|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

AGRICULTURAL ECONOMICS Page 149
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1. INTRODUCTION

The study on which this article is based is hoped to be the first of a
series investigating the use of dynamic programming in agricultural allocation
decisions. The model presented in this article was constructed in simple
form to study once-over sequences of allocation of land to some activity of
long-run benefit. The activity chosen was pasture improvement, but as
will be seen later the section of the model which describes pasture improve-
ment could be altered to make the model specific to some other relevant
activity if desired.

The presentation of this article is as follows: First the nature of dynamic
programming as an analytical tool is explained. Then the dynamic
programming relationships in the model are constructed and a simple
numerical example is given to illustrate the computational procedure. The
second part of the model, which derives the pasture improvement return
functions, is then shown. Some general computational problems are
discussed, following which the properties of both parts of the model are
investigated in some detail,

* Economics Research Officer, N.S.W. Department of Agriculture.

This article is derived from a section of the author’s Master’s thesis, Dynamic
Programming and the Economics of Pasture Improvement, (unpublished M. Sc. Agr.
thesis : University of Sydney, July, 1962). Grateful acknowledgment is due to
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2. OUTLINE OF DYNAMIC PROGRAMMING PRINCIPLES

Conceptually, allocation decisions can generally be reduced to problems
of optimization subject to constraints!. Under “ rigorous ” conditions of
optimization, agricultural allocation problems have recently been most often
attacked using linear programming. There are some allocation decisions,
however, for which linear programming is inappropriate, due to the presence
of elements in the decision process such as non-linearities, discontinuities,
risk, uncertainties, etc. These factors may make it difficult to rationalize
the conventional framework of assumptions within which linear programming
operates, and the analyst may thus be obliged to seek more suitable algorithms,
such as the extensions of linear programming or other branches of
mathematical programming. One possibility is dynamic programming
which is of particular interest if non-linear and discontinuous relationships
are important and/or if sequential decisions are involved.

The peculiar class of decision situation with which dynamic programming
is most concerned is that involving multi-stage decision processes. For
definitional purposes, consider a physical system whose state at time ¢ is
specified by a function F(x, s, ..., ;) of the set of m parameters ;.
These parameters are called the srare variables. During the course of time
the system is subject to change which is manifested by a sequence of
transformations of the state variables. If we have power of choice over the
transformations which may be applied to the system at any time, the process
becomes a decision process and the effect of a single decision is to cause a
single transformation of the parameters. If a sequence of decisions is
involved, then the set of transformations describes a multi-stage decision
process. The choice of transformations is governed by the desire to
optimize some function of the final state variables, the objective function.
Let us define also a policy as a feasible sequence of decisions and an optimal
policy as one which optimizes the objective function. The multi-stage
problems with which we are concerned are those in which the outcome of
preceding transformations may be used in determining the course of future
transformations.

It should be realized at once that dynamic programming does not offer a
standard algorithmic method for solving sequential decision problems.
Rather it provides a conceptual framework within which a problem can be
formulated?; the dynamic programming formulation often allows a solution
to be reached where in many cases this would not be possible if the problem
were being analysed by more * conventional ” tools such as calculus, linear
programming, routine search, etc. These methods are often useless in
multi-stage situations because they are subject to severe limitations on the
size of the problem which they can handle as the number of stages is increased,
even given unlimited assistance from the fastest electronic computers. The
basic reason for dynamic programming’s superiority here is that instead of
evaluating one specific problem, it imbeds the process under consideration
in a family of similar problems, For instance in an AN-stage maximization

Indeed, Arrow has remarked that the whole area of decision theory ** is mathe-
matically, to a great extent, a branch of the theory of constrained maxima ”; see
K. J. Arrow, ** Decision Theory and Operations Research ’, Operations Research,
Vol. 5, No. 6 (December, 1957), p. 765.

