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A Flexible Parametric Family for

the Modeling and Simulation of

Yield Distributions

Octavio A. Ramirez, Tanya U. McDonald, and Carlos E. Carpio

The distributions currently used to model and simulate crop yields are unable to accom-
modate a substantial subset of the theoretically feasible mean-variance-skewness-kurtosis
(MVSK) hyperspace. Because these first four central moments are key determinants of shape,
the available distributions might not be capable of adequately modeling all yield distributions
that could be encountered in practice. This study introduces a system of distributions that can
span the entire MVSK space and assesses its potential to serve as a more comprehensive
parametric crop yield model, improving the breadth of distributional choices available to
researchers and the likelihood of formulating proper parametric models.

Key Words: risk analysis, parametric methods, yield distributions, yield modeling and
simulation, yield nonnormality
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Agricultural economists have long recognized

that the choice of an appropriate probability

distribution to represent crop yields is critical

for an accurate measurement of the risks as-

sociated with crop production. Anderson

(1974) first emphasized the importance of ac-

counting for nonnormality in crop yield distri-

butions for the purpose of economic risk anal-

ysis. Since then, numerous authors have

focused on this issue, including Gallagher

(1987), Nelson and Preckel (1989), Moss and

Shonkwiler (1993), Ramirez, Moss, and Boggess

(1994), Coble et al. (1996), and Ramirez (1997).

These authors have provided strong statistical

evidence of nonnormality and heteroskedasticity

in crop yield distributions—specifically, the ex-

istence of kurtosis and negative skewness in

a variety of cases. The possibility of positive

skewness has been documented as well (Ramı́rez,

Misra, and Field, 2003).

The three general statistical procedures that

have been used for the modeling and simulating

of crop yield distributions are the parametric,

the nonparametric, and semiparametric. All have

distinct advantages and disadvantages. The para-

metric procedures assume that the data-generat-

ing process can be adequately represented by a

particular parametric probability distribution

function. For this reason, the main disadvantage

of this method is the potential error resulting

from assuming a probability distribution that is

not flexible enough to properly represent the

data. The main advantage of this method is that,

if the assumed distribution can adequately
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represent the data-generating process, it performs

relatively well even in small sample applications.

This is important because crop yield datasets do

not often span long periods. Distributions that

have been used as a basis for parametric pro-

cedures include the Normal, the Log-normal, the

Logistic, the Weibull, the Beta, the Gamma, and

the Inverse Hyperbolic Sine.

The nonparametric approaches also have

strengths and weaknesses. Because these

methods are free of a functional form assump-

tion, they are generally more flexible. However,

they can be inefficient relative to parametric

procedures under certain conditions. Specifi-

cally, according to Ker and Coble (2003), ‘‘it is

possible, perhaps likely, for very small samples

such as those corresponding to farm-level yield

data, that an incorrect parametric form—say

Normal—is more efficient than the standard

nonparametric kernel estimator.’’ Other authors

cite theoretical complexity and intensive com-

putational requirements as another disadvantage

of nonparametric procedures (Yatchew, 1998).

Semiparametric methods show significant po-

tential because they encapsulate the advantages

of the parametric and nonparametric approaches

while mitigating their disadvantages (Ker and

Coble, 2003; Norwood, Roberts, and Lusk,

2004). Because the semiparametric approach is

based on nonparametrically ‘‘correcting’’ a par-

ticular parametric estimate, the availability of

more flexible distributions such as the ones ad-

vanced in this study should improve the potential

efficiency of semiparametric procedures as well.

Extensive efforts have been devoted to the

issue of the most appropriate probability dis-

tribution to be used as a basis for parametric or

semiparametric methods. Gallagher (1987) used

the well-known Gamma density as a parametric

model for soybean yields. Nelson and Preckel

(1989) proposed a conditional Beta distribution

to model corn yields. Taylor (1990) estimated

multivariate nonnormal densities through a con-

ditional distribution approach based on the

Hyperbolic Tangent transformation. Ramirez

(1997) introduced a modified Inverse Hyper-

bolic Sine transformation (also known in the

statistics literature as the SU Distribution) as

a possible multivariate nonnormal and hetero-

skedastic crop yield distribution model. Ker and

Coble (2003) proposed a semiparametric model

based on the Normal and Beta densities. Em-

pirical comparisons of leading parametric

models have been recently attempted (Norwood,

Roberts, and Lusk, 2004). Despite such ad-

vances, the potential of different probability

density functions (pdfs) to serve as suitable yield

and price distribution models has not been

assessed in the context of a rigorous theoretical

framework, and this critical research methods

issue remains unsettled.

