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Forecasting Hog Prices with a Neural Network

Lonnie Hamm and B. Wade Brorsen

Abstract: Neural network models were compared to traditional forecasting methods in
Jorecasting the quarterly and monthly farm price of hogs. A quarterly neural network
model forecasted poorly in comparison to a quarterly econometric model. ‘A monthly
neural network model outperformed a monthly ARIMA model with respect to the mean
square error criterion and performed similarly to the ARIMA model with respect to
turning point accuracy. The more positive results of the monthly neural network model
in comparison to the quarterly neural network model may be due to nonlinearities in
the monthly data which are not in the quarterly data.

Key Words and Phrases: Forecasting, Hog prices, Neural networks, ARIMA,
Econometric.

Econometric and autoregressive-integrated-moving average (ARIMA) models are
commonly used to generate forecasts of commodity prices. Both econometric and
ARIMA models have been developed and compared for the purpose of forecasting the
monthly and quarterly farm price of hogs, e.g., Brandt and Bessler (1981, 1983);
Harris and Leuthold; and Leuthold, Garcia, Adam and Park. Generally, these models
are linear. If there are nonlinearities in the process being modeled, then a method
which can account for these nonlinearities should produce superior forecasts. Neural
networks are reported to be such a method. Neural networks are capable of
approximating almost any nonlinear function (Kuan and White).

The purpose of this paper is to determine how well a neural network can predict
quarterly and monthly hog prices relative to traditional methods. The first part of this
paper briefly explains neural networks and some of their applications. Part two
presents econometric and neural network forecasting models for the quarterly price of
hogs and ARIMA and neural network forecasting models for the monthly price of
hogs.! Part three presents the evaluation procedures to evaluate the forecasting ability
of the models. In particular, part three explains the Henriksson-Merton (HM) test for
informational value in directional forecasts. Part four presents the forecasting
performance of the neural network, ARIMA and econometric models. The last part
summarizes the research findings and discusses the results.
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Forecasting Hog Prices

Neural Networks

The popularity of neural networks has extended into almost every area of science.
Neural networks have been used to translate printed English into speech (Sejnowski
and Rosenberg) and to decode deterministic chaos (Lapedes and Farber). Neural
networks have been compared with time series forecasting techniques such as the

- Box-Jenkins approach (Tang, Almieda and Fishwick; Hill et al.). Kang provides a
good comparison using the M-111 competition data. In agricultural-economics-related
areas, neural networks have been applied to corn yield prediction (Uhrig, Engel and
Baker), price prediction (Claussen and Uhrig; Kohzadi et al.), and production function
estimation (Joerding, Li and Young). Forecasts of monthly live cattle and wheat
prices from neural networks and ARIMA models were compared in a study by
Kohzadi et al. who claimed that the neural network forecasts were considerably more
accurate than those of the traditional ARIMA models. Generally the studies
concerning time series data have concluded that neural networks are at least as
effective as Box-Jenkins time series models, and sometimes better, in providing
forecasts.

- The development of neural networks was inspired by the way information is
processed by a collection of brain cells or neurons. Therefore, the development of
neural networks has its roots in neuroscience; however, it would be inaccurate to say
that neural networks simulate the behavior of the human brain.

The process by which biological neurons process information is complex. The
communication between biological neurons is both electrical and chemical and each
of these communication processes is complex. As will become clear, the neurons or
processing elements in a neural network are simple nonlinear functions and the
“communication” between the neurons is linear. Therefore, a neural network is
neither a realistic description of a small group of neurons nor of the human brain
which contains about 1.5x10'° neurons with each neuron receiving signals from 10 to
10* other neurons (Ripley). If a neural network is not a model of the brain, what is it?

In general, a neural network can be viewed as estimating a mapping f:X-Y
where X is the space of inputs or independent variables and Y is the space of outputs
or dependent variables. The ability of a neural network to estimate the mapping
function fis called the universal approximation property or nonlinear approximation
property. In other words, the functional form of the model need not be made explicit,
as is done in a traditional nonlinear regression. Neural networks have a flexible
nonlinear functional form, thus a neural network approximates a function which
relates the independent to the dependent variables.  There are several types of neural
networks which possess the universal approximation property, the most popular being
feedforward neural networks. This research is limited to the feedforward neural
network. The following section explains the specifics of the feedforward neural
network. It will become clear in the following discussion that a neural network may -
be interpreted as a nonlinear regression function (Kuan and Liu). Economists are
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likely to find neural networks easier to understand if they view them in the framework
of a nonlinear regression.