2As Bellman says: * Dynamic programming is not so much any fixed set of
analytical techniques as a state of mind ’; see R. Bellman, Adaptive Control
Processes: A Guided Tour (Princeton: Princeton University Press, 1961), p. 59.
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problem involving a decision py over a one-dimensional region at each stage
(a series of decisions py, ps, . . ., py), “*traditional methods” view the
process as a single N-dimensjonal maximization problem; dynamic pro-
gramming treats this situation as a series of N single-dimensional maximiza-
tions. In such a process the effect of decision p, is to cause a transformation
of the state variables and reduce the N-stage process to an (N — 1) stage
process; p, causes a further transformation and reduces the number of
stages to (N — 2), and so on, to py, which is a decision corresponding to a
one-stage process, Now, maximization over only one dimension is usually
a fairly simple computing matter. Thus, by considering p, first we can
derive for the last stage of our N-stage process an optimal decision set
corresponding to all likely conditions of the state variables at the end of the
second-last stage. Then, moving backwards through time, we can compute
at each stage the (single-dimensional) maximization which optimizes the
combined effects of the current decision py and the already-known results
of following an optimal sequence of decisions for the remainder of the process.
Mathematically the principle used at each stage is expressed as a recurrence
relation, which connects decision pj to the optimized decision sequence for
however many stages remain®,

This concept may be stated formally in terms of Bellman’s ** Principle of
Optimality ”: Ar optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.* This principle
is constantly used in deriving basic dynamic programming equations.

It should be noted that the explanation given above is orientated towards
the specific type of allocation problem under consideration here. The
technique is not limited to the one computaticnal scheme suggested above,
nor must a problem be necessarily ‘“ dynamic ™, in the temporal sense, for
it to be amenable to dynamic programming analysis. For example, a series
of activities in a single period could be regarded as a series of stages for the
purposes of a dynamic programming formulation.

SRichard Bellman of the RAND Corporation, who coined the term ‘ dynamic
programming >’ and was responsible for formalizing most of the theory behind it,
has amassed a large volume of publications on the subject, many of which contain
explanations of the basic principles. Of these the most readily understandable are
probably ““ Some Problems in the Theory of Dynamic Programming >, Econo-
metrica, Vol. 22, No. 1 (January, 1954), pp. 37-48 and Dynamic Programming,
RAND, P-787, (January, 1956). Those who found Bellman’s Book Dynamic
Programming (Princeton: Princeton University Press, 1957), heavy going will
doubtless welcome the greater lucidity of the more recent book, R. E. Bellman
and S. E. Dreyfus, Applied Dynamic Programming, (Princeton: Princeton University
Press, 1962), which is to be recommended as an authoritative and comprehensive
introduction. With the recent increase in interest in dynamic programming,
explanatory works have begun to appear, for example, as chapters in operations
research textbooks; (see, for instance, S. E. Dreyfus, in R. L, Ackoff, ed., Progress
in Operations Research, Vol. I, (New York: Wiley, 1961), pp. 211-42; and M. G.
Simpson et al., in B. T. Houlden, ed., Some Techniques of Operational Research,
(London: English Universities Press, 1962), pp. 56-74). For more detailed lists
of dynamic programming publications, reference may be made to a number of
bibliographies, such as RAND, Index of Publications, (Santa Monica, 1959) pp.
36-41, and Supplement, 1961; V. Riley and S. 1. Gass, Linear Programming and
Associated Technigues, (Baltimore: Hopkins, 1959); J. H. Batchelor, Operations
Research: an Annoted Bibliography, (St. Louis: St. Louis University Press, 1959);
and Case Institute of Technology Operations Research Group, A Comprehensive
Bibliography on Operations Research (New York . Wiley, 1958).

‘Bellman and Dreyfus, op. cif., p. 15.
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Already dynamic programming has been applied to a number of problems
in the physical and social sciences®. It has been found capable of handling
a number of special-case situations such as non-linear® and integer? problems.
More specifically, in economics? it has been applied to problems of allocation,®
inventory optimization!® (such as warehousing,1* stock-control!? et¢,) smooth-
ing,® bottleneck,”® and routing,’® and to problems involving sampling,'®

3The fundamental way in which dynamic programming views sequential processes
is intuitively obvious, and it seems that several writers have recognized this without
the aid of Bellman’s formalism. See for example W. C. White * The Determination
of an Optimal Replacement Policy for a Continually Operating Egg Production
Enterprise , Journal of Farm Economics, Yol. XLI, No. 5, (December, 1959), pp.
1535-45 who, whilst citing Bellman’s work, does not adopt his terminology, and
R. Schlaifer, Probability and Statistics for Business Decisions, (New York: McGraw-
Hill, 1959), p. 596 ff who calls the process *“ backward induction .