According to basic statistical theory (Mood,

Graybill, and Boes, 1974), the first four central

moments of a pdf are the main descriptors of its

shape. Although there are other means for

characterizing and comparing distributions, this

suggests that the flexibility of a pdf to accom-

modate a variety of empirical shapes (i.e., data-

generating processes) should be closely related to

the Mean-Variance-Skewness-Kurtosis (MVSK)

combinations that are allowed by it.

Unfortunately, in this regard, all of the pdfs

that have been used as a basis for parametric

methods suffer from two significant range re-

strictions: (1) they can only accommodate lim-

ited subsets of all of the theoretically feasible

Skewness-Kurtosis (SK) combinations and,

therefore, might only be capable of adequately

modeling underlying data distributions where

third and fourth central moments are within that

subset; and (2) their variance, skewness, and

kurtosis are controlled by only two parameters

and, therefore, are arbitrarily interrelated (i.e.,

only two of these three key moments are free to

vary independently). Although the expanded

form of the SU advanced by Ramı́rez, Misra, and

Field (2003) allows for any mean and variance

to be freely associated with the SK values per-

mitted by the original parameterization of this

family, it is far from encompassing all theoret-

ically feasible SK combinations.

This research contributes to the yield and

price distribution modeling literature through

the following measures:

1. Introduce a family of distributions (SB) that

perfectly complements the SU in its coverage

of the SK space, and that spans significant

regions of the space not covered by any other

distribution that has been used for the mod-

eling and simulation of crop yields.
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2. Derive expanded forms of this SB family and

of the Beta distribution, which are analogous

to Ramı́rez, Misra, and Field’s (2003) repar-

ameterization of the SU, so that they, too, can

allow for any mean and variance to be freely

associated with their possible SK values.

3. Assess the importance of MVSK coverage in

determining a model’s flexibility to adequately

represent a wide range of distributional shapes.

The SU-SB System

Johnson (1949) introduced the SU and the SB

families of distributions and showed that, to-

gether, they span the entire SK space. Figure 1

is constructed on the basis of the formulas for

the skewness and kurtosis of the SU and SB

distributions, which were also first derived by

Johnson (1949). Specifically, SK pairs are

computed and plotted for very fine grids of the

parameter spaces corresponding to these two

distributions. The same procedure is followed

for the Beta, Gamma, and Log-normal (SL). It

is observed that the lower bound of the SB is at

the boundary for the theoretically feasible SK

space (K 5 S2 22). This plotting illustrates

Johnson’s claim of a comprehensive coverage

of the theoretically feasible SK space by the

SU-SB families.

However, in the parameterizations proposed

by Johnson, each of those SK combinations is

arbitrarily associated with a fixed set of mean-

variance values. Ramirez and McDonald (2006)

outline a reparameterization technique that

expands any probability distribution by two

parameters that specifically and uniquely con-

trol the mean and variance without affecting the

range of skewness and kurtosis values that can

be accommodated. The expanded distribution

obtained through this reparameterization can

therefore model any conceivable mean and

variance in conjunction with the set of SK

combinations allowed by the original distribu-

tion. For the purposes of this study, the tech-

nique is first applied to the SU and SB families.

This yields a system that can model all theo-

retically feasible MVSK combinations. The

reparameterization begins with the original

two-parameter families (Johnson, 1949):

(1) Z 5 g 1 d � sinh�1 Y for the SU distribution

(2) Z 5 g 1 d � ln½Y=ð1� YÞ� for the SB

distribution

where Y is a nonnormally distributed random

variable based on a standard normal variable

(Z). In other words, the original SU and SB

distributions are derived from transformations

of a standard normal density. Their pdfs, which

are also provided by Johnson (1949), are

obtained by substituting Z in Equation (1) (for

the SU) or Equation (2) (for the SB) into

a standard normal density and multiplying the

resulting equation by the derivative of Equation

(1) (for the SU) or Equation (2) (for the SB) with

respect to Y. In the mathematical statistics

Figure 1. SU, SL, SB, Beta, and Gamma Distributions in the SK Plane; the SB Distribution Allows

all SK Combinations in the Beta and Gamma Areas as Well
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literature, this is commonly known as the

transformation technique for deriving pdfs.

Note that from Equations (1) and (2) it fol-

lows that:

(3)
Y 5 sinh

Z � g
d

� �
5 sinhðNÞ for the

SU distribution

(4)
Y5

exp
Z � g

d

� �

1 1 exp
Z � g

d

� �� �5
eN

ð1 1 eNÞ for the

SB distribution

where N is a normal random variable with

mean � g
d and variance 1

d2. The above equations

express the SU and SB random variables (Y) as

a function of a normal, and can be used for

simulating draws from their probability distri-

butions. Johnson (1949) also provides the for-

mulas for computing their means and variances,

which will be denoted by FSU and FSB (for the

means) and GSU and GSB (for the variances).

