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Estimating a Demand System with

Seasonally Differenced Data

Ardian Harri, B. Wade Brorsen, Andrew Muhammad,

and John D. Anderson

Several recent papers have used annual changes and monthly data to estimate demand
systems. Such use of overlapping data introduces a moving average error term. This paper
shows how to obtain consistent and asymptotically efficient estimates of a demand system
using seasonally differenced data. Monte Carlo simulations and an empirical application
to the estimation of the U.S. meat demand are used to compare the proposed estimator with
alternative estimators. Once the correct estimator is used, there is no advantage to using
overlapping data in estimating a demand system.

Key Words: autocorrelation, demand system, Monte Carlo, overlapping data, seasonal
differences

JEL Classifications: C13, Q11, Q13

Some past research has estimated demand

systems using seasonally differenced models

(Brown and Lee, 2000; Brown, Lee, and Seale,

1995; Duffy, 1990; Eales, Durham, and Wessells,

1997; Lee, 1988; Chiang, Lee, and Brown,

2001; Muhammad, 2007; Muhammad, Jones,

and Hahn, 2007; Seale, Marchant, and Basso,

2003). With monthly data, for example, the first

observation of annual differences might be the

January 2001 to January 2002 change and the

next observation would be the February 2001 to

February 2002 change. Thus, the January 2001

to January 2002 and the February 2001 to Feb-

ruary 2002 changes have 11 monthly changes in

common. The 11 common monthly changes are

the February 2001 to March 2001, March 2001

to April 2001, and so on, until December 2001 to

January 2002 change. Therefore, such data in

the form of January 2001 to January 2002 and

February 2001 to February 2002 changes are

said to overlap since 11 of the 12 monthly

changes included in the two annual changes in

the example are the same. These models allow

the researchers to use the higher frequency data

and do not require specifying the form of sea-

sonality present in the high frequency data. For

our example, using seasonal annual changes

does not require the specification of monthly

seasonality. Fraser and Moosa (2002) provide

a motivation for avoiding having to specify the

form of the seasonality since they show that if

seasonality is stochastic and it is assumed to be

deterministic, the model will be misspecified
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and estimates will be inconsistent. But, as we

show, except in the unlikely case of seasonal unit

roots, such models become autocorrelated with

the degree of autocorrelation depending on the

level of seasonal differencing. This autocorre-

lation is introduced even though there is no se-

rial correlation in the series prior to seasonal

differencing. Previous studies using seasonally

differenced models do not fully account for this

autocorrelation.

The econometric problem resulting from us-

ing overlapping data are that the error terms

follow a moving average (MA) process. This

autocorrelation results in inefficient estimates

and biased hypothesis tests. Harri and Brorsen

(2009) compare different estimators used with

overlapping data in the context of single equa-

tions. They show that when lagged values of the

dependent variables are not included as explan-

atory variables, the generalized least squares

(GLS) estimator is the appropriate estimator. The

covariance matrix for the GLS transformation

can be derived analytically in the case of over-

lapping data.

In this paper, we show how to obtain con-

sistent and asymptotically efficient estimates of

a demand system using seasonally differenced

data. Specifically, we propose a GLS estimator

for estimating a system of equations with over-

lapping data as an extension of the GLS esti-

mator for single equations developed by Harri

and Brorsen (2009). In addition, we apply our

approach to the estimation of a demand model.

Monte Carlo simulations are used to compare the

properties of the GLS estimator with overlapping

data (annual differences) and the conventional

seemingly unrelated regressions (SUR) estimator

with disaggregate differenced data (monthly

differences). The proposed GLS estimator is

also compared with the first-order, autoregressive

model considered by recent research (Muhammad,

2007; Muhammad, Jones, and Hahn, 2007; Seale,

Marchant, and Basso, 2003).

The rest of the paper is organized as follows.

First, the estimator combining SUR and GLS is

derived. Then a Monte Carlo study is used to

determine the bias and inefficiency of the var-

ious estimators. Then U.S. meat demand is

estimated with the alternative methods to il-

lustrate the differences between the estimators.

