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THE THEORY OF SPATIAL EQUILIBRIUM AND
OPTIMAL LOCATION IN AGRICULTURE:
A SURVEY

G. Weinschenck, W. Henrichsmeyer and F. Aldinger*

In this article the development and present state of the field of spatial
equilibrium theory and analysis is reviewed, particularly with respect to its
application to the location of agricultural production. After surveying the
historical aspects of location theory and the relationships between classical
and modern theory, three major model forms are developed in some
detail, viz., standard equilibrium models using supply and demand
relations, activity analysis models using production functions, factor
endowments and demand relations, and dynamic (recursive) models
incorporating behavioural restrictions into the standard programming form.
Next the study of the location of agricultural processing industry is
surveyed, and finally problems of practical application, including aggregation
problems and questions of data availability, are reviewed.

Problems of the following kind are considered in the theory of spatial
equilibrium and optimal location:

(a) the optimal location of a firm with a given production programme;
(b) the optimal production at a given location;

(¢) the exchange of goods and factors between regions (locations);

(d) the difference in prices and factor earnings between regions (locations).

It is obvious that the solutions to problems (), (¢), and (d) are mutually
dependent and that problems (@) and () are different sides of the same
coin. All are only different aspects of the major problem of the general
spatial equilibrium of production. Nevertheless they have been treated
almost independently during a long period of the history of economic
thought.

The optimal location of a firm has been considered in the theory of
industrial location characterized by the work of Adolf Weber [207] and
Launhardt [190] at its earlier stages. The determination of optimal
production at a given location is the classical problem in the theory of
the firm, viz. calculation of the optimum level of operation. At the
aggregate level this problem has been considered in the pure theory of
trade and in agricultural location theory, both fields differing in the
assumptions on factor mobility and transportation costs from Ricardo
and von Thiinen until almost the present day.

*Institut fir Wirtschaftslehre des Landbaues, Hohenheim University, Stuttgart,
West Germany.

This article is the first in a special series to be published in this Review which will
survey major areas of current interest in agricultural economics.
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The integration of the various theories with the general theory of eco-
nomic equilibrium was prepared by the work of Ohlin [60], Palander [68],
Christaller [16], and Losch [56] in the 1930%s. It has been continued and
more or less completed by Isard [41], Lefeber [54], von Boventer [11], and
Kuenne [51] who applied elements of the general theory of economic
equilibrium as well as modern analytical tools like interregional input-
output analysis and interregional programming to the theory of location
and spatial equilibrium.

This work has had a large impact on agricultural location theory in
recent years. Modern agricultural location theory can be developed
directly from the general equilibrium theory as a special case. However
it may also be presented as a generalization of the traditional theory of
the von Thiinen type. We prefer the latter for historical reasons.

I TRADITIONAL LOCATION THEORY

Agricultural location theory originates in von Thiinen’s work, which
has continued to influence the development of the theory over time. In
his famous Isolated State with respect to Agriculture and National Economy,
von Thiinen investigates the following problem:

“Imagine a very large town, at the centre of a fertile plain which is
crossed by no navigable river or canal. Throughout the plain the soil is
capable of cultivation and of the same fertility. Far from the town, the
plain turns into an uncultivated wilderness which cuts off all communi-
cation between this State and the outside world.

There are no other towns on the plain. The central town must therefore
supply the rural areas with all manufactured products, and in return it
will obtain all its provisions from the surrounding countryside. . . .
The problem we want to solve is this: What pattern of cultivation will
take shape in these conditions?; and how will the farming system of the
different districts be affected by their distance from the Town??

In the terminology of traditional location theory, von Thiinen investi-
gates the influence of a varying distance from the market on land use,
keeping all other factors constant which affect the organization of land
use. In the terminology of the theory of general economic equilibrium,
he investigates the spatial equilibrium of agricultural production under
the following assumptions:

(@) There exists only one central market. Prices at the central market
or the demand functions are known for all agricultural goods.

() There are no imports. The demand must be satisfied from the
production of the surrounding plain.

(c) The production functions for all of the #» goods which can be produced
are identical at all geographical points of the State.

! From the translation of von Thiinen in Hall, ed., [84], pp. 7-8.
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(d) All production factors except land are perfectly mobile and divisible.
They are available at every location at constant prices which may differ
between locations as a function of the distance from the market.

(¢) The transportation costs per unit may or may not differ between the
goods but for each good they are a linear function of the distance from
the market.

Dunn [23] has shown that this problem can be formulated as a special
problem of the general theory of equilibrium. We use the following
notation:

Rix = rent per unit of land at a distance k from the market resulting
from the production of good i;

E; = yield per unit of land for the good i:

P: = market price per unit of good i:

I = input per unit of land for the good i:

a; = market price per unit of input f;;

fi = transport rate for the yield E; per unit of distance:
fri = transport rate for the input /; per unit of land;

k = distance from the market.

If we assume given prices at the central market the total supply of agri-
cultural goods may be derived as follows:

The land rent at a distance k resulting from the production of a good i
is determined by

Rix = EiPi — Lai — (Eifi + L [p)k (n
The land rent is a linear function of the distance from the market (figure 1).
At a hypothetical distance of zero the land rent Riy at market prices is
Rip = EiP; — lai (2)

If n goods G, G,. . .Gy are to be produced numbered in decreasing
order of Rio, one can establish the spatial equilibrium for a good i.

The rent for total agricultural production is maximized by expanding the
production of each good in both directions until the marginal rent of
expansion equals marginal opportunity costs.

Hence the nearest distance to the market, k¢, at which a good / is produced
is given when

Ri = Ri_; €)
and the greatest distance kiq is given when
Ri = Ri+1 (4)

as shown in figure 1.

Figure 1 shows that two conditions are necessary for a good to be pro-
duced at all:

(@) The distance from the market, k, at which R; = Ri_, must be smaller
than the value k for an intersection of R; with all industries having a
lower Rio (land rent at market prices) than 7 — 1.

(b) The distance from the market, k, at which R; = Ri,; must be greater
than the value k for an intersection of R; with all industries having a
higher Rio (land rent at market prices) than i + 1.
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Figure 1

distance from the market

If these conditions are not met, the price relations must be changed.
For example in figure 1 the price of a good with the rent function z 2’
must be decreased until it is lower than the price of G,. The price of a
good with the rent function y y’ must be decreased until its intersection
with the rent function of G, is nearer to the market than the intersection
of the rents from G, and G.,.

The supply of good i, §i, is given under the special circumstances defined
by the following assumptions:

Si = Eikia® — kio?) (5)

The supply for the n goods is then given by:
S, = Ey(kya® — kic®
(6)
S;q = En(knd2 - kr;.c2)
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If demand functions are substituted for the prices of the n goods, a simple
equilibrium model is obtained. Demand is given by:

D, =F(Y, Y, ...Ys; P,Ps...Py
(M
Dn = Fu(Yy, Yo . . . Ysi Py Py . . . Pn)
where
D, D,. .. D, = aggregate demand for goods I, 2, . . ., n;
P, P,...P, = market prices for the goods I, 2,. . ., n;
Y, Y,. .. Y; = income of the s households.

We know from equation (1) that the rent which results from the pro-
duction of a good n at a distance k is a function of the yield E;, the price
P;, the inputs F, their price ai, and of the transportation costs for goods
and inputs fi and f;i. Hence we can write an expression for kig, the
greatest distance from the market at which each good is produced, as
follows:

ki = AE\Pra,fifry - - - 5 EnnPoan fu fin)
. . . @
kna = fELPa [y fil, - - . EnJuPran fu fin)
Finally supply must equal demand in equilibrium:
S =D,
L ©)
Su = Dy

Since the n values for E, I, a, f, and f; are given parameters we have to
determine the following endogenous variables:

n prices;

n quantities demanded;

n boundaries for the production;
n quantities supplied;

With equations (6) to (9) we have 4n equations.

Von Thiinen’s restrictive model permits generalizing and approaching
reality in three directions:

(@) Generalizing the assumptions at the micro level by introducing
different production functions and considering economies and disecono-
mies of scale.

() Including in the analysis the other location factors which affect the
structure of production.
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(¢) Generalizing the restricting equilibrium model and approaching the
real nature of the production process and the structure of demand by
considering simultaneously the interaction of all factors which influence
the spatial equilibrium of production. This is the approach of the
modern theory based both on the results of research in directions (a)
and (b), and on the application of modern tools like input-output analysis
and linear and non-linear programming.

1.1 GENERALIZING THE ASSUMPTIONS AT THE MICRO LEVEL

Von Thiinen’s consideration of the nature of the production process at
the micro level rests on the assumptions of the Walras-type equilibrium
models. Each good can be produced only by one activity with given
input-output relations, with the exception of grain, for which two activities
(the Koppelwirtschaft and the Dreifelderwirtschaft) are taken into account.
Each farm produces only one good for the market since all factors are
perfectly mobile and since the requirements to keep the soil fertility in
balance are met by the special nature of the defined activities.

Dunn [23] and Isard [41] have introduced neoclassical assumptions by
assuming non-linear production functions and multiple product enter-
prises with continuous non-linear substitution functions. Their analysis
leads to three major modifications of the von Thiinen results:

(@) the intensity of land use decreases continuously with an increasing
distance from the market and hence the land-labour-capital ratio changes
continuously too;

(b) the rent-function becomes non-linear following the assumptions of
non-linear production functions; and

(c) the quantity ratio of goods produced changes continuously within
certain limits following the assumptions of non-linear substitution curves.
Corresponding modifications occur if the assumptions of modern linear
production theory are introduced, allowing for a limited number of
activities with given input-output relations for each good and assuming
explicit limits with respect to the maximum proportion of land a single
crop is permitted to occupy for crop rotation reasons. The rent-distance
function would become a curve made up of linear segments, with changing
slopes between segments. Each location is likely to produce more than
one crop because the rotational restrictions limit the expansion of a
single crop. The proportion of land devoted to each crop changes
abruptly at critical distances from the market, as in the von Thiinen
model.

The main results remain unchanged, however, if the restricting assump-
tions on market structure and on the differentiating effect of other
location factors such as natural conditions are maintained. That is,

(a) the organization of land use (intensity and crops grown) is identical
at all points at an equal distance from the central market;

(b) the intensity of land use decreases and hence the land rent decreases
with increasing distance from the market; the shape of the rent-distance
function is determined by the shape of the underlying production
functions;

8



WEINSCHENCK ¢f al.: THEORY OF SPATIAL EQUILIBRIUM

(¢) no statement is possible on the relations between farm size and
distance from the central market since the micromodels are point-models
and all factors are assumed to be perfectly divisible.

1.2 FARM SIZE AND DISTANCE FROM THE MARKET

The relation between farm size (measured in land units) and distance
from the market has been widely ignored in the literature. Its consideration
requires the introduction of transportation and management costs at
the farm level and of economies and diseconomies of scale resulting from
an imperfect divisibility of factors and the existence of internal market
economies.

Taking both factors into account one can divide production costs into
three groups according to their behaviour with increasing farm size
[86], [88].

(a) Degressive costs, which result from the imperfect divisibility of factors
and the existence of physical economies of scale (costs of buildings,
machinery, etc).

(b) Proportional costs, which result from the use of means of production
which are perfectly divisible (fertilizer, variable costs of machinery, etc.)
The costs for the use of land at a given rent fall into this category.

(c) Progressive costs, which result from the need for transportation on
the farm and from the costs of management if farm size increases above a
certain level.

Figure 2 shows the behaviour of average costs with increasing farm size.
Let us assume a given intensity of land use and a given proportion of
crops per land unit. Figure 3 shows the average and the marginal cost
curves with increasing farm size. The stepwise shape of the curve is
smoothed out for simplicity. Point 44 in figure 3 corresponds to point
M, in figure 2. All costs are included in the curves except for the costs
of the use of land.

The shape of the cost curves corresponds to the shape of the cost curves
in the neoclassical model under the simplified assumptions. The mini-
mum of production costs (excluding the cost of land) is reached at the
intersection of the marginal cost curve M. and the average cost curve A..
The farm size at the point of minimum average costs is S.

Since the intensity of land use and the proportion of crops per land unit
are assumed to be constant, the marginal and the average revenue curves
per land unit are identical. They are represented by the line EE.

