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A Flexible Parametric Family for
the Modeling and Simulation of

Yield Distributions

Octavio A. Ramirez, Tanya U. McDonald, and Carlos E. Carpio

The distributions currently used to model and simulate crop yields are unable to accom-
modate a substantial subset of the theoretically feasible mean-variance-skewness-kurtosis
(MVSK) hyperspace. Because these first four central moments are key determinants of shape,
the available distributions might not be capable of adequately modeling all yield distributions
that could be encountered in practice. This study introduces a system of distributions that can
span the entire MVSK space and assesses its potential to serve as a more comprehensive
parametric crop yield model, improving the breadth of distributional choices available to
researchers and the likelihood of formulating proper parametric models.
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Agricultural economists have long recognized
that the choice of an appropriate probability
distribution to represent crop yields is critical
for an accurate measurement of the risks as-
sociated with crop production. Anderson
(1974) first emphasized the importance of ac-
counting for nonnormality in crop yield distri-
butions for the purpose of economic risk anal-
ysis. Since then, numerous authors have
focused on this issue, including Gallagher
(1987), Nelson and Preckel (1989), Moss and
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Shonkwiler (1993), Ramirez, Moss, and Boggess
(1994), Coble et al. (1996), and Ramirez (1997).
These authors have provided strong statistical
evidence of nonnormality and heteroskedasticity
in crop yield distributions—specifically, the ex-
istence of kurtosis and negative skewness in
a variety of cases. The possibility of positive
skewness has been documented as well (Ramirez,
Misra, and Field, 2003).

The three general statistical procedures that
have been used for the modeling and simulating
of crop yield distributions are the parametric,
the nonparametric, and semiparametric. All have
distinct advantages and disadvantages. The para-
metric procedures assume that the data-generat-
ing process can be adequately represented by a
particular parametric probability distribution
function. For this reason, the main disadvantage
of this method is the potential error resulting
from assuming a probability distribution that is
not flexible enough to properly represent the
data. The main advantage of this method is that,
if the assumed distribution can adequately
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represent the data-generating process, it performs
relatively well even in small sample applications.
This is important because crop yield datasets do
not often span long periods. Distributions that
have been used as a basis for parametric pro-
cedures include the Normal, the Log-normal, the
Logistic, the Weibull, the Beta, the Gamma, and
the Inverse Hyperbolic Sine.

The nonparametric approaches also have
strengths and weaknesses. Because these
methods are free of a functional form assump-
tion, they are generally more flexible. However,
they can be inefficient relative to parametric
procedures under certain conditions. Specifi-
cally, according to Ker and Coble (2003), “it is
possible, perhaps likely, for very small samples
such as those corresponding to farm-level yield
data, that an incorrect parametric form—say
Normal—is more efficient than the standard
nonparametric kernel estimator.” Other authors
cite theoretical complexity and intensive com-
putational requirements as another disadvantage
of nonparametric procedures (Yatchew, 1998).
Semiparametric methods show significant po-
tential because they encapsulate the advantages
of the parametric and nonparametric approaches
while mitigating their disadvantages (Ker and
Coble, 2003; Norwood, Roberts, and Lusk,
2004). Because the semiparametric approach is
based on nonparametrically “correcting” a par-
ticular parametric estimate, the availability of
more flexible distributions such as the ones ad-
vanced in this study should improve the potential
efficiency of semiparametric procedures as well.

Extensive efforts have been devoted to the
issue of the most appropriate probability dis-
tribution to be used as a basis for parametric or
semiparametric methods. Gallagher (1987) used
the well-known Gamma density as a parametric
model for soybean yields. Nelson and Preckel
(1989) proposed a conditional Beta distribution
to model corn yields. Taylor (1990) estimated
multivariate nonnormal densities through a con-
ditional distribution approach based on the
Hyperbolic Tangent transformation. Ramirez
(1997) introduced a modified Inverse Hyper-
bolic Sine transformation (also known in the
statistics literature as the Sy Distribution) as
a possible multivariate nonnormal and hetero-
skedastic crop yield distribution model. Ker and
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Coble (2003) proposed a semiparametric model
based on the Normal and Beta densities. Em-
pirical comparisons of leading parametric
models have been recently attempted (Norwood,
Roberts, and Lusk, 2004). Despite such ad-
vances, the potential of different probability
density functions (pdfs) to serve as suitable yield
and price distribution models has not been
assessed in the context of a rigorous theoretical
framework, and this critical research methods
issue remains unsettled.

According to basic statistical theory (Mood,
Graybill, and Boes, 1974), the first four central
moments of a pdf are the main descriptors of its
shape. Although there are other means for
characterizing and comparing distributions, this
suggests that the flexibility of a pdf to accom-
modate a variety of empirical shapes (i.e., data-
generating processes) should be closely related to
the Mean-Variance-Skewness-Kurtosis (MVSK)
combinations that are allowed by it.