The Model

Start with the following system of M equations:

(1) wm 5 Zmbm 1 Dmgm 1 em, m51, . . . , M,

where wm is a (T� 1) vector of the values of the

dependent variable, T is the length of the time

series, Zm is a (T � lm) matrix of the values of

explanatory variables, D is a (T � p) matrix of

the values of the p dummy variables with p 5

11 for monthly data and p 5 3 for quarterly

data, bm and gm are respectively (lm � 1) and

( p � 1) vectors of regression coefficients, and

em is a (T � 1) vector of the disturbances. As-

sume that e 5 [e19, e29, . . . , eM9]9 has E[e] 5

0 and E[ee9] 5 S. Further assume that distur-

bances are uncorrelated across observations, but

have contemporaneous covariance V. In other

words, E[emtens] 5 smn, if t 5 s and zero oth-

erwise. Therefore, we can also write S 5 V 5 IT.

If one instead uses annual differences, these

annual differences represent an aggregation of

level k 5 12 for monthly differences or k 5 4

for quarterly differences. The system with the

aggregated variables can be represented as:

(2) ym 5 Xmbm 1 um, m51, . . . , M,

where each element of the vectors y and X of the

aggregated variables and the vector u of the er-

ror term in Equation (2) is the sum of k elements

of w, Z, and e respectively, as presented below:

(3)

yt 5
Xk�1

j50

wt 1 j; Xt 5
Xk�1

j50

Zt 1 j;

ut5
Xk�1

j50

et 1 j, t51, . . . ,T � k 1 1;

j 5 0, . . . , k � 1.

Given the size of the original sample, T, the

sample size for the aggregated data are T 2 k 1

1. Note also that the seasonal dummy variables

no longer appear in Equation (2). Thus, the

aggregate model has the same degrees of free-

dom as the disaggregate model. The aggrega-

tion of the variables in Equation (3) induces an

MA process of order k 2 1 in the error term um

in Equation (2).

The system in Equation (1) is the disag-

gregate model which, depending on the avail-

able data, can be estimated with either monthly
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differences or quarterly differences. In other

words, Equation (1) can represent either a dif-

ferenced nondifferential demand model or a

differential demand model. Similar to the argu-

ments of Davis (2004) in the production case,

there is a difference in how the error term enters

the model specification for these two cases. In

the former case, the ‘‘append and difference’’

approach, an error term is first appended to the

model and then the difference is taken. In the

latter case, the ‘‘difference and append’’ ap-

proach, the difference is taken first and then an

error term is appended to the model. It is im-

portant to emphasize here that both approaches,

‘‘append and difference’’ and particularly ‘‘dif-

ference and append’’ are applied to Equation (1).

An erroneous application of the ‘‘difference and

append’’ approach would be to extend it to ag-

gregate and append, which would lead to a mis-

taken conclusion that the error term in Equation

(2) is free of autocorrelation. As we show later

when we discuss the seasonal unit root model,

the only way that the error term in Equation (2)

could be free of autocorrelation is for the error

term in Equation (1) to follow a 12th difference

process. However, this error structure is not

supported by previous literature and our empir-

ical results. As a result, our approach applies to

differential demand models (e.g., the Rotterdam

and Dutch Central Bureau of Statistics (CBS)

models) and also differenced nondifferential

demand models (e.g., the First-Difference Al-

most Ideal Demand System (FDAIDS) model).

It does not apply to nondifferential demand

models in levels like the Almost Ideal Demand

System (AIDS) model. As our Monte Carlo

simulations show, the same drawbacks of using

seasonally differenced data apply to both a de-

mand system that is linear in the parameters as

well as demand systems that are nonlinear in the

parameters.

From the assumption that the original error

terms were uncorrelated with zero mean, it fol-

lows that:

(4) E½ut m�5E
Xk�1

j50

eðt 1 jÞm

" #
5
Xk�1

j50

E½eðt 1 jÞm�50.