Let us assume three types of farm with different farm size S, So and S,
located such that perfect land mobility between farms exists. The
average revenue per land unit (4) and the marginal revenue (B) are
shown in figure 3.
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Figure 2
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[~
acreage

Figure 3

A

money units
per land unit

For the farms of size S; they are

A) 0F — S,B, = 0
for the farms of size S, they are

A) OE - Svo = AUBO
B) OE - S()Ao = A()Bo
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for the farms of size S, they are
A) OE - SzAz - A232
B) OE _ 5232 - 0

Thus the marginal revenues at different farm sizes are:
A] B]_ > A[) B(] > 0

Consequently the farmers with farms of size S, will sell land at any price
higher than zero, while the farmers with farms of size §, will buy land
at any price lower than A4,8,.

The minimum selling price will increase from 0 to A,Bp as farms of size
S, decrease their size from S, to §y. The maximum buying price will
decrease from A4,B, to AyB, as farms of size §, increase from size S
to Sy. The equilibrium is established where price reaches 4¢B, and
farm size reaches Sy. Sy and AyB, are the equilibrium values at which
no farmer has a reason to change his position as long as there are no
changes in the prices for goods and factors (other than land), in production
functions, and hence in the organization of land use.

Using the previous results the following conclusions may be drawn:

The equilibrium farm size is determined if the prices at the farm gate and
the organization of land use (intensity and proportion of crops) are
determined by demand functions, production functions, transport rates
and distance from the market assuming perfect factor mobility and
perfect mobility of land between farms at a given location.

All farms at an equal distance from the market are of equal size in a
von Thiinen system. Farm size is a dependent variable under the
assumption of perfect factor mobility, determined by the cost curves of
the equilibrium organization of land use. No direct relation between
farm size and distance from the market exists as Dunn [23] has supposed.
However there are indirect relations. One can assume that the optimal
size (the size at which the farm produces at minimum average cost) is
smaller the more intensive the land use, and hence one can assume (as
did Isard [41] and von Boventer [13]) that farms are smaller the closer
the distance to the market.

The neglect of farm size is a result of the assumption of perfect factor
mobility. If this assumption is dropped, as is frequently done in modern
location theory, one has to consider farm size as a location factor (i.e.,
as an exogeneous variable, in the terminology of modern theory).

1.3 GENERALIZING THE CONSIDERATION OF LOCATION FACTORS

Aereboe [1] and Brinkmann [15] who continued von Thiinen’s work at
the beginning of this century refined von Thiinen’s description of the
production process at the micro level and extended his analysis by
inguiring into the effect of other location factors.

12
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The refinement of the description of the production process is rather
technical. In the writings of both scientists, especially of Brinkmann,
the technical relations between enterprises within the farm with respect
to the maintenance of soil fertility, the use of labour, and the balance of
feed supply, all of which favour the diversification of the farm, are des-
cribed as countervailing powers to the location factors, which favour
specialization. The natural conditions, the stage of economic develop-
ment and the personality of the farm operator are introduced as location
factors in addition to the distance from the market. In describing their
influence they use von Thiinen’s method of considering a single factor
keeping all the others more or less constant and assuming perfect factor
mobility.

Their work is an excellent example of descriptive economics but it is not
operational in the sense of modern theory.

2 CLASSICAL AND MODERN THEORY

Classical and modern theory are basically distinguished by the goals of
their analysis. The work of von Thiinen, Brinkmann, Dunn, and others,
aims at the description and explanation of the influence of single location
factors on agricultural production. Their models are explanatory models
of general validity under the given assumptions. In contrast to the
classical theory, modern analysis aims at the determination of the spatial
equilibrium of agricultural production in a special area (the national
economy). Its explanatory models, which might be considered as
generalized von Thiinen models as well as partial equilibrium models of
the Walras-Cassel-type, are not ends in themselves but a basis for the
development of verification, decision, and prediction models which are
operationally meaningful. The operational bias of modern analysis
becomes obvious if the definition of location and the consideration of
space are compared in classical and modern theory [91}.

2.1 THE DEFINITION OF LOCATION IN CLASSICAL AND MODERN
THEORY

The location factors of classical theory are the exogenous variables of
modern analysis. If the assumption of perfect factor mobility is dropped,
some of the dependent variables of the von Thiinen model become
exogenous too. Hence additional location factors must be added, such
as farm size, labour force, equipment with buildings, etc., and location
from the viewpoint of classical location theory must be defined as shown
in figure 4, definition 1. This or a similar definition which is certainly
sufficient to distinguish one location from another has been used in
innumerable publications all over the world, in order to investigate the
influence of a change in one location factor, keeping the others more or
less constant. However it is hardly operational if one considers the
interaction of a// location factors aiming at the explanation and quanti-
fication of the spatial equilibrium of agricultural production in a given
economy (area).

13
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Therefore modern location theory defines a location either by its pro-
duction capacity, the production functions, the supply functions for
variable factors of production, etc. (definition 2 in figure 4) or, more
comprehensively, by the supply and demand functions for agricultural
goods and transportation costs (definition 3 in figure 4).

2.2 THE NUMBER OF LOCATIONS

All definitions given in figure 4 include variables which change con-
tinuously over space, such as the distance from the market, as well as
variables which usually change discontinuously over space such as farm
size or soil fertility. Therefore two assumptions are possible on the
number of locations [11]:

(a) Space may be considered as a continuous phenomenon, allowing
infinitely small changes of location, and thus leading to an infinite

number of locations.

(b) The number of locations may be limited by considering only a small
number of points, each of them representing a certain part of the whole
area.

Von Thiinen, who emphasizes the distance from the market as a con-
tinuously changing variable, uses the continuous approach logically.
Aereboe, Brinkmann, Isard and Dunn, who maintain the von Thiinen
framework of analysis, basically use the continuous approach as well.
Beckmann [5] has shown that an equilibrium solution exists for a
generalized transportation problem using the continuous approach.
Beckmann’s model consists of a system of differential equations by
which total transportation costs of a commodity flow can be minimized
subject to a given programme of production. The solution yields the
optimum flow and the efficient price structure in a competitive spatial
market given the density functions for production and demand and the
transportation costs independent of the direction of the flow.

The continuous approach becomes rather complicated if one includes
in the analysis the relations between prices and supply, prices and
demand, and the dependence of transportation costs on the direction of
the commodity flow. At present, to the authors’ knowledge, no solution
exists for this problem wusing the continuous approach. Therefore
modern location theory uses the discrete approach.

The area considered is divided into a finite number of regions. Each
region is represented by a single point in space. These points are
characterized either by definition 3 or by definition 2 of figure 4. In the
first case the spatial equilibrium of production is determined on the
basis of given regional supply and demand functions, in the latter it is
determined on the basis of linear production models.

3 SPATIAL EQUILIBRIUM ON THE BASIS OF GIVEN SUPPLY
AND DEMAND FUNCTIONS

The structure of the model used for the consideration of spatial equilibrium
on the basis of given supply and demand functions may be described,
after Enke [26], as follows:

-
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The area considered (national economy) is divided into a finite number of
regions, each of which is represented by a single point in space (location
unit). Between the regions one or more agricultural goods are ex-
changed. For each product regional supply and demand functions are
given as well as the transportation costs per unit between each pair of
regions, which are assumed to be independent of the volume transported.

It is required to determine:

(a) regional equilibrium prices;
(b) regional supply and consumption;
(¢) the flows of interregional exchange.

3.1 CONDITIONS FOR EXCHANGE EQUILIBRIUM

The conditions for the spatial equilibrium solution have been stated by
Cournot: “It is clear that a good which is mobile will move from the
market where its value is lower to the market where its value is higher,
until differences of values are not larger than transportation costs” [17,
p. 103]. In other words, the price differences between any pair of
regions must not exceed transportation costs. They have just to equatl
transportation costs, if goods are actually exchanged in equilibrium.

Figure 5
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From this it follows, for the regional price structure, that the price of
a good in a region r, which delivers the good to another region g, is
exactly lower by transportation costs than the price of the good in
region g. In regions which are self sufficient the regional price is deter-
mined by demand and supply of that region alone.

These relationships might be demonstrated by the well-known textbook
example for 2 regions and 1 good (figure 5). Without interregional
exchange the price in region r is ypo; and in region g it is gpo,.  If the
transportation costs are larger than gpg; — rpo, interregional exchange
will not pay. At transportation costs of sk trade will be profitable.
By exchange the price will rise in region r and fall in region g. As long
as the price difference is larger than transportation costs, tradesmen will
have a trading profit. This will vanish when price differences become
equal to transportation costs. Then spatial equilibrium at prices rp,
and ,4p, and interregional exchange of ,yz is reached.

This spatial equilibrium problem is one of ‘“descriptive economics”
(Samuelson [70] p. 285). In the simple case of two regions the equilibrium
solution can be determined without difficulty by graphical methods, and
for a few regions the solution might be found by trial and error methods.
A more elegant and direct solution has been proposed by Enke [26],
who uses the analogy of an electric circuit. However it was recently
shown by Samuelson [70] that the descriptive equilibrium problem can
be cast mathematically into an optimizing problem. By this means the
highly efficient mathematical tools of linear and non-linear programming
become applicable to the solution of larger empirical problems.

3.2 TRANSFORMATION OF THE DESCRIPTIVE PROBLEM INTO AN
OPTIMIZING PROBLEM

The basic idea of this transformation is to describe the equilibrium
solution in some way by areas under the demand and supply functions,
which have to be of maximum or minimum size in equilibrium.
Samuelson started out by observing that the areas under the excess-
demand-functions minus transportation costs (‘“‘net social pay-off’) have
to be maximized. Smith [75] has shown recently that in a similar way
the equilibrium solution can be determined by minimizing the sum of
producer and consumer rents (in the sense of Marshall) under certain
restraints. We will follow the latter approach.

In figure 5 the single- and double-hatched areas describe the sum of
consumer and producer rents in the equilibrium solution. It is easily
seen that the sum of rents will be larger at all other prices and amounts
of exchange subject to the condition that price differences must not
exceed transportation costs. From figure 5 it can be further seen that
the sum of rents of the regions in the case of isolation (the single-hatched
arcas) is constant at all possible constellations of prices (whereby the
proportions of consumer and producer rents may change). Therefore
it is only necessary to minimize the additional rents (the double-hatched
areas).

G 64623—2 17
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For the case of ¢ regions and one product? and linear supply and demand
functions the spatial equilibrium problem can then be formulated ana-
lytically as follows:

Given are:
Regional demand functions
rd1 = roty — ?‘Bl rPdy, (r = 19 2; T FEPE t) (10)

with ;d; as volume of demand and ,pq, as price for good 1 in region r
and r2; and B, as parameters.

Regional supply functions

S = 0y 4+ vy rDsy r=0,4L2..,g..0 (an
with rs; as volume of supply and ,ps, as price for good 1 in region r and
r0; and ry; as parameters.
Then the spatial equilibrium model can be written:
Minimize the sum of rents R

t {7351 t Pn
R= % [(8; + gviopsi)dp — [ (ry — +81 rpay) dp (12)
z=1 aPo1 r=1 pgq

under the restraints
gPs1 — rPdy + grk1 >0 (l‘ = 15 25 e ey t) (13)
oPs1,  rPdy =0 g=1,2.. .t

where ,rk; denotes transportation costs for good 1 from region g to
region r,

After integration one can write (12) and (13) as a programming probiem
with a quadratic criterion function and linear restraints:

Minimize
! 1 2 ! 1 2 (14)
R = El(gel aPs1 + % g1 aD%1) — Zl(r‘h rPd1 — 5 rB1 rP%1)
g= re
under the restraints
— gPsy + tPay — gk, << O (g =1,2,... t) (15)
gpsl, rpdl 2 O ¥ = 1, 2, ey 4

Takayama and Judge [80] were the first ones to write the spatial equilib-
rium problem in the form of a quadratic programming model.

*The assumption of identical production and consumption regions is not
necessary. It is introduced only for convenience of analytical description.
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3.3 PROPERTIES AND SOLUTION OF THE MODEL FOR ONE PRODUCT
AND MANY REGIONS

For the solution of the quadratic programming problem described in
(14) and (15) quite a number of efficient procedures are available®. We
will sketch a method, by which the quadratic programming problem 1is
transformed into a linear programme, that can be solved by well-known
algorithms. It is based on the Kuhn-Tucker-conditions?, which reveal
at the same time some properties of the model. It can be shown ana-
lytically that the programme formulated in (14) and (15) corresponds to
our spatial equilibrium problem.

