final.pdf
http://www.mnp.nl/ipcc/pages_media/FAR4docs/final%20pdfs%20of%20chapters%20WGIII/IPCC%20WGIII_chapter%208_final.pdf


 22

 

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P.,  McCarl, B., Ogle, S., O’Mara, F., Rice, C.,  

Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Uwe Schneider, U. & 

Towprayoon, S.  (2007b) Policy and technological constraints to implementation of greenhouse gas mitigation 

options in agriculture, Agriculture, Ecosystems and Environment,  118, 6–28. 

 

Smith, P.,  Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P.,  McCarl, B., Ogle, S., O’Mara, F., Rice, C.,  

Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Uwe Schneider, U. & 

Towprayoon, S. , Wattenbach, M. &  Smith, J (2008) Greenhouse gas mitigation in agriculture. Philosophical 

Transactions of the Royal Society, B., 363, 789-813. doi: 10.1098/rstb.2007.2184. 

 

Thomson A.M. & van Oijen M. (2008) Inventory and projections of UK emissions by sources and removals by 

sinks due to land use, land use change and forestry: Annual Report, June 2007. Department for the Environment, 

Food and Rural Affairs: Climate, Energy, Science and Analysis Division, London. 200 pp. 

 

Thomson A.M., van Oijen M. (2007) UK emissions by sources and removals by sinks due to land use, land use 

change and forestry, Report for DEFRA June 2007. 

 

US-EPA (2005) Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture. EPA 430-R-05-006. 

Washington, DC: U.S. Environmental Protection Agency. 

 http://www.epa.gov/sequestration 

 

US-EPA (2006) Global Mitigation of Non-CO2 Greenhouse Gases. United States Environmental Protection 

Agency, EPA 430-R-06-005, Washington, D.C.  

www.epa.gov/nonco2/econ-inv/downloads/GlobalMitigationFullReport.pdf 

 

Weiske A. & Michel, J. (2007) Greenhouse gas emissions and mitigation costs of selected mitigation measures 

in agricultural production, MEACAP WP3 D15a 

 

Weiske A. (2005) Survey of Technical and Management-Based Mitigation Measures in Agriculture, MEACAP 

WP3 D7a 

 

Weiske A. (2006) Selection and specification of technical and management-based greenhouse gas mitigation 

measures in agricultural production for modelling. MEACAP WP3 D10a 

 

Weiske A. (2007) Potential for Carbon Sequestration in European Agriculture, MEACAP WP3 D10a appendix 

http://www.epa.gov/sequestration
http://www.epa.gov/nonco2/econ-inv/downloads/GlobalMitigationFullReport.pdf


 23

  

Table 1 The abatement rates of the short-listed crops/soils measures 

Measure Estimated 
abatement 
rate t CO2e 

ha-1 y-1  

Estimated 
maximum area 
that measure 

could be applied to 
by 2022 (mha) 

Explanation of the measures 

Using biological fixation 
to provide N inputs 
(clover) 

0.5 6.4 Using legumes to biologically fix nitrogen reduces 
the requirement for N fertiliser to a minimum.  

Reduce N fertiliser 0.5 9.9 An across the board reduction in the rate at which 
fertiliser is applied will reduce the amount of N in the 
system and the associated N2O emissions.  

Improving land drainage 1 4.0 Wet soils can lead to anaerobic conditions favourable 
to the direct emission of N2O. Improving drainage 
can therefore reduce N2O emissions by increasing 
soil aeration.   

Avoiding N excess 0.4 8.8 Reducing N application in areas where it is applied in 
excess reduces N in the system and therefore reduces 
N2O emissions.  

Full allowance of manure 
N supply 

0.4 7.6 This involves using manure N as far as possible. The 
fertiliser requirement is adjusted for the manure N, 
which potentially leads to a reduction in fertiliser N 
applied.   

Species introduction 
(including legumes) 

0.5 5.8 The species that are introduced are either legumes 
(see comment regarding biological fixation above) or 
they are taking up N from the system more efficiently 
and there is therefore less available for N2O 
emissions.  

Improved timing of 
mineral fertiliser N 
application 

0.3 8.1 Matching the timing of application with the time the 
crop will make most use of the fertiliser reduces the 
likelihood of N2O emissions by ensuring there is a 
better match between supply and demand.  