These formulas are simple but lengthy trigono-

metric functions of g and d. The skewness and

kurtosis of the SU and SB distributions are

functions of g and d as well. All formulas and

a Gauss program to compute the first four cen-

tral moments of both distributions for given

values for g and d are available from the authors.

The random variables (Y) corresponding to

each of the two distributions given in Equations (3)

and (4) are then standardized by subtracting their

means and dividing by their standard deviations:

(5) YS5
sinhðNÞ � FSU

G
1=2
SU

for the SU distribution

(6) YS5

eN

1 1 eN
� �� FSB

G
1=2
SB

for the SB distribution

Note that the standardized SU and SB variables

(YS) will always have a mean of zero and

a variance of one, i.e., the parameters g and d no

longer affect the mean or the variance of their

distributions. However, because standardization

only involves subtracting from and dividing the

original random variables (Y) by constants, the

distributions corresponding to these standard-

ized variables (Y S) can still accommodate the

same sets of skewness-kurtosis combinations

allowed by the original SU and SB families. The

final step in the reparameterization process is to

expand the Y S distributions so that, instead of

being zero and one, their means and variances

can be controlled by parameters or by para-

metric functions of explanatory variables. This

is accomplished by multiplying Y S times the

parameter or parametric function representing

the variance and then subtracting the parametric

function representing the mean:

(7) YF
t 5stY

S �Mt5ðZtsÞYS � ðXtbÞ

where Y S is as defined in Equations (5) and (6)

for the SU and SB distributions, t 5 1, . . . ,T

denotes the observations on the explanatory

variables, and Yt
F represents the final random

variables of interest. From Equation (7), note

that for both reparameterized variables:

(8) E½YF
t �5Mt5Xtb and V ½YF

t �5 s2
t 5 ðZtsÞ2

where Xt and Zt represent vectors of explanatory

variables believed to affect the means and vari-

ances of the distributions, and b and s are con-

formable parameter vectors. That is, the mean

and variance of the reparameterized SU and SB

random variables (Yt
F) are uniquely controlled

by Mt and st
2, while g and d determine their

skewness and kurtosis according to the formulas

provided by Johnson (1949) for the original SU

and SB distributions. Therefore, the reparame-

terized SU-SB system can accommodate any

theoretically possible MVSK combination.

As noted previously, Figure 1 illustrates the

SK regions covered by the SU and SB, as well

as three other commonly used distributions.

The SL or Log-normal distribution, which is

also a part of the original Johnson system, only

spans the curvilinear boundary between the SU

and SB. The Gamma distribution only spans

a curvilinear segment on the upper right

quadrant of the SK plane as well. Like the SL,

the Gamma can be adapted to cover the mirror

image of this segment on the upper left quad-

rant. However, the combinations of SK values

allowed by it are still extremely limited.

Although the Beta covers a nonnegligible

area of the SK plane, note that the SB can ac-

commodate all SK combinations allowed by it.
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In fact, the Beta region is quite narrower than the

SB’s (i.e., the Beta only covers a subset of the SK

area spanned by the SB). Thus, in general, one

might expect the SB to be a more applicable

model than the Beta. However, because higher-

order moments also affect distributional shape,

it is possible that, in some applications, a simi-

larly parameterized Beta would provide for

a better model than the SB. Another difference

that could affect their relative performance in

a particular case is the fact that the Beta is

a bounded distribution, whereas the SB is not.

In short, even if the Beta distribution is rep-

arameterized using the previously discussed

technique, because it only spans a relatively

small subset of the empirically possible SK

space, it may not serve as an acceptable model in

some cases. However, it is also possible that it

would provide for a better model than the SB and

the SU in other applications. Considering its

significant coverage of the SK space and the

potential role of the higher-order moments and

support characteristics of a distribution on

goodness-of-fit, the Beta is selected as the alter-

native candidate model for the comparative

evaluation of the SU-SB system conducted in this

study. The expanded parameterization of the Beta

distribution is derived in the following section.

The Expanded Beta Distribution

An expanded parameterization of the Beta dis-

tribution that can accommodate any mean and

variance in conjunction with all SK combina-

tions allowed by the original Beta is obtained by

applying the same technique used for the SU and

SB. In the case of the Beta distribution:

(9)

E½Y�5d= d 1 lð Þ5 FB and

V½Y�5 dl
d 1 l 1 1ð Þ d 1 lð Þ2

5 GB

Thus, the transformation from the original Beta-

distributed variable (Y) into the random variable

exhibiting the expanded Beta distribution (Yt
F) is:

(10) YF
t 5st Y � FBð Þ=G

1=2
B 1 Mt

The pdf for Yt
F is obtained through a

straightforward application of the transformation

technique, which leads to the following log-

likelihood function:

(11)

LLB5
XT

t51

ln

ffiffiffiffiffiffi
GB

p

s2
t

����
����1 n ln G d 1 lð Þ

� n ln G dð Þ � n ln G lð Þ

1 ðd � 1Þ �
XT

t51

ln Pt

 !