Neural networks are often illustrated graphically as in Figure 1. Each circle in
Figure 1 is called a neuron. These neurons are arranged in layers: an input layer, an
output layer, and one or more hidden layers. In Figure 1 there are two input neurons
in the input layer, two hidden neurons in one hidden layer, and two output neurons in
the output layer. The input layer contains the input neurons which correspond to the
independent variables of a regression. Similarly, the output layer contains the output
- neurons which correspond to the dependent variables in a regression. Note that similar
to a vector autoregression model, there can be more than one output.

To illustrate a neural network mathematically, suppose we have » inputs in the
input layer, p hidden neurons in one hidden layer, and ¢ neurons in the output layer.
Then at time ¢, or for observation ¢, each of the » neurons in the input layer contains
the value of one of our » independent variables at time 7. The ith neuron in the input
layer is connected with the jth neuron in the hidden layer via a parameter 'yij . The
value of each hidden neuron j at time £, %, is a nonlinear function ¥ of a weighted.
average of the values in the input layer plus a parameter Yo which is analogous to
an intercept in a regression:

AL RO D S A 2 1

where p is the number of hidden neurons and , isa nonlinear function which maps
from R to R. The function ¥, isoften called a transfer function. The nonlinear
transfer functions in the hidden layer(s) are responsible for the nonlinear
approximation capabilities of a neural network. The bias neuron shown in Figure 1
is equivalent to an input variable whose value is always one.

The functional form of the nonlinear transfer functions . in (1) can be chosen
quite freely; however, the functions are generally monotonicalfy increasing. The two
most common functions are the sigmoid and the hyperbolic tangent given by

fix) =1/(1 +exp(~x)) and  f{x) = (exp(x) ~exp(~x))/(exp (x) +exp(~x))
respectively. The sigmoid function scales the output from each neuron to be between
0 and 1 and the hyperbolic tangent function scales the output from each neuron to be
between and -1 and 1. Note that the transfer functions in the hidden layer(s) are
indexed by j signifying that each hidden neuron can have a different transfer function.
However, it is common to choose all the transfer functions to have the same functional
form. ‘ ’

Each hidden neuron hjt is connected to each of the g output neurons y,, in the
output layer via a parameter B,k , Wwhere j is the hidden neuron and £ is the output -
neuron. The output of the Ath odtput neurons at time ¢ is given by the following:
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Figure 1. . :
Feedforward Neural Network with One Hidden Layer, F our Input Variables and Two
Output Variables )
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where y, isthe predicted value of y,, . The transfer functions F, in(2) canbe
chosen to be a nonlinear transfer function or the identity function, F(a) =a. Itis
only necessary for the hidden layer transfer functions to be nonlinear for the nonlinear
approximation capabilities of the network to hold. If a neural network has more than
ne hidden layer, the output from the hidden neurons in (1) would be processed by the
1ext hidden layer. The output from each hidden layer is processed by the next
succeeding hidden layer. The output from the last hidden layer would be processed
18 in (2). Putting (1) and (2) together and assuming a linear transfer function in the
utput layer and one output neuron we get: :
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= G(Xt’ Ok * Z Bjkllj (YOJ Z Ylj xt . (3)

where X, is an n-vector containing the independent variables and 0 is a set
containing all parameters [3 and 7y . The parameters [ and Y are often called
weights in the neural network literature.

From the proceeding discussion, we can see that there are two types of neurons in
a neural-network, those that “hold” values and those that are nonlinear processors.
The inputs neurons “hold” the values of the inputs (independent variables) for a
specific observation of the data and the hidden neurons are processing elements. If the
output layer transfer function is linear than the output neurons “hold” the values of the
outputs (dependent variables), otherwise they are also nonlinear processors.

From (3) it is easy to see that a neural network is a regression equation with a
highly nonlinear functional form. Therefore, some of the concepts and tools with
which economists would be familiar can be applied with neural networks. An
example would be the various nonlinear estimation techniques, such as the various
quasi-Newton methods, that could be used to estimate the parameter set 0. The
neural network literature refers to estimation of the parameter set 0 as learning. The
traditional learning algorithm to estimate the parameter set 6 is known as back- -
propagation. The feedforward type of neural network given in (1), (2) and (3) is
sometimes called the backpropagation network. It is important to separate the specific
functional form of the neural network from its learning algorithm. Feedforward
networks are not intimately tied with the backpropagation learning algorithm. Other
algorithms more familiar to economists can be used.