Controlled release 
fertilisers 

0.3 8.1 Controlled release fertilisers supply N more slowly 
than conventional fertilisers, ensuring that microbial 
conversion of the mineral N in soil to nitrous oxide 
and ammonia is reduced.  

Nitrification inhibitors 0.3 8.1 Nitrification inhibitors slow the rate of conversion of 
fertiliser ammonium to nitrate, decreasing the rate of 
reduction of nitrate to nitrous oxide (or dinitrogen). 

Improved timing of slurry 
and poultry manure 
application 

0.3 7.3 See improved timing of mineral N 

Adopting systems less 
reliant on inputs 
(nutrients, pesticides etc) 

0.2 5.8 Moving to less intensive systems that use less input 
can reduce the overall greenhouse gas emissions.  

Plant varieties with 
improved N-use 
efficiency 

0.2 3.8 Adopting new plant varieties that can produce the 
same yields using less N would reduce the amount of 
fertiliser required and the associated emissions.  

Separate slurry 
applications from 
fertiliser applications by 
several days 

0.1 7.3 Applying slurry and fertiliser together brings together 
easily degradable compounds in the slurry and 
increased water contents, which can greatly increase 
the denitrification of available N and thereby the 
emission of nitrous oxide.  

Reduced tillage / No-till 0.15 2.0 No tillage, and to a lesser extent, minimum (shallow) 
tillage reduces release of stored carbon in soils 
because of decreased rates of oxidation. The lack of 
disturbance by tillage can also increase the rate of 
oxidation of methane from the atmosphere.  

Use composts, straw-
based manures in 
preference to slurry 

0.1 5.5 Composts provide a more steady release of N than 
slurries which increase anaerobic conditions and 
thereby loss of nitrous oxide. 

 

 



Table 2 (a) Applicable livestock abatement measures 

 Measure Estimated abatement rate (% of emitted GHG) Increase in yield (%) 

For measures where abatement 
rate is consistent over time but  

varies between animal 
categories 

For measures where 
abatement rate is 

consistent across animal 
categories 

For measures where yield 
increase is consistent across 

animal categories 

  

2012 2017 2022 
Cows and 
heifers in milk Heifers in calf 2012 2017 2022 

For measures where 
yield increase is 

consistent over time 
but  varies between 
animal categories 

Increasing concentrate in the diet - Dairy 7% 7% 7%   -  - - 14%* 9%** 
Increasing maize silage in the diet - Dairy -2% -2% -2%    7% 7%  7%  - - 
Propionate precursors – Dairy 22% 22% 22%    15% 15%  15%  -  - 
Probiotics – Dairy       7.5% 0%  10% 10%  10%  -  - 
Ionophores – Dairy 25% 25% 25%      25% 25%  25%  -  - 
Bovine somatotropin – Dairy       -10% 0%  17.5% 17.5%  17.5%  -  - 
Genetic improvement of production - Dairy 0%  0% 0%   7.5% 15% 22.5%  -  - 
Genetic improvement of fertility - Dairy 2.5% 5.0% 7.5%   3.25% 8% 11.25%  -  - 
Use of transgenic offsprings – Dairy 20% 20% 20%    10% 10%  10%  -  - 
Increasing concentrate in the diet - Beef 7% 7% 7%    9% 9%  9%  -  - 
Increasing maize silage in the diet - Beef -2% -2% -2%   7% 7% 7%  -  - 
Propionate precursors – Beef 22% 22% 22%   15% 15% 15%  -  - 
Probiotics – Beef 7.5% 7.5% 7.5%   10% 10% 10%  -  - 
Ionophores – Beef 25% 25% 25%   25% 25% 25%  -  - 
Genetic improvement of production - Beef 2.5% 5.0% 7.5%   5% 10% 15%  -  - 

*Cows and heifers in milk housed in cubicles   **All other animals  

  



Table 2. b) Applicability of animal management measures and the explanation of the measures 

Measure Estimated maximum 
number of animals that 

measure could be 
applied to by 2022 (m) 

Explanation of the measures 

Increasing concentrate in the diet - Dairy 
2.2 

Increasing the proportion of high starch concentrates in the diet makes animals to produce more and/or reach final weight 
faster. 