1 l� 1ð Þ
XT

t51

ln 1� Ptð Þ
 !

,

where Pt 5 d
d 1 l 1

ðYF
t �MtÞ �

ffiffiffiffiffi
GB

p

s2
t

and G repre-

sent the Gamma function. As in the case of the

expanded SU and SB, E[Yt
F] 5 Mt and V[Yt

F] 5

st
2 and Mt and st

2 can be specified as linear

functions of relevant explanatory variables.

Estimation of the SU-SB System

Estimation of the SU-SB system can also be

accomplished by maximum likelihood. Since

both originate from normal random variables

(N), the transformation technique (Mood,

Graybill, and Boes 1974) can be applied to de-

rive their probability distribution functions.

According to this technique, the pdf of the

transformed random variable (Yt
F) is given by:

(12)
PðYF

t Þ5
@ðq�1ðYF

t ÞÞ
@YF

t

����
����� Pðq�1ðYF

t ÞÞ

5 JðYF
t Þ � Pðq�1ðYF

t ÞÞ,

where q21(Yt
F) is the inverse of the trans-

formation of N into Yt
F (i.e., the function re-

lating N to Yt
F, P(q21(Yt

F)) is the pdf of an

independently and identically distributed nor-

mal random variable N with mean ð� g
dÞ and

variance d22 evaluated at q21(Yt
F), and J(Yt

F)

is the Jacobian of the transformation—that is,

the derivative of q21(Yt
F) with respect to Yt

F.

Specifically, for the SU, N 5 q�1
SUðYF

t Þ is found

by substituting Equation (5) into Equation (7)

and solving for N:

(13)

N5q�1
SUðYF

t Þ5 sinh�1 fRSUtg where

RSUt5
ðYF

t � XtbÞ � G
1=2
SU

Zts
1 FSU ,

and FSU and GSU are as defined previously. The

Jacobian is obtained by taking the absolute

value of the derivative of Equation (13) with

respect to Yt
F, which yields:
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(14) JSUðYF
t Þ5

G
1=2
SU

Zts ð1 1 R2
SUtÞ

1=2
.

The SU pdf is then obtained by substituting

Equation (13) into a normal density with mean

ð� g
dÞ and variance d22 and premultiplying the

result by Equation (14).

Analogously, for the SB, Equation (6) is

substituted into Equation (7) to obtain:

(15)

N5q�1
SB ðYF

t Þ5 ln
RSBt

1� RSBt

� 	
where

RSBt5
ðYF

t � XtbÞ � G
1=2
SB

Zts
1 FSB,

and FSB and GSB are as defined previously. The

Jacobian is:

(16) JSBðYF
t Þ5

G
1=2
SB

Zts RSBtð1� RSBtÞ
.

Substituting Equation (15) into a normal density

with mean ð� g
dÞ and variance d22 and pre-

multiplying the result by Equation (16) renders

the SB pdf.

The log-likelihood functions are found by

taking the natural logarithms of the resulting

pdfs and adding over the T observations:

(17)

XT

t51

LnfPðYF
t Þg50:5

XT

t51

lnðGtÞ

� 0:5d2
XT

t51

H2
t , where:

(18)

Gt5
d2GSU

2pðZtsÞ2ð1 1 R2
SUtÞ

and

Ht5 ln RSUt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 R2

SUt

q
 �
1

g
d

5 sinh�1 ðRSUtÞ1
g
d

for the SU and

(19)
Gt5

d2GSB

2pðZtsÞ2 R2
SBtð1� RSBtÞ

2
and

Ht5 ln½RSBt=ð1� RSBtÞ�1
g
d

for the SB,

respectively; Gt > 0; and GSU, RSUt, GSB, and

RSBt are as defined previously.

An adjustment that facilitates estimation

and interpretation is redefining the distribu-

tional shape parameters as follows: for the

SU g 5 2m, for the SB g 5 m, and for both

families d 5 1/u. Then, in all cases m < 0, m 5

0, and m > 0 are associated with negative, zero,

and positive skewness, and both families ap-

proach a normal distribution as u goes to zero.

This also allows for testing the null hypothesis

of normality as Ho: u 5 m 5 0. In addition, for

the purposes of estimation, the following pa-

rameter range restrictions are recommended

based on the authors’ experience: 0 < u < 1.5

and 210 < m < 10 for the SU; 0 < u < 100 and

27.5 < m < 7.5 for the SB. Finally, it is noted

that the Gauss programs used for Maximum

Likelihood estimation of the SU and the SB

distributions, for computing their mean, vari-

ance skewness, and kurtosis given estimated or

assumed parameter values, and for simulating

random draws from them are available from the

authors upon request. These programs can be

easily translated into MatLab or SAS-IML.