Also, since the successive values of ejm

are homoskedastic and uncorrelated, the un-

conditional variance of utm is:

(5) var½ut m�5 s2
um5 E½e2

t m�5 ks2
em

.

Based on the fact that two different error terms,

utm and u(t1s)m, (t 5 1, . . . , T and s 5 t 1 1, . . . ,

T ), have k – s common original error terms, em,

for any k – s > 0, the covariances between the

error terms in Equation (2) are:

(6) cov½ut m,uðt1sÞm�5E½ut m ,uðt1sÞm�
5ðk � sÞs2

em
8ðk � sÞ> 0.

Similarly, the contemporaneous covariances

between the error terms in Equation (2) are:

(7)

cov½ut m,us n�5E½ut m,us n�

5E
Xk�1

j50

eðt1jÞm,
Xk�1

j50

eðs1jÞn

" #
5ksmn 8t 5 s.

Dividing Equation (6) by Equation (5) gives

the correlations between the two error terms,

utm and u(t1s)m as:

(8) corr½ut m,uðt1sÞm�5
k�s

k , 8ðk � sÞ> 0
0, otherwise

�
.

Collecting terms from Equation (8), we have

the correlation matrix of each um, V (T 2 k 1 1�
T 2 k 1 1) as:

(9) W 5

1 k�1
k . . . k�s

k . . . 1
k 0 . . . 0

k�1
k 1 k�1

k . . . k�s
k . . . 1

k . . . 0

. . . k�1
k 1 k�1

k . . . k�s
k . . . 1

k . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 1
k . . . k�s

k . . . k�1
k 1 k�1

k . . .

0 . . . 1
k . . . k�s

k . . . k�1
k 1 k�1

k

0 . . . 0 1
k . . . k�s

k . . . k�1
k 1

2
66666666666664

3
77777777777775

.

With V defined as above, we can express the

covariance matrix for

u5½u01,u02, . . . u0M�
0 as E½uu0�5Su5kV �W.

To obtain efficient estimates, the generalized

least squares (GLS) parameter estimates can be

derived as follows:

(10a) b̂ 5 ðX0S�1
u XÞ�1X0S�1

u y,

(10b) b̂ 5 ðX0ðk�1V�1 �W�1ÞXÞ�1

� X0ðk�1V�1 �W�1Þy,

or

(10c) b̂5ðX0V�1 �W�1XÞ�1ðX0V�1 �W�1Þy.
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Let P9 5 CL21/2, where C is the matrix of

the eigenvectors of V, and L is the diagonal

matrix containing the eigen values of V. Then,

V21 5 P9P. Substituting this result into Equation

(10c) and rearranging the equation, we obtain:

(11) b̂5ðX0P 0 ðV�1 � IÞPXÞ�1X0P 0 ðV�1 � IÞPy.

Let X* 5 PX and y* 5 Py we get:

(12) b̂5ðX�0 ðV�1 � IÞX�Þ�1X�0 ðV�1 � IÞy�,

which is the conventional SUR estimator with

an unknown contemporaneous covariance ma-

trix V with the transformed variables X* and y*.

Similarly the variance-covariance matrix of

the GLS estimates from Equation (12) is:

(13) Var½b̂�5s2
eðX�0 ðV�1 � IÞX�Þ�1.

Alternative Estimators

Among alternative estimators, one estimator is

the maximum likelihood estimator developed

by Beach and MacKinnon (1979). Studies that

have used this model include Eales, Durham,

and Wessells (1997), Muhammad (2007);

Muhammad, Jones, and Hahn (2007), and Seale,

Marchant, and Basso (2003). This estimator

imposes the same AR(1) parameter for all M

equations following Berndt and Savin (1975)

and therefore is referred to as the AR(1) esti-

mator from hereon. In the general case consid-

ered by Beach and MacKinnon (1979), the

AR(1) parameter needs to be estimated. How-

ever in our case, this parameter can be derived

analytically to be (k 2 1)/k. The AR(1) esti-

mator, however, is inefficient and hypothesis

tests remain biased since it assumes an AR(1)

process when the true process is a MA(k 2 1)

process that declines linearly rather than expo-

nentially as assumed with an AR(1).