Increasing maize silage in the diet - Dairy 2.2 Increasing the proportion of maize silage in the diet makes animals to produce more and/or reach final weight faster. 
Propionate precursors – Dairy 

2.2 
By adding propionate precursors (e.g. fumarate) to animal feed, more hydrogen is used to produce propionate and less CH4 
is produced. 

Probiotics – Dairy 

2.0 

Probiotics (e.g. Saccheromyces cerevisiae and Aspergillus oryzae) are used to divert hydrogen from methanogenesis towards 
acetogenesis in the rumen, resulting in a reduction in the overall methane produced and an improve overall productivity 
(acetate is a source of energy for the animal). 

Ionophores – Dairy 

2.0 
Ionophore  antimicrobials (e.g. monensin) are used to improve efficiency of animal production by decreasing the dry matter 
intake and increasing performance and decreasing CH4 production. 

Bovine somatotropin – Dairy 
2.0 

Administering bST to cattle has been shown to increase production, and at the same time to increase CH4 emissions per 
animal. 

Genetic improvement of production - Dairy 2.2 Selection on production traits. 
Genetic improvement of fertility - Dairy 2.0 Selection on fertility traits. 
Use of transgenic offsprings – Dairy 2.2 Using the offspring of genetically modified animals, with improved productivity and less CH4 emission. 
Increasing concentrate in the diet - Beef 

5.5 
Increasing the proportion of high starch concentrates in the diet makes animals to produce more and/or reach final weight 
faster. 

Increasing maize silage in the diet - Beef 5.5 Increasing the proportion of maize silage in the diet makes animals to produce more and/or reach final weight faster. 
Propionate precursors – Beef 

5.5 
By adding propionate precursors (e.g. fumarate) to animal feed, more hydrogen is used to produce propionate and less CH4 
is produced. 

Probiotics – Beef 

6.5 

Probiotics (e.g. Saccheromyces cerevisiae and Aspergillus oryzae) are used to divert hydrogen from methanogenesis towards 
acetogenesis in the rumen, resulting in a reduction in the overall methane produced and an improve overall productivity 
(acetate is a source of energy for the animal). 

Ionophores – Beef 

6.5 
Ionophore  antimicrobials (e.g. monensin) are used to improve efficiency of animal production by decreasing the dry matter 
intake and increasing performance and decreasing CH4 production. 

Genetic improvement of production - Beef 2.9 Selection on production traits. 
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Table 2. c) Assumed effects of manure management measures on GHG abatement, their applicability and the explanation of the measures 

Measure Estimated 
abatement rate 
(% of emitted 

CH4) 

Additional 
CO2 emission 
(kg/storage/y) 

Estimated maximum 
volume of manure/slurry 

that measure could be 
applied to by 2022 (m3) 

Estimated maximum 
number of storages 

that measure could be 
applied to by 2022 

Explanation of the measures 

Covering slurry tanks – Dairy 20%   4,435,573 5,544 Covering existing slurry tanks. 
Covering lagoons – Dairy 20%   4,292,490 2,862 Covering existing lagoons. 
Switch from anaerobic to aerobic tanks – Dairy 20% 5,200 4,435,573 5,544 Aerating of slurry and manure while being stored. 
Switch from anaerobic to aerobic lagoons – Dairy 20% 6,900 4,292,490 2,862 Aerating of slurry and manure while being stored. 
Covering slurry tanks – Beef 20%   524,895 656 Covering existing slurry tanks. 
Covering lagoons – Beef 20%   454,909 303 Covering existing lagoons. 
Switch from anaerobic to aerobic tanks – Beef 20% 5,200 524,895 656 Aerating of slurry and manure while being stored. 
Switch from anaerobic to aerobic lagoons – Beef 20% 6,900 454,909 303 Aerating of slurry and manure while being stored. 
Covering slurry tanks – Pigs 20%   894,059 1,118 Covering existing slurry tanks. 
Covering lagoons – Pigs 20%   715,247 477 Covering existing lagoons. 
Switch from anaerobic to aerobic tanks – Pigs 20% 5,200 894,059 1,118 Aerating of slurry and manure while being stored. 
Switch from anaerobic to aerobic lagoons – Pigs 20% 6,900 715,247 477 Aerating of slurry and manure while being stored. 