From (14) and (15) we derive the following generalized Lagrange-
function:

! t
Fip,x) = EI(991 aPs1 + % oY1 aP%1) — Zl(r% iy — 381 P%ar)
g:

-
t t
4+ I E gy (—gpsy + wpar — grky) (16)
g=1r=1

Here grz, (g = r = 1, 2, . . ., t) are the Lagrange multipliers, which can
be interpreted in our problem as amounts of interregional exchange
between regions. The variable grz, denotes one unit of the good 1,
which is transported from g to r.

According to Kuhn and Tucker the following conditions for an optimal
solution result:

SE(p,x !

PS(L) = g% + oY1 0P51 — § gry = 0 (g=12...10 (17a)
9Ps1 r=1

3F(p,x)

et =0 17b
Sqpst gDsy ( )

3F !

*-8""(2-’*32 = —(ru; — B, r_Pd1) + gy =20 (r=12,... t) (17C)
rPd1 g=1

SF(p,x)

22 ypgq = 0 17d
Srpdl rPd1 ( )

The conditions (17a) and (17¢) say that demand must not exceed supply,
and conditions (17b) and (17d) state that at positive prices (17a) and
(17¢) have to be equations, i.e., supply has to equal demand.

The other set of Kuhn-Tucker-conditions is:

SF(p,

“&S‘fmm) = —gPs1 + rPd1 — grky << 0 (g=r=12,...,0 (18a)
1

3F(p,x

o o1 = 0 (18b)

gPs1>, Py, gr¥y = 0 (19)

3 For a review see Kiinzi and Krelle [53].
4 The Kuhn-Tucker conditions are generalizations of the classical Lagrange-method,
which allows inequations in the set of restraints [52].
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Condition (18a) requires that price differences between any pair of
regions must not exceed transportation costs. From (18a) and (18b)
together the result is obtained that if there is interregional exchange
then price differences equal transportation costs, and, conversely, if
transportation costs exceed price differences, then no exchange takes
place.

In summary, the Kuhn-Tucker-conditions for the quadratic programme
(14) and (15) are the same as the conditions for exchange equilibrium
described above. The quadratic programme and the equilibrium
problem are identical.

An alternative formulation of the Kuhn-Tucker-conditions, which has
been proposed by Barankin and Dorfman {3], leads to the linear pro-
gramming version of the problem.

We define
YE(p, v _ (20)

Further we assume for economic reasons that prices > 0.

Then the conditions (17a), (17¢), (18a), and (19) can be written as follows
(after some rearrangement):

t

o+ Y1 gPs; — ;lgrxl =0 (g=12...,0 (21)
t
—roy + By Par + EI gy =0 r=12...1
-
—gPsy + tPar — grky + grv; =0 (g =12.., l‘)
gpSls Tpdls gT:L‘],) gr‘vl 2 0 F = 1, y v e ey !

It is easily seen that the further condition (18b) is fulfilled, if

[ 2

E E grfrl grUl = O (22)

g r
Equations (21) and (22) are the starting point for some of the solution
methods for quadratic programming (Frank and Wolfe [28], Barankin
and Dorfman [3], Wolfe [92]). The variables p, #, and v have to be
determined in such a way that the restraints (21) are fulfilled and that
(22) becomes zero. This will be reached by minimizing (22) under the
restraints (21):

t

g¥1 gPsr — ?lgr‘ll - _061 (g = ]5 2: s t) (23)
3
rBy rPd1 + Elgrxl = 42, (r=12,...10
g
—gPs1 + rPay + grvy = grkl (g = Fr = 1, 2, ey t)

gPs1, rPd1, grZi, grv; > 0
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This programme can be solved by the simplex method (taking into
account some additional rules) and, if a solution for the problem exists?
leads in a finite number of iterations to Z = 0.

3.4 SPATIAL EQUILIBRIUM FOR MANY REGIONS AND MANY
PRODUCTS

In the more general case of more than one good the interdependencies
between goods on the demand and supply side resulting from cross-price
elasticities have to be taken into account. But the corresponding spatial
equilibrium model can be derived in a similar way. Then the sum of
rents for all goods and regions has to be minimized under the restraint
that price differences between any pair of regions do not exceed trans-
portation costs for any good.

Given are®:
Price-demand functions for » products in ¢ regions’
d=a — de

Price-supply functions for » products in ¢ regions
s =6 + Gps

Transportation costs for each product and pair of regions are denoted
by k.

The matrices and vectors are defined as follows:
Vector of quantities demanded:

d' = (dyy - o adns wdyy o adny ol 1d)
Vector of quantities supplied:

’ . - -
S = (1S1, PR 1Sn, 2S1, Sy gsn, « v oes ,:Sl, PR tSﬂ)

Vectors of prices:

’ - - .
p’d = (119:11, « « w1Pdns 2Pd1s - - o 2Pdns -« o5 tPd1s - o s tpdn)
Ps = (1P815 e o 1Psns aPsis e - e oPsns o o o5 tPs1s - - s tpsn)
Vectors of parameters:
cx: = (10gs « « s 100 8%y o .« oy 203 .+ » o3 BOLp, - . -5 $0p)
0 = (381, . . 10 o0y o 0 Bk L s By L 92)

8 With supply and demand functions of ‘“normal” slope a solution does always
exist. For a discussion on the existence of a definite solution in the more general
case of many products, see section 3.4,

¢ From this point onwards matrix formulation seems to be more appropriate,
because proofs of existence of solutions depend on matrix analysis.

7 Matrices and vectors are denoted by Roman letters. Capital letters denote
matrices and small ones vectors. Transposed matrices and vectors are indicated by
a prime.
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Matrices of parameters:

B _ _
7‘511 . . . . rBI'n
B = B where ;B = By
G, . 7:?11 < - - - rYin
G = +G where ,G = T
tET rYni - ... rYﬁlt

Vector of transportation costs:
K' = (11ky - o 11kns 12k - o 10k o 1wk o 1tkn; o o5 ke, . o, tthkn)
Further we define:
Vector of amounts of interregional exchange:
’ - . . . .
X' = (1%, - - 11%n5 12T1, - 19Tn} - 1@y - wEH L uy, ey 1)
Vector of slack variables:
Vo= (3101 « o 11905 12050 « o 3205 « o3 1tV1s « o 1003 . .3 t2V1, ttVn)
and

—1 L1 R A
-1 L1
>t times
—1 1)
—1 1
-1 |
E = [EsE4] = ' . > 12 times
-1 | |
11
-1 1
. —1 .__I /
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In matrix E we define [ as a unit matrix of dimension nn. In other
contexts I is a unit matrix with an appropriate number of elements.

The spatial equilibrium problem can now be formulated (corresponding
to (14) and (15)) as a quadratic programming problem:

Minimize

P | (24)

I[G-Q“
OB] !pd

F ’ pé' ’ ’
= e . — : —
R = [0} cx][pd] + [p's i p'al 5
subject to the restraints

: Ps|{ _-
[Es ; Eal [Pd] =k

The Kuhn-Tucker conditions can be written (corresponding to (21)) as
follows:

[Es : Ed] {93] S Iv =k

Pa
GOl [ps [E] ) [;6}
R e P 25)
xv =20
X, V, Pa, ps = 0
Then the following linear programme results (corresponding to 23)):
Minimize
Z = [0 o x" V] [pspavx]

E,E,0-17 | % K
[G O E’s o} Pa [_e

oB E; 0 |*

subject to

(26)

il

pS; pda X, v }: 0

The solution to this programme gives the regional equilibrium prices and
interregional amounts of exchange for the different goods.

The solution method described (as well as other methods for solving
quadratic programming problems) are only applicable if the criterion
function and the restraints are convex. If this is the case, a spatial
equilibrium solution will exist. If convexity is not ensured, an equilib-
rium solution may exist, but not necessarily. But in either case, it is
not certain that quadratic programming procedures will lead to a global
optimum (and hence to the spatial equilibrium solution).

It is easily seen that the constraints (24) of our spatial equilibrium problem
will always be convex. Therefore it is only necessary to check whether
the criterion function will also be convex. This depends on the properties
of the matrices G and B. If the quadratic form

v o1 MGIOY | ps
[p’s i plal Q[O?ﬁ] [pd}
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is positive-semidefinite, the criterion function will be convex too (see
Frank and Wolfe [28], p. 96). 1In the one-good model of section 3.3,
with “normal” sloped supply and demand functions, this is always the
case, because elements (By; and ,vs; appear in matrices G and B on the
diagonals only and will be equal to or greater than zero. In the case of
many goods, matrix coeflicients depend on the relation between the
goods with respect to complementarity and substitution, and they may
be greater than or less than zero. In this case the quadratic form can
be positive-semidefinite or indefinite. This may be tested by con-
struction of the eigenvalue of the matrix (Allen, [2], p. 477).

3.5 SPECIAL CASES AND ITERATIVE PROCEDURES

In the special case of completely price-inelastic demand and supply
functions (fixed amounts of demand and supply for the regions) inter-
dependencies do not exist. The spatial equilibrium problem reduces
to the well-known transportation problem (Hitchcock [37], Koopmans
and Reiter [49], Orden [66], von Boventer [9]). It can be solved by
minimizing the sum of transportation costs under the restraints that
regional supply is not exceeded and regional demand is fulfilled, i.c.:

Minimize

subject to

where g2 = transport activity for good i from region g to region r;
grki = transportation costs for good i from region g to region r

(with »k; = 0):

gzi = supply of good i in region g;

rd; = demand for good i in region r.
It is easily seen® from the conditions for exchange equilibrium derived
above that the resulting solution of the minimization problem corresponds
to the solution of the spatial equilibrium problem under perfect compe-
tition. The primal solution shows the equilibrium amounts of inter-
regional exchange and the dual solution shows the corresponding regional
price differences.

Transportation models can also be used in some iterative procedures
to solve the more general spatial equilibrium problem with price-elastic
demand and/or supply functions. They are based on the solution of a
sequence of transportation models determined by certain rules that do
ensure a step-by-step approach to the spatial equilibrium solution (Fox
[27], Judge and Wallace [137], Henrichsmeyer [36]). The main difficulty
in establishing such rules is to deal with the problem of self-sufficient
regions. The advantage of iterative procedures is that their demand for
computer-capacity is small in comparison to quadratic programming.

% Or shown formally; see von Boéventer [9].
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3.6 EMPIRICAL APPLICATION

Regional demand and supply functions have to be known for the empirical
application of this type of spatial equilibrium model, except in special
cases where fixed amounts of supply and demand are assumed. We
shall not discuss here the great difficulties of estimating these functions
statistically. But in summary it can be stated that, despite a large
amount of work at different methodological levels, our knowledge of
agricultural supply response is very limited. Therefore empirical
application has been limited to some narrow problems, especially short-
run analysis and experimental comparative studies.

(a) In the short-run it can be assumed for many agricultural products
that supply is largely determined by exogenous factors. When agricul-
tural production processes are already initiated, there is usually little
opportunity for changing production and hence supply. The outcome
depends mainly on weather. Therefore a special version of the spatial
equilibrium model described above, in which the expected amounts of
regional supply are estimated exogenously, is often applied to short-run
market analysis (Fox [111], Fox and Taeuber [112], Judge [136], Judge
and Wallace [137]). The aim of these studies is to predict amounts of
interregional exchange and price-structure in response to short-run
variations in supply.

(b) Another area of application has been research on the competitive
position of different regions in relation to long-run regional specialization
of agricultural production, effects of changes in foreign trade, etc. This
has been done by analysing the sensitivity of interregional exchange and
regional price structures for alternative hypothetical assumptions on the
supply and demand side (King and Henry {147], Henry and Bishop
[126], Stemberger [161]).

(¢) Other models of this kind have been used to evaluate the efficiency
of actual transport organization. For this purpose actual and optimal
exchange structures have been compared ex post (Giilicher [116]).
Differences show the gains from reallocation of transportation facilities
and give some insights into the relation between actual and optimal
behaviour of traders.