SE. L. Peterson, Statistical Analysis and Optimization of Systems, (New York:
Wiley, 1961) p. 152 ff,

’G. B. Dantzig, “ Discrete-Variable Extremum Problems **, Operations Research,
Vol. 5, No. 2, (April, 1957), pp. 266-277 and R. Bellman, ** Comment on Dantzig’s
Paper on Discrete Variable Extremum Problems >’, Operations Research, Vol. 5,
No. 5 (October, 1957) pp. 723-4.

*H. M. Wagner and T. M. Whitin, “ Dynamic Problems in the Theory of the
Firm , Naval Research Logistics Quarterly, Vol. 5, No. 1 (March, 1958) pp. 53-74
and A. B. Bishop and T. H. Rockwell *“ A Dynamic Programming Computational
Procedure for Optimal Manpower Loading in a Large Aircraft Company ”,
Operations Research, Vo. 6, No. 6, (November-December, 1958), pp. 835-48.

SMany of Bellman’s descriptive articles use an allocation problem as an explanatory
example, for example R. Bellman, Dynamic Programming, (Princeton: Princeton
Univ. Press, 1957), Chap. 1, and R. Bellman, *“ Some Applications of the Theory
of Dynamic Programming-—A Review ”, Journal of the Operations Research Society
of America, Vol. 2, No. 3, (August, 1954), pp. 275-88; see also S. Vajda, Mathematical
Programming, (Reading, Mass.: Addison-Wesley, 1961), Chap. 13, pp. 245-51
and D. W. Miller and M. K. Starr, Executive Decisions and Operations Research
(Englewood Cliffs: Prentice Hall, 1960), pp. 328-34 for numerical examples.

10M. Beckmann, “ Economic Applications of Dynamic Programming , Paper
presented to Econometric Society Meeting, December, 1959, abstract in Econo-
metrica, Vol. 28, No. 3 (July, 1960), p. 693; R. Bellman and S. E. Dreyfus, On the
Formularion of Dynamic Programming Problems: I, RAND, RM-1888 (April, 1957)
Chap. 3, pp. 7-11; M, Sasieni, *“ Dynamic Programming and Inventory Problems **,
Operational Research Quarterly, Vol. 11, No. 1-2, (March-June, 1960}, pp. 41-9;
and A. S. Manne, Ecoromic Analysis for Business Decisions, (New York: McGraw-
Hill, 1961), Chap. 9, pp. 136-54.

M, Sasieni, A. Yaspan and L. Friedman, Operations Research—Methods and
Problems, (New York: Wiley, 1959) pp. 274-9.

12E. Ventura, ‘“ Application of Dynamic Programming to the Control of Stock
and to the Calculation of a Maximum Stock Capacity **, Operational Research
Quarterly, Yol. 12, No. 1, (May, 1961), pp. 66-78.

3R, Beliman, Dynamic Programming and its Application to Variational Problems
in Mathematical Economics, RAND, P-796, (April, 1956) and R. Bellman and S. E.
Dreyfus, On the Computational Solution of Dynamic Programming Processes, RAND,
RM-1749.

14R. Bellman, ‘‘ Bottleneck Problems, Functional Equations and Dynamic
Programming >, Econometrica, Vol. 23, No. 1 (January, 1955), pp. 73-87.

15R. Bellman, On a Routing Problem, RAND, P-1000, (December, 1956).