 

 



 

Table 3  2022 Abatement potential: Central Feasible Estimate 

Code Measure 
Abatement 

per measure 
(ktCO2e) 

Cumulative 
abatement 
(ktCO2e) 

Cost 
effectiveness 

(£2006 tCO2e-1) 

CE Beef Animal management – Ionophores 347 347 -1,748 
CG Beef Animal management - Improved Genetics 46 394 -3,603 
AG Crops-Soils-Mineral N Timing 1,150 1,544 -103 
AJ Crops-Soils-Organic N Timing 1,027 2,571 -68 
AE Crops-Soils-Full Manure 457 3,029 -149 
AN Crops-Soils-Reduced Till 56 3,084 -1,053 
BF Dairy Animal management -Improved Productivity 377 3,462 0 
BE Dairy Animal management – Ionophores 740 4,201 -49 
BI Dairy Animal management - Improved Fertility 346 4,548 0 
AL Crops-Soils-Improved N-Use Plants 332 4,879 -76 
BB Dairy Animal management – Maize Silage 96 4,975 -263 
AD Crops-Soils-Avoid N Excess 276 5,251 -50 
AO Crops-Soils - Using Composts 79 5,330 0 
AM Crops-Soils – Slurry Mineral N Delayed 47 5,377 0 
EI On Farm Anaerobic Digestion – Pigs (Large) 48 5,425 1 
EF On Farm Anaerobic Digestion – Beef (Large) 98 5,523 2 
EH On Farm Anaerobic Digestion – Pigs (Medium) 16 5,539 5 
EC On Farm Anaerobic Digestion – Dairy (Large) 251 5,790 8 
HT Centralized Anaerobic Digestion – Poultry (5MW) 219 6,009 11 
AC Crops-Soils – Drainage 1,741 7,750 14 
EE On Farm Anaerobic Digestion –Beef (Medium) 51 7,801 17 
EB On Farm Anaerobic Digestion –Dairy (Medium) 44 7,845 24 
AF Crops-Soils – Species Introduction 366 8,211 174 
BG Dairy Animal management - Bovine somatotropin 132 8,343 224 
AI Crops-Soils- Nitrification inhibitors 604 8,947 294 
AH Crops-Soils – Controlled Release Fertiliser 166 9,113 1,068 
BH Dairy Animal management – Transgenics 504 9,617 1,691 
AB Crops-Soils - Reduce N Fertiliser 136 9,753 2,045 
CA Beef Animal management – Concentrates 81 9,834 2,704 
AK Crops-Soils – Systems Less Reliant On Inputs 10 9,844 4,434 
AA Crops-Soils – Biological N Fixation 8 9,853 14,280 
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Figure 1 An illustrative MACC and its relationship to a carbon budget.   The right-hand-side presents an 
illustrative marginal abatement cost curve comprised of bars representing individual (abatement) measure cost 
(height) and abatement potential (width). An externally determined threshold is place on measure cost-
effectiveness by a carbon price represented by the horizontal dashed line.  The abatement potential from the 
application of the efficient (i.e. less than the carbon price) measures over and above their baseline application 
defines the carbon budget as represented in the left-hand-side of the diagram.  
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Figure 2  MACC development process 
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Figure 3  Total UK agricultural MACC, Central Feasible Potential 2022 (discount rate = 3.5%, codes refer to measures in Table , measures with CE>1000 are not 
shown). See Appendix 2 for an explanation of why the measures below the x-axis are not order of cost-effectiveness. 
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Appendix 1 Table 1 Crops/soils measures and reasons for exclusion from short list 

Measure Included  in short list 
Cropland management: agronomy 
Adopting systems less reliant on inputs (nutrients, pesticides etc) Y 

Improved crop varieties N – small abatement  potential, see plant 
varieties with improved N 

Catch/cover crops N - small abatement potential 

Maintain crop cover over winter N - small abatement potential 

Extending the perennial phase of rotations N - small abatement potential 

Reducing bare fallow N - small abatement potential 

Changing from winter to spring cultivars N - small abatement potential 

Cropland management: nutrient management 
Using biological fixation to provide N inputs (clover) Y 