4 SPATIAL EQUILIBRIUM ON THE BASIS OF PRODUCTION
MODELS FOR LOCATION UNITS

The spatial equilibrium problem on the basis of production models can
be described as follows. The whole area considered is subdivided into
several demand and production regions, which are represented by single
points in space. The same assumptions with respect to demand and
transportation are introduced as in the previous section, viz. demand is
represented by price-demand functions, the regions are separated by
transportation costs which are given and independent of volume trans-
ported, while transportation costs within regions are neglected. But
the production side now is represented by production models for groups
of farms. In each production region one or more agricultural location
units are distinguished consisting of a group of more or less homogeneous
farms which are assumed to act like single decision-making units. They
are characterized by:
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{a) production functions for agricultural products;

(b) resources of land, labour, and capital;

(¢) supply functions for industrially-produced factors of production; and
(d) economic behaviour of producers.

Production functions are assumed to be linear and homogeneous for each
group of farms and the technology is described by a set of linear pro-
duction processes. But this does not exclude scale-effects, if farms move
from one group to another, e.g., when they rent or buy land.

Factors of production may be exchanged between location units as well
as between regions. It is useful to distinguish the following four groups:

(a) factors of production which are fixed for location units (buildings);

(b) factors of production which are regionally fixed but exchangeable
between location units within a region (land);

{(c) factors of production which are fixed for the whole economy, but
exchangeable between regions and location units (skilled agricultural
workers); and

(d) variable factors of production which are assumed to be fixed neither
for location units, nor for regions, nor for the economy as a whole
(industrially-produced inputs in advanced economies).

It is not possible to classify different agricultural production factors in
these groups generally; rather it depends on the technical and economic
status of a country and on the objective of research (length of the time-
horizon considered).

4.1 CONDITIONS FOR SPATIAL EQUILIBRIUM

The special and partly simplifying assumptions of the agricultural model
described above make it possible to neglect many of the intricate problems
resulting from economies of scale and aggregation effects, which have
been analysed by Isard [41], Lefeber [54], von Boventer [11], and Kuenne
[51], considering the conditions of spatial equilibrium under fairly general
assumptions. The model becomes operational under the assumptions
outlined and the conditions for spatial equilibrium can be easily stated:

{a) Conditions for production equilibrium of location units naturally
correspond to the conditions known from microeconomic linear pro-
duction theory. The monetary marginal product (at regional prices) of a
production process must not exceed marginal costs (at regional prices).
Marginal product is equal to marginal cost if a process is actually used
in equilibrium, it is smaller than marginal cost if a process is not used.

(b) The conditions for exchange equilibrium of goods have already been
described in section 3.1.
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(¢) The conditions for equilibrium of factor use depend on the assumptions
on factor mobility. If factor supplies are assumed to be given for the
location units in a short-run analysis, they are rewarded at their marginal
product at that location unit. Then factor earnings will usually differ
from location to location. Specialization of production between
locations will tend to equalize rewards, but a complete equalization will
be reached only under very special conditions (see Samuelson [199],
p. 163). Therefore remaining differences of factor rewards will lead to
an exchange of factor services between location units and to migration of
production factors, if this is allowed by assumptions under a more
long-run analysis.

Factor movements will be influenced by many sociological, psychological
and institutional factors. But if non-economic influences are excluded,
equilibrium conditions for factor migration (including the commuting
of labour) can be stated in a way formally similar to conditions for
exchange equilibrium for a good; i.e., differences in remuneration for
factor services (differences in discounted values for all expected real
factor earnings) must be not larger than costs for migration of factors.
They must be equal if there actuallyis migration of factors in equilibrium.

4.2 LINEAR INTERREGIONAL PROGRAMMING MODELS

The mathematical structure of the models for the determination of the
spatial equilibrium solution depends on the assumptions concerning:

(a) the shape of regional demand functions for agricultural products;

(b) the regional supply functions for production factors and industrial
inputs in agriculture; and

(¢) the mobility of resources.

First we introduce the simplifying assumptions that the demand and
supply functions mentioned above are either perfectly clastic or perfectly
inelastic. Specifically we assume:

(a) the regional demands for agricultural products are given;

(b) the regional resources of labour, the regional capacities of buildings,
etc., are given; and

(c¢) the regional prices of industrial inputs are known.

Then the spatial equilibrium problem can be formulated as a linear pro-
gramming model, the mathematical structure of which has been described
elsewhere by Marschak and Beckmann [6], Isard [43], Stevens [77], and
others, and which has been applied to agricultural problems by Henderson
[34], Heady [118], Birowo and Renborg [97].

In order to make the specific structure of these interregional programming
models evident, the problem will first be formulated for an example of
three regions in which two location units are distinguished (see Table 1).
The model is described by matrices and vectors. Lower indices in front
of vectors and matrices denote the number of the region, upper indices
denote the number of the location unit.
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Let

2 AP = vectors of production activities of location units;

12X, 13%5 + + . 32X = vectors of interregional exchange activities;

C, e, .., e = vectors of variable costs of production;

12K, 13K, . . L, g2k = vectors of transportation costs;

‘Fg, iFy, . . ., :Fy = matrices of input coefficients of production
factors fixed for location units;

Fr, iFr, . . ., iFr = matrices of input coefficients of production
factors fixed for regions;:

‘Fp, iFa, . . ., JF, = matrices of input coeflicients of production
factors fixed for regions;

AVAL L L LA = matrices of net output coefficients (output-
coefficient minus input-coefficient);

by, ibg, . . L, by = vectors of limitations for production factors
fixed for location units;

1bry oy, sby = vectors of limitations for factors fixed for
regions;

by = vector of limitations for factors fixed for the
whole economy; and

N7 7 R | = vectors of regional demands.

Activities of the interregional programming model are the production
processes of the location units and the interregional exchange activities
for agricultural products. (For simplicity exchange activities for pro-
duction factors are not introduced.?)

The activities are valued in the criterion function by variable costs of
production or transportation respectively. The objective of the model is
to minimize total production and transportation costs under the restraints
of regional demand fulfillment and of factor limitations.

The solution to the model yields the optimal spatial organization of
agricultural production for a given set of natural, technical, and economic
data, which is equivalent to static regional equilibrium assuming perfect
competition and rational behaviour.10

Specifically, one obtains in the primal solution the levels of production
processes for location units (and hence regional production and factor
use) and the quantities of interregionally transported products. In the
dual solution one obtains (for the demand restraints of the original
problem) the marginal costs of production and transportation, which
under perfect competition are equal to equilibrium prices of products.
For the factor restraints one obtains marginal values which can be
interpreted as equilibrium prices for factor services or rents respectively.

s Exchange of intermediate products between location units and regions is allowed
for in demand inequations. Ifa good is used exclusively as an intermediate product,
the value of final demand in the restraint vector becomes zero.

10 This will be shown formally under more general assumptions in the following
section,
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4.3 A MORE GENERAL STATIC EQUILIBRIUM MODEL

So far the interregional equilibrium model has been derived under the
simplifying assumption that the exogenously given supply and demand
functions are either perfectly inelastic or perfectly elastic. Now a more
general model with price elastic demand functions will be described.
(In a similar manner price-elastic functions for factor supply can be
introduced, but this will not be done here, to simplify presentation).

One way to solve a problem of this kind is to apply an iterative procedure,
which has been described in detail elsewhere by one of the present authors
(Henrichsmeyer [36]). Another way is to follow Samuelson’s proposal of
maximizing some value of net social pay-off and solving the problem
directly by quadratic programming (Takayama and Judge [81]). In the
following analysis the direct quadratic programming solution will be
described. To simplify presentation no location units are distinguished
within regions and no factors fixed at the national level are assumed.
The assumptions on the production side do correspond to the assumptions
of the linear model of the previous section.

We define the following notation:

Variables:
Let ,p: = price of good i in region r;
P’ = (1P1s 1P2s « « © 1Pa5 2P1s - « o> 2PnS - - 2 tP1s - - . tPR):
rYx = production process k in region r;
Vo= (V1 Y2 - - o 1Y25 oY1 e - e 0¥2) - e 3 Y1 e - tY2)S
«cx = variable costs of process k in region r;
€ = (4€C1, 1Cas + + =5 1C23 2Cqs « + w5 €23 - . .3 (Cpa . . . C2);
+bp = capacity of factor 4 in region r;
[oHE  o FURY o PR PR o SYRNIRUURIN , PR Y o SR o 00
rqQn = price of factor £ in region r;
4 = (9 192+ - 1Gm35 2o - - 5 2Gms - - 5 o - - iGm).

Transport activities g-X; and transportation costs gk; are as already
defined in section 3.3;

u, v, and w, are vectors of slack variables.
Coefficients:

Let A = matrix of net output coefficients ,aix in region r:

A
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.F = matrix of input coefficients for factor services ¢fzx in region r:
1F

+F
Also define matrix E as follows:
t — 1 times
" _
—I —-T1... —1 I R |
I -1 —-I... -1 I
E 1 t— 1
o times
. 1
| I 1 -I1-1...1

Demand functions are as already defined in section 3.3.

We define net social pay-off as the sum of the algebraic areas under the
price-demand curves minus the sum of factor earnings. Then maxi-
mization of net social pay-off under the marginal costs—marginal revenue
and regional price-difference—transportation costs conditions leads to
the spatial equilibrium solution''.

Maximize
t n P n ,t m
Z =%XX [ (1'0%' — rBii ypi — % % rBis rpj) drpi — X X by rqn
roi 0 J¥i r h (27)
t n " rm
= X - (roi rpi — 3rBii o p% — % _Z. rBij 107 rpi) — = Ehrbh rdh
roi J*i r
subject to
Z m r=1,2,.. .1t
Zoptig ppi — = — > 4 ;
vk opi = X ofurdn = 1€k < 0 (k =1,2,... z) (28)
“Zr=12 ...,
—yPi + i — grki < 0 (g i=1.2 . n)

rDis rqn = 0

This quadratic maximization problem can be converted into a linear
programme and solved by an extended simplex algorithm as has been
shown in section 3.3. The structure of the linear programme can be
derived easily from the Kuhn-Tucker conditions for the constraints in
(28) and it can also be shown that the maximization problem and the
spatial equilibrium problem are equivalent.

11 That this is true can be shown by the fact that the Kuhn-Tucker conditions of
this model (derived below) correspond to the complete set of spatial equilibrium
conditions.
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From the Lagrange function for equation (27)

t n n t m
Z = XX (oippi — FoBup® — % ZoPigepyopi) — X Zebnogn —

r i J*i r h (29)
!z n m {1 n
ZEye (X rcig opi — Zofnreqn —rck) T T I i (—gpi + 1Pi grki)
r k i h gErrig i

the following Kuhn-Tucker conditions for optimal solution result:

n
— =yl — TB“’ rp’b - % % TB"] Tp] -
+i

& i .
r.p ! z 1 t
‘j—;‘r“i}'a rVE — igrﬂ% + Egrﬁfi =<0 (30a)
g*r g4r
sz r=1,2,...,1 (30b)
o =0 (i=1,2,...,n)

Demand plus export of a product must in every region be equal to
production plus imports (if we exclude non-positive prices for goods).

8Z z r=1,2... 1t (31a)
&-—(];__rbh+§rfhkryk£0 (/1:1,2,,.,,"1)
37

. =0 31b
5r an rdn ( )

In every region the demand for factor services must not exceed factor
supply and must be equal to it at positive factor-earnings.

37 n m r=12...1 (32a)
—_—— E i rPi — Z .
5 Vi irakrp P rfhk rqn rex << 0 (k= 1,2, .., Z)
37
. =0 32b
aryk fy}C ( )

Marginal revenue must not exceed marginal costs and if the process is
actually used, these must be equal.

57 rxg=1,
Sgr-TL = —gpPi + Pi — grki <0 ( P =1

87
Sgrﬂ’iz‘
It is evident that these conditions for solution of the maximization
problem correspond to the conditions for solution of the equilibrium
problem.

2.t (33a)
, 2, ., n)
- grdi = 0 (33b)

The transformation of the problem into a linear programme is based on
the following reasoning. We define slack variables for the constraints
marked “a” above and express the *“4” conditions by these slack variables.
For example we define for condition (31a) the slack variable

37

- = —rln

SrQh

Hence we obtain

—ufn + kzrfnk Ve + rup = 0 (31a)
vlnrqn = 0 (31b)
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Replacing in this way every pair of conditions and remembering that
we excluded non-positive prices for goods (which indicates a zero level
for the slack variables in (30)), we get thef ollowing set of conditions
instead of the original “a” conditions (changing to matrix notation for

simplicity). o
B O A E O O 077p a
0 O F O 1 o of 9  |b y
A-F 0 0 0o 1 ol v | |c 34)
E O O O O O 1] x| k
u
v
LW

The “b” conditions can be written as follows:

P a vy X} o uw v wf (35)
Now we can formulate a linear programme in which (35) is minimized
subject to the restraints of (34); 1.e.,

Minimize
Z=[0 v v w q ¥y x] [p qy x u v w
subject to L
B O A E O O O p o
O O F O I O 0] 41 = |»b 36)
A -F O O O 1 O y c
E 0O O O 0 0O 1] |x k.
u
v

1t is easily seen that the conditions (34) and (35) are satisfied if in the
solution of the linear programme Z = 0. By this means the spatial
equilibrium sclution is reached.