Another estimator, the seasonal difference

model of Box and Jenkins (1970), which is

called a seasonal unit root model in more recent

literature, uses data which are in some sense

overlapping, but do not create an overlapping

data problem if correctly specified. For annual

data, the seasonal unit root model for the de-

pendent variable wt is defined as:

(14)
wt 5 a kt 1 h t ,

ht 5 ht�12 1 x t ,

where kt is an independent variable, ht is the

error term following a 12th difference process,

xt is independently and identically normally

distributed, a is a parameter, and t represents

observation frequency at monthly level. In this

case, the model

(15) wt � wt�12 5 aðkt � kt�12Þ 1 x t

has no autocorrelation. In this example, 12th

differencing leads to a model that can be esti-

mated using overlapping data and ordinary

least squares. Seasonal unit roots have largely

been used when the research objective was

forecasting (Clements and Hendry, 1997). One

problem with the seasonal unit root model is

that it is often rejected in empirical work

(McDougall, 1995). Another problem is that it

implies each month’s price can wander aim-

lessly away from the prices of the other months.

Such a model seems implausible for most

economic time series. Hylleberg et al. (1990)

developed a general procedure that can test for

unit roots at some seasonal frequencies without

maintaining that unit roots are present at all

seasonal frequencies. Beaulieu and Miron

(1993) extend the Hylleberg et al. (1990) pro-

cedure to monthly data and test a number of

U.S. aggregate data series for the presence of

seasonal unit roots. They find that the presence

of unit roots is rejected at most of the seasonal

frequencies for a large fraction of the data se-

ries. Wang and Tomek (2007) present another

challenge to the seasonal unit root model since

they argue that commodity prices should not

have any unit roots. While a seasonal unit root

model may be an unlikely model, if it is the

true model, no autocorrelated residuals would

occur.

Monte Carlo Simulation Procedure

In this section we discuss the Monte Carlo

study used to compare the properties of the

proposed estimator and alternative estimators.

We generate the data according to Equation (1).

Given that Equation (1) can represent any dif-

ferential demand model or a demand model in

first-difference form and the findings of Bryant

and Davis (2008) that the FDAID model out-

performs the other models we use the FDAID
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functional form to generate our data. We use

a system of three equations, and thus Zm con-

sists of three correlated log price series, P1, P2,

P3, an exogenous variable representing the

log of the ratio of expenditures, log(X), and a

price index, log(P). We use two different price

indices in our simulations. The first price index,

which leads to a FDAID model linear in

parameters, is generated exogenously. The sec-

ond price index, which leads to a FDAID mod-

el nonlinear in parameters, is generated as in

Equation (16) (see also Deaton and Muellbauer,

1980),

(16)

logðPÞ5 a0 1
X

m

am logðpmÞ

1
1

2

X

m

X

n

unm logðpnÞ logðpmÞ.

With the second price index used in the data

generating process, we then estimate both the

nonlinear FDAID model as well as the linear

approximation FDAID model where, in the

later case, the Divisia price index is used in the

estimation.

D consists of four (k 5 4) quarterly or

twelve (k 5 12) monthly-fixed dummy vari-

ables that satisfy the following conditions:

(17)

Xk

j51

djm 5 0 , m 5 1, . . . , M,

j,k 5 1, . . . ,4, or

j,k 5 1, . . . ,12,

where, di and dj represent monthly dummy

variables. To ensure the adding up restriction,

we impose these four other conditions:

(18)

Xm

i51

dij 5 0,
Xm

i51

ai 5 1,

Xm

i51

wi 5 1, and
Xm

i51

ei 5 0,

where ai represents the intercept for the ith

equation. If one of the three generated shares

is negative, then that system observation is

rejected and is replaced by a different draw of

correlated random errors. Finally, the homo-

geneity and symmetry restrictions are imposed

on the parameters of the system. We also sim-

ulated the results for the case of stochastic

seasonality specified in Harvey and Scott

(1994) and Fraser and Moosa (2002). The

findings were the same as with deterministic

seasonality. The main difference is that pa-

rameter estimates have larger standard errors

under stochastic seasonality. This result is

expected because of the additional error terms

related to the stochastic seasonal components.