Validating the Proposed

Theoretical Framework

Ramirez and McDonald (2006) suggest that

MVSK space coverage is key to a model’s

flexibility to adequately represent a wide range

of distributions. This section empirically eval-

uates that hypothesis. Specifically, it explores

to what extent different distributions with

similar MVSK coverage can ‘‘substitute’’ for

each other in practice. This is accomplished

through large sample comparisons between the

SU, SB, and Beta, which are the three distribu-

tions that provide for substantial coverage of

the MVSK space (Figure 1).

Parametric models of farm-level yields

based on these three families of distributions

are estimated using Gauss programs. The data,

obtained from the University of Illinois En-

dowment Farms database, includes 26 corn

farms located in twelve counties across that

state. Data are available from 1959 to 2003,

with sample sizes ranging from 20 to 45 ob-

servations. The mean and standard deviations

are specified as second- and first-degree poly-

nomial functions of time:

(20)
Mt5Xtb5b0 1 b1t 1 b2t2 and st5ðZtsÞ

5s0 1 s1t; t51, . . . , T

All nonnormal models initially include seven

parameters (b0, b1, b2, s0, s1, u, and m in the

case of the SU-SB system and b0, b1, b2, s0, s1,
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d, and l in the case of the Beta). Normal

models with the same mean and standard de-

viation specifications are also estimated and

included in the comparison. Select statistics

about those models are presented in Table 1.

The null hypothesis of yield normality is

tested through likelihood ratio tests of the nor-

mal model versus the nonnormal model with the

highest maximum log-likelihood function value

(MLLFV). This is possible because the Normal

model is nested to all three nonnormal models. If

this hypothesis cannot be rejected (a 5 0.10), it

is assumed that the underlying pdf is Normal.

Otherwise, it is assumed that the true distribu-

tion is the nonnormal with the highest MLLFV.

Although this is not a formal statistical test for

the superiority of a nonnormal model over an-

other, it has been routinely used to rank fit

(Norwood, Roberts, and Lusk, 2004). Following

this criterion, five of the 26 underlying distri-

butions are categorized as Normal, six as SU,

seven as SB, and eight as Beta (Table 1).

For the purpose of the analysis, the corre-

sponding SU, SB, and Beta models are assumed

to be the true distributions and used to generate

the data for the next phase. Specifically, 21

datasets of 100,000 observations each are sim-

ulated on the basis of the six SU, seven SB, and

eight estimated Beta models. The fact that the

distributional shapes used in this evaluation are

Table 1. Select Statistics for Illinois Farm-Level Corn Yield Models Based on SU, SB, Beta, and
Normal Distributions

Farm

Label

Sample

Size

SU

MLLFV

SB

MLLFV

Beta

MLLFV

Normal

MLLFV

Likelihood

Ratio Test

Statistica

Final

Model

A 44 2183.62 2186.67 2187.24 2191.64 16.033 SU

B 32 2123.81 2123.81 2126.39 2134.94 22.273 SB

C 44 2186.38 2182.15 2185.00 2187.61 10.913 SB

D 43 2189.23 2189.39 2189.54 2192.55 6.632 SU

E 25 2108.09 2108.00 2107.72 2112.23 9.012 Beta

F 27 2128.31 2127.08 2127.55 2128.98 3.810 N

G 31 2133.58 2133.57 2133.26 2140.68 14.833 Beta

H 34 2161.15 2160.20 2160.93 2161.80 3.200 N

I 43 2181.27 2184.84 2184.94 2185.62 8.712 SU

J 32 2145.96 2145.94 2146.56 2149.20 6.532 SB

K 27 2120.75 2118.66 2118.98 2126.11 14.903 SB

L 29 2132.56 2132.49 2132.55 2132.56 0.130 N

M 37 2169.08 2169.00 2168.95 2171.97 6.022 Beta

N 45 2197.46 2195.15 2196.37 2197.47 4.641 SB

O 42 2189.54 2188.40 2188.55 2194.36 11.923 SB

P 42 2195.34 2195.28 2195.31 2197.77 4.971 SB

Q 40 2174.07 2173.55 2172.74 2178.18 10.883 Beta

R 33 2145.36 2145.47 2145.67 2150.09 9.463 SU

S 40 2181.77 2182.35 2182.50 2184.12 4.701 SU

T 29 2131.07 2131.05 2129.44 2133.79 8.692 Beta

U 44 2201.83 2201.21 2200.55 2204.01 6.912 Beta

V 29 2127.78 2126.34 2125.69 2131.64 11.913 Beta

W 29 2131.22 2131.24 2131.20 2132.56 2.710 N

X 20 293.45 293.96 294.00 298.42 9.943 SU

Y 29 2135.14 2135.00 2134.35 2136.90 5.083 Beta

Z 30 2143.92 2143.26 2143.37 2144.92 3.320 N

Note: MLLFV refers to the maximum log-likelihood function value.
a The likelihood ratio test statistic compares the nonnormal model with the highest MLLFV with the normal model. The

