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Risk and Aversion in the Integrated Assessment of Climate Change

1 Introduction

There is a wide consensus about climate change taking place today and, in particular,
in the future. The details of these changes and their socio-economic consequences
remain uncertain at least for several more decades. The vast majority of integrated
assessment models in climate change does not take proper account of the risks and
uncertainties involved. In particular, when these models considers uncertainty at all,
most of them tend to capture uncertainty only as ex-ante risk over model parameters
resolving already before the actual climate policy starts. Moreover, these models
only capture risk aversion to the extend that it is produced by the desire to smooth
consumption over time.

We replicate a slightly simplified version of Nordhaus’s (2008) DICE model as a
recursive dynamic programming model. Our model features persistent uncertainty in
an annual time step under an infinite planning horizon. We not only derive optimal
expected trajectories of the climate economy and confidence bounds, but we also ob-
tain the optimal control rules as functions of the stock variables. For example, they
give the optimal carbon tax at a given point in the future conditional on the capital
and carbon stocks (which depend on the earlier shock realizations). We focus on
uncertainty about climate sensitivity and uncertainty over the damages caused by a
given temperature increase. The climate sensitivity parameter characterizes the tem-
perature response to the radiative forcing caused by a doubling in atmospheric CO2

concentrations with respect to the preindustrial level. It is one of the key unknowns
in modeling global warming because it depends on a number of feedback processes.
With respect to damages, we model two different ways how uncertainty enters the
equation. Both differ significantly in their impact on the optimal mitigation policy.
A collection of arguments why we are convinced that the DICE damage function in
DICE is at best a rather uncertain best guess are for example found in Hanemann
(2009).

We employ Epstein & Zin’s (1989) recursive utility approach in order to distin-
guish between a decision maker’s propensity to smooth consumption over time and
his Arrow-Pratt risk aversion. First, this approach makes it possible to disentan-
gle whether observed differences between the certain and the uncertain setting are
driven by risk, by risk aversion, or by the desire to smooth consumption over time.
Second, evidence suggests that individual’s tend to be more averse to risk than to
intertemporal substitution.1 Figure 1 on page 10 can serve as a preview and moti-
vation comparing abatement rate and social cost of carbon for certain and uncertain
runs using the original DICE parameterization (blue) versus preference parameters
chosen according to Vissing-Jørgensen & Attanasio’s (2003) best estimate of actual
preferences disentangling risk aversion from the desire to smooth consumption over
time (green). The solid lines represent certainty while the dashed lines introduce

1Also from a normative rather than an observational point of view we are not aware of a convincing
argument that these a priori different dimensions of preference should coincide. However, it would
be easy to argue for either of the two aversions being larger.
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uncertainty over climate sensitivity.
Nordhaus (2008) models the impact of ex-ante uncertainty on the optimal carbon

tax. For this purpose, he draws selected parameters randomly from a set of distribu-
tion and runs DICE for each realization. While this way of modeling uncertainty is an
interesting first approximation, it certainly does not describe the type of uncertainty
surrounding climate change. In such a procedure uncertainty only exists right before
the model is run and before a policy has to be passed. Once the model is initiated all
uncertainty is resolved and taxes are set optimally under full certainty. The procedure
only gives an estimate for an ex-ante prediction of a tax, which, in general, will never
be implemented because the underlying world has no uncertainty left once the policy
has to be passed. Ackerman, Stanton & Bueno (2010) modify Nordhaus’s (2008)
approach. Keeping the ex-ante uncertainty approach, they significantly increase the
number of draws in their simulations. The authors assume uncertainty over climate
sensitivity and the damage exponent, but comparing to Nordhaus (2008) they not
only increase uncertainty but also expected values. Unfortunately the model does not
translate the results of the simulations into changes of the optimal climate policy like
for example the optimal carbon tax.

Closest to our approach are two papers by Kelly & Kolstad (1999) and Ha-Duong
& Treich (2004). In their seminal paper Kelly & Kolstad (1999) implement a re-
cursive version of DICE to analyze learning about climate sensitivity. Their setting,
however, cannot disentangle risk aversion from intertemporal substitutability. Our
analysis focusses on seperating the impacts of risk, risk aversion, and intertemporal
substitutability as well as giving best estimates for the change in the optimal carbon
tax under a better preference representation than possible in the standard model.
None of these aspects is analyzed by Kelly & Kolstad (1999). Moreover, they limit
the analysis to uncertainty over climate sensitivity while we also examine damage
uncertainty in some detail. Ha-Duong & Treich (2004) are the first to point out
possible effects of disentangling risk aversion from intertemporal substitutability in
relation to climate change. They build a simple numerical four period integrated
assessment model incorporating Epstein & Zin (1989) preferences. The stochastic
damage in their model is binary and investment is a fixed fraction of production.2

The authors observe that increasing aversion to intertemporal substitution generally
increases pollution, while increasing Arrow-Pratt risk aversion decreases pollution.
They conclude that models that entangle these two a priori different preference char-
acteristics tend to underestimate the effects of risk. In contrast, we use a full blown
infinite horizon integrated assessment model and add a quite realistic description of
uncertainty. We derive the actual magnitude of the effects of risk, risk aversion, and
aversion to intertemporal substitution affect the social cost of carbon and compare
results under the preference parameters used by Nordhaus (2008) to those based
on actual estimates in the asset pricing literature using the disentangled approach.