4.4 EMPIRICAL APPLICATION

In recent years a large number of empirical investigations based on the
concept of regional production models have been carried out, of which
only a few typical examples can be cited in this survey’®. We will not
cite the many applications for single or small numbers of regions. At
the national level two groups of investigations can be distinguished, viz.,
models for single or few branches of production, and models which cover
the main branches of agricultural production simultaneously.

At the beginning of this research about ten years ago work started out
with partial models for single branches of production. In one of the
first studies Heady and Egbert (119) analysed the competitive position
of regional grain production in the United States. In a similar way the
locational advantages of most branches of production have been analysed
in the United States (see, e.g., Schrader and King [157], Snodgrass and
French [159], Buchholz and Judge [99]). This research centred around
the following questions:

1z A more complete list of literature is given in the reference list on pages 60-70.
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(a) the efficiency of the actual regional distribution of production in
relation to optimal allocation:

(b) the quantification of the competitive advantage of production regions
under different sets of assumptions;

(c) the analysis of regional adjustments of agricultural production under
the influence of technical progress and development of demand; and

(d) the analysis of the effects of different measures of agricultural policy.

But the application of partial models for single branches of agricultural
production is limited. They can be applied in a reasonable way only in
special cases, when the interdependences with other branches of pro-
duction are of no great importance. This will tend to be the case in
countries and regions with a relatively high degree of specialization (hence
the many studies in the United States) and for branches of production
which are relatively independent of soil production, such as hogs and
poultry.

Therefore the construction of more general spatial equilibrium models
has been attempted, in which the interdependences between the main
branches of agricultural production are taken into account simultaneously.
A research group at Ames in Iowa under the direction of Heady is hoping
to integrate the different partial studies into a more comprehensive model
of agricultural production [118], [124]. In Sweden, Renborg, Birowo
and Folkesson have established different interregional competition
models which have been used for policy purposes [97]). Bassjuk has
used a regional model for short-run planning and another one for long-
term perspective planning in the Soviet Union [95]. A French team
has applied a regional programming model on the basis of calculations
at the farm level, which will be used for medium-term planning [150],
{163]. Finally, the present authors have constructed a spatial equilibrium
model in Hohenheim, which starts out from a consistent balancing model
of the input-output type for a base year and in which elements of recursive
programming are introduced.

5 DYNAMIC APPROACHES TO INTERREGIONAL COMPE-
TITION AND PLANNING

In the static models so far described equilibrium solutions have been
determined under the assumptions that producers, traders, etc., have
perfect knowledge of technical possibilities and market conditions and
act perfectly rationally. The results describe the optimal structure of
production and transportation which might be interpreted under certain
conditions as a system of quantitative goals for economic policy, but
their use for explanation of actual changes and hence for forecasting and
analysing the actual effects of agricultural policy measures is limited.
The results show at best the probable direction of change of variables.
Further, the adjustments to be explained are not unique adjustments to a
certain set of data, but successive adjustments to constantly changing
data, whereby the decisions met in a period ¢ lead to results which are
again data for decisions in the period ¢t + 1.
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There have been several proposals to overcome these limitations by the
introduction of some kinds of behaviour functions, especially with
tespect to speed of production change, saving and investment behaviour,
and price expectations’®. The combination of these elements with
programming models leads to a recursive procedure, which has been
called ““recursive programming” (Day [20]).

5.1 INTRODUCTION OF FLEXIBILITY CONSTRAINTS AND SAVING
FUNCTIONS

Flexibility constraints were first introduced intce linear programming
models for the analysis of changes in supply of agricultural products in
response to changes in prices. (Henderson [34], Day [20].) The concept
is based on the empirical knowledge that, in general, regional production
structure changes in the direction of the optimal organization, but that
the extent and speed of adjustment depend on several factors such as
risk, traditional behaviour of producers, financial limitations etc. By
introducing flexibility constraints it is assumed that the compound
influence of these factors (all factors which are not considered explicitly)
can be taken into account by limiting the maximal change of production
and investment variables from one time period to the next. The flexibility
constraints can be estimated from time-series data on certain model
variables. In the simplest case one can assume, as Henderson and Day
have done in their empirical work, that the average yearly change of
variables in successive time periods of increasing or decreasing production
(investment) is an estimate for the expected maximal change in the
future. Then restraints for variable x can be written:

() << Bxr (t — 1) (g > 1) and
o) = ax (t — 1) (o < 1),

where « and 8 are the so-called ““flexibility-coefficients” which determine
maximal increase or decrease from period ¢ — | to period f. They are
specified for every product (investment process) and region.

Thus the feasible area for a period ¢ in which the production and invest-
ment variables may vary is limited by flexibility constraints as well as
by physical capacity constraints. The results of the spatial equilibrium
model for period ¢ are then used as data for the model in period ¢ + 1.
By this recursive connection and solution of the model for successive
time periods, time paths of variables can be computed.

The concept has been widened by Heidhues [34], who explicitly con-
sidered the financial sphere of farm enterprises. He introduced liquidity
restraints for each period ¢ which are determined by the income of the
period ¢ — 1, saving behaviour of farm households, and the conditions
for bank credit and investment outside of agriculture in period .

'3 The corresponding problem of optimal resource allocation over time has received
little attention in the literature so far. Injtial research has been done, but this is stiil
in the sphere of methodological discussion.
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The time paths of variables computed in recursive models are determined
to a large extent by the numerical coeflicients for the flexibility con-
straints. Thus the value of the concept for empirical research depends
on the quality of the estimated values of these coefficients.

Let us consider now the formulation of more general flexibility constraints.
Until now very little has been known about these relationships. The
first empirical estimates of Henderson and Day were based on the simple
assumptions explained above. As first starting peints for empirical
research these investigations have been valuable, but one might envisage
much more general behaviour functions in which maximal increase and

Aarvranca UG | R, SR

decrease in production, investment, migration, etc., in a certain period
are related to the main economic variables responsible for their rate of
change. This was pointed out very clearly by Day [20, p. 119 f] who
put the above recursive programming concept into a much broader
theoretical framework. As specific steps for further empirical research
it might be useful to test the following hypotheses:

{a) On the basis of theoretical considerations, one would expect that the
value of a flexibility coefficient for a time period ¢ is not independent of
the marginal value for the corresponding restraint in time period ¢z — 1
(which indicates the profitability of changing the constrained variable).

Figure 6

percentage
change in
variable

in period t

marginal value product for
constraint in period ta]
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Instead one would expect some meaningful relationship to exist between
the two variables. This relationship can be analysed by solution of
interregional programming models for several successive time periods,
in which activities are bounded by restraints exactly to the actual level of
the time period. Then one can contrast the resulting marginal values
for the restraints and actual percentage change in the following period,
as is schematically done in figure 6. Preliminary empirical results support
the hypothesis of a meaningful relationship between these two variables,
but further empirical research is needed.

(b} There might exist a similar relationship between price-expectations

(nr fhn rqhn nf pvppnfpﬂ to current prlppc\ Fnr a nroduct and the correg-

JALEL VL AN+ S S LU RV § {UR L 0S ¥ S Oh )

ponding flexibility coefficient. This problem of price expectations will
be taken up in a more general framework in section 5.2.

{c¢) If certain variables expand or contract over time in the above recursive
programming concept, they will do so in certain cases on a geometric
path until final physical restraints (capacity of buildings, crop rotation,
etc.) are reached. This tends to be the case especially when a crop with
relatively small acreage substitutes for a number of other crops. Then
absolute changes will be the largest just before the ultimate restraints
are reached. which will generally be an asymptotic approach. This
might be empirically analysed by comparison of static normative equil-
ibrium results and the actual development of variables over time and
estimation of corresponding behaviour functions.

In summary, much empirical work will be necessary before we can judge
and exhaust the possibilities of recursive programming in interregional
models of agricultural production.

5.2 COMBINATION OF INTERREGIONAL EQUILIBRIUM WITH PRICE
EXPECTATION MODELS

In the models so far described it has been assumed that price expectations
of producers do coincide with equilibrium prices of the interregional
models. Investigations into the relationships between price and supply
response have shown that it is often reasonable to base the analysis on
price expectations instead of on existing market prices (Nerlove [63],
Weinschenck [90]).

It is true that in recursive programming models differences between
expected and equilibrium prices have been indirectly accounted for
together with other influences in the flexibility constraints, but they have
not been introduced explicitly. Strictly speaking the prices determined
in recursive models are equilibrium prices for given behavioural con-
straints, resulting from the uncertainty of price expectations, amongst
other things.

For explicit introduction of prices and price-expectations it is necessary
to distinguish between the interregional equilibrium of production at
given price expectations and short-run market equilibrium at given
production. The simultaneous consideration of production and mar-
keting in the models discussed so far has to be given up and replaced
by a sequence of production and marketing models. A procedure of
this kind was first described by Day [22] and is graphed schematically
in figure 7.
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Computation starts in period ¢ with the determination of regional pro-
duction, given the price-expectations prevailing at this period. Produc-
tion leads to supply of agricultural products. From regional supply of
agricultural products, regional price demand functions and interregional
transportation costs, short-run market equilibrium, and especially
short-run equilibrium prices are computed. Short-run equilibrium
prices are considered to be identical with prices actually obtained and
they form the basis for the estimation of price expectations. Then
corresponding computations for period ¢+ + | can start.

The method of dynamic coupling has to be considered mainly as a com-
plement to the models described in the previous sections for the analysis
of short-run problems, in which supply fluctuations of the cobweb type
are to be explained.

6 THE LOCATION OF AGRICULTURAL PROCESSING
INDUSTRY

In the spatial equilibrium models described so far, demand has been
represented by regional demand functions for agricultural products.
This demand consists of the demand of final consumers as well as that of
processing industries and traders. In highly industrialized countries
only a small part of agricultural production is consumed directly by
consumers, by far the largest part becomes processed by various pro-
cessing industries. So the question of optimal location and, under
conditions of economies of scale, the question of optimal size of these
plants arises.

The problems of the regional organization of agricultural production
and of the location of processing industries are mutually dependent. On
the one hand the optimal location and size of a processing plant are
influenced by the regional distribution of agricultural production because
assembling costs are a function of the density of supply of agricultural
products. On the other hand organization of agricultural production
is influenced by the location of processing industries, because the spatial
price structure is determined by it. Thus in a more general concept the
problems of spatial organization of agriculture, location of processing
industries and transportation of raw materials and final goods can be
seen as one problem, the parts of which must be solved simultaneously.

The problem can be characterized generally as follows. Given are:

(a) the regional distribution of final demand of consumers, either by
assumption of a continuous distribution function or by discrete points in
space, at which price demand functions are given;

(b) the regional distribution of agricultural supply or of production
functions and production factors which determine agricultural supply.
On the production side, too, there might be assumed either a continuous
distribution as in the von Thiinen model, or discrete production points,
as assumed in the previous sections:
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(¢) the technology of the processing industries, which is characterized in
most cases by considerable advantages of mass production. Processing
costs are assumed to be a given function of production: and

(d) the transportation costs per unit for raw products and final goods,
which are assumed to be independent of volume transported as in the
models of the previous sections.

Formally this more general problem could be written in a similar way to
the spatial equilibrium models for agricultural production discussed in
section 5. Only the technological matrices for processing industries
and some additional transportation activities would have to be introduced.
But two problems arise. Firstly, economies of scale in the processing
industries make it necessary to introduce non-linear cost (production)
functions and to consider a network of potential sites of firms in discrete
models. This is no difficulty in principle, at least if one approximates
discontinuous functions by linear segments. But in actual computation
simultaneous formulation of the whole problem leads to rather large
problems. Therefore quite a number of iterative procedures have been
proposed, some of which will be described below.