Until recently, and perhaps even still, backpropagatlon was sometimes viewed with

mystique. As Kuan and White write:

For a period, artificial neural nietwork models coupled with the method of
- backpropagation came to be viewed as magic, with considerable accompanying
hype and extravagant claims (p. 18). :

Backpropagation is a quasi-gradient descent method whereby the parameters are
updated after presentation of each observation. Adjusting or updating the parameters
after each observation is sometimes called recursive least squares. Those familiar with
nonlinear optimization know that gradient descent has poor convergence properties.
This can be seen empirically in the neural network literature in which thousands or
tens of thousands of iterations are required. In addition, various methods have been
used to stop the iterations before convergence is achieved. Thus, reported results may
not be replicable.

For most implementations that economists would be interested in, traditional
nonlinear least squares is probably the preferred estimation method. In traditional

Sorine 1997 41



Forecasting Hog Prices

nonlinear least squares the SSE is minimized.> SSE is defined as:

SSE =ZO’;‘—y)2.‘ (4)
£
Thus, to find the pararﬁeter set O we solve:
min SSE =min Y (G(X,,6) - »)? )
8

where G(Xt ,0) is from (3). Solving (5) can be done using optimization methods
such as Levenberg-Marquardt, various Newton methods, and conjugate gradient
methods (see Hagan and Menhaj; Johansson, Dowla and Goodman; Barnard; Battiti;
Kinsella). In this research we use a quasi-Newton algorithm. Finding a solution to (5)
is complicated by numerous local minimums because of the complicated functional
form and the large number of parameters of neural networks. Some research has been
done with global optimization algorithms in the context of neural networks, e.g., Baba
et al; Chin; Brunelli; Styblinski and Tang. For simplicity, a method involving many
restarts from random starting values is used here.

F orecaétin g Models

Forecasting models for the quarterly and monthly price of hogs are developed. The
following sections describe development of econometric and neural network models
for forecasting quarterly hog prices and ARIMA and neural network models for
forecasting monthly hog prices.

Quarterly Econometric Model. The econometric model is a smgle equation,
reduced-form model with lagged supply and demand variables. Supply of hogs in
quarter ¢ is represented as a function of the pig crop in quarter -1 and #-2. Beef is
assumed to be a substitute for pork; therefore, cattle placed on feed during quarter -2
is included to represent cattle slaughter in quarter £. Chicken is not included as a
substitute because of the insignificant relationship with pork demand (Moschini and
Meilke). Following Brandt and Bessler (1983) the hog-corn price ratio for quarter #1
is included as an explanatory variable. Per-capita disposable income should be
positively related to price. ’ '
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The proposed econometric model is

PH, =f(PC,_,, PC,,, CPOF, ,,H/C, ,log(I_/N,.))  (6)

t-1° t-2°

where PH is the quarterly price of barrows and gilts in dollars per hundredweight; PC
is the ten-state quarterly pig crop, 1,000 head; CPOF is the thirteen-state cattle placed
on feed during the quarter, 1,000 head; H/C is the hog-corn price ratio; and log(I/N)
is the log of per capita disposable income. The quarterly hog price is a quarterly
average of the monthly prices used in the monthly model discussed in the next section.
The pig crop, cattle placed on feed, and hog-corn ratio data were collected from the
U.S. Department of Agriculture Hogs and Pigs (U.S. Department of Agriculture,
1974-1996d), Cattle on Feed (U.S. Department of Agriculture, 1974-1996c¢), and
Agricultural Prices (U.S. Department of Agriculture, 1974-1996a), respectively. Per
capita disposable income was collected from the Survey of Current Business (U.S.
Department of Commerce). The specific time periods to be used for estimation and
forecasting are given in Table 1.

The econometric model was originally estimated using ordinary least squares. This
estimation produced a Durbin-Watson statistic of 1.012 over the first time period of
estimation given in Table 1. This suggests positive autocorrelation at the 1 percent
significance level. It was determined that a first-order autoregressive process was
appropriate for this model. For the first time period of estimation the estimated model
with t-value given in parentheses is given below: .