2In the model, an endogenous energy tax reduces energy input and then production, consumption,
emissions, and damage.
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Moreover, we derive the optimal control rules. Section 2 introduces the recursive
utility specification and explains the disentanglement of risk aversion from intertem-
poral substitutability. Section 3 introduces the climate enriched economy. Section 4
presents the results and section 5 concludes. Additional information on our approach
is summarized in an appendix.

2 Welfare and Bellman equation

2.1 The Original Welfare Specification

In this section we introduce our welfare function and the dynamic programming equa-
tion. The main feature distinguishing our setting from other integrated assessment
models is the ability to disentangle effects of risk and risk attitude from effects driven
by the desire to smooth consumption over time. For this purpose we employ a vari-
ant of the generalized isoelastic model introduced by Epstein & Zin (1989) and Weil
(1990) disentangling Arrow Pratt risk aversion from the aversion to intertemporal sub-
stitution. Such a disentanglement is not possible using the standard intertemporally
additive expected utility approach of the form U = E

∑
t exp[−δut]u(xt) evaluating

scenarios by aggregating instantaneous welfare linearly over time and over risk. In
such a model, the instantaneous utility function u is used as an aggregator in both
dimensions, time and risk. Therefore, the concavity of u simultaneously captures
aversion to intertemporal substitution as well as to risk aversion. A priori, however,
these two characteristics of preference are very different. Empirical estimates disen-
tangling the two dimension and surveys of such include Campbell (1996), Giuliano &
Turnovsky (2003), and Vissing-Jørgensen & Attanasio (2003). (Traeger 2007) traces
back the difference to simple intuitive axioms concerning lottery choices. The evi-
dence suggests that people tend to be more averse to substituting consumption into a
risk state than into the certain future, implying higher Arrow Pratt risk aversion than
aversion to intertemporal substitution (measured by the inverse of the intertemporal
elasticity of substitution). In order to keep these two preference dimensions apart,
we have to employ a recursive utility. In consequence, we cannot use the standard
optimal control framework employed for solving most integrated assessment models.
The Bellman equation in our setting writes as

V (Kt,Mt, t) = max
Ct,µt

Lt

(
Ct

Lt

)1−η

1− η
(1)

+
exp[−δu]

1− η

(
E [(1− η)V (Kt+1,Mt+1, t+ 1)]

1−RRA
1−η

) 1−η
1−RRA

.

The value function V represents the value of an optimal path given the following
state variables: Time t, capital Kt, and stock of carbon in the atmosphere Mt. Util-
ity within a period corresponds to the first term on the right hand side of the dynamic
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programming equation (1) and depends on total global consumption Ct per capita and
the population Lt. The parameter η captures the desire to smooth consumption over
time or aversion to intertemporal substitution. It is the inverse of the intertempo-
ral elasticity of substitution. The parameter RRA depicts the Arrow Pratt measure
of relative risk aversion. The standard model implicitly assumes η = RRA. The
factor exp[−δu] discounts future welfare (one period ahead) with the rate of pure
time preference δu, which we assume to be 1.5% in accordance to Nordhaus (2008)
throughout the paper. The decision maker maximizes over the control variables Ct

and the emission control rate µt.
3 Thus, equation (1) states that the value of an

optimal consumption path starting in period t should be the maximal sum of the
instantaneous utility gained in that period and the welfare gained from the continu-
ation of the path in the next period given the new state variables (which are altered
according to the consumption and abatement decision).

For a detailed analysis of the interpretation of the parameters α and ρ I refer to
Epstein & Zin (1989) and to Traeger (2007) who also derives the particular repre-
sentation used above that is additive in the time step. As our baseline we employ a
scenario based on Nordhaus’s (2008) preference parameters η = RRA = 2. We con-
trast it with a best guess estimate of disentangled preferences by Vissing-Jørgensen
& Attanasio (2003) who build on Campbell’s (1996) approach estimating the Epstein
& Zin (1989) preferences by means of a log-linearized Euler equations in the asset
pricing context yielding η = 2

3
and RRA = 9.5. For both scenarios we also vary the

risk aversion coefficient from risk neutrality RRA = 0 up to extreme risk aversion
RRA = 50.

2.2 A Conveniently Modified Bellman Equation

Our integrated climate economy is constructed as a close match to Nordhaus (2008)
and features exogenous technological progress and population growth. We improve
the performance of the recursive numerical model significantly by expressing the rele-
vant variables in effective labor terms and rewriting the Bellman equation accordingly.
Exogenous technological progress is characterized by the variable

At+1 = exp[gA,t]At with gA,t = exp[−δAt] ,

where gA,0 denotes the initial growth rate and thereafter declines exponentially over
time. Similarly population growth is captured as

Lt+1 = exp[gL,t]Lt with gL,t =
1− exp[δ∗L]

(1 + L0

L∞

) exp[δ∗L t]− 1
.

3In the numerical implementation of the model it turns out useful to maximize over the abatement
cost Λt, which is a strictly monotonic transformation of µt, in order to simplify the model constraints.
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L0 denotes the initial and L∞ the asymptotic population. The parameter δ∗L char-
acterizes the convergence from initial to asymptotic convergence.4 Figure 8 in the
appendix summarizes the time behavior of the exogenous time paths, all of which
we took over from Nordhaus (2008). Expressing consumption and capital in effective
labor terms results in the definitions ct =

Ct

AtLt
and kt =

Kt

AtLt
. Using these definition

a couple of manipulations transform equation (1) into

V (ktAtLt,Mt, t)

A
ρ
tLt

= max
ct,µt

c
ρ
t

ρ
+

exp[−δu + gA,t ρ+ gL,t]

ρ

(
E

[
ρ
V (kt+1At+1Lt+1,Mt+1, t+ 1)

A
ρ
t+1Lt+1

]α
ρ

) ρ
α

(2)

with the utility discount factor β = exp[−δu] and consumption per effective labor
ct =

Ct

AtLt
.