superscripts 1, 2, and 3 denote rejection of the null hypothesis of normality at the 10%, 5%, and 1% levels, respectively, according

to the likelihood ratio test, while the superscript 0 indicates nonrejection at the 10% level. If the null hypothesis of normality is

rejected at the 10% level, the final model is the one with the highest MLLFV, otherwise the final model is the normal.
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empirically motivated (i.e., derived from para-

metric models that have been estimated on the

basis of actual yield data) enhances the credi-

bility of the analysis.

The following simulation formulas are

based on Equations (5), (6), and (7) for the

proposed system and Equation (10) for the Beta

distribution:

(21)

SSU5Mt 1 st½sinhðufZ 1 mgÞ
n

�FSU �

4u
ffiffiffiffiffiffiffiffi
GSU

p o

(22)
SSSB5Mt 1 st expðu½Z� m�Þ

n

4
ffiffiffiffiffiffiffiffi
GSB

p
½1 1 expðu½Z� m�Þ � FSB�

o

(23) SB5Mt 1 st ðB� FBÞ4
ffiffiffiffiffiffi
GB

pn o

where Z is a draw from a standard Normal and

B is a draw from a Beta distribution with pa-

rameters d and l.

Next, a second round of SU, SB, Beta, and

Normal models are estimated on the basis of

each of the 21 simulated datasets. Key statistics

about those models are presented in Table 2

(data-generating process 5 SB), Table 3 (data-

generating process 5 Beta), and Table 4 (data-

generating process 5 SU). As expected, in each

of the 21 cases, the model with the highest

MLLFV is the one based on the probability

distribution used to simulate the data.

In the case of the seven sets of models

corresponding to the SB-generated datasets

(Table 2), the MLLFVs of the Beta models are

relatively close to those of the SB models, with

the differences averaging 1.02 units. At 2.53

units, the average MLLFV difference between

the SB and SU models is considerably larger.

The Normal models show substantially lower

MLLFVs than any of the three nonnormal

models in all cases.

In the case of the eight sets of models cor-

responding to the Beta-generated datasets (Ta-

ble 3), with differences averaging 0.39 units,

the MLLFVs of the SB models are very close to

those of the Beta models. At 1.26 units, the

average MLLFV difference between the Beta

and the SU models is over four times larger. As

before, the Normal models show much lower

MLLFVs than any of the three nonnormal

models.

In the case of the six sets of models corre-

sponding to the SU-generated datasets (Table

4), both the SB and the Beta models yield

MLLFVs that are substantially lower than those

of the SU models. On average, the MLLFVs are

11.71 units lower in the SB, 12.60 units lower in

the Beta, and 13.94 units lower in the Normal

models.

In short, the MLLFV comparisons suggest

that the SU model is not a close substitute for

either the SB or the Beta, and that the SB and the

Beta models are poor surrogates for the SU. In

contrast, it appears that the SB and the Beta

models could be acceptable substitutes for each

other, with the SB being a better surrogate for

the Beta than the Beta is for the SB. These

findings support the hypothesis that distribu-

tions with similar MVSK coverage are better

able to ‘‘substitute’’ for each other. However,

the question remains as to how well these

nonnormal models can substitute for each

other.

To answer this question, the cumulative

distribution functions (cdfs) implied by the

second-round SU, SB, Beta, and Normal models

are obtained for each of the 21 cases, also

through simulation. The ‘‘true’’ cdfs are also

plotted using the correct distribution and the

exact parameters underlying each of the 21

data-generating processes. Two main statistics

related to those cdfs are also presented in Ta-

bles 2, 3, and 4. AD is the average of 125

vertical percentage distances between the true

and the estimated cdf. Distances are computed

for yield values ranging from 25% to 150% of

the average yields at equal 1% intervals (cdf

values outside of that range are negligible in all

cases). MD represents the maximum of those

125 vertical distances. Cdf values are expressed

to range from zero to 100%, instead of zero to

one.

Table 2 contains the statistics for the seven

cases when the underlying data-generating

process is SB. As expected, the estimated SB

cdfs are very close to the cdfs obtained on the

basis of the true models (AD of 0.03% and MD

of 0.17%, on average). When SU models are

used to approximate the SB, across the seven

cases the AD averages 1.62% and the MD av-

erages 4.50%. As anticipated, because the SK
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regions spanned by the SU and the SB do not

overlap (Figure 1), in general, the SU is a poor

surrogate for the SB. However, the SU approx-

imation of the SB is much better in two of the

cases when the SK combination is near the SU-

SB boundary (Figure 2).