PH, = -290.920 - 0.0005566 PC,_, - 0.0009910 PC, , - 0.0019692 CPOF,_,
(-1.821)  (-1.283) (-3.426) (-2.197)

+0.60910 H/C, | +43.22100/N,  +¢,
(2.439) - (2.188) . )
g =.53782¢_ +u,
(4.465)

adjusted R? =.5785

where , is an identically, independently distributed error term. All coefficients except
for the constant and coefficient on PC,, are significant at the 5 percent level. All
coefficients are of the expected sign. The estimation was done using Shazam,
software version 7.0.
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Table 1. :
Time Periods Pertaining to Estimation and Forecasting for-Econometric and

Neural Network Forecasting Models for Quarterly Hog Prices

Estimation Interval Forecasting Interval
Period Number ~ Year.Quarter Year.Quarter
1 1973.4-1985.4 1986.1-1987.4
2 .’ 1975.4-1987.4 ' 1988.1-1989.4
3 1977.4-1989.4 - 1990.1-1991.4
4 1979.4-1991.4 1992.1-1993.4
5 - 1981.4-1993.4 1994.1-1995.2

Monthly ARIMA Model. The Box-Jenkins methodology (Box and Jenkins) was
used to build an ARIMA model to forecast the monthly price of hogs. The price of
hogs was the monthly price of barrows and gilts as reported by USDA’s Livestock and
Poultry Situation and Qutlook (U.S. Department of Agriculture, 1974-1993)
subsequently renamed Livestock, Dairy and Poultry Situation and Outlook (U.S.
Department of Agriculture, 1994-1996).> The specific time periods to be used for
estimation and forecasting are given in Table 2.

An ARIMA(p,q) model has the following basic form:

V4 q | .
PR 0t Y e e, ®
i=1

i=1

where e, is white noise. The basic ARIMA model specifies that the process being
modeled must be stationary or time invariant. To ensure stationarity of the monthly
hog price time series, first differences are taken. Taking first differences creates a new

time series
Z, =P, Py ©)

where p, is the monthly price of hogs. The stationarity of a time series can be
statistically tested by checking for a unit root. Two such tests are the Dickey-Fuller
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Table 2.
Time Periods Pertaznzng to Estimation and Forecasting for ARIMA and Neural

Network Forecasting Models for Monthly Hog Prices

Estimation Interval Forecasting Interval
Period Number . ' Year.Month Year.Month
1 ‘ 1973.7-1990.6 1990.7-1991.6
2 . 1974.7-1991.6 1991.7-1992.6
3 1975.7-1992.6 1992.7-1993.6
4 1976.7-1993.6 1993.7-1994.6
5 197:/.7-1994.6 1994.7-1995.6

(Dickey and Fuller) and the Phillips-Perron unit root tests (Phillips; Perron). In all
estimation periods in Table 2, both tests rejected the presence of a unit root in the first-
differenced data. ‘

Using the Box-Jenkins methodology an ARIMA model with no mean and auto
regressive terms at Jags 1, 2 and 11 and moving-average terms at lags 1, 2 and 12 was
specified. Estimation results for the first estimation period in Table 2 are presented
below with t statistics in parentheses:

z,=1.0411z,, - 05253z, + 3140z, , -0.9398e,, +0.3325¢,_, - 0.3490¢,_ (10)
(14.950)  (-8.209)  (8.057)  (-11.200) (3.823)  (-9.999)

where , is the first difference of the monthly price of hogs given in (2). The estimation
was done using Shazam software version 7.0. Using the Box—_Jerikins methodology,
the specification of the monthly ARIMA model in (10) is subject to individual
interpretation. An advantage of a neural network over an ARIMA model is that all
lags that may be significant can be inputs to a neural network and given enough data,
the neural network will determine which ones are significant.