One more transformation maps the infinite time horizon conveniently onto the
unit interval.5 For this purpose we introduce artificial time

τ = 1− exp[−ζt] ∈ [0, 1] (3)

and define

V ∗(kτ ,Mτ , τ) =
V (Kt,Mt, t)

A
ρ
tLt

∣∣∣∣
Kt=ktAtLt, t=−

ln[1−τ ]
ζ

where At and Lt follow

At = A0 exp

[
gA,0

1− exp[−δA t]

δA

]
and Lt = L0 + (L∞−L0)(1− exp[−δ∗L t]) .

Here and in the following we have denoted under slight abuse a variables xτ to rep-
resent the variable xτ(t) under the transformation 3. Then, we can rewrite the fixed
point equation (2) in terms of V ∗ as

V ∗(kτ ,Mτ , τ) = max
cτ ,µτ

cρτ
ρ
+

exp[−δu + gA,τρ+ gL,τ ]

ρ

(
E [ρV ∗(kτ+∆τ ,Mτ+∆τ , τ +∆τ)]

α
ρ

) ρ
α

4More precisely the discrete time growth rate would be ln

[
1 +

1−exp[δ∗
L
]

(1+
L0

L∞

) exp[δ∗
L

t]−1

]
. We use the

above approximation.
5Note that the time transformation also concentrates the (optimally spread) nodes at which we

evaluate our Chebychev polynomials (approximating the value function) on the close future in real
time, where most of the exogenously driven changes take place.
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Note that the time step is now in artificial time. Keeping a unit step in real time
implies a time step ∆τ = (1− exp[−ζ])(1− τ) in artificial time and one period ahead
artificial time becomes τ +∆τ = 1− [1− τ ] exp[−ζ].

3 The Climate Economy

3.1 The model under certainty

The decision maker maximizes his value functions under the constraints of the follow-
ing stylized model of a climate enriched economy. The model is largely a reproduction
of Nordhaus (2008) DICE-2007 model except for two simplifications. Because state
variables are computationally intensive in a recursive dynamic programming model
we neither make temperature a state variable nor do we model CO2 concentrations in
the oceans explicitly. The first simplification does not permit us to capture the delay
between a radiative forcing increase and a temperature increase (caused by feedback
processes). The second simplification replaces the simple carbon cycle model in DICE
by an exogenously falling decay rate, which mimics that other reservoirs reduce their
take-up rate as they fill up. We calibrate our exogenous change in the decay rate to
match the CO2 time path of DICE-2007 under certainty with Nordhaus’s parame-
ter specifications. The only other modification to the DICE model is that we focus
solely on CO2 emissions and chose not to include the exogenous forcing from other
greenhouse gases that DICE includes as a quite simple exogenous path that starts
out cooling the system today and warming the system additionally in the future.6 In
the following we discuss the underlying equations. While some of the equations read
different in the recursive setting and in DICE, they are mathematically equivalent
except for the fact that we use a yearly time step. All parameters are characterized
and quantified in table 3.1 on page 24.

The economy accumulates capital according to

kτ+∆τ = [(1− δk) kτ + yτ − cτ ] exp[−(gA,τ + gL,τ )] ,

where δK denotes the depreciation rate, yt = Yt

AtLt
denotes net production (net of

abatement costs and climate damage) per effective labor, and ct denotes aggregate
global consumption of produced commodities per effective unit of labor. Instead of
trying to model the full carbon cycle, which would be very costly in terms of stock
variables, we assume an exponential decay of CO2 in the atmosphere at rate δM,t

which is exogenously reduced over time to replicate the carbon stock of DICE-2007
featuring a carbon cycle (see figure 7 in the appendix)

Mτ+∆τ = Mτ (1− δM,τ ) + Eτ with

δM,t = δM,∞ + (δM,0 − δM,∞) exp[−δ∗M t] . (4)

6The effect of the exogenous forcing path is very minor in DICE, but a rigorous treatment of the
other greenhouse gases might likely require a somewhat deeper analysis.
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The variable Et characterizes overall yearly CO2 emissions. Emission are composed
of industrial emission (first term) and emissions from land use change an forestry Bτ

Eτ = (1− µτ ) στAτLτk
κ
τ + Bτ , (5)

where σt characterizes the baseline decarbonization of production. It follows the
exogenous time path

σt = σ0 exp[gσ,t t] , with gσ,t = exp[−δσ t] ,

adopting the DICE assumption of an exponentially declining rate of decarbonization
gσ,t. For emissions from land use change an forestry we also follow DICE in assuming
an exponential decline

Bt = B0 exp[gB t]

Together we can rewrite the equation for emissions (5) as

Eτ = (1− µτ )
[
L0 + (L∞−L0)

(
1− [1− τ ]−

δ∗L
ζ

)]
σ0A0k

κ
τ

exp
[
gA

1− (1− τ)
δA
ζ

δA
+ gσ

1− (1− τ)
δσ
ζ

δσ

]
+ B0[1− τ ]−

gB
ζ .