Alternatively, when Beta models are used to

approximate the SB, AD averages 0.81% and

MD averages 2.98%. As anticipated, because

the Beta spans only part of the SK region

covered by the SB (Figure 1) and two of the SB

data-generating processes exhibit SK values

that cannot be accommodated by the Beta

(Figure 2), this distribution does not generally

provide a good approximation of the SB. On

average, however, the Beta is a substantially

better surrogate for the SB than the SU. With

average ADs of 3.13% and MDs of 10.07%, the

normal cdfs are by far the worst models for an

underlying SB process.

Table 3 presents statistics for the eight in-

stances when the data-generating process is

Beta. The estimated Beta cdfs are again very

close to the cdfs obtained on the basis of the

true models (AD of 0.04% and MD of 0.19%,

on average). When SU models are used to ap-

proximate the Beta, the AD averages 1.21%

and the MD averages 3.91%. Because the SK

regions spanned by the Beta and the SU do not

overlap and are in fact separated by a widening

segment of the SK space (Figure 1), the SU is

consistently a poor surrogate for the Beta.

In contrast, when SB models are used to

approximate the Beta, AD averages 0.57% and

MD averages 2.13%. As anticipated, because

the SB spans all of the SK area covered by the

Beta (Figure 1), it provides for a relatively

satisfactory approximation of that distribution.

Figure 3 provides a visual cue of the closeness

with which the typical SB model can replicate

a true Beta cdf. All vertical differences in the

lower one-third of the cdf are in fact less than

1.1%. That is, the SB model can predict cu-

mulative probability at any point within the

lower third of the true cdf with a margin of

error of 1.1% or less. This is particularly

noteworthy because in most cases the lower

(left) tail is the relevant segment of the cdf for

the purposes of risk analysis. With average ADs

of 3.13% and MDs of 10.79%, the normal cdfs

are by far the worst models for an underlying

Beta process as well.

The statistics for the six cases when the

data-generating process is SU are shown in

Table 4. The estimated SU cdfs are again very

close to the cdfs obtained on the basis of the

true models (AD of 0.06% and MD of 0.20%,

on average). In addition, as expected from the

fact that the SB and the Beta do not span any of

the SK space covered by the SU, with ADs

averaging 3.60% and 3.99%, respectively, and

MDs averaging 11.01% and 12.00%, re-

spectively, they are not good surrogates for the

SU. Particularly large cdf approximation errors

Figure 2. Skewness-Kurtosis Combinations of Estimated Nonnormal Models
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are observed in the two cases when the SU

process is characterized by a very high kurto-

sis-to-skewness ratio, which are not shown in

Figure 2 due to scale limitations. The normal

cdfs are again the worst models.

In short, the results presented in Tables 2, 3,

and 4 support the working hypothesis that a

distribution’s capacity to provide for an adequate

approximation of another is closely related to

its ability to accommodate the underlying

MVSK value. These results also suggest that

researchers can achieve a relatively small

specification error by using parametric models

based on distributions which, as a whole, span

the entire MVSK space. Specifically, given that

there are no other distributions spanning the

middle-upper regions of this space (the green

area in Figure 1) and that several empirically

occurring yield distributions seem to exhibit

SK values well into this area, the SU should

always be considered as a candidate model. In

addition, the results indicate that the SB is

a generally better alternative than the Beta for

underlying distributions with SK values on the

surrounding regions of the SK space (the blue,

yellow, pink, and red areas in Figure 1) because

the Beta can only partially cover these

remaining regions.

However, if those SK values are in the Beta

(i.e., yellow) area and the higher-order moments

and support characteristics of the true

underlying distribution are more consistent with

the Beta’s, a model based on this density would

be expected to provide for a somewhat better fit

than the SB. Likewise, under analogous condi-

tions, the Gamma, Log-normal, and other dis-

tributions could improve fit in relation to the SB.

However, these expected gains are only assured

to materialize under large sample conditions.

Therefore, when working with small samples, it

might be best to simply consider the two most

general alternatives (i.e., the SU and the SB) as

candidate models.

Economic Relevance

A final issue of interest is the economic rele-

vance of using a more suitable probability dis-

tribution model for risk management decisions.

This issue is explored on the basis of the results

from the previous section. Specifically, the cdfs

implied by the second-round SU, SB, Beta, and

Normal models are used to compute the values,

expressed as percentages of the distributions’

means, that correspond to the 5, 10, and 20 cdf

percentiles (Table 5). In the case of farm E, for

example, the Normal, SU, SB, and Beta cdfs

reach their 5th percentile at 72%, 63%, 64%, and

66% of their respective means.