R, Kalaba, ‘ Optimum Preventative Sampling via Dynamic Programming 7,
Operations Research, Vol. 6, No. 3, (May-June, 1958) pp. 439-40.
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reliability,!” and replacement.!® Judging by the success of these exploratory
applications, the potential of dynamic programming appears to be very
extensive. Vajda has called it a new discipline offering “ truly astonishing
scope 1%, In an agricultural context Candler and Musgrave have said * it
is anticipated that just over the horizon there are a host of new applications
of dynamic programming "’?® some of which we have discussed elsewhere?!,
One such agricultural application has appeared recently?2,

Let us examine briefly some further features of dynamic programming
which make it attractive in studying economic optimization problems.

(@) The dynamic programming approach is readily adaptable to the
incorporation of stochastic variables, into the basic model. It is a well-
known characteristic of many agricultural processes (including pasture
improvement) that the future behaviour of some important physical
and economic variables (e.g. rainfall, prices) is not known with certainty,
but might be specifiable as a probability distribution. When the functions
in a dynamic programming model include stochastic quantities, the effect of
a decision may be to determine not a definite outcome, but a probability
distribution of outcomes. In such cases the expected value of the objective
function is optimized.??

(b) The dynamic programming method can also make some allowance for
uncertainty—processes in which the quantitative specifications of the system
are not completely known to the decision-maker at the outset. When
such situations involve the decision-maker in learning more about the
system under his control, they are called adaptive processes®.

17R. Bellman and S. E. Dreyfus, “ Dynamic Programming and the Reliability
of Multi-Component Devices *°, Operations Research, Vol. 6, No. 2, (March-April,
1958), pp. 200-6.

188. E. Dreyfus, “ A Note on an Industrial Replacement Process ', Operational
Research Quarterly, Vol. 8, No. 4, (December, 1957) pp. 190-3; R. Bellman,
*“ Equipment Replacement Policy >, Journal of the Society for Industrial and Applied
Mathematics, Vol. 3, No. 3, (September, 1955), pp. 133-6; and, in an agricultural
context, W. C. White, op. cit., (footnote 5).

158. Vajda, Review of Bellman, Dynamic Programming, in Econometrica, Vol. 27,
No. 3, (July, 1959) p. 538.

20W. Candler and W. F. Musgrave, “ A Practical Approach to the Profit Maxi-
mization Problems in Farm Management ”, Journal of Agricultural Economics,
Vol. XIV, No. 2, (December, 1960) p.215.

2C. D. Throsby, “ Some Applications of Dynamic Programming in Agricultural
Economics ”, (Sydney: Statistical Society of N.S.W.. mimeo), May, 1962; and
“ Some Dynamic Programming Models for Farm Management Research 7, Journal
of Agricultural Economics, Vol. XVI, No. 1, (June, 1964), pp. 98-110.

20. R. Burt and J. R. Allison, “ Farm Management Decisions with Dynamic
Proglramnging ”, Journal of Farm Economics, Vol, 45, WNo. 1, (February, 1963),
pp. 121-36,

#See, for example, H. A. Simon, * Dynamic Programming under Uncertainty
with a Quadratic Criterion Function ”, Econometrica, Vol. 24, No. 1, (January,
1956), pp. 74-81. This field has been explored extensively with general programming
models (e.g., R. J. Freund, “ The Introduction of Risk into a Programming Model ”,
Econometrica, Vol. 24, No. 3 (July, 1956) pp. 253-63), and Simon has called the
contribution of dynamic programming to this area of study * far-reaching ”’; see
H. A. Simon, “ Theory of Decision-Making in Economics and Behavioural Science ™,
American Economic Review, Vol. XLIX, No. 3 (June, 1959), p. 259.

*8ee, for example, R. Bellman, Adaptive Control Processes: A Guided Tour,
(Princeton: Princeton Univ. Press, 1961) Chap. XV; S. E. Dreyfus, op. cit., (footnote
3), p. 222 fI.; cf. also S. Reiter, ‘“ Surrogates for Uncertain Decision Problems:
Minimal Information for Decision Making >, Econometrica, Vol. 25, No. 2, (April,
1957) pp. 339-45, and K. J. Arrow, * Ultilities, Attitudes, Choices: A Review Note ™,
Econometrica, Vol. 26, No. 1, (January, 1958), p. 10 and pp. 13-14,
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(¢) In agricultural situations the discrete nature of the input-output pattern
existing for a class of farm resources (such as buildings and machinery)
leads to *‘lumpiness ” in production functions and in cost and return
functions. An attractive feature of dynamic programming is that it places
no restrictions on the nature of the functions used to specify the structure of
a system. Whereas linear programming, for example, requires constraints
placed on variables to be linear functions, dynamic programming can
handle extremes of non-linearity and discontinuity.