Unfortunately, in this regard, all of the pdfs
that have been used as a basis for parametric
methods suffer from two significant range re-
strictions: (1) they can only accommodate lim-
ited subsets of all of the theoretically feasible
Skewness-Kurtosis (SK) combinations and,
therefore, might only be capable of adequately
modeling underlying data distributions where
third and fourth central moments are within that
subset; and (2) their variance, skewness, and
kurtosis are controlled by only two parameters
and, therefore, are arbitrarily interrelated (i.e.,
only two of these three key moments are free to
vary independently). Although the expanded
form of the Syy advanced by Ramirez, Misra, and
Field (2003) allows for any mean and variance
to be freely associated with the SK values per-
mitted by the original parameterization of this
family, it is far from encompassing all theoret-
ically feasible SK combinations.

This research contributes to the yield and
price distribution modeling literature through
the following measures:

1. Introduce a family of distributions (Sg) that
perfectly complements the Sy in its coverage
of the SK space, and that spans significant
regions of the space not covered by any other
distribution that has been used for the mod-
eling and simulation of crop yields.
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2. Derive expanded forms of this Sg family and
of the Beta distribution, which are analogous
to Ramirez, Misra, and Field’s (2003) repar-
ameterization of the Sy, so that they, too, can
allow for any mean and variance to be freely
associated with their possible SK values.

3. Assess the importance of MVSK coverage in
determining a model’s flexibility to adequately
represent a wide range of distributional shapes.

The Sy-Sg System

Johnson (1949) introduced the Sy and the Sg
families of distributions and showed that, to-
gether, they span the entire SK space. Figure 1
is constructed on the basis of the formulas for
the skewness and kurtosis of the Sy and Sg
distributions, which were also first derived by
Johnson (1949). Specifically, SK pairs are
computed and plotted for very fine grids of the
parameter spaces corresponding to these two
distributions. The same procedure is followed
for the Beta, Gamma, and Log-normal (Sp). It
is observed that the lower bound of the Sy is at
the boundary for the theoretically feasible SK
space (K = S$* —2). This plotting illustrates
Johnson’s claim of a comprehensive coverage
of the theoretically feasible SK space by the
Suy-Sg families.

However, in the parameterizations proposed
by Johnson, each of those SK combinations is
arbitrarily associated with a fixed set of mean-
variance values. Ramirez and McDonald (2006)

kurtosis
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outline a reparameterization technique that
expands any probability distribution by two
parameters that specifically and uniquely con-
trol the mean and variance without affecting the
range of skewness and kurtosis values that can
be accommodated. The expanded distribution
obtained through this reparameterization can
therefore model any conceivable mean and
variance in conjunction with the set of SK
combinations allowed by the original distribu-
tion. For the purposes of this study, the tech-
nique is first applied to the Sy and Sy families.
This yields a system that can model all theo-
retically feasible MVSK combinations. The
reparameterization begins with the original
two-parameter families (Johnson, 1949):

() Z=7v+38 x sinh ! Yfor the Sy distribution
2) Z=v+3d x In[Y/(1 —Y)]for the Sp

distribution

where Y is a nonnormally distributed random
variable based on a standard normal variable
(Z). In other words, the original Sy and Sy
distributions are derived from transformations
of a standard normal density. Their pdfs, which
are also provided by Johnson (1949), are
obtained by substituting Z in Equation (1) (for
the Sy) or Equation (2) (for the Sg) into
a standard normal density and multiplying the
resulting equation by the derivative of Equation
(1) (for the Sy) or Equation (2) (for the Sg) with
respect to Y. In the mathematical statistics
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literature, this is commonly known as the
transformation technique for deriving pdfs.

Note that from Equations (1) and (2) it fol-
lows that:

Y = sinh (ﬂ) =sinh(N) for the
3) 5
Sy distribution
7
exp (_6 V) »
Y= = for the

@ (1+ exp(%)) (1+eY)

Sp distribution

where N is a normal random variable with
mean — § and variance Z;. The above equations
express the Sy and Sg random variables (Y) as
a function of a normal, and can be used for
simulating draws from their probability distri-
butions. Johnson (1949) also provides the for-
mulas for computing their means and variances,
which will be denoted by Fg;; and Fgp (for the
means) and Ggy and Ggg (for the variances).
These formulas are simple but lengthy trigono-
metric functions of ¥ and 8. The skewness and
kurtosis of the Sy and Sg distributions are
functions of v and & as well. All formulas and
a Gauss program to compute the first four cen-
tral moments of both distributions for given
values for y and d are available from the authors.