Reduce N fertiliser Y 

Avoiding N excess Y 

Full allowance of manure N supply Y 

Improved timing of mineral fertiliser N application Y 

Controlled release fertilisers Y 

Nitrification inhibitors Y 

Improved timing of slurry and poultry manure application Y 

Application of urease inhibitor N - N2O reduction small and offset by 
indirect N2O emissions 

Plant varieties with improved N-use efficiency Y 

Mix nitrogen rich crop residues with other residues of higher C:N ratio N - marginal, too localized 

Separate slurry applications from fertiliser applications by several days Y 

Use composts, straw-based manures in preference to slurry Y 

Precision farming N - small abatement potential 

Split fertilisation (baseline amount of N fertiliser but divided into three 
smaller increments) 

N - small abatement potential 

Use the right form of mineral N fertiliser N - small abatement potential 

Placing N precisely in soil N - small abatement potential 

Cropland management: tillage/residue management 
Reduced tillage / No-till Y 

Retain crop residues N - small abatement potential 

Cropland management: water and soil management 
Improved land drainage Y 

Loosen compacted soils / Prevent soil compaction N - small abatement potential 

Improved irrigation N - small abatement potential 

Grazing land management/pasture improvement: increased productivity 
Species introduction (including legumes) Y 

New forage plant varieties for improved nutritional characteristics N - small abatement potential 

Introducing /enhancing high sugar content plants (e.g. "high sugar" 
ryegrass) 

N - small abatement potential 

Grazing land management/pasture improvement: water and soil management 
Prevent soil compaction N - small abatement potential 

Management of organic soils 
Avoid drainage of wetlands  N - high level of uncertainty, also could 

displace significant amounts of production 
and emissions 

Maintaining a shallower water table: peat N - small abatement potential 
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Appendix 2  The effect of interactions on the ordering of measures 

 

Measures are treated differently above and below the x-axis: below (i.e. when costs are 

negative) they are ordered according to the total savings accruing from the measure, while 

above the x-axis they are ordered according to their height, i.e. the unit cost-effectiveness 

of each measure. 

 

In a model MACC, in which measures do not interact, the measures can easily be arranged 

in order of CE, regardless of whether they have negative or positive costs; measures to the 

left have the greatest CE (i.e. negative costs), while those to the right have poorer CE and 

positive costs.  However, when the CE of each measure is recalculated after the 

implementation of each measure, measures with negative costs behave differently to those 

with positive costs. The interaction factor reduces the amount of GHG mitigated (in most 

cases), effectively increasing the length of the bar. If a measure has a positive cost, this 

makes the measure more expensive (i.e. less CE), however if the measure has a negative 

cost, this makes the measure appear more negative, i.e. less expensive and therefore more 

CE. The length of the bars for measures with positive costs increases as we move from left 

to right and the effect of the interaction factors (IFs) is simply to increase the rate at which 

the costs/length of the bars increase, this means that after each measure is applied no 

subsequent measure will have a shorter bar (though it is theoretically possible if the IF >1 

and > the increase between bars). However, for measures with negative costs the bars 

shorten as we move from left to right, but the IF lengthens the bars, which means that the 

bars will not necessarily get shorter (i.e. CE will not decrease). For example, in Table A 

the effect of the IFs makes it impossible to order measures with negative costs according to 

their CE. Instead, measures with negative costs were ordered according to their potential 

savings, i.e. the (negative) cost per ha multiplied by the area the measure could be applied 

to. This approach has the advantages that (a) the potential savings are unaffected by the 

effects of measures interacting, and (b) it is consistent with profit-maximising behaviour. 
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Table A. Example showing the effects of measure interaction on CE 

Measure X Y Z 

Stand alone CE -7 -6 -5 

Interaction Factor with X NA 0.7 0.7 

CE after X is implemented -7 -8.6 -7.1 

Interaction factor with Y NA NA 0.9 

CE after X and Y are implemented -7 -8.6 -7.9 

So combined CE of X,Y and Z -7 -8.6 -7.9 
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