(d) The repetitive nature of the calculations involved in dynamic programm-
ing makes it amenable to computer solution. Since the mechanics of the
calculations are identical at each stage, programming a specific problem is
simplified.

(¢) Dynamic programming analyses and solutions are adaptable to
sensitivity analysis or the study of variation in the structure of the system
under observation. This is partly because, as noted above, the dynamic
programming formulation obtains the solution to a specific problem via the
solutions to a series of related problems. This is advantageous because of
the fact that the strucrure of a problem is what interests us most in many
analyses: hence we can examine a series of solutions and determine the
stability of the general results.2®

After the encomiastic remarks of previous paragraphs it is as well to mention
some limitations of dynamic programming. Its chief drawback is, para-
doxically, one of computation; it is limited by the dimensionality of the
optimization required at each stage. Increasing the dimensionality in this
direction causes exponential increases in the computing burden.?® (In the
present work this difficulty was not encountered, since the model involved
maximization over only one dimension at each period.) Thus, although
dynamic programming can solve some special linear programming problems
of the multi-stage variety,?” it does not threaten to oust linear programming
in the solution of problems to which the latter is peculiarly adapted.?

A further caution is of course that, like other forms of programming,
the economic content of dynamic programming is nil. It is merely a
mathematical method, and *“‘ can only help us to find the implications of
the economic information which we already have or are willing to assume ».%

25ef, R. Bellman, Dynamic Programming, (Princeton: Princeton Univ. Press,
1957), p.6.

%See further in R. Bellman, Mulridimensional Maximization and Dynamic Pro-
gramming, RAND, P-1086, (May, 1957).

¥cf. G. B. Dantzig, On the Status of Multi-stage Linear Programming Problems,
RAND: P-1028, (February, 1957); G. Morton, *“ An Application of Dynamic
Programming ', Conference on Linear Programming, May 1954, (Ferranti Ltd.,
mimeo, 1954), pp. 32-40; and C. D. Throsby, ** Some Notes on ‘ Dynamic ’ Linear
Programming », this Review, Vol. 30, No. 2, (June, 1962), p. 125.

8See particularly in S. E. Dreyfus, A Comparison of Linear Programming and
Dynamic Programming, RAND, P-885, (June, 1956) and R. Bellman, *° Functional
Equations and Successive Approximations in Linear and Non-Linear Programming ”,
Naval Research Logistics Quarterly, Vol. 7, No. 1, (March, 1960), pp. 63-83.

22W. J. Baumol, ¢ Activity Analysis in One Lesson *°, American Economic Review,
Vol. XLVIIL, No. 5, (December, 1958), p. 837.
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3. THE MODEL

Part 1: Derivation of Functional Equations

(i) CONSTRUCTION OF DYNAMIC PROGRAMMING EQUATIONS

We can now proceed with the description of the dynamic programming
model representing the pasture improvement decision process. The
formulation below bears some resemblance to Bellman’'s basic allocation
model already cited.3¢

In this study pasture improvement is construed as an allocation problem
in which the farmer is considered as being faced with a multi-stage decision
process, at each stage of which he must decide on the amount of land to
be allocated to improved pasture. It is hypothesized that he must take
into account at each stage the outcomes of decisions at previous stages in
the process and the expected results at future stages, and that his feasible
choices are subject to restrictions placed on the supplies of other resources
such as capital and labour which he has at his disposal.

Let x denote the number of units of land available for pasture improvement
at any stage, and y denote the amount of it actually allocated to pasture
improvement at that stage, where 0 < y < z. The amount of land
available for alternate uses at that stage is thus (x — y), which is also
equivalent to the amount of land available for allocation in the next period,
since the y units devoted to pasture improvement are not considered available
for reallocation during the life of the pasture; i.e.