The random variables (Y) corresponding to
each of the two distributions given in Equations (3)
and (4) are then standardized by subtracting their
means and dividing by their standard deviations:

sinh(N) — Fsy

5 Y= 7 for the Sy distribution
GSU
& _F
s (1+€Y) B s
6) Y= e for the Sy distribution
GSB

Note that the standardized Sy and Sg variables
(Y5 will always have a mean of zero and
a variance of one, i.e., the parameters Y and 6 no
longer affect the mean or the variance of their
distributions. However, because standardization
only involves subtracting from and dividing the
original random variables (Y) by constants, the
distributions corresponding to these standard-
ized variables (Y S) can still accommodate the
same sets of skewness-kurtosis combinations
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allowed by the original Sy and Sy families. The
final step in the reparameterization process is to
expand the Y* distributions so that, instead of
being zero and one, their means and variances
can be controlled by parameters or by para-
metric functions of explanatory variables. This
is accomplished by multiplying Y* times the
parameter or parametric function representing
the variance and then subtracting the parametric
function representing the mean:

(7 Y=6,Y5 —M,=(Z,0)Y — (X,B)

where Y* is as defined in Equations (5) and (6)
for the Sy and Sg distributions, t = 1,...,T
denotes the observations on the explanatory
variables, and YtF represents the final random
variables of interest. From Equation (7), note
that for both reparameterized variables:

®)  E[Y/]=M,=X, and V[Y]] = o} = (Z,0)’
where X, and Z, represent vectors of explanatory
variables believed to affect the means and vari-
ances of the distributions, and B and ¢ are con-
formable parameter vectors. That is, the mean
and variance of the reparameterized Sy and Sy
random variables (¥;7) are uniquely controlled
by M, and %, while v and & determine their
skewness and kurtosis according to the formulas
provided by Johnson (1949) for the original Sy
and Sy distributions. Therefore, the reparame-
terized Sy-Sp system can accommodate any
theoretically possible MVSK combination.

As noted previously, Figure 1 illustrates the
SK regions covered by the Sy and Sg, as well
as three other commonly used distributions.
The S; or Log-normal distribution, which is
also a part of the original Johnson system, only
spans the curvilinear boundary between the Sy
and Sg. The Gamma distribution only spans
a curvilinear segment on the upper right
quadrant of the SK plane as well. Like the S,
the Gamma can be adapted to cover the mirror
image of this segment on the upper left quad-
rant. However, the combinations of SK values
allowed by it are still extremely limited.

Although the Beta covers a nonnegligible
area of the SK plane, note that the Sg can ac-
commodate all SK combinations allowed by it.



Ramirez, McDonald, and Carpio: Flexible Yield Distribution Models

In fact, the Beta region is quite narrower than the
Sg’s (i.e., the Beta only covers a subset of the SK
area spanned by the Sg). Thus, in general, one
might expect the Sg to be a more applicable
model than the Beta. However, because higher-
order moments also affect distributional shape,
it is possible that, in some applications, a simi-
larly parameterized Beta would provide for
a better model than the Sg. Another difference
that could affect their relative performance in
a particular case is the fact that the Beta is
a bounded distribution, whereas the Sg is not.
In short, even if the Beta distribution is rep-
arameterized using the previously discussed
technique, because it only spans a relatively
small subset of the empirically possible SK
space, it may not serve as an acceptable model in
some cases. However, it is also possible that it
would provide for a better model than the Sg and
the Sy in other applications. Considering its
significant coverage of the SK space and the
potential role of the higher-order moments and
support characteristics of a distribution on
goodness-of-fit, the Beta is selected as the alter-
native candidate model for the comparative
evaluation of the Sy-Sg system conducted in this
study. The expanded parameterization of the Beta
distribution is derived in the following section.

The Expanded Beta Distribution

An expanded parameterization of the Beta dis-
tribution that can accommodate any mean and
variance in conjunction with all SK combina-
tions allowed by the original Beta is obtained by
applying the same technique used for the Sy and
Sg. In the case of the Beta distribution:

E[Y]=8/(8 + L) = Fj
©) ViYl= Sh _
(8+A+1)(8+21)°

and

Gp

Thus, the transformation from the original Beta-
distributed variable (Y) into the random variable
exhibiting the expanded Beta distribution r ) is:

1/2

(10)  YI'=0,(Y — Fp)/G4 "+ M,

The pdf for Y;” is obtained through a
straightforward application of the transformation
technique, which leads to the following log-
likelihood function:
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T
VG
LLy=3 In~ 2
=1 t

—nInI'(8) —nInl'(A)

+ (0 —1)x (ilnP,)
t=1
+(k1)<§:ln(1P,)>,

where P, = % + (Y’LM%G—” and T" repre-
sent the Gamma function. As in the case of the
expanded Sy and Sg, E[Y,"1 =M, and V[Y,"] =
6,2 and M, and o can be specified as linear
functions of relevant explanatory variables.