Secondly, the existence of the economies of scale makes it necessary to
reconsider the conditions of regional price differentiation according to
transportation costs which is based on the assumption of perfect compe-
tition. If economies of scale lead to large sizes of processing firms, at
which entrepreneurs do not take prices as given but are confronted with
a price demand function, the problem of monopolistic behaviour and
monopolistic price differentiation arises.

Therefore it is useful to distinguish two types of spatial equilibrium
models:

(a) models in which the optimal (cost minimizing) structure of production
and distribution is determined from the viewpoint of a central planning
board; and

(b) models which are based on decentralized decision-making and
simulate the market mechanism. In these models it is assumed that
single firms make their decisions, without knowledge of optimal location,
on the basis of the given economic data at the time.

6.1 MODELS OF CENTRALIZED LOCATION PLANNING

The models which minimize transportation and processing costs differ
with respect to the assumption as to the continuity or discontinuity of
space and the number of firms to be taken into account.

With respect to the continuity or discontinuity of space, one can dis-
tinguish:

(a) models, in which the continuous approach is used to determine the
optimal market area of firms and, indirectly, the location of firms after
arbitrary choice of the location of one single firm:
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() models in which the continuous and the discrete approaches are
combined by assuming a finite number of given markets for supply and
demand but an infinite number of possible locations;

{c) models using the discrete approach by assuming a finite number of
markets as well as a finite number of possible locations.

(a) The continuous approach

The simplest case is that where one can assume that it is possible to
restrict consideration on one side of the market and to find a function in
11

X . .
which production volume, market area and transportatio:

related to each other (Cobia and Babb [170], Olson [195]. Williamson
[208]).

In this case we have
Ao = -5 7° (37)

where

V' = production volume:

A = average costs of production:
P. = total production costs; and
T, = total transportation costs.

Substituting the cost function for P, and the function of transportation
costs for T¢ in equation (37), the volume with lowest average costs can
be determined by taking the first derivative of (37), setting it to zero, and
solving for V. The optimum number of firms is computed by dividing
the total market output by ¥. Since only the distance between firms is
determined, one has to select the location of one firm arbitrarily in order
to determine the location of all other firms.

Practical application of this model-type is restricted by difficulties in the
determination of a transportation function for a given (continuous) area
and by the neglect of one side of the market (either supply for a raw
material or selling of final products).

The restriction of consideration to one side of the market is removed in
the following model.

(b) Combination of discrete and continuous approaches
Given are:
(1) a finite number of markets;

(i) the possibility of locating the processing plants everywhere in the
area, i.e., an infinite number of potential locations;

(iii) the cost functions of the processing firms, which are assumed to be
identical over the whole area under consideration;

(1v) the transportation costs which are assumed to be a function of the
distance from the market, measured as the crow flies.
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It is required to determine the number and location of firms which
minimizes processing and transportation costs. Geometrical solutions for
problems of this kind were first developed by Launhardt [190] and
Weber [207] who restricted consideration to three markets. A more
general iterative method developed by Kuhn and Kuenne [189] will be
described.

Let us first restrict consideration to one firm and assume the supply of
raw materials and demand for final products to be given, and expressed
n the same quantity units.

The weights w; of the different market points i which are spatially deter-
mined by their co-ordinates (zi/y:), are calculated by multiplying the
total quantity m; of each market point by the transportation costs ri,

Le.,
Wi = mi.ri (38)
It is required to determine the co-ordinates (xp/yp) of the location P, at
which is minimized the function @ of the total transportation costs:
O = 3 (W'i . Spi) (39)
i

The distances sp; between the market points i(zi/y:) and the location
P (zp/yp) are: o
spi = Ve — @) + (yi — yp)? (40)
The minimum is obtained where:
8P Wi N s Wi A~
-s—wp.._. ZS;,(asm—ﬁp)NOand% -—Zspi(yz yp)NO (41)

i i

The problem can be solved by an iterative procedure in several steps.

FIRST STEP:

A first approximation starts by calculating the centre of gravity of the
weights wy.!

S (wi . 21) % (wi. i)
i 1
wpt =g i and yp' = S (42)

i i
SECOND STEP:
By reformulating equation (41) we obtain:

2 &) 2>, () i

tp= = -andyp = — ‘-

S_‘ Wi j "Wy
:’- . Spi - Spi
? I
As the spi are unknown the z,' and y,! are used for a first estimation of
the spi.

spit = Vi — 20?2 + ( yi — vp')? (44)
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If ;11 in equation (43) is replaced by
yil!

1%

1= "0 45
Wi S;m‘l ( )
a second estimation of the co-ordinates of P can be obtained:
2 w.l LT E M).l LV
. i( ¢ 1) d o i ( i y’b) (46)
T o Andgpt = SR

! I
FOLLOWING STEPS:

The new estimated values of P(zp2/yp?) are used, as described in the
second step, for evaluating 5,2 and w2, and a further estimation (zp3/yp®)
is calculated. This procedure is reiterated and approaches an optimal
solution after only a few iterations.

The optimal location is found if 2,71 — x,» and yp'l — yu" are not
significantly different from zero. In this case the condition expressed
in equation (41)

ZH(:{'; — ) mOandZﬂ i —y)~0
Spi Spi

i H

must be satisfied.

Let us assume separated markets for raw materials and final products
and assume linear supply and demand functions in order to generalize
the problem.

We assume i markets (i = 1. . .I) for raw materials with the supply
function

pi=ai.m + b;
and k markets (k = 1. ..K) for final products with the demand
function
Pr = —ag.mg + by

In order to solve the problem, it is necessary to assume a certain behaviour
of the firm with regard to pricing. In the following the firm is supposed
to equalize costs and returns and to differentiate prices in proportion to
transportation costs.

For a first estimation of P(zp/yp) it is necessary to assume a market price,
i.e., volumes of the markets.” A first estimate of P (xpl/yp!) can then be
obtained as described in step one above. The s,;" and spit are calculated,
but different freight rates for raw materials #; and final goods ry must be
considered. For this reason, the sp and spz! are replaced in the
following steps by 7! and ¢!, the relevant transportation costs per unit:

lpil = Spil . Fi and tp]g;l = Sy}cl . FE (47)

Then the supply and demand functions at the location of the processing
plant are given by:

pi* = ai.mi + bi + tyil and pp* = —ap . mp + by— tpi? (48)
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Therefore the aggregate shifted supply and demand functions are as
shown in (49a) and (49b) respectively.

— . .1
e 30w
ai
* _ 1 i
pA - 7—\71 + Wﬁ\i (493)
ai ai
Sno 3
Ly Ak
I
Pyt = T I (49b)
ag ar
k k
The average processing costs PC are:
PC = £ + e (50)
m

where FC and ve indicate fixed and variable costs respectively.
At the point of intersection of the total cost function and the returns
function, the following must be satisfied:
I K
Smi=Xmp =m (51)
i==] k=1
From equations (49), (50), and (51), the following condition for the
equilibrium of costs and returns is derived:

b,k - tpict bi + tpid
ar di

Mmooy k=P ig + ve (52)

FAD AR SN
dy <y Ak i L i

k k i i
Transportation costs enter equation (52) only implicitly because they are
taken into account in the definition of the supply and demand functions
in (48). From equation (52) together with equations (49) and (48) the
volume of each market can be computed. These quantities are now

used for a further estimation of the co-ordinates of the location P as
already described in step two.

So far the consideration has been restricted to the location of one firm.
Extension to simultaneous consideration of the optimal number and size
of all firms in a given area requires an extension of the iteration process.

Starting with an estimated number of firms and an estimated or given
location pattern, the first step is to determine the optimal market area
for each firm. Given the market areas, the optimal location of each
firm must be re-examined by the alogrithm mentioned above. For the
new pattern of allocation the market areas must be corrected towards the
optimal pattern. This procedure must be repeated until no further
modification occurs for the given number of plants. This procedure
must be followed for each relevant number of plants, from which the
optimal solution is selected.
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To conclude, under simplifying assumptions concerning the transportation
costs and identical processing costs, the algorithm described above
shows great efficiency in solving the problem of the optimal location of a
single plant, since the relatively small number of simple calculations
can be done even without an electronic computer. Its application to
macro-economic problems of allocation depends on the possibility of
developing an efficient way of determining the optimal demarcation of
the market areas of the firms.

(c) The discrete approach

If one assumes a finite number of points in space for supply and demand
markets as well as for potential sites of processing plants, the homo-
geneity assumptions with respect to the distribution of raw materials and
final goods, the transportation costs and the processing costs, can be
relaxed:

(1) at the markets any quantities of supply and demand or linear price-
elastic functions respectively can exist;

(11) the processing costs may differ from location to location, but it is
assumed that the total costs are a linear function of the production
volume and have a positive intersection with the ordinate (i.e., the fixed
charges);

(iii) the transportation costs between every region and plant are calculated
according to the actual transportation structure.

Two principal ways for solving problems of this type can be distinguished:
the method of complete enumeration and some more systematic algo-
rithms.

COMPLETE ENUMERATION

The simplest case is where the quantities of supply or demand are given
and the optimal number, size and locations of the plants are to be
determined either with regard to the supply or the demand exclusively,
as described by Stollsteimer [204] and Hoch [178]. The problem has
the following general algebraic formulation:

Minimize

TC:Z'UCj.mj|L_]+;;tij.mij’[/]'i'z}ﬂllq (53)

J L J
subject to
;‘Fnij = ny (54)

where
TC = total processing and assembly costs; .
ve; = variable processing costs per unit in plant ; located at L;;
m; = quantity of raw material processed at plant j;
miy; = quantity of raw material shipped from origin i to plant j;
tiy = costs of shipping a unit of material from origin i to plant j;
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L3 = one locational pattern for J plants among the (I;) possible

combinations of locations for J plants given L possibie locations;

Iy = fixed charge of establishing and maintaining plant j, derived
from the long-run cost function.

From (I}) possible location patterns it is required to find Lj for J plants

for which the total processing and transportation costs are a minimum.

L . . .
For each of the ( J) possible location patterns a separate matrix of the

transportation costs plus the variable processing costs is formulated in
which the plants form the column vectors and the markets the row
vectors. The markets are attached to the plant which shows the smallest
coeflicient in the corresponding row of the matrix. Thus, having obtained
the minimum of the transportation and variable processing costs, the
total costs are evaluated by adding the fixed charges for the plants under
consideration. The pattern with lowest costs can be determined by

comparing the total costs for all (;J) possible location patterns.

If in a more general case the optimal structure of processing industry is
to be determined given the spatial distribution of supply and demand,
the assembling and distribution problem cannot be solved independently.
It is necessary to investigate the optimal assignment of the markets for
every pattern by means of a transshipment model.

If quantities are given for each market, the model can be solved by the
well-known algorithm for transportation models and has the following
algebraic structure (Orden [66]).

Construct the feasible flow which minimizes

DIEDY %mij Clip - omyp L b (55)
VAR
subject to
the supply constraints:
2 my = mi (56)
J
the demand contraints:
Z myr = my (57)
J
the intermediate node contraints:
1 Emy = X myg (&
c k
where
i = quantity of raw material produced by market i.
my = quantity of final goods demanded by market k;
Wij = quantity of raw material shipped from market i to plant j.
myr = quantity of final goods shipped from plant j to market k;

tij, tjx = variable costs of shipping and processing one unit from market
i to plant j or from plant j to market k respectively:

c = input coefficient for raw material.
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Since such a transportation model has to be solved for each possible
combination of sites the computational effort increases considerably,
thus limiting the practical applicability of this type of model.

If we introduce linear demand and supply functions instead of given
quantities for each market, the problem of optimal assignment of the
markets to a given pattern of locations becomes even more complicated.
To overcome the problem of non-linear constraints which arise from
introducing demand and supply functions, the concept of maximizing
the consumer surplus can be used as described in section 3.

The application of this model is limited to small areas with only a few
plants since a total enumeration of all possible or probable location
patterns is necessary for the determination of the optimum solution.
Therefore Manne [193] has described a dynamic programming technique
which permits short-cutting the calculation procedure. This technique
known as ‘‘steepest ascent one point move algorithm”, abbreviated by
Reiter and Sherman [198] to SAOPMA, is based on the fact that the total
costs of processing and distribution form a hypercube with regard to all
possible combinations of locations. The procedure starts with an
arbitrarily chosen allocation pattern, i.e. a lattice point, and then, moving
in one dimension to another lattice point, the process is continued until
no further improvements can be made.