Neural Network Models. The inputs (independent variables) and outputs
(dependent variables) of the quarterly neural network model are the same as the
independent and dependent variables of the quarterly econometric model. The output -
of the monthly neural network model is the first difference in the monthly price of
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hogs as given in (9). The inputs are 12 lags of the output variable. The choice of 12
lags for the inputs was chosen a pridri on an ad hoc basis. Theoretically, 24 or 36 lags
could be used, then given enough observations of data, a neural network should be
able to estimate a model which uses only those lags which are significant. However,
as in most economic processes, the observations available to model the process are
limited. In addition, more inputs to a neural network increase computational time.
Thus, 12 lags were felt to be parsimonious yet sufficient to model the time series. The
time periods of estimation and forecasting for the quarterly and monthly neural
network models correspond to those of the respective quarterly econometric and
monthly ARIMA models.

Once the inputs to a neural network are chosen, several critical parameters remain
to be chosen for the neural network models, the number of hidden layers and number
of hidden neurons. One hidden layer is all that is required for a neural network to be
a “universal approximator” (Kuan and White). Thus both the quarterly and monthly
neural network models were chosen to have one hidden layer. Choosing the number
of hidden neurons is not as easy.

The number of hidden neurons determines to what degree the data can be “fit” by
the neural network. If there are too many hidden neurons, the neural network will
overfit the data and will produce poor forecasts. On the other hand, there need to be
enough hidden neurons to sufficiently model the process at hand. Methods to pick the
number of hidden neurons are, to a large extent, an open research question. For
simplicity, the Schwartz Bayesian Criterion (SBC) is used in this research to pick the
number of hidden neurons.

The SBC is a reasonably effective method of picking the number of hidden neurons
and is computationaly cheap (Sarle).” Other methods are available, but they generally
involve pretesting a network on a cross-validation subset of the data. These methods
are appropriate in situations in which data is more plentiful. For the quarterly and
monthly neural network models and for each of the estimation periods given in Table
1 and Table 2, a neural network is trained to convergence (to be explained in more
detail below). For each of the estimation periods, the neural network configuration
(number of hidden neurons) which minimizes the SBC is chosen to produce forecasts
over the appropriate forecast interval.

The transfer functions were chosen to be the identity function for the output layer
and the hyperbolic tangent for the hidden layer. There are theoretical reasons why the
hyperbolic tangent transfer function in the hidden layer may help convergence of the
learning algorithm (Kalman and Kwasny; Refenes et al.). Both the inputs and outputs
of the neural networks are normalized or scaled between -1 and 1. Values of the
hyperbolic tangent transfer function range between -1 and 1. Thus scaling the inputs
and outputs can help limit numerical problems which can occur in the training of the .
neural networks. : '
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Estimation of the parameters of the networks, i.e. 0 in (3), was done using a
Fortran program. The Fortran program was compiled using Microsoft Fortran
Powerstation, version 4.0, and a quasi-Newton optimization algorithm in the IMSL
math libraries to solve (5).* As discussed in the neural networks section, the solution
to (5) is complicated by that fact that there are many local minimums. To increase the
probability of finding a global minimum, or a value close to the global minimum, the
estimation or training procedure is performed 500 differént times using 500 different
randomly chosen starting values. For the 500 restarts, only the parameter set O
associated with the lowest SSE after convergence is retained. The SBC criterion is
then computed from this network to choose the number of hidden neurons. One
advantage of using many random restarts is that the results reported in this research

“are more likely to be replicable than past research which typically only considered one
set of random starting values.

Evaluation Procedure

The forecasting accuracy of the ARIMA, econometric and neural network models
_are.compared using mean squared error, turning point accuracy and the Henriksson-
Merton test (HM test) for information value in the turning point forecasts.
Mean square error (MSE) is defined as

MSE =Y (P, - 4)/n] (11)

where # is the number of forecasts and P and A are predicted and actual values
respectively. Small gains in forecasting accuracy can be of considerable economic
benefit. Models have been proposed in which gains are proportional to the square of
forecast errors (Hayami and Peterson; Freebairn). Such models offer support for using
a criterion such as MSE for ranking forecasts.

A correct turning point forecast is defined as:

sign(P, - A, ) =sign(4d,-4,_) - (12

where P and 4 are as defined for (11). Percentage turning point accuracy (%TPA) is
then defined as the percentage of forecasts in which (12) is satisfied. Correct turning
point forecasts can provide valuable information to decision makers. However, it
would be useful to have a statistical test of the ability of a set of forecasts to predict
the future direction of a price series. Henriksson and Merton developed a
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nonparametric statistic to evaluate a model’s ability to predict direction.