+nInT(8+ 1)

an

Estimation of the Sy-Sg System

Estimation of the Sy-Sp system can also be
accomplished by maximum likelihood. Since
both originate from normal random variables
(N), the transformation technique (Mood,
Graybill, and Boes 1974) can be applied to de-
rive their probability distribution functions.
According to this technique, the pdf of the
transformed random variable (Y,7) is given by:

—1 F
pet) = (24 S e D)

=J(¥7) x P(q ' (¥])),

(12

where q_l(Y,F ) is the inverse of the trans-
formation of N into Y,F (i.e., the function re-
lating N to Y,*, P(¢g~'(¥,")) is the pdf of an
independently and identically distributed nor-
mal random variable N with mean (—¥) and
variance & 2 evaluated at qil(YtF), and J(Y,F)
is the Jacobian of the transformation—that is,
the derivative of ¢~ '(¥,*) with respect to YL
Specifically, for the Sy, N = gg/ (YF) is found
by substituting Equation (5) into Equation (7)
and solving for N:

N=qg,(YF)=sinh~' {Rsy,} where

(YF = XB) x Gy}

(13)
U+ Fey,
Z.c SU

and Fg;; and Gy, are as defined previously. The
Jacobian is obtained by taking the absolute
value of the derivative of Equation (13) with
respect to Y,”, which yields:
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__ Gw
Zo (1+Ry,)'*

The Sy pdf is then obtained by substituting
Equation (13) into a normal density with mean
(— %) and variance 8% and premultiplying the
result by Equation (14).

Analogously, for the S, Equation (6) is
substituted into Equation (7) to obtain:

14)  Jsp(¥H)

R
N=qg (Y])= ln{1 _SZ'SBt} where
1/2
S8+ Fg,

15
(1> YF—XB) x G

Z:6

Rsp=

and F¢p and Ggp are as defined previously. The
Jacobian is:
1/2
ey
Z,6 Rsp, (1 — Rsp;)

(16)  Jsp(¥Y")

Substituting Equation (15) into a normal density
with mean (—%) and variance 8> and pre-
multiplying the result by Equation (16) renders
the Sg pdf.

The log-likelihood functions are found by
taking the natural logarithms of the resulting
pdfs and adding over the T observations:

D La{P(Y])}=0.5> In(G))
=1 =1

(17) T
—0.58% Zsz» where:
=1

8’Gsu
= 5 5 and
2mw(Z,6)" (1 + Rgy,)

Ht: In [RSUr + \/ 1 +R§Ut:| + %

=sinh ™! (Rsy;) + % for the Sy and

8°Gsp
= ) 7 @
2m(Z,6)” Rgp, (1 — Ryp,)

H,=n[Rsp /(1 — Rsg,)] + % for the Sg,

1

(18)

nd

t

(19)

respectively; G, > 0; and Ggy, Rsys, Gsp, and
Rgp, are as defined previously.

An adjustment that facilitates estimation
and interpretation is redefining the distribu-
tional shape parameters as follows: for the
Su Y = —M, for the Sg ¥ = W, and for both
families & = 1/6. Then, in all cases L <0, L =
0, and p > O are associated with negative, zero,
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and positive skewness, and both families ap-
proach a normal distribution as 6 goes to zero.
This also allows for testing the null hypothesis
of normality as Ho: & = p = 0. In addition, for
the purposes of estimation, the following pa-
rameter range restrictions are recommended
based on the authors’ experience: 0 < 6 < 1.5
and —10 < u < 10 for the Sy; 0 < 6 < 100 and
—7.5 < n < 7.5 for the Sg. Finally, it is noted
that the Gauss programs used for Maximum
Likelihood estimation of the Sy and the Sg
distributions, for computing their mean, vari-
ance skewness, and kurtosis given estimated or
assumed parameter values, and for simulating
random draws from them are available from the
authors upon request. These programs can be
easily translated into MatLab or SAS-IML.

Validating the Proposed
Theoretical Framework

Ramirez and McDonald (2006) suggest that
MVSK space coverage is key to a model’s
flexibility to adequately represent a wide range
of distributions. This section empirically eval-
uates that hypothesis. Specifically, it explores
to what extent different distributions with
similar MVSK coverage can “substitute” for
each other in practice. This is accomplished
through large sample comparisons between the
Su, Sg, and Beta, which are the three distribu-
tions that provide for substantial coverage of
the MVSK space (Figure 1).