The net global GDP per effective unit of labor is obtained from the gross product per
effective unit of labor as follows

yτ =
1− Λ(µτ )

1 +D(Tτ )
kκ
τ =

1− a1µ
a2
τ(

1 + b1Tτ + b2T
b3
τ

)kκ
τ (6)

where

Λ(µτ ) = Ψτµ
a2
τ

characterizes abatement costs as percent of GDP depending on the emission control
rate µt ∈ [0, 1]. The cost function coefficient is time dependent and is given by

Ψt =
σt

a2
a0
(
1− a1 (1− exp[gΨ t])

)
(7)

with a0 denoting the initial cost of backstop (i.e. in 2005), a1 denoting the ratio
of initial over final backstop,7 and a2 is the cost exponent. The rate gΨ describes

7The general interpretation is more precisely that a1 is the ratio
initial cost of backstop

initial cost of backstop− final cost of backstop
. However, for the employed value of 2 both ratios are

the same to we stick with Nordhaus’s interpretation.
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the convergence from initial to final cost of backstop. In artificial time equation (7)
translates into

Ψτ =
σ0a0

a2
exp

[
gσ

1− (1− τ)
δγ
ζ

δγ

] (
1− a1

(
1− [1− τ ]−

gΨ
ζ

))
(8)

Climate damage as percent of GDP depending on the temperature difference Tt of
current with respect to preindustrial temperatures are characterized by

D(Tτ ) = b1Tτ + b2T
b3
τ

where Nordhaus (2008) estimates b1 = 0 and b3 = 2 implying a quadratic damage
function. As we do not capture delay our temperatures is an immediate response to
the radiative forcing caused by the stock of CO2 in the atmosphere

Tτ = sτ
ln Mτ

Mpreind

ln 2
,

where sτ denotes climate sensitivity, i.e. the temperature response to a doubling of
CO2 in the atmosphere with respect to preindustrial concentrations.

3.2 Uncertainty

We introduce two sources of uncertainty into the model. First, we capture uncer-
tainty about climate sensitivity, i.e. the temperature response to an increase in the
radiative forcing cause by the increase in CO2 concentration in the atmosphere. We
assume climate sensitivity to be lognormal distribution with µ = 1 and σ = .5 imply-
ing an expected value of 3.08 and a standard deviation of approximately 2.7. This
distribution is more risky (in the Rothschild & Stiglitz (1970) sense) than the as-
sumed uncertainty in the according runs by Nordhaus (2008). It is based on visually
“calibrating” a lognormal to the set of pdfs suggested in IPCC (2001, Fig TS.25 p
65).8 Second, we analyze uncertainty about the damages. To these ends we consider
a normal distribution over the damage coefficient b2 as well as a normal over the
damage exponent b3. For b2 we follow Nordhaus’s (2008) assumption of a standard
deviation of 0.0025% (with the mean being 0.00284). Nordhaus does not consider
uncertainty over the exponent and we use a standard deviation of 0.35% (around the
mean 2) that gives roughly the same damages as the b2 uncertainty for the bounds
+/- standard deviation at a 3◦C temperature increase.9

8Nordhaus (2008) assumes a normal with a standard deviation 1.11, which in relation to IPCC
(2001, Fig TS.25 p 65) is outperformed by our visual best fit.

9Precisely, we calibrate closer to the upper than to the lower one sigma deviation for a 3◦C
increase. The damage for b3 = 2− 0.35 results in a 1.74% loss of GDP as opposed to 1.39% in the
Nordhaus (2008) based b2 uncertainty scenario and the damge for 2+ 0.35 results in a 3.75% loss of
GDP as opposed to 3.73% in the Nordhaus (2008) based b3 uncertainty scenario.

8



Risk and Aversion in the Integrated Assessment of Climate Change

In our uncertain scenarios, the value function is calculated optimizing over 8
quadrature nodes per time step representing a log/normal distribution. Thus, the
decision maker’s control rules are based on a decision tree for which every subtree
every year divides into 8 further subtrees (and 64 with joint uncertainty over two
parameters). The most precise way to represent the decisions under uncertainty is
by depicting the control rules. However, time paths of abatement and the social cost
of carbon are insightful representations that we do not forgo. For that purpose we
will generally depict the particular time path that comes about when the decision
maker decides under uncertainty, but nature always happens to draw the expected
value of the distribution. While we use that particular path to compare different
scenarios, we will also examine closely how this path relates to the median path and
the expected path in the sense of ex-ante uncertainty a la Nordhaus (2008). The
latter draws the climate sensitivity parameter randomly before running the model
and then runs the model for each draw as if climate sensitivity would be certain.
Taking expectations over these runs is what we label ex-ante uncertainty. Such a
model of ex-ante uncertainty corresponds to a situation where the decision maker
is only uncertain about which climate system he confronts before he starts making
decisions. As soon as he starts to control the system in t = 0 all uncertainty has
resolved.

3.3 Remarks on Delay, Calibration, and Effects on the Car-

bon Tax

As we mentioned above we do not capture temperature delay. Such a delay pushes
the negative effects of emissions into the future and reduces the net present value of
their damage. Thus, we slightly overestimate the social cost of carbon. However, we
also calibrate our carbon decay rate to mimic the DICE model in the certain baseline
run. This calibration does more than simply matching the carbon cycle. Without
temperature delay our model would tend to have slightly lower emissions than DICE
while temperature is on the rise. By calibrating the time path of the CO2 stock to
that of DICE, we effectively choose a slightly higher decay rate in the early decades
than a real carbon cycle model would bring about. Such a slightly higher rate of
decay reduces the social cost of carbon, balancing off some of the effect from not
modeling temperature delay.