As Manne has pointed out SAOPMA can lead to a local optimum instead
of to the global optimum. In such a case the process has to be reiterated
with a different starting point.

APPLICATION OF LINEAR AND NON-LINEAR PROGRAMMING

Linear and non-linear programming procedures have been used so far
only for the solution of sub-problems in which the markets for raw
material and final goods are given. However there exist at least
theoretical possibilities for solving the whole problem of planning the
optimal location pattern by the application of linear and non-linear
programming.

If predetermined quantities are given for each market, the problem can be
formulated as a linear programming model. The transportation and
processing activities for each potential location form the activities,
the market quantities the restraints. Difficulties arise in considering
non-linear degressive cost functions, which can be overcome by using
integer programming if the total processing cost function is linear with a
positive intersection with the ordinate. However, Vietorisz and Manne
[206] have shown that the algorithm for this type of problem developed
by Gomory [30] is not very useful for larger problems. Therefore the
only way of introducing non-linear average processing costs in a linear
programming model is to approximate the function by a sequence of
steps of constant average costs, i.e. by a discontinuous “step-function”.

Let d;n be the costs of the 1 separated steps of constant average processing
costs and ej, the lower and fi; the upper limit for which these constant
costs are valid for the j-th plant. The linear programme can be formulated
as follows:
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Minimize
DXt .omg+ XX Ydiy . omiy + O Gy .o my (59)
. i Jjon i ik
subject to
X my = nu and Emjp = my
i j
e <mij > fin (60)

1’ X myy = Xy
¢ k

There is little practical experience with regard to the efficiency of linear
programming models applied to empirical problems of plant location.
But, as far as we can see, the only difficulty is to determine the range of
the steps by which the degressive average cost function is approximated
and fo estimate the deviation of the optimal pattern arising from this
approximation.

If instead of given quantities for each market linear demand and supply
functions are assumed, the problem changes to a quadratic programming
model of the type described above. As in the case of the linear
programming model, it is necessary to introduce all potential locations as
activities and to approximate their degressive average cost functions by
steps of constant processing costs.

6.2 MODELS OF DECENTRALIZED LOCATION PLANNING

The models of decentralized location planning demonstrate the way in
which an equilibrium is attained if the location planning is realized by
autonomous firms lacking information concerning the equilibrium pattern.
A problem restricted to one side of the market can be described as follows.
The number of plants, the location and the volume of production for
each firm are to be determined. Only the influence of the selling markets
1s examined. Each firm can buy any quantity of raw material at constant
prices. The average cost function is degressive and includes a reasonable
profit rate. The demand functions are linear. The differentiation of
the prices set by a given plant corresponds with the transportation costs.
The prices ex factory are determined so that costs equal returns for each
firm. A set of potential locations is assumed. The process of the modet
can be outlined as follows. We start with a first basic solution where all
potential locations are realized; the demarcation of the market areas
and the prices can be obtained by means of the model of centralized
location planning described above. Then it must be determined whether
the different plants can undercut the prices of their competitors.
The possibility of a firm’s undercutting the prices of its competitors in
market & depends on its capability to underbid the prices on other markets,
since the cost curve is degressive and returns have to equal cost by
assumption. Hence the degressive cost function requires a criterion for
simultaneous consideration of all markets at which the prices of the
competitors can eventually be undercut. This is done by calculating
the differences between the market prices of the basic solution and the
transportation costs between each market and the plant under consider-
ation. The resulting differences are arranged in descending numerical
order. Then the quantity of each market is attached to the corresponding
difference. By continuous accumulation of these quantities we form the
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cumulative function of the differences. This function must intersect
the average cost function; if there is no intersection point the firm is
eliminated. Usually two intersections will occur from which the one
with the greatest quantity attached, i.e. with the lowest average costs,
is selected. All markets are supplied by the plant under consideration
for which the calculated differences are greater than the average costs
at the point of intersection. The market prices are fixed by adding the
corresponding transportation costs to the average costs, i.e. the price
ex factory. In the next step another plant is considered; this process is
reiterated until no further changes of the demarcation of the market areas
is possible.

As the resulting equilibrium solution is not independent of the basic
solution, it depends on the objectives of the calculation which basic
solution is selected. The existing location pattern can be an important
candidate for selection as the basic solution.

Another procedure of decentralized location planning can be formulated
by SAOPMA, as Manne [193] has pointed out. The assumptions are
the same as above except in respect of prices. Each plant tries to gain
markets by setting the lowest price which is calculated by adding the
transportation costs to the constant marginal costs. If the firm is lowest
bidder at one market it will increase its price to the limit which is
determined by the lowest price of its nearest competitor. The difference
between this price and the marginal price is a contribution to its profit or
to its fixed costs. The procedure of SAOPMA starts with a basic pattern
determining two prices for each market, the marginal price of the lowest
bidder and the realized price, i.e. the marginal price of the next lowest
bidder. The profits and losses are calculated under these conditions.
The possibilities for new firms to enter the market are investigated by
calculating the profits and losses at locations not yet in use. The firm
with highest profits entering the market is selected and the prices and
profits are calculated for the resulting location pattern again. These
steps are reiterated until no further firm can profitably enter the market
and no firm already in the market is making a loss. By this procedure of
decentralized location planning the monopolistic margin of locationally
separated firms is considered. The assumption of pricing is such that
each firm is maximizing its profit under regional competition.

The present authors do not know of any models considering both sides
of the market.

7 PROBLEMS OF PRACTICAL APPLICATION

Though numerous investigations (some of which have been mentioned
above) show the workability of the modern approach in principle, its
common usage for the solution of practical policy problems faces a
number of difficulties. Besides insufficient understanding of possible
improvement in the basis for rational policy decisions, three mutually
dependent problems of major technical importance may be mentioned:
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(a) limited computer capacity;
(b) the aggregation problem; and

(¢) the lack of adequate statistical data and the inappropriate processing
of data which have been collected.

Limited computer capacity has been one of the most serious bottlenecks
until a few years ago. At present one may say that most of these
difficulties have been overcome by the rapid technical progress in the
computer industry and by the development of the decomposition principle.
Computer capacity still remains limited, of course, but the limitations
arising from it are less serious than the aggregation and data problems.

7.1 THE AGGREGATION PROBLEM

The consideration of space as a system of points each of which represents
a part of the total area, as used in all models described in the previous
sections, rests on the assumption that the regions which are represented
by a single point are homogeneous with respect to all exogenous variables
defining a location (see figure 4 in section 2.1). Since this is not the case
in most real situations, erroneous results may arise. The possible error
originates mainly in the inadequate solution of two problems:

(a) the problem of separation of regions; and

(b) the problem of aggregation of all farms of a region into a limited
number of decision-making units.

(a) The problem of separation of regions

Transportation costs change continuously with variation in geographical
location in continuous equilibrium models. Hence volume and direction
of commodity exchanges and the separation of surplus and deficit regions
are determined in the equilibrium solution [5]. Using the discrete
approach the regions have to be separated at an early stage in the model
formulation. The transportation costs in the regions are assumed to be
zero, the transportation costs between regions are actually transportation
costs between points. As a consequence, transportation costs at the
geographical borders of a region and hence between neighbouring farms
change step-wise. The resulting inaccuracy concerning the flow of goods
and the farm-gate prices at the borders of the regions may be tolerated.
However, at least some of the more important results may be affected
since the separation of surplus and deficit regions, and hence the flow of
goods and the regional price differences in the equilibrium solution,
depend partly on the separation of regions predetermined at an early
stage of model formulation.

Careful prior investigations are necessary to reduce this source of error.
In doubtful cases the effect of the separation of regions has to be assessed
by repeated calculations with differently separated regions.

(b) The aggregation error

The aggregation error originates in the heterogeneity with respect to
production capacity and production functions of farms which are
aggregated into one decision-making unit. Recent research [21], [55],
[571, [89] has shown that a certain degree of heterogeneity can be tolerated
without causing aggregation error.
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Correct aggregation is possible if the differences with respect to production
capacities, input coefficients, and net revenues of the defined activities
remain in the stability range of the corresponding optimum solution [57],
[89]. Consequently one can derive the tolerable range of heterogeneity
from the stability range of the optimum solution. We define the stability
range of an optimum solution as the range in which capacities, input
coefficients, and net revenues of activities may change without affecting
the set of non-zero-variables in the optimum solution, although, of course
the absolute values of these variables may change with a change of
capacities or input coefficients.

It is obvious that models with strictly proportional differences of capacities
and/or input coefficients and/or net revenues of activities contain identical
sets of variables in the optimum solution though the absolute value of
these variables is different. Hence strict proportionality in these data
allows aggregation without error [21]. However the tolerable level of
heterogeneity is greater. One can increase (decrease) the capacity of one
factor of production within certain limits without causing an exchange of
variables in the optimum solution. The critical relation at which a
further change would result in an exchange of variables is given if
degeneracy could arise at certain price relations; i.e., the critical relation
is given if the maximum expansion of at least one activity is limited by at
least two production factors at the same level.

For two factors of production ¢, and ¢, and two goods with the inputs
. o C ¢ c ¢
4105, and ag.a.,, this will be the case if — = —2 or -+ = =2
' i1 dpy  G1p  da
If we assume the input coceflicients and the net revenue of activities to be
homogeneous in the farms under consideration and if we assume

a1 Y12

<
dz1 da2 .
without aggregation error:

we get the following groups in which farms can be aggregated

Group 1: all farms for which <! < %11

Cy Qg

.. a c
Group 2: all farms for which -~ < -
21 Ca  dgg

Group 3: all farms for which 712 < <

Qgg Cy
Similar arguments hold for the relations of net revenues p, and p, and
input coefficients.

The critical values for the relation of net revenues p, and p, are given by:
Pr _ P2 ang Pro_ P2

an d1o Qg BT
and consequently the critical relations for the input coefficients are given by
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b
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The critical relations which limit the tolerable level of heterogeneity are

given in a linear model with m rows and »# columns by the following
relations:

¢, G i=23. m
a,;; aij i=12. n
cy _ Ci i=3,4. m
as;  ai j=1,2...n 61)
fme1 j=12 n
Am-1j  Amj
and
PL_ Di i=1,2...m
a;  ay Jj=23...n
P Di i=1,2...m
ai,  aj j=234...n (62)
Pne1 P i=1,2...m
Ain—yy  Qin
where
Xx; = activities (j = 1,2 ... n);
p; = net revenues of activities; (j = 1,2 ... a);
¢i = capacities (i=1,2... m);
ai; = input of factor i for i=12...m
theactivity j. (j= 1,2 ... m);

The number of groups z which one has to form if one wants to avoid the

aggregation error completely depends on the critical relations x in the
following way:

= 21:
The number of critical relations depends on two factors:
(i) the heterogeneity of the single farms; and

(i) the number of activities and capacities to be distinguished in
the farm models.

If the farms to be aggregated show disproportional differences with
respect to capacities, input coefficients, and net revenue, the maximum
possible number of groups z is given by:

= 23nm [(m— 1)y 4 (n —1)] (63)

where

n = number of activities;

m = number of capacities (rows).

If there are only disproportional differences with respect to the capacities,
(63) reduces to:

- (i’l+ 1)%m(m - D (64)
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The maximum number of possible groups has been derived under the
assumptions that all input coefficients are greater than zero and that the
m capacities are mutually independent. This number will be reduced
by the number of input coefficients which are zero and by the number of
capacities which are dependent for technical reasons such as seasonal
labour capacity of the permanent workers or crop rotation restrictions.

However the number of groups which have to be formed to avoid the
aggregation error completely still remains prohibitively high in most
practical cases. Thus a certain aggregation error seems unavoidable in
spatial equilibrium analysis.

Several ways have been discussed in the literature for reducing the
aggregation error:

(1) Aggregation of activities and capacities at the farm level [74]. This
is a very efficient way to reduce the number of groups, since the latter
increases rapidly with the number of farm level activities and capacities.
However aggregation at the farm level requires prior judgments and may
reduce the value of the final results. In practical cases one has to look
for a compromise between reduction in the aggregation error and
limitations on the interpretation of the equilibrium solution resulting from
aggregation at the farm level.

(ii) Classifying farms with respect to the most important factor relations
only. Sheehy and McAlexander [73] have shown that the aggregation
error can be reduced considerably if one groups farms according to this
criterion.