Parametric models of farm-level yields
based on these three families of distributions
are estimated using Gauss programs. The data,
obtained from the University of Illinois En-
dowment Farms database, includes 26 corn
farms located in twelve counties across that
state. Data are available from 1959 to 2003,
with sample sizes ranging from 20 to 45 ob-
servations. The mean and standard deviations
are specified as second- and first-degree poly-
nomial functions of time:

M, =X,B=B, + B, + B,#* and 6,=(Z,5)

(20)
=0p + ot t=1,...,T

All nonnormal models initially include seven
parameters (Bo, B1, B2, Co, G1, 0, and W in the
case of the Sy-Sg system and By, B, B2, Go, O1,
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0, and A in the case of the Beta). Normal
models with the same mean and standard de-
viation specifications are also estimated and
included in the comparison. Select statistics
about those models are presented in Table 1.
The null hypothesis of yield normality is
tested through likelihood ratio tests of the nor-
mal model versus the nonnormal model with the
highest maximum log-likelihood function value
(MLLFV). This is possible because the Normal
model is nested to all three nonnormal models. If
this hypothesis cannot be rejected (a0 = 0.10), it
is assumed that the underlying pdf is Normal.
Otherwise, it is assumed that the true distribu-
tion is the nonnormal with the highest MLLFV.

Table 1. Select Statistics for Illinois Farm-Level
Normal Distributions

309

Although this is not a formal statistical test for
the superiority of a nonnormal model over an-
other, it has been routinely used to rank fit
(Norwood, Roberts, and Lusk, 2004). Following
this criterion, five of the 26 underlying distri-
butions are categorized as Normal, six as Sy,
seven as Sg, and eight as Beta (Table 1).

For the purpose of the analysis, the corre-
sponding Sy, Sg, and Beta models are assumed
to be the true distributions and used to generate
the data for the next phase. Specifically, 21
datasets of 100,000 observations each are sim-
ulated on the basis of the six Sy, seven Sg, and
eight estimated Beta models. The fact that the
distributional shapes used in this evaluation are

Corn Yield Models Based on Sy, Sg, Beta, and

Likelihood
Farm Sample Su S Beta Normal Ratio Test Final
Label Size MLLFV MLLFV MLLFV MLLFV Statistic® Model
A 44 —183.62 —186.67 —187.24 —191.64 16.033 Su
B 32 —123.81 —123.81 —126.39 —134.94 22.273 Si
C 44 —186.38 —182.15 —185.00 —187.61 10913 Sg
D 43 —189.23 —189.39 —189.54 —192.55 6.632 Sy
E 25 —108.09 —108.00 —107.72 —112.23 9.012 Beta
F 27 —128.31 —127.08 —127.55 —128.98 3.81° N
G 31 —133.58 —133.57 —133.26 —140.68 14.833 Beta
H 34 —161.15 —160.20 —160.93 —161.80 3.20° N
1 43 —181.27 —184.84 —184.94 —185.62 8.717 Sy
J 32 —145.96 —145.94 —146.56 —149.20 6.53? Sg
K 27 —120.75 —118.66 —118.98 —126.11 14.903 Sg
L 29 —132.56 —132.49 —132.55 —132.56 0.13° N
M 37 —169.08 —169.00 —168.95 —171.97 6.022 Beta
N 45 —197.46 —195.15 —196.37 —197.47 4.64! Sg
(0] 42 —189.54 —188.40 —188.55 —194.36 11.923 Sg
P 42 —195.34 —195.28 —195.31 —197.77 4.97! Se
Q 40 —174.07 —173.55 —172.74 —178.18 10.883 Beta
R 33 —145.36 —145.47 —145.67 —150.09 9.46° Sy
S 40 —181.77 —182.35 —182.50 —184.12 4.70! Su
T 29 —131.07 —131.05 —129.44 —133.79 8.692 Beta
U 44 —201.83 —201.21 —200.55 —204.01 6.912 Beta
Y 29 —127.78 —126.34 —125.69 —131.64 11.913 Beta
\%Y 29 —131.22 —131.24 —131.20 —132.56 2.71° N
X 20 —93.45 —93.96 —94.00 —98.42 9.943 Su
Y 29 —135.14 —135.00 —134.35 —136.90 5.083 Beta
Z 30 —143.92 —143.26 —143.37 —144.92 3.32° N

Note: MLLFV refers to the maximum log-likelihood function value.

* The likelihood ratio test statistic compares the nonnormal model with the highest MLLFV with the normal model. The
superscripts 1, 2, and 3 denote rejection of the null hypothesis of normality at the 10%, 5%, and 1% levels, respectively, according
to the likelihood ratio test, while the superscript O indicates nonrejection at the 10% level. If the null hypothesis of normality is
rejected at the 10% level, the final model is the one with the highest MLLFYV, otherwise the final model is the normal.
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empirically motivated (i.e., derived from para-
metric models that have been estimated on the
basis of actual yield data) enhances the credi-
bility of the analysis.

The following simulation formulas are
based on Equations (5), (6), and (7) for the
proposed system and Equation (10) for the Beta
distribution:

SSy=M, + {6,[sinh(6{Z +ul)—Fgyl

21
(21) o EGSU}

SSsg=M, + {c, exp(0[Z — )
(22)

++4/Gsp[l + exp(8[Z — 1) — FSB]}
23)  Sp=M, +0,{(B - Fy)~\/Gy}

where Z is a draw from a standard Normal and
B is a draw from a Beta distribution with pa-
rameters O and A.