4 Results

Figure 1 presents the optimal abatement rate as well as the social cost of carbon
(SCC) or optimal carbon tax for the parameter choice of Nordhaus (2008) (dark blue)
as well as for the assessment using disentangled preferences based on the parameter
estimates of Vissing-Jørgensen & Attanasio (2003) (light green). The solid lines
represent assessment under certainty. The dashed lines introduce uncertainty over

9
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Figure 1 compares the optimal abatement rate and CO2 tax based on the standard model with
parameters η = RRA = 2 as in DICE-2007 (N, dark blue lines) with an assessment based on the
disentangling model with parameter estimates η = 2

3 and RRA = 2 taken from Vissing-Jørgensen &
Attanasio (2003) (VA, light green lines). “cert” denotes assessment under certainty (solid lines), “cs”
introduces uncertainty over climate sensitivity (dashed lines), and “cs&b3” introduces (independent)
uncertainty over climate sensitivity and the damage exponent (dotted lines).

climate sensitivity, and the dotted lines give optimal abatement and SSC for the
scenario with both, uncertainty over climate sensitivity and over damages (precisely
over the damage exponent b3). For the uncertain scenarios the figure depicts the
path where the decision maker chooses under uncertainty and nature happens to
draw expected values.

Both, the abatement rate and the optimal carbon tax, are higher for in the case
of disentangled preferences. In numbers, the additional SCC over the next decade
is about $60 to $100 higher under the disentangled preference scenarios than with
the Nordhaus preferences. In relative terms the optimal tax is about 70% higher at
the beginning of the century and about 25% higher at the end of the century. Over
the next 10 to 100 years uncertainty over climate sensitivity increases the optimal
carbon tax $20 to $40 with Nordhaus preferences and $35 to $50 with disentangled
preferences. Including as well uncertainty over the damage exponent adds once more
a similar amount to the SCC. A first conclusion from Figure 1 is that, first, uncer-
tainty yields a significant effect on abatement and optimal taxes and that, second, a
distinction between risk preferences and the propensity to smooth consumption over
time results in a significant change of the optimal policy. In what follows we examine
more closely the underlying cause of the differences observable in Figure 1. In partic-
ular, we will analyze whether the risk effects are driven mostly by risk or mostly by
risk aversion, and whether the risk aversion or the propensity to smooth consumption
over time are more important determinants of the optimal carbon tax.

Figure 2 examines the dependence of the abatement rate and the SCC on the
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Figure 2 compares the optimal abatement rate and optimal carbon tax for different degrees of risk
aversion (RRA) in the the scenario with η = 2 as in DICE-2007 (upper graphs) and for η = 2

3 as
suggested by Vissing-Jørgensen & Attanasio (2003) in the disentangled approach (lower graphs).
Except for the red lines all scenarios feature uncertainty over climate sensitivity.

degrees of risk aversion. Thanks to the recursive preferences we can vary risk aversion
(RRA) while keeping aversion to intertemporal substitution (η) constant. The above
figures fix η = 2 as in DICE-2007, while the lower figures fix η = 2

3
as suggested by

Vissing-Jørgensen & Attanasio (2003). The difference between the certain paths (red)
and the optimal paths under uncertainty shows that risk over climate sensitivity has
a major effect on the optimal policies under any assumption on risk aversion. The
optimal policy hardly differs between the cases of risk neutrality, of RRA = 2 as in
DICE-2007, and of RRA = 9.5 as suggested by the disentangled estimates. Only
an extreme degree of risk aversion of RRA = 50 has a non-negligible effect on the
policies. However, even as an upper bound on risk aversion RRA = 50 very high.
Thus, we conclude from Figure 2 that risk aversion itself is not the driver of the
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Figure 3 compares the optimal abatement rate and optimal carbon tax for different types of un-
certainty for both, the scenario with η = 2 as in DICE-2007 (upper graphs) and for η = 2

3 as
suggested by Vissing-Jørgensen & Attanasio (2003) in the disentangled approach (lower graphs).
“cs” denotes uncertainty over climate sensitivity, “b2” uncertainty over the damage coefficient, and
“b3” uncertainty over the damage exponent. For details see section 3.2.

differences between the different scenarios.
If risk has an effect that is not due to risk aversion it has to be caused by other

non-linearities in the underlying climate and economic system. Figure 3 compares
three different types of risk, the lognormal distribution on climate sensitivity ( ) and
two different types of damage uncertainty. The first damage uncertainty is a normal
distribution on the coefficient of the damage term (magenta) and the second places the
normal on the exponent making damages quadratic only in expectation (cyan). The
most striking result depicted in Figure 3 is that uncertainty on the damage coefficient
b2 reduces abatement as well as the social cost of carbon in both scenarios. Note that
b2 low (solid magenta) is precisely the type of damage uncertainty that Nordhaus
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(2008) adds to his ex-ante uncertainty version of the DICE model. While his normal
distribution does not change much and can hardly be distinguished from the certain
run in our model, the dotted version featuring the higher variance decreases abatement
notably. On the contrary the normal distribution over the damage exponent (cyan)
significantly increases abatement and the social cost of carbon for all scenarios. Recall
that the variance of the b3 uncertainty was chosen as to match the damages of the b2
scenario approximately for one standard deviation at a 3◦C temperature increase. The
functional form how the three different uncertainties translate into a net production
(and thus consumption and investment) loss is captured by equation (6) which can
be rewritten as