We generate 10,000 samples of 30, 60, 120,

250, and 500 observations according to Equa-

tion (1). Aggregate observations are obtained

according to Equation (2), using two different

levels of aggregation: k 5 12 for monthly ob-

servations and k 5 4 for quarterly observations.

We estimate both the disaggregate Equation (1)

and the overlapping Equation (2) (referred as

the GLS/SUR model). Finally, we obtain the

maximum likelihood estimates for the AR(1)

model of Beach and MacKinnon (1979) in

Equation (2) by imposing the same AR(1) pa-

rameter for each equation equal to (k 2 1)/k.

Monte Carlo Results

Table 1 presents the actual slope parameters

and the means and standard errors for the three

estimators from Monte Carlo simulations

for the case of a FDAID model linear in pa-

rameters with the exogenous price index. Re-

sults are reported only for one equation, since

the results are very similar. Three main findings

are to be noted. First, slope estimates from

all models are consistent as expected. Second,

the slope estimates and their standard errors

are exactly the same for the disaggregate model

and the GLS/SUR model. Third, the true stan-

dard errors of the AR(1) model are larger

than those of the disaggregate model and the

GLS/SUR model. On average, the standard

errors of the AR(1) model are 18–30% larger.

The loss in efficiency for the AR(1) model

generally increases with sample size and ag-

gregation level.

Table 2 reports rejection rates of the hy-

pothesis that estimated parameters are equal to

the actual values for the significance level of

5% for the case of a FDAID model linear in

parameters with the exogenous price index.

The rejection rate for the AR(1) model is twice

and for larger sample sizes and aggregation
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levels even three times as large as the nominal

level. This false significance may explain the

popularity of this approach. In the meantime

the rejection rates for the GLS/SUR model and

the disaggregate model, which are not reported

since they are the same as the ones for the GLS/

SUR model, are very close to the nominal level.