Next, a second round of Sy, Sg, Beta, and
Normal models are estimated on the basis of
each of the 21 simulated datasets. Key statistics
about those models are presented in Table 2
(data-generating process = Sg), Table 3 (data-
generating process = Beta), and Table 4 (data-
generating process = Sy). As expected, in each
of the 21 cases, the model with the highest
MLLFV is the one based on the probability
distribution used to simulate the data.

In the case of the seven sets of models
corresponding to the Sg-generated datasets
(Table 2), the MLLFVs of the Beta models are
relatively close to those of the Sg models, with
the differences averaging 1.02 units. At 2.53
units, the average MLLFV difference between
the Sg and Sy models is considerably larger.
The Normal models show substantially lower
MLLFVs than any of the three nonnormal
models in all cases.

In the case of the eight sets of models cor-
responding to the Beta-generated datasets (Ta-
ble 3), with differences averaging 0.39 units,
the MLLFVs of the Sg models are very close to
those of the Beta models. At 1.26 units, the
average MLLFV difference between the Beta
and the Sy models is over four times larger. As
before, the Normal models show much lower
MLLFVs than any of the three nonnormal
models.
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In the case of the six sets of models corre-
sponding to the Sy-generated datasets (Table
4), both the Sp and the Beta models yield
MLLFVs that are substantially lower than those
of the Sy models. On average, the MLLFVs are
11.71 units lower in the Sg, 12.60 units lower in
the Beta, and 13.94 units lower in the Normal
models.

In short, the MLLFV comparisons suggest
that the Sy model is not a close substitute for
either the Sy or the Beta, and that the Sy and the
Beta models are poor surrogates for the Sy. In
contrast, it appears that the Sg and the Beta
models could be acceptable substitutes for each
other, with the Sy being a better surrogate for
the Beta than the Beta is for the Sg. These
findings support the hypothesis that distribu-
tions with similar MVSK coverage are better
able to “substitute” for each other. However,
the question remains as to how well these
nonnormal models can substitute for each
other.

To answer this question, the cumulative
distribution functions (cdfs) implied by the
second-round Sy, Sg, Beta, and Normal models
are obtained for each of the 21 cases, also
through simulation. The “true” cdfs are also
plotted using the correct distribution and the
exact parameters underlying each of the 21
data-generating processes. Two main statistics
related to those cdfs are also presented in Ta-
bles 2, 3, and 4. AD is the average of 125
vertical percentage distances between the true
and the estimated cdf. Distances are computed
for yield values ranging from 25% to 150% of
the average yields at equal 1% intervals (cdf
values outside of that range are negligible in all
cases). MD represents the maximum of those
125 vertical distances. Cdf values are expressed
to range from zero to 100%, instead of zero to
one.

Table 2 contains the statistics for the seven
cases when the underlying data-generating
process is Sg. As expected, the estimated Sy
cdfs are very close to the cdfs obtained on the
basis of the true models (AD of 0.03% and MD
of 0.17%, on average). When Sy models are
used to approximate the Sg, across the seven
cases the AD averages 1.62% and the MD av-
erages 4.50%. As anticipated, because the SK
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regions spanned by the Sy and the Sg do not
overlap (Figure 1), in general, the Sy is a poor
surrogate for the Sg. However, the Sy approx-
imation of the Sy is much better in two of the
cases when the SK combination is near the Sy-
Sg boundary (Figure 2).

Alternatively, when Beta models are used to
approximate the Sg, AD averages 0.81% and
MD averages 2.98%. As anticipated, because
the Beta spans only part of the SK region
covered by the Sy (Figure 1) and two of the Sg
data-generating processes exhibit SK values
that cannot be accommodated by the Beta
(Figure 2), this distribution does not generally
provide a good approximation of the Sg. On
average, however, the Beta is a substantially
better surrogate for the Sy than the Sy. With
average ADs of 3.13% and MDs of 10.07%, the
normal cdfs are by far the worst models for an
underlying Sg process.

Table 3 presents statistics for the eight in-
stances when the data-generating process is
Beta. The estimated Beta cdfs are again very
close to the cdfs obtained on the basis of the
true models (AD of 0.04% and MD of 0.19%,
on average). When Sy models are used to ap-
proximate the Beta, the AD averages 1.21%
and the MD averages 3.91%. Because the SK
regions spanned by the Beta and the Sy do not
overlap and are in fact separated by a widening
segment of the SK space (Figure 1), the Sy is
consistently a poor surrogate for the Beta.