(iii) Reduction of capacities in the aggregate. The aggregation error
resulting from adding the respective capacities of single farms originates
in the assumption that all factors are perfectly mobile between the farms
which are contained in the aggregate. The possible level at which factor
capacities will be exhausted will be overestimated, and hence the
production of the most profitable goods tends to be overestimated too,
while the production of the less profitable goods tends to be under-
estimated.

This error will be reduced if one takes into account in the aggregate only
that part of the capacities which is used in the optimum solution in the
average of all farms [29]. The average use of capacities in the optimum
solution has to be determined from a sample of farms.

(iv) Systematic aggregation of related groups. Lee [55] has shown that
systematic aggregation of related groups can reduce the aggregation error
to a minimum.

None of these ways is ideal. Each of them is a compromise whose
applicability depends on the special conditions of the subject under
study. Since we have to live with the aggregation error, it seems necessary
to ask which of them is the “smallest evil” under various conditions,
assuming we wish to obtain results for spatial equilibrium analysis,
which might in the future become one of the most valuable basic tools for the
formulation of rational agricultural policy in many countries of the world.
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7.2 DATA REQUIREMENTS

The field of application of the models described in previous sections is
largely determined by the available data. [134], [157], [166].

Definitions 2 and 3 of a location in figure 4 indicate the data requirements
for interregional analysis. Following definition 2 and the description of
models in section 4, we see that the same data are needed on the production
side as are required for the calculation of the optimum at the farm level
(factor capacity, potential activities and corresponding input-output
coefficients, variable costs, etc.). Following definition 3 and the
description of models in section 3, we observe that the same data are
required on the production side as are necessary to determine regional
supply functions. Data which permit the determination of regional
demand functions and of transportation costs are needed in both cases.

Hence using the activity analysis approach, available information must:
allow

(a) the formulation of the existing and potential activities on the “regional
farm” or “group farms” and the determination of the input coefficients,
the gross returns and the variable costs;

(b) the determination of factor capacity of the regional farm or of group
farms sub-divided by the capacities which are derived from the available
land, labour and capital.

Using the supply-demand model approach the same data are needed if’
“normative” supply functions are to be used. If empirical supply
functions are to be used, regional time series on the relevant production
and input data and on prices are needed. In general two types of
statistics are available for the determination of these data in most
countries:

(a) Statistical data on current production (yields per land unit, acreage of
crops, number of animals, etc.) and current inputs (fertilizer, seed, etc).
They are usually collected on a yearly, quarterly or monthly basis.

(b) Statistical data on the farm structure with emphasis on size, the
structure of the labour force, supplies of durable capital goods, and
distribution of production between farm groups. These data are usually
collected at an interval of several years and are here called “structural
data” for simplicity.

Usually none of these categories meets the requirements mentioned above.
The present statistical situation in most countries of the world is
characterized by:

(@) an insufficient subdivision of the national economy into regions;

(b) a lack of co-ordination between current statistics and “structural
statistics”; and

(¢) limited collection of data at a regional level.

(a) Division into regions and co-ordination of statistics

The maximum size of a region is limited by the requirements of the
approximate homogeneity of price-structure (see section 7.1) from the
viewpoint of theory. The division of regions with homogeneous prices
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but heterogeneous natural conditions or factor relations into subregions
can be replaced by separation of farm groups, provided that all data
needed are collected on the basis of these groups.

Statistical data on production and current inputs are usually available
only for administrative units (countries, states, shires, counties, etc). In
most countries, with the exception of the centrally-planned economies,
the amount of data available follows the general rule: the smaller the
region the more incomplete is the statistical information. Administrative
units for which the necessary minimum information from current
statistics is available are more or less heterogeneous at least with respect
to the natural environment and factor relations.

Statistical information on structural data is available for administrative
units as well as for farm groups in at least some countries. The sub-
division of the total number of farms into groups on the basis of farm
systems and/or farm size aims at separation of relatively homogeneous
“subregions” within the heterogeneous administrative units. The
ideal number and hierarchy of groups to be distinguished depends of
course on the size and extent of heterogeneity of the administrative units.
In those with heterogeneous natural conditions and farm sizes,
a subdivision according to natural conditions and factor relations is usually
required to achieve a minimum of homogeneity.

In most countries the homogeneity required is not achieved because very
often only one criterion (e.g. farm size or farm system) is used for the
subdivision of groups while two or more criteria (e.g. farm size and
farm system) are needed. If two criteria are used they are very often
used in parallel instead in a hierarchic order. Moreover current statistics
and structural statistics are often insufficiently co-ordinated because, as
noted earlier, current data on production and non-durable inputs are
available only for relatively heterogeneous aggregates.

(b) Minimum requirements of statistical information

In order to construct a descriptive interregional model which shows the
regional structure of production and the interregional flow of goods and
services as a starting point for explanatory and decision analysis, the
following statistical information must be available as a minimum
programme:

(i) From current agricultural statistics:

(a) yields per acre and area of crops;

(b) variable inputs which determine the variable costs of at least the major
crops;

(¢) numbers of animals and yields per head;

(d) use of feed concentrates per animal in different livestock enterprises;
and

(e) the demand for agricultural goods.

(ii) From structural or current agricultural statistics: all inputs which
determine the production capacity of the regional farms or the farm groups
(land, labour, water resources, capital goods). In particular the most

55



REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS

important machinery should be known in order to estimate the level of
mechanization and hence the input coefficients for labour which usually
cannot be observed directly.

(iii) From trade and traffic statistics: the flow of goods between regions
and the transportation costs.

Most countries’ statistics lack at least some if not all of this information
on a regional basis except in countries with centrally-planned economies.
The determination of descriptive interregional models (interregional
input-output models) is therefore very difficult in the western world and
has been limited to a few very exceptional cases, whereas in eastern
countries it has become quite a common tool of planning [62], [39].

However the spatial equilibrium models described in sections 3 and 4 can
be formulated with less direct statistical information since their character,
which is at least partially “normative”, permits the use of data which are
derived from scientific investigations and book-keeping results. In
most of the studies mentioned in previous sections this has been done for
the determination of many inputs, especially labour and feed inputs.

For the implementation of models on the basis of this kind of information
it is useful, too, to check the consistency of all data using regional balancing
computations of the input-output type. For this purpose the formal
framework of the spatial equilibrium model as described above might be
used, binding the production activities to the levels observed in the base
period.

However the necessary improvement of statistics is not only a problem
of expanding the collection of data but of the organization of its
presentation. The existing custom in most countries of presenting all
data in the form of tables is the main reason for the high labour input
and costs on the data collection side as well as the data use side.

The use of magnetic tapes for the storage of data in the central statistical
offices would save labour and money for the presentation of data and for
its use, since at present the transformation of data from tables to punch
cards or magnetic tape requires the highest proportion of labour in
interregional analysis.

8 EVALUATION OF RESULTS

Following the classification of previous sections three major groups of
models can be distinguished:

(a) standard equilibrium models using demand and supply relations
(section 3);

(b) activity analysis models using production functions, factor capacities
and demand relations (section 4); and

(¢) dynamic (recursive) models using production functions, factor
capacities, behaviour restrictions and demand relations (section 5).

All model types contain normative and positive elements which determine
the interpretation of results. Table 2 shows the combination of
normative and positive elements in the various model-types.
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Standard equilibrium models using normative supply functions and
activity analysis models contain only normative elements with the
exception of the demand functions which are empirically determined as in
all other models. Hence the interpretation of the results is normative too.
The solution indicates the most rational satisfaction of demand on the
basis of given production techniques and assumed factor mobility. The
minimum cost solution is of course identical with the equilibrium solution
under the assumption of profit maximizing behaviour of producers in
competitive markets. A different interpretation of results arises from the
consideration of various time horizons and hence from different
assumptions on the mobility of factors and the change of production
technique.

If one assumes all inputs to be fixed and hence the production to be given
the solution indicates the most rational distribution of the given
production. If only current inputs are assumed to be variable and the
production technique given, results indicate the most rational short-run
solution.

The results indicate the most rational long-run solution at a point in
time not explicitly determined if one assumes perfect factor mobility,
predicted changes of factor price relations based on earnings from
employment opportunities outside agriculture, and projected changes in
production technique. However the results are not predictions despite
the use of predicted or projected values for some exogeneous variables.
The predictive potential of these models is very limited because of their
normative character. The results may at best indicate the direction of
future changes but do not permit any statement of the time path of
change. The time path is considered in dynamic models. The recursive
models mentioned in section 5 determine a time path of production using
normative and empirical elements. For each point in time # which is
one element of a sequence of points ¢y, f,, . . . In a rational solution is
determined subject to behavioural restrictions which limit the possible
change of production and factor input between #;_; and #. Investments
may or may not be restricted by capital constraints arising from
borrowing, saving or consumption behaviour or from direct behavioural
constraints which limit the amount of investment between two points in
time. The profitability of investments is determined under similar
assumptions to those used in static models. Constant price expectations
are assumed for the lifetime of invested capital.

By the solution of recursive models it is not ensured that the resulting
time-path of variables, especially of capital formation, is rational from a
long-run viewpoint. The problem of optimal allocation of resources in
time would be solved in principal by dynamic models, in which the
interdependences between time periods are taken into account. In
accordance with the two branches of macroeconomic growth theory,
two assumptions in respect to saving (investment) behaviour could be
introduced: one could start out either from given (empirically estimated)
saving (investment) functions as in neoclassical growth theory, or from
a utility function which expresses time preferences with respect to
consumption as in the theory of optimal growth. In the second case the
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savings ratio is a variable which has also to be optimized. A
comprehensive investigation of these problems in the context of disag-
gregated regional models has not yet been undertaken to the knowledge
of the present authors, though some attempts have been made, e.g. [91].

Standard equilibrium models on the basis of empirically determined
supply functions contain normative elements only with respect to
distribution. Hence their results show an equilibrium solution for
empirically determined relations between price and supply and price and
demand under the assumption that distribution is organized in the most
rational way. The short- or long-run character of the solution is
determined by the short- or long-run character of the estimated supply
and demand relations.

Only the recursive models and the standard equilibrium models based on
empirical supply functions seem to promise realistic and useful results.
following the modern theory of science and the fashionable emphasis on
behaviourism in some fields of economic theory. However one must
not overlook the difficulties still confronting the determination of results,
though the use of these models permits in principle explaining and
predicting actual changes for production. Some of these difficulties
have been mentioned in section 5.2.  Others have been discussed elsewhere
in the context of supply analysis [64], [90]. At present only pragmatic
solutions are known. Their applicability in interregional models remains
to be investigated. However normative models will keep their place
beside positive (empirical) models, even if the difficulties which presently
limit the application of empirical models can be overcome. Theoretical
considerations do not favour the exclusive use of positive models, but
rather the complementarity of positive and normative models, for policy
analysis,

The formulation of rational policy consists of at least two steps:

(a) the formulation of quantitative goals for production and inputs
which satisfy given welfare objectives in the most rational way; and

(b) the determination of policy measures to achieve the ends determined
under (@) in the most rational way.

The activity analysis models using production functions can provide
valuable help in decision-making on the quantitative goals for production
and factor inputs. Their application will most certainly indicate that a
redistribution of regional activity is desirable from the viewpoint of
rational satisfaction of demand, if one assumes perfect or even limited
factor mobility. This might conflict with other policy goals which
consider, for example, a distribution or remuneration of production
factors, especially labour, to be desirable which is not the most efficient one
from a purely economic point of view.

However the activity analysis models are flexible. One can take into
account almost any set of consistent goals by proper formulation.
Furthermore the development of computer technique allows a wide range
of simulation of goals and assumptions with relatively small additional
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input if one basic model has been established. Hence they can indicate
the most rational solution to alternative sets of consistent goals. However
they do not indicate the effect of policy measures in time to achieve the
desired goals. Hence they contribute very little to the problem of
rational choice of policy tools.

A rational choice of policy tools to achieve established goals can only be
determined by empirical models described in sections 3 and 4. Since the
application of these models at an interregional level still faces great
difficulties, one might think of a hierarchic policy planning process at
present. Long-run regional production goals might be established by
simuitaneous  consideration appiying activity analysis models.
Independent regional development plans, taking into account the policy
measures to achieve them, might be established on the basis of these
goals. The consistency of the regional development plans might
ultimately be considered by simultancous consideration of the whole
economy.
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