Y net
t =

Y ∗

t

1 + b2T
b3
t

, (9)

where Y ∗

t = (1− Λ(µτ ))Y
gross
T , i.e the total production net the expediture on abate-

ment. b2 uncertainty corresponds to a linear variation in the denominator of what
becomes the net GDP. Thus, b2 variation is translated by a convex function into
variations of net GDP. Therefore, expected GDP loss under uncertainty over b2 is
actually lower than GDP loss using the expected coefficient. b3 uncertainty also takes
place in the denominator of equation (9), but in the exponent of the temperature. A
straight forward calculation shows that the resulting transformation of b3 into GDP
loss is convex and, thus, corresponding uncertainty increases the expected GDP loss.
Finally, uncertainty over climate sensitivity lies affects temperature. Temperature
enters the denominator squared. However, that alone would not make the transfor-
mation translating uncertainty into GDP loss a convex function. However, climate
sensitivity is a log-normal distribution. Thus, relating to normally distributed un-
certainty it again takes place in the exponent. The remaining difference between
uncertainty over climate sensitivity and over the damage exponent b3 is observed by
the following transformation of equation (9)

Y net
t =

Y ∗

t

1 + b2 exp [b3(ln st + lnmt)]
,

withmt =
ln Mτ

Mpreind

ln 2
indicating the relevant measure of CO2 stock increase. Comparing

a normal distribution of b3 to one of ln st we observe the only difference being that
b3 multiplicatively interacts with lnmt in the exponent while climate sensitivity does
not. Thus, we expect the effect of b3 uncertainty to increase relatively to the effect of
climate sensitivity uncertainty as the carbon stock increases. Indeed, we observe this
pattern clearly in Figure 3 for all scenarios. We conclude from the results summarized
in Figure 3 that the variance of the probability distribution capturing uncertainty
clearly is relevant for determining optimal policies. However, we also conclude that the
position at which we introduce uncertainty within the given functional estimated are
even more relevant and might even change the direction of the effect that uncertainty
has on the optimal carbon tax.
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Figure 4 compares different paths characterizing the predicted time development under uncertainty.

So far our analysis compared optimal policy paths. As we pointed out in section
3.2 we generated these paths by using the optimal control rules under uncertainty
and assuming that nature happens to draw expected values. In the following we dis-
cuss how our chosen path representation (expected draws) relates to other ways of
constructing a representative time path under uncertainty. The most attractive al-
ternative candidate is a Monte-Carlo simulation of individual paths. For this purpose
we have randomly drawn the parameter realizations in every period for 1000 time
paths for each scenarios. Figure 4 depicts the resulting median path as well as the
boundaries of the interval containing 95% of the individual paths. We observe that
the expected draws are slightly above the median. Moreover, the 95% bounds tell
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Figure 5 compares the ex-ante uncertainty path as well as the median of 1000 randomly generated
realizations with the path with obtain optimizing under uncertainty and nature drawing expected
values. The left graph is based on η = RRA = 2 as in Nordhaus (2008) the right graph increases
risk aversion to RRA = 8.5 (keeping η = 2).

us that, on average, downward deviations are larger than upward deviations. Figure
4 also depicts the optimal policy prediction with ex-ante uncertainty. This scenario
does not employ the same value function as the earlier simulations. As explained in
section 3.2 the ex-ante uncertainty scenario is based on drawing the uncertain pa-
rameters in period 0 and then using the control rules under certainty to generate the
optimal policy paths. The depicted path represents the expected value over these
individual paths. It corresponds to the method used in Nordhaus (2008) and most of
its variations. The policy paths could become a realized “optimal” policy path un-
der the constraint that policies have to be chosen once and for all in the first period.
However, the expected real variables of an ex-ante uncertainty scenario generally can-
not realize. Figure 5 shows an example that makes it particularly obvious that the
expected ex-ante scenario is infeasible as a realization. The figure depicts the differ-
ences to the path we generated by assuming that nature draws the expected values,
which is in particular a feasible path. For the first part of the century, the ex-ante
uncertainty scenario goes along with a higher temperature and a lower damage than
the path under expected draws. While quite attractive, such a path is unfortunately
impossible as a realization. The graph is based on the “N” or η = RRA = 2 scenario.
Despite the theoretical restrictions of the ex-ante method, Figure 4 shows that the
prediction of the ex-ante uncertainty path is surprisingly close to both, the median
and the path resulting from expected draws, both of which consider uncertainty strik-
ing in every period and optimization under uncertainty (as opposed to certainty in
the ex-ante scenario).

Any individual path under uncertainty is of Lebesgue measure zero. Therefore,
the most precise way to characterize and compare the different scenarios is by means
of the corresponding control rules representing how the optimal policies react to
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Figure 6 depicts and compares the optimal control rules for the scenarios based on Nordhaus (2008)
preferences and those based on Vissing-Jørgensen & Attanasio (2003). We depict the control rule
for t = and for t =. The dots denote the optimal carbon tax at the respective point in time if nature
realizes expected draws in all of the preceding periods (corresponding to the time paths presented
in the previous figures).