Journal of Agricultural and Applied Economics, May 2010

In contrast, when Sy models are used to
approximate the Beta, AD averages 0.57% and
MD averages 2.13%. As anticipated, because
the Sg spans all of the SK area covered by the
Beta (Figure 1), it provides for a relatively
satisfactory approximation of that distribution.
Figure 3 provides a visual cue of the closeness
with which the typical Sg model can replicate
a true Beta cdf. All vertical differences in the
lower one-third of the cdf are in fact less than
1.1%. That is, the Sg model can predict cu-
mulative probability at any point within the
lower third of the true cdf with a margin of
error of 1.1% or less. This is particularly
noteworthy because in most cases the lower
(left) tail is the relevant segment of the cdf for
the purposes of risk analysis. With average ADs
of 3.13% and MDs of 10.79%, the normal cdfs
are by far the worst models for an underlying
Beta process as well.

The statistics for the six cases when the
data-generating process is Sy are shown in
Table 4. The estimated Sy cdfs are again very
close to the cdfs obtained on the basis of the
true models (AD of 0.06% and MD of 0.20%,
on average). In addition, as expected from the
fact that the Sg and the Beta do not span any of
the SK space covered by the Sy, with ADs
averaging 3.60% and 3.99%, respectively, and
MDs averaging 11.01% and 12.00%, re-
spectively, they are not good surrogates for the
Su. Particularly large cdf approximation errors

Standardized Kurtosis
3
/A
—
0]

Theoretically
2 impossible area

su

-3.0 25 -2.0

-1.5 1.0 -0.5 0.0

Standardized Skewness

© SU Distribution ® SB Distribution

© Beta Distribution

Normal Distribution

Figure 2. Skewness-Kurtosis Combinations of Estimated Nonnormal Models
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Figure 3. Estimated Sy, Sg, and Normal versus True (Beta) cdf

are observed in the two cases when the Sy
process is characterized by a very high kurto-
sis-to-skewness ratio, which are not shown in
Figure 2 due to scale limitations. The normal
cdfs are again the worst models.

In short, the results presented in Tables 2, 3,
and 4 support the working hypothesis that a
distribution’s capacity to provide for an adequate
approximation of another is closely related to
its ability to accommodate the underlying
MVSK value. These results also suggest that
researchers can achieve a relatively small
specification error by using parametric models
based on distributions which, as a whole, span
the entire MVSK space. Specifically, given that
there are no other distributions spanning the
middle-upper regions of this space (the green
area in Figure 1) and that several empirically
occurring yield distributions seem to exhibit
SK values well into this area, the Sy should
always be considered as a candidate model. In
addition, the results indicate that the Sy is
a generally better alternative than the Beta for
underlying distributions with SK values on the
surrounding regions of the SK space (the blue,
yellow, pink, and red areas in Figure 1) because
the Beta can only partially cover these
remaining regions.

However, if those SK values are in the Beta
(i.e., yellow) area and the higher-order moments
and support characteristics of the true

underlying distribution are more consistent with
the Beta’s, a model based on this density would
be expected to provide for a somewhat better fit
than the Sg. Likewise, under analogous condi-
tions, the Gamma, Log-normal, and other dis-
tributions could improve fit in relation to the Sg.
However, these expected gains are only assured
to materialize under large sample conditions.
Therefore, when working with small samples, it
might be best to simply consider the two most
general alternatives (i.e., the Sy and the Sg) as
candidate models.

Economic Relevance

A final issue of interest is the economic rele-
vance of using a more suitable probability dis-
tribution model for risk management decisions.
This issue is explored on the basis of the results
from the previous section. Specifically, the cdfs
implied by the second-round Sy, Sg, Beta, and
Normal models are used to compute the values,
expressed as percentages of the distributions’
means, that correspond to the 5, 10, and 20 cdf
percentiles (Table 5). In the case of farm E, for
example, the Normal, Sy, S, and Beta cdfs
reach their 5™ percentile at 72%, 63%, 64%, and
66% of their respective means.

The economic relevance of this information
can be related to crop insurance. Assume that
a farm manager wants to know the coverage
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Table 5. Continued

% Coverage % Coverage % Coverage % Coverage Average
Differences”

Risk
Tolerance

Beta

Sb
0.012

Su

Normal

Su Sb Beta
0.76

0.88
0.97

Normal

TD/Farm

0.000
0.019

0.021

0.031

Beta
Sb

0.61
0.70
0.80

0.61
0.70
0.80

0.61
0.70
0.80

5%
10%
20%

Su/X

0.030 0.000

0.036

0.057 0.061

0.000

0.063

Su

Notes: TD/Farm is the true underlying distribution and the farm associated with it. % Coverage refers to the coverage level that would have to be selected to achieve a particular level of risk

protection (i.e., tolerance) according to each of the four distributions being evaluated.