The Henriksson-Merton test (HM test) is used to test the null hypothesis of no
information in the forecasts. The HM test provides confidence and significance levels
for rejection of the null hypothesis. As given in McIntosh and Dorfman, the
confidence level, C, is given by: :

' min(N;,n) N N N
c=1- 1 2 / . (13
A0 el /G

where:

N, = the number of observations with downward movement,

N, = the number of observations with non downward movement,
N=N,+N,

n; = the number of correct forecasts of downward movement,

n, = the number of incorrect forecasts of downward movement,
n =n, + n, = the number of forecasts of downward movement.

- Equation (13) is based on the hypergeometric distribution. The significance level for
rejection of the null hypothesis is given by 1-C, where C is from (13).

Results

As discussed in the “Forecdsting Models™ section of this paper, the Schwartz
Bayesian Criterion (SBC) was used to pick the number of hidden neurons for each of
the forecasting periods for the quarterly and monthly neural network models. For the
quarterly model, the SBC resulted in four hidden neurons for the first forecasting
interval in Table 1 and six hidden neurons for the other four forecasting intervals. For
the monthly model, two hidden neurons were chosen for period numbers 1, 3, 4 and.
5 and three hidden neurons for period 2.

The performance of the quarterly econometric and neural network model is given
in Table 3 and Table 4. Over all forecasting periods, the neural network forecasting
models’ MSE was 92.17 and %TPA .53 compared to the econometric models’ MSE
of 49.51 and %TPA .68. Thus the quarterly neural network model performed
considerably worse than the econometric model. This is also reflected in Table 4
which presents the numbers for the HM test. We cannot reject the null hypothesis of
no information value in the directional forecasts of the neural network model.
However, in the case of the econometric model, the null was rejected at a significance
level less than 3 percent.
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Table 3.
Performance of Quarterly Hog Price Forecasts

Neural Network Econometric .
Forecast Interval
Year.Quarter ‘ MSE® %TPAP MSE %TPA
1986.1-1987.4 85.35 38 106.12 .50
1988.1-1989.4 31.63 63 37.39 75
1990.1-1991.4 - 145.99 75 67.98 75
1992.1-1993.4 45.08 38 13.89 .63
1994.1-1995.2 173.00 .50 13.09 .83
1986.1-1995.2 92.17 .53 - 49.51 .68

 Mean square error (MSE) for predictions.
b94TPA is the percentage of correct turning point forecasts.

Table 4.
Test for Value of lnformatzon in Quarierly Hog Price Predictions
. HM
%TPA| %TPA|. Confidence
Model Upturn® Downturn® %TPA Level°
Neural Network 40 .67 .53 .5345
Econometric 80 56 68 9739

29 TPA|Upturn is the percentage of correct turning point forecasts for those turning points in
which there was an upward movement in the price series.

94 TPA[Downturn is the percentage of correct tuming point forecasts for those turning points
in which there was a downward movement in the price series.

¢ (1-HM Confidence Level) gives the significance level for rejecting the null hypothesis of no
information value in the directional forecasts.

The performance of the monthly ARIMA and neural network model is given in '
Table 5 and Table 6. Over all forecasting periods, the neural network forecasting
models” MSE was 11.96 and %TPA .60 compared to the ARIMA models” MSE of .
15.62 and %TPA .62. The neural network performed better than the ARIMA model
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Table 5.
Performance of Monthly Hog Price Forecasts

Neural Network ARIMA
Forecast Interval
Year.Month MSE*® %TPA® - MSE %TPA
1990.7-1991.6 14.37 .58 12.26 .50
1991.7-1992.6 14.08 42 17.40 .67
1992.7-1993.6 10.97 .58 17.51 .67
1993.7-1994.6 10.91 .58 14.76 75
1994.7-1995.6 9.44 83 16.18 .50
1990.7-1995.6 11.96 .60 15.62 .62

*Mean square error (MSE) for predictions.
®9%TPA is the percentage of correct turning point forecasts.

Table 6.
Test for Value of Information in Monthly Hog Price Predictions
‘ ‘ . HM
%TPA| %TPA| Confidence
Model . Upturn*  Downturn® %TPA -~ Level°
Neural Network .52 .67 .60 .8819
ARIMA 54 71 .62 .9237

*%TPA|Upturn is the percentage of correct turning point forecasts for those turning points in
which there was an upward movement in the price series.