uncertainty conditional on a particular stock variables (brought about by whatever
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history of shock realizations). Figure 6 depicts the optimal control rules for the
carbon tax in both, the Nordhaus and the VA scenarios. We evaluate the control rule
at t = 9.6 years (time node 6) and t = 50 years (time node 10). The upper graphs
represent the control rule for the setting based on Nordhaus’s (2008) preferences, the
graphs in the middle are based on the disentangled estimates of Vissing-Jørgensen &
Attanasio’s (2003), and the graphs at the bottom represent the differences between the
two control rules in the respective settings. The dots mark the optimal carbon tax at
the respective point in time if nature realizes expected draws in all of the preceding
periods (corresponding to the time paths presented in the previous figures).10 We
observe that in both scenarios the optimal carbon tax increases in the amount of
capital in the economy, but at a decreasing rate. Note that the tax is measured relative
to the marginal value of capital which decreases as capital increases. Mitigating a
unit of carbon becomes than relatively more valuable as capital is more abundant.
On the other hand, the carbon tax increases in CO2 only at the beginning and (still
around the level based on an optimal policy and expected realizations). However, for
some concentration of CO2 the optimal tax starts to fall again. Here the marginal
(present value) damages of emitting another unit of CO2 decreases again.11 We
also observe that the differences between the two scenarios in terms of the optimal
carbon tax ranges between $40-80 for a given state of the world (note that the path
comparisons assumed different optimal policies and thus differnt states of the world in
these periods). The highest differences between the two control rules are observed for
in the region which corresponds closely to the points where either of the two control
rules would bring us over the next decade or the next three decades. The differences
keep to be as high for a higher carbon stock but decrease in the case of a faster growth
of the capital stock.

5 Conclusions

In this paper we scrutinize the effects of risk in a DICE-like integrated assessment
model. For this purpose we translate the DICE model of Nordhaus (2008) into a
recursive dynamic programming framework, which allows us to analyze repeated
stochasticity on a yearly basis. Most importantly, however, it allows us to disen-
tangle risk preferences from the propensity to smooth consumption over time. We
find that risk aversion has the least effect on the optimal abatement rate and the
optimal carbon tax. In contrast, the propensity to smooth consumption over time
has a major effect on both policies. A lower aversion to intertemporal substitution, as
estimated in approaches that disentangle it from risk aversion, implies a significantly
higher carbon tax than an evaluation based on the parameter specification used in
Nordhaus (2008). A message is that for an appropriate evaluation in a DICE type

10Note that currently the time of the control rules is rounded to one digit while the “dots” represent
the optimal tax at the rounded year. We fill fix this imprecision in the next revision.

11A result we plan to analyze further in a revised version of this paper.
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framework we should pay more attention to get intertemporal substitutability right
than to match risk aversion. In the standard model both coincide, and if we have to
pick such a joint parameter, pick it to reflect aversion to intertemporal substitution.

While risk aversion is not a major determinant in our simulations, risk very well is.
We have shown how damage uncertainty and uncertainty over the climate sensitivity
can increase the optimal carbon tax and abatement rate significantly. However, it
depends on how the risk is introduced into the system as the relevant non-linearities
are found in the functional formulation of the interaction between CO2 level and GDP
loss. In particular, if we make the same coefficient in the damage function uncertain as
Nordhaus (2008) we find that risk leads to a small decrease in the optimal carbon tax.
However, if we make the other non-trivial parameter of the DICE damage function
uncertain risk has a major effect on the optimal policies increasing the social cost
of carbon significantly. While the current estimates of global climate damages are
clearly surrounded by a significant amount of uncertainty, we cannot say which way of
introducing uncertainty is the right way. The sensitivity of the optimal policies under
risk to the particular functional forms emphasizes the necessity to further develop
the functional forms estimating climate change damages taking into account how to
capture the remaining uncertainties. For climate sensitivity we have better estimates
surrounding the uncertainty and it is a priori more obvious how this uncertainty enters
the integrated model. However, our analysis suggests12 that a similar sensitivity of
optimal policies as to damages holds with respect to the distributional assumption
that we put on the climate sensitivity parameter. For our lognormal assumption
informally based on a variety of estimates collected in IPCC (2001, Fig TS.25 p
65) we find significant effects of risk on both, abatement rate and social cost of
carbon. From the related uncertainty scenarios we have analyzed, we hypothesize
that a normal distribution as used in Nordhaus’s (2008) ex-ante modeling would only
have very minor effects. It will be the precise functional form of the distribution
that matters more than the actual variance of capturing the uncertainty over climate
sensitivity in an evaluation based on the DICE like integrated assessment.

We have criticized the ex-ante approach from a theoretical perspective and have
shown that its predictions can generally lead to infeasible paths, featuring for exam-
ple a higher temperature with lower damage than a realizable path for the setting
based on Nordhaus’s (2008) parameters. Despite this short-comings we have also
shown that the prediction of an ex-ante model are effectively very close to that of
our truly stochastic model. That finding gives a stronger stand to a variety of papers
in the literature that have analyzed uncertainty in DICE like integrated assessment
models based on ex-ante uncertainty. Ex-ante uncertainty can be interpreted as a
setting with immediate resolution of uncertainty or perfectly correlated uncertainty.
In that sense our setting is the complete opposite where uncertainty remains over the
full time horizon. The truth lies inbetween, where uncertainty reduces over time as

12Here we infer from the sensitivity we have shown with respect to the damage coefficients and
the analytical relation worked out in the results section. A simulation is to follow.
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concentrations stabilize and as we learn over the underlying system. The similarity of
the ex-ante uncertainty and our truly stochastic simulations suggest that a reduction
of uncertainty over time per se is not likely to change the optimal policies much.
However, extending our current risk sensitivity analysis to a setting including antici-
pated parametric learning will constitute a worthwhile extension complementing the
current findings.