Table 3 reports the simulation results for

the case where the price index is generated

according to Equation (15). Table 3 reports the

Table 1. Monte Carlo Simulation Results for the FDAID Model Linear in Parameters

Sample

Size

Aggregation

Level Variable

Actual

Parameter

Values

Disaggregate

Model

GLS/SUR

Model AR(1) Model

Parameter

Estimates

Standard

Error

Parameter

Estimates

Standard

Error

Parameter

Estimates

Standard

Error

30 4 P1 0.02 0.0203 0.0218 0.0203 0.0218 0.0203 0.0262

P2 0.03 0.0294 0.0317 0.0293 0.0317 0.0302 0.0375

P3 20.05 20.0500 0.0449 20.0504 0.0449 20.0499 0.0528

ln(X/P) 0.025 0.0249 0.0142 0.0250 0.0142 0.0248 0.0170

30 12 P1 0.02 0.0207 0.0274 0.0207 0.0274 0.0208 0.0327

P2 0.03 0.0293 0.0398 0.0293 0.0398 0.0307 0.0470

P3 20.05 20.0504 0.0562 20.0504 0.0562 20.0503 0.0665

ln(X/P) 0.025 0.0250 0.0178 0.0250 0.0178 0.0249 0.0211

60 4 P1 0.02 0.0200 0.0141 0.0200 0.0141 0.0201 0.0166

P2 0.03 0.0301 0.0206 0.0301 0.0206 0.0301 0.0247

P3 20.05 20.0501 0.0291 20.0501 0.0291 20.0510 0.0349

ln(X/P) 0.025 0.0250 0.0092 0.0250 0.0092 0.0249 0.0109

60 12 P1 0.02 0.0200 0.0170 0.0200 0.0170 0.0202 0.0205

P2 0.03 0.0301 0.0224 0.0301 0.0224 0.0302 0.0299

P3 20.05 20.0502 0.0318 20.0502 0.0318 20.0504 0.0422

ln(X/P) 0.025 0.0250 0.00997 0.0250 0.00997 0.0249 0.0133

120 4 P1 0.02 0.0201 0.0010 0.0201 0.0100 0.0201 0.0166

P2 0.03 0.0301 0.0140 0.0301 0.0140 0.0301 0.0167

P3 20.05 20.0502 0.0199 20.0502 0.0199 20.0502 0.0239

ln(X/P) 0.025 0.0250 0.006 0.0250 0.006 0.0250 0.0074

120 12 P1 0.02 0.0202 0.0010 0.0202 0.0100 0.0202 0.0138

P2 0.03 0.0301 0.0146 0.0301 0.0146 0.0302 0.0138

P3 20.05 20.0502 0.0207 20.0502 0.0207 20.0501 0.0283

ln(X/P) 0.025 0.0248 0.0065 0.0248 0.0065 0.0250 0.0088

250 4 P1 0.02 0.0199 0.0098 0.0199 0.0098 0.0198 0.0142

P2 0.03 0.0301 0.0096 0.0301 0.0096 0.0299 0.0150

P3 20.05 20.0501 0.0149 20.0501 0.0149 20.0509 0.0208

ln(X/P) 0.025 0.0248 0.0046 0.0248 0.0046 0.0247 0.0065

250 12 P1 0.02 0.0200 0.0067 0.0200 0.0067 0.0201 0.087

P2 0.03 0.0300 0.0068 0.0300 0.0068 0.0301 0.097

P3 20.05 20.0500 0.0136 20.0500 0.0136 20.0501 0.0166

ln(X/P) 0.025 0.0250 0.0032 0.0250 0.0032 0.0251 0.0045

500 4 P1 0.02 0.0201 0.0041 0.0201 0.0041 0.0201 0.0086

P2 0.03 0.0300 0.0046 0.0300 0.0046 0.0300 0.0079

P3 20.05 20.0501 0.0108 20.0501 0.0108 20.0501 0.0149

ln(X/P) 0.025 0.0251 0.0042 0.0251 0.0042 0.0250 0.0059

500 12 P1 0.02 0.0200 0.0049 0.0200 0.0049 0.0200 0.0065

P2 0.03 0.0300 0.0056 0.0300 0.0056 0.0300 0.0069

P3 20.05 20.0499 0.0098 20.0499 0.0098 20.0499 0.0122

ln(X/P) 0.025 0.0250 0.0030 0.0250 0.0030 0.0250 0.0038
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mean parameter estimates and their standard

errors from both the nonlinear and linear esti-

mation for each of the three models. The

standard errors from the disaggregate model

and the GLS/SUR model are very similar with

some notable differences for the case of the

small sample size of 30. In addition, the stan-

dard errors for the AR(1) model are larger

than those of the disaggregate and GLS/SUR

models, confirming again the inefficiency of

Table 2. Rejection Levels of the Hypothesis that Estimated Parameters Are Equal to Their Actual
Values for the FDAID Model Linear in Parameters