“ Averages of the absolute differences between the % coverage levels implied by the true distributions (in the three rows) and the four alternatives (in the four columns).

level that he/she would need to purchase in
order to be protected from yield losses that are
likely to occur every 20, 10, and 5 years (i.e.,
for three different levels of risk tolerance: 5%,
10%, and 20%). Although actual coverage
levels are limited to 65%, 70%, 75%, 80%, and
85% of the “average proven yield” (i.e., the
estimated mean of the yield distribution), exact
levels are computed and used for the purposes
of this evaluation.

In the case of farm E, for example, the true
underlying distribution is Beta and, therefore,
the farm manager should choose 66%, 77%, or
88% coverage levels depending on his/her risk
tolerance. If this decision was being made on
the basis of an estimated Sy distribution, the
selected levels would be 64%, 76%, and 88%
(Table 5). In general, in the eight instances
when the true underlying distribution is Beta,
the coverage levels suggested by the Sg model
are fairly close to the correct ones. The average
of the absolute differences between the correct
levels and those implied by the Sg distribution
across the 24 cases (eight farms and three risk-
tolerance levels) is only 1.2% (Table 5). Given
the actual coverage level choices (0.65%,
0.70%, 0.75%, 0.80%, and 0.85%), differences
of this magnitude are unlikely to cause an in-
correct selection in most cases and, therefore,
could be considered relatively unimportant
from an economic standpoint.

In the case of farm C, the true underlying
distribution is Sg and, therefore, the farm
manager should choose the 70%, 75%, or 85%
coverage level depending on his/her risk tol-
erance. If this decision was made on the basis
of an estimated Beta model, the selected levels
would be 72%, 79%, and 87%. In general, in
the seven instances when the true underlying
distribution is Sg, the coverage levels implied
by the Beta are somewhat different from the
correct ones (Table 5). The average absolute
difference in this case is 1.9%. Differences of
this magnitude are more likely to cause in-
correct coverage selection in some cases and
could therefore be considered somewhat im-
portant from an economic standpoint.

Finally, in the six instances when the true
underlying distribution is Sy, the coverage
levels implied by the Beta or the Sy model are
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generally quite different from the correct ones
(Table 5). In the case of the Beta, the average of
the absolute differences is 6.1%. Differences of
this magnitude are likely to cause major errors
in coverage selection in most cases and,
therefore, are economically important.

In short, the conclusions from the economic
relevance evaluation are consistent with those
of the previous section. If the true distribution
underlying the yield data are Beta and man-
agement decisions are made on the basis of an
estimated Sg model, the degree of error and its
economic implications are relatively minor. If
the true distribution is Sy and decisions are
made using a Beta, the errors are somewhat
higher and more likely to be economically
significant in some cases. Finally, if the un-
derlying distribution is Sg or Beta and de-
cisions are made on the basis of an Sy, or if the
true distribution is Sy and decisions are made
using an Sg or a Beta model, the degree of error
and its economic significance are likely to be
substantial.

Conclusion

A first general observation is that although the
yield data used in the analyses is from the same
state and crop, the SK combinations implied by
the best fitting models are scattered over a large
region of the SK plane corresponding to both
the Sy and the Sg/Beta distributions, which
suggests a need for candidate model alterna-
tives that comprehensively span the SK space.

In addition, it is concluded that substantial,
economically relevant errors in model fit
should be expected if such alternatives are not
considered and the assumed distribution is in-
consistent with the SK profile of the true dis-
tribution underlying the data. Alternatively, if
the assumed distribution is capable of accom-
modating the underlying MVSK values, errors
due to discrepancies in higher-order moments
or in the support characteristics of the assumed
versus the true distribution appear to be rela-
tively minor.

Following the recommended strategy of al-
ways considering the Sy and Sg distributions as
potential candidate models could substantially

Journal of Agricultural and Applied Economics, May 2010

reduce the specification error risk that has long
been associated with parametric methods, per-
haps to an acceptable level in most applica-
tions. This conclusion, however, should be
strengthened by further testing the performance
of the Sy-Sp family versus other parametric
distributions, and does not preclude their con-
sideration as candidate models. A particularly
promising alternative for future testing is the
multivariate normal mixture, which could also
be reparameterized to span all MVSK combi-
nations. It is also recognized that the relative
complexity of the proposed family versus the
most commonly used alternatives could affect
its widespread applicability.

A final caveat on the recommended distri-
butions is that they are continuous in nature.
Thus, econometric modeling allowances must
be made when working with data discontinu-
ities such as censored yield observations due to
droughts or flooding. It is also recognized that
a statistically reliable use of the procedures
discussed in this article requires at least mod-
erate sample sizes (30-50 observations), which
are often not available at the individual farm
level. However, multivariate extensions of
these procedures that can pool information
from several farms to estimate the skewness
and kurtosis parameters are feasible and
straightforward, and county, state, and country
level data now span several decades. Finally, as
sample sizes grow, these procedures will be-
come more usable at the single farm level as
well.
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