The economic relevance of this information

can be related to crop insurance. Assume that

a farm manager wants to know the coverage

Figure 3. Estimated SU, SB, and Normal versus True (Beta) cdf
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level that he/she would need to purchase in

order to be protected from yield losses that are

likely to occur every 20, 10, and 5 years (i.e.,

for three different levels of risk tolerance: 5%,

10%, and 20%). Although actual coverage

levels are limited to 65%, 70%, 75%, 80%, and

85% of the ‘‘average proven yield’’ (i.e., the

estimated mean of the yield distribution), exact

levels are computed and used for the purposes

of this evaluation.

In the case of farm E, for example, the true

underlying distribution is Beta and, therefore,

the farm manager should choose 66%, 77%, or

88% coverage levels depending on his/her risk

tolerance. If this decision was being made on

the basis of an estimated SB distribution, the

selected levels would be 64%, 76%, and 88%

(Table 5). In general, in the eight instances

when the true underlying distribution is Beta,

the coverage levels suggested by the SB model

are fairly close to the correct ones. The average

of the absolute differences between the correct

levels and those implied by the SB distribution

across the 24 cases (eight farms and three risk-

tolerance levels) is only 1.2% (Table 5). Given

the actual coverage level choices (0.65%,

0.70%, 0.75%, 0.80%, and 0.85%), differences

of this magnitude are unlikely to cause an in-

correct selection in most cases and, therefore,

could be considered relatively unimportant

from an economic standpoint.

In the case of farm C, the true underlying

distribution is SB and, therefore, the farm

manager should choose the 70%, 75%, or 85%

coverage level depending on his/her risk tol-

erance. If this decision was made on the basis

of an estimated Beta model, the selected levels

would be 72%, 79%, and 87%. In general, in

the seven instances when the true underlying

distribution is SB, the coverage levels implied

by the Beta are somewhat different from the

correct ones (Table 5). The average absolute

difference in this case is 1.9%. Differences of

this magnitude are more likely to cause in-

correct coverage selection in some cases and

could therefore be considered somewhat im-

portant from an economic standpoint.

Finally, in the six instances when the true

underlying distribution is SU, the coverage

levels implied by the Beta or the SB model areT
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generally quite different from the correct ones

(Table 5). In the case of the Beta, the average of

the absolute differences is 6.1%. Differences of

this magnitude are likely to cause major errors

in coverage selection in most cases and,

therefore, are economically important.

In short, the conclusions from the economic

relevance evaluation are consistent with those

of the previous section. If the true distribution

underlying the yield data are Beta and man-

agement decisions are made on the basis of an

estimated SB model, the degree of error and its

economic implications are relatively minor. If

the true distribution is SB and decisions are

made using a Beta, the errors are somewhat

higher and more likely to be economically

significant in some cases. Finally, if the un-

derlying distribution is SB or Beta and de-

cisions are made on the basis of an SU, or if the

true distribution is SU and decisions are made

using an SB or a Beta model, the degree of error

and its economic significance are likely to be

substantial.

Conclusion

A first general observation is that although the

yield data used in the analyses is from the same

state and crop, the SK combinations implied by

the best fitting models are scattered over a large

region of the SK plane corresponding to both

the SU and the SB/Beta distributions, which

suggests a need for candidate model alterna-

tives that comprehensively span the SK space.

In addition, it is concluded that substantial,

economically relevant errors in model fit

should be expected if such alternatives are not

considered and the assumed distribution is in-

consistent with the SK profile of the true dis-

tribution underlying the data. Alternatively, if

the assumed distribution is capable of accom-

modating the underlying MVSK values, errors

due to discrepancies in higher-order moments

or in the support characteristics of the assumed

versus the true distribution appear to be rela-

tively minor.

Following the recommended strategy of al-

ways considering the SU and SB distributions as

potential candidate models could substantially

reduce the specification error risk that has long

been associated with parametric methods, per-

haps to an acceptable level in most applica-

tions. This conclusion, however, should be

strengthened by further testing the performance

of the SU-SB family versus other parametric

distributions, and does not preclude their con-

sideration as candidate models. A particularly

promising alternative for future testing is the

multivariate normal mixture, which could also

be reparameterized to span all MVSK combi-

nations. It is also recognized that the relative

complexity of the proposed family versus the

most commonly used alternatives could affect

its widespread applicability.

A final caveat on the recommended distri-

butions is that they are continuous in nature.

Thus, econometric modeling allowances must

be made when working with data discontinu-

ities such as censored yield observations due to

droughts or flooding. It is also recognized that

a statistically reliable use of the procedures

discussed in this article requires at least mod-

erate sample sizes (30–50 observations), which

are often not available at the individual farm

level. However, multivariate extensions of

these procedures that can pool information

from several farms to estimate the skewness

and kurtosis parameters are feasible and

straightforward, and county, state, and country

level data now span several decades. Finally, as

sample sizes grow, these procedures will be-

come more usable at the single farm level as

well.
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