Sample

Size

Aggregation

Level

Nominal

Level Variable

Rejection Level

GLS/SUR Model AR(1) Model

30 4 0.05 P1 0.061 0.106

0.05 P2 0.057 0.100

0.05 P3 0.058 0.093

0.05 ln(X/P) 0.058 0.097

30 12 0.05 P1 0.067 0.102

0.05 P2 0.067 0.098

0.05 P3 0.064 0.099

0.05 ln(X/P) 0.064 0.102

60 4 0.05 P1 0.049 0.096

0.05 P2 0.051 0.101

0.05 P3 0.053 0.110

0.05 ln(X/P) 0.048 0.101

60 12 0.05 P1 0.049 0.138

0.05 P2 0.048 0.143

0.05 P3 0.050 0.138

0.05 ln(X/P) 0.049 0.138

120 4 0.05 P1 0.048 0.099

0.05 P2 0.049 0.093

0.05 P3 0.050 0.105

0.05 ln(X/P) 0.049 0.099

120 12 0.05 P1 0.048 0.156

0.05 P2 0.048 0.157

0.05 P3 0.050 0.153

0.05 ln(X/P) 0.047 0.149

250 4 0.05 P1 0.048 0.092

0.05 P2 0.052 0.094

0.05 P3 0.049 0.098

0.05 ln(X/P) 0.048 0.097

250 12 0.05 P1 0.051 0.139

0.05 P2 0.050 0.141

0.05 P3 0.049 0.138

0.05 ln(X/P) 0.048 0.137

500 4 0.05 P1 0.051 0.089

0.05 P2 0.050 0.091

0.05 P3 0.049 0.093

0.05 ln(X/P) 0.049 0.095

500 12 0.05 P1 0.050 0.119

0.05 P2 0.049 0.118

0.05 P3 0.051 0.120

0.05 ln(X/P) 0.050 0.117
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the AR(1) model. Results in Table 3 also allow

for a comparison between the nonlinear and

linear estimation of a demand model that is

nonlinear in parameters. Results show that in

particular for small samples there is some dis-

advantage in terms of both more bias in pa-

rameter estimates and higher standard errors

when employing the nonlinear estimation ver-

sus the linear estimation.1

The Monte Carlo results show no advantage

to using overlapping data over disaggregate

data in the case of a demand model linear in

parameters. There also is little or no advantage

in small sample sizes to using the nonlinear

‘‘true’’ FDAIDS rather than the linear approx-

imate version. Disaggregate data may be avoi-

ded by researchers since it is more likely to

show significant lagged variables and signifi-

cant autocorrelation. But, using aggregate data

does not really remove the effects of lagged

adjustments and autocorrelation; it only lessens

their effects and reduces the power of the tests

to detect such violations of standard assump-

tions (Harri and Brorsen, 2009).

Empirical Example

We estimate U.S. meat demand to compare the

empirical performance of the different estima-

tion models discussed above. Data are monthly

observations from January 1989 to August

2007. Per capita beef, pork, and poultry quan-

tities and retail prices are obtained from U.S.

Department of Agriculture (1989) Livestock

and Poultry Situation and Outlook Reports.

Per capita fish quantities and retail prices are

derived using the approach in Schmitz and

Capps (1993, p. 10) and Kinnucan et al. (1997).

Bryant and Davis (2008), using the Bayesian

Averaging of Classical Estimates approach,

find that the First-Difference Almost Ideal

Demand model outperforms the other models

considered in their analysis. Therefore, we use

FDAID as our functional form. The fish equa-

tion is dropped from the estimation.

We first test the assumption of seasonal unit

roots in the shares series. The simple plot of

the monthly expenditure shares for beef, pork,

poultry and fish presented in Figure 1 shows no

patterns of annual seasonality. For a formal test,

we employ the Beaulieu and Miron (1993)

extension of the Hylleberg et al. (1990) pro-

cedure for monthly data. Beaulieu and Miron

(1993) suggest that to show that no seasonal

unit root exists at any frequency, pk in Equation

Figure 1. Monthly Expenditure Shares for Beef, Pork, Poultry and Fish

1 We also simulated the results for the case of four
price series. The results with four price series, not
reported here, are similar to the results we report for
three price series. Therefore, our results are robust if
more price series are included in the model.
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(19) must not equal zero for k 5 2 and for at

least one member of each of the sets {3, 4}, {5,

6}, {7, 8}, {9, 10}, {11, 12}.