Appendix

A Notes on the Numerical Implementation

We use the collocation method described by Miranda and Fackler (2002)to numer-
ically approximate the value function for our stylized climate model. This means
that we approximate the value function by a linear combination of n Chebyshev
polynomials:

V̂ (Kt,Mt, St) =
n∑

j=1

cjφj (Kt,Mt, Tt) (9)

here φ1, φ2, . . . , φn are the Chebyshev polynomials and c1, c2, . . . , cn are parameters
to be determined. The value function is approximated by finding the n coefficients,
c1, c2, . . . , cn, that satisfy the Bellman equation at n previously specified points in
the state-space, called collocation nodes: beginEQA[l]

∑n

j=1 cjφj (Kt,Mt, Tt) =

maxxt,µt

c
ρ
t

ρ
+ β

ρ

(
E
[
ρ
∑n

j=1 cjφj (Kt,Mt, Tt]
α
ρ

) ρ
α

This problem is solved using the following iterative algorithm: 1. Start with an
initial guess c01c

0
2, . . . , c

0
n. 2. Given the current guess ck1c

k
2, . . . , c

k
n, numerically solve the

maximization problem beginEQA[l] Vk
i = maxxt,µt

c
ρ
t

ρ
+β

ρ

(
E
[
ρ
∑n

j=1 cjφj (Kt,Mt, Tt]
α
ρ

) ρ
α

to

get estimates, V k
1 V

k
2 , . . . , V

k
n , of the value function at the collocation nodes 3. Given

the estimates V k
1 V

k
2 , . . . , V

k
n , find the parameters ck+1

1 ck+1
2 , . . . , ck+1

n that solve the
Bellman equation at the collocation nodes:

V k
i =

n∑

j=1

ck+1
j φj (Kt,Mt, St) , ∀i = 1, 2, . . . , n

4. Iterate steps 2. and 3. until the difference between ck1c
k
2, . . . , c

k
n and ck+1

1 ck+1
2 , . . . , ck+1

n

becomes small enough to satisfy a previously specified convergence criterion. The ap-
proximated value function can be used to estimate the optimal choices of consump-
tion, investment and abatement as a function of current levels of capital, pollution and
temperature. This decision rule can then be used to calculate the optimal time-path
of the state and decision variables.
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Figure 7 shows how we calibrated our exogenously decreasing decay rate of atmospheric carbon to
DICE. The depicted model runs assume certainty and otherwise coinciding parameters as in the
DICE-2007 model.

B Other Graphs

As we do not model the carbon cycle explicitly we assume that our rate of decay
decreases exogenously over time, mimicking that reservoirs fill up over time. We
calibrate our equation for the rate of decline of the decay of atmospheric carbon to
the DICE-2007 model.13 Figure 7 depicts the carbon stock in the original DICE,
in the one resulting from our calibration of the decay rate and for some alternative
assumptions on decay. The left graph compares the results from DICE-2007 (decadal
time step) and from our calibration to runs assuming a constant decay rate. The
right graph compares the results from DICE-2007 and from our chosen calibration
to alternative assumptions on the decline of the decay rates. δM0 is the initial decay
rate, δM∞ the asymptotic decay rate, and gδM denotes the rate at which the decay
rate transition from its initial to its asymptotic value according to equation (4).

Figure 8 summarizes the exogenous drivers of the DICE model.

13We used the EXCEL version of the model that can be downloaded from William Nordhaus’
website (http://nordhaus.econ.yale.edu/DICE2007.htm) as it generates a longer time series than
depicted for example in Nordhaus (2008). Note that the EXCEL model assumes a constant savings
rate. However, we found an almost constant savings rate in our model as well, and the match of
EXCEL DICE to the full DICE seems to be a closer fit (for the first hundred years where we had
the comparison) than we can get with our calibration.
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Figure 8 summarizes the exogenous drivers of the DICE-2007 (and our) model.
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Table 1 Parameters of the model

δ = 1.5% discount rate
δK = 10% depreciation rate of capital
δM,0 = 1.7% initial rate of decay of CO2 in atmosphere
δM,∞ = 0.25% asymptotic rate of decay of CO2 in atmosphere
δ∗M = 3% initial rate of decay of CO2 in atmosphere
σ = 0.1 CO2 equivalent emission-GDP ration
κ = .3 capital elasticity in production
a1 = 0.12 abatement cost, multiplicative constant
a2 = 2.8 abatement cost, exponent
b1 = 0 damage intercept
b2 = 0.00284 coefficient of quadratic damage. For uncertain scenario

normally distributed with standard deviation of 0.0025.
b3 = 2 damage exponent. For uncertain scenario normally dis-

tributed with standard deviation of 0.35.
s = 3.08 Climate sensitivity, i.e. equilibrium response to doubling

of atmospheric CO2 concentration with respect to prein-
dustrial concentrations. For uncertain scenario lognor-
mally distributed with µ = 1 and σ = .5 implying an
expected value of 3.08 and a standard deviation of ap-
proximately 2.7.

Mpreind = 596 in GtC, preindustiral stock of CO2 in the atmosphere
K0 = 137 in trillion 2005-USD, initial value for global capital stock
M0 = 80.9 in Gt, Initial stock of atmospheric CO2

L0 = 6514 in millions, population in 2005
L∞ = 8600 in millions, asymptotic population
δ∗L = 0.35 rate of convergence to asymptotic population
gσ,0 = −0.73% initial rate of decarbonization
δσ = 0.3% initial rate of decarbonization
gA,0 = 0.2722% initial rate of decarbonization
δA = 1% initial rate of decarbonization
B0 = 11 in Gt, initial CO2 emissions from LUCF
gB = −1% growth rate of CO2 emisison from LUCF
a0 = 1.17 : 1.17, cost of backstop 2005
a1 = 2 ratio of initial over final backstop cost
a2 = 2.8 cost exponent
gΨ = −0.5% rate of convergence from initial to final backstop cost
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