*%TPA|Downturn is the percentage of correct turning point forecasts for those turning points
in which there was a downward movement in the price series.

¢ (1-HM Confidence Level) gives the significance level for rejecting the null hypothesis of no
information value in the directional forecasts.

with respect to the MSE criterion, but not with respect to the %TPA criterion. Using
the HM test, we fail to reject at the 5 percent significance level the null hypothesis of
no information value in the directional forecasts for both the neural network and
ARIMA models. ’
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s

Summary and Conclusions

Econometric and neural network models were constructed to forecast the quarterly
farm price of hogs and ARIMA and neural network models were constructed to
forecast the monthly farm price of hogs. Thirty-eight out-of-sample forecasts of the
quarterly price of hogs were produced from the econometric model given in (7) and
a neural network model. The neural network model used the same information to
produce forecasts as the econometric model. That is, the independent variables and
dependent variables in the econometric model were the same as the inputs and outputs
respectively for the neural network. The neural network model performed poorly in
comparison to the econometric model.

The cause for this performance may be twofold. First, the true model in this case
may be linear. A neural network should be capable of modeling a linear model as
successfully as a corresponding linear econometric model. However, given the limited
number of observations available for estimation, the neural network may have not
converged to a linear model. Second, given the significant autocorrelation in the
econometric model, a recurrent neural network (see Kuan and White; Connor, Martin
and Atlas) would probably perform superior to the feedforward type of neural network
used in this research.

Sixty out-of-sample forecasts of the monthly price of hogs were produced from the
ARIMA model given in (10) and a neural network model. In the MSE criterion sense,
the neural network model outperformed the ARIMA model. - The neural network =
model performed similarly to the ARIMA model with respect to the %TPA
(percentage turning point accuracy) criterion. The ARIMA model which was specified
had moving average components. It has been shown that recurrent neural networks
have an advantage over feedforward neural networks for time series with a moving
average component (Connor, Martin and Atlas). Thus, as in the quarterly model, a
recurrent neural network may have performed better in comparison to the feedforward
neural network. However, software limitations limited this research to the
feedforward type of neural network.

The more positive results of the monthly neural network model in comparison to
the quarterly neural network model may be due to nonlinearities in the monthly data
which are not in the quarterly data. Indeed, we may not expect a quarterly economet-
ric model to exhibit nonlinearities. The monthly data also provided more observations
which could be used to estimate the neural network. Given the difficulty,
computationally and otherwise, in constructing a neural network forecasting model,
it may be wise to consider a neural network forecasting model only in situations in
which one would expect nonlinearities and a large number of observations are
available for estimation. :

Some success was demonstrated with the monthly neural network hog price
forecasting model. Others have obtained positive forecasting results with neural -
networks on other price series (Kohzadi et al.). Therefore, further research in applying
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neural networks to forecasting agricultural price series is warranted. More price series
need to be considered as well as other types of neural networks, in particular, recurrent
neural networks.

Notes

Lonnie Hamm is a Ph.D. candidate and B. Wade Brorsen is a Regents Professor
at Oklahoma State University.

1. The choice of a quarterly econometric model and monthly ARIMA model for
comparison with corresponding neural network models may not seem consistent.
A more logical choice might be quarterly and monthly ARIMA models and/or
quarterly and monthly econometric models. The original research was restricted
to the quarterly econometric model. Comments from the reviewers led us to
consider a monthly model. A monthly econometric model would be difficult to
specify and time series models often outperform econometric models. Thus, a
monthly ARIMA model was chosen for another comparison between neural
nétworks and traditional forecasting techniques.’

2. In practice, ¥ the SSE is minimized. This can reduce the number of floating point
operat1ons needed to calculate the analytical derivatives of (4). The solution to (5)
is identical wether minimizing SSE or % SSE.

3. The specific prices used in this research were: July, 1973, through January, 1992,
seven markets weighted average price; February, 1992, through February, 1994,
six markets weighted average price; and March, 1994, through June, 1995, five
markets weighted average price.

4. The specific optimization algorithm was DBCONG in the IMSL libraries. The
weights of the neural network were constrained between -30 and 30. The
maximum number of iterations was set at 1,500 and the maximum number function
and gradient evaluations was set at 3,000. The starting values were initialized
using the IMSL function DRNUN and were scaled between .3 and -.3.
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