(19)

BðLÞ�W13t5
X12

k51

pkWk,t�1 1 d1

1
X12

k52

dkSkt 1 zt

where Wk are functions of current and lagged

values of monthly shares, Sk are dummy vari-

ables and B(L) is a polynomial in the lag op-

erator. Therefore, we perform the test using

a two-sided t-test for k 5 2 and F-tests for

the other sets. Equation (19) is estimated for the

four different meat products. Results of the

seasonal unit root testing using first differences

of monthly expenditure shares are presented in

Table 4. Table 4 presents the results of the

hypotheses tests that p2 (using a t-test) and at

least one member of each of the sets {p3, p4},

{p5, p6}, {p7, p8}, {p9, p10}, and {p11, p12}

(using F-tests) are equal to zero. Based on the

results in Table 4 we fail to reject the hypoth-

esis that pk equals zero for any frequency for

all four meat product equations. Therefore, we

conclude that there are no seasonal unit roots in

any of the share series.

Next we test the symmetry hypothesis for

the three different models. The results of these

tests are reported in Table 5. Since the sym-

metry hypothesis is not rejected, we report the

results with the symmetry restriction imposed.

Table 6 reports parameter estimates and their

standard errors for the three different models

and for the three equations of beef, pork, and

poultry.

Parameter estimates and their standard er-

rors for the disaggregate model and the GLS/

SUR model are very similar for the three esti-

mated equations regardless of the restrictions

imposed. This is to be expected based on our

Monte Carlo results. Results for the AR(1)

model show higher standard errors, sometimes

twice as high as the standard errors for the

GLS/SUR model. The AR(1) model also shows

lower significance levels compared with the

other two models. Finally, Table 6 reports

the Durbin-Watson test for the presence of

autocorrelation. Both the disaggregate model

and the AR(1) model show some negative au-

tocorrelation in the residuals for all three

Table 5. Tests of the Symmetry Hypothesis

Model F-value p-value

Degrees of Freedom

Numerator Denominator

Disaggregate 0.19 0.9014 3 618

GLS/SUR 0.23 0.8734 3 618

AR(1) 0.534 0.6591 3 618

Table 4. Tests for Seasonal Unit Roots

Expenditure

Shares p2 {p3 p4} {p5 p6} {p7 p8} {p9 p10} {p11 p12}

Beef 28.57a 8.04b 20.41b 13.32b 13.76b 14.73b

(0.0001)c (0.0004)c (0.0001)c (0.0001)c (0.0001)c (0.0001)c

Pork 21.65a 9.63b 18.90b 10.66b 11.49b 16.47b

(0.0001)c (0.0001) (0.0001)c (0.0001)c (0.0001)c (0.0001)c

Poultry 21.75a 10.80b 21.15b 13.12b 13.34b 12.98b

(0.0001)c (0.0001) (0.0001)c (0.0001)c (0.0001)c (0.0001)c

Fish 24.85a 4.85b 8.84b 3.81b 7.67b 4.43b

(0.0001)c (0.0088) (0.0002)c (0.0239)c (0.0006)c (0.0131)c

a These are two-sided t-statistics.
b These are F-statistics.
c These are p-values.
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equations. On the other hand, no autocorrela-

tion is found for the GLS/SUR model.

Conclusions

Estimating a demand system using seasonally

differenced data leads to autocorrelated re-

siduals where the degree of correlation depends

on the level of differencing. Ignoring this au-

tocorrelation results in inefficient estimates

and biased hypothesis tests. The Beach and

MacKinnon estimator, used in some previous

works, is also inefficient in this case.

We show how to obtain consistent and as-

ymptotically efficient estimates of a demand

system using seasonally differenced data.

Monte Carlo simulations confirm that the the-

oretical derivation of the GLS estimator using

an analytically derived correlation matrix pro-

duces consistent and efficient estimates.

We apply our combined GLS/SUR model

and the alternative models to estimate U.S.

meat demand. The empirical results confirm

our Monte Carlo findings that the GLS/SUR

estimator has lower standard errors than the

AR(1) estimator when using seasonally differ-

enced data. In addition, the empirical results

show the GLS/SUR estimator with seasonally

differenced data and no specification of sea-

sonality yields nearly the same parameter es-

timates as the disaggregate estimation with the

form of seasonality specified. We recommend

against using seasonally differenced data to

estimate demand systems since there is no gain

to doing so if the correct estimation method is

used.

[Received July 2009; Accepted December 2009.]
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