@e — i) = T
where k is used to refer to any stage in a multi-stage process. Now let—

£(¥) = net return resulting from an allocation of y units of land
to pasture improvement, and

Mz — y) = net return resulting from the remainder, (x — ») units,

being devoted to non-pasture.
Let the initial quantity of z available = z,,.

Qur problem then is simply to maximize

N

(1) F(I()s xly xz, LA | IN) - 2 [g(yk) + h(xk - yk)]

k=1
over the region y; defined by

0 <y, + ¥+« + ¥y <y
where
0 < v < a3

and

@r — yx) = Tpq

Rephrasing the objective function of equation (1) according to dynamic
programming precepts will yield two functional equations®! (the first for a one-
stage process, the second for an N-stage process) which will form the basic

30See also R. Bellman, I. Glicksberg and O. A. Gross, Some Aspects of the
Mathematical Theory of Control Processes, RAND, R-313, (January, 1958), for an
exhaustive treatment of this allocation model.

31As R, Bellman puts it: “ The basic idea underlying our (dynamic programming)
analysis is that of replacing the decision problem by a functional equation . See
* Some Problems in the Theory of Dynamic Programming ”, Econometrica, Vol.
22, No. 1, (January, 1954), p. 37.
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objective function system for our model. Thus, by letting f«(z) represent the
total return from an N-stage process when an optimal policy is used, and with g(y)
and A(x — y) as defined above, we can derive:

2 fil®) = Max  [g(» + h=z — »)1]
0<y<z

and the recurrence relation

3) fy(®) = Max [g(y) + Az — ) + fualz — ¥)]
0<y<e

These two equations express in general form the criterion of our model.
Equation (2) is used to derive the one-stage allocation, then repeated appli-
cation of the recurrence relation yields for any stage £ those values of y which
maximize the sum of (a) the net return from an allocation of y units to
improved pasture in stage k; (4) the net return from an allocation of (z — y)
units to non-pasture in stage k; and (c) the total return obtainable from using
an optimal policy with respect to the (x — y) units available for reallocation
in stage k& -+ 1. Overall, we aim to determine the sequence { yk} for
k =1,2, ..., N* which maximizes fy.{z), where N* = total number of
stages we want to consider in the whole process.

(ii)) A NUMERICAL EXAMPLE

In order to clarify the nature of the dynamic programming model and to
put a recognizable numerical form to the functions involved, a simple worked
example is now presented.

(a) The problem: We are given z, acres of land, and a series of z,

»

observations (where $ represents the “° grid size ” of the functions g(») and

h(x — y) ). Determine the allocation sequence {yk} (i.e., the set of
functions y(k) ) which maximizes over an N-year period the sum of the present
values of the income streams resulting from the alternative investment
strategies.

(b) The data: Given z, = 500 acres
B = 100 acres
N = 3 years
and given the following 500 =— 5 observations (plus the zero level) of the
100
present values of the return functions g and 4:

(Imagine all measurements to be in £00),

Fory = 0,g(3) = Oand for(x — y) = 0, sz — y) = 0
100 14 100 1
200 27 200 2
300 38 300 3
400 47 400 4
500 54 500 5
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We want to find a sequence (y;, ¥, ys) which optimizes the three-stage
objective function:

3
C) f (@) :A 21 [ebp) + Aorr — yi) ]

(¢) The solution: First we determine the function y(x) which maximizes
the one-stage functional equation (2). This is achieved by calculating, for
each possible value of z, the function f(y), and selecting its maximum, The
collation of the values of y which maximize the set of functions f(») gives us
yi(®) and the collation of the maxima gives us fi(x). The function y,(z)
represents the optimal allocations for the /ast of our three stages.

Enumerating for ¥ = 1, for two of the six possible values of z: (maxima
are starred).

Forz = 500,y = 500,andz — y = 0, thereturnf(y)is 54 + 0 — 354*
400 100 47 4+ 1 = 48

300 200 38 + 2 = 40

200 300 27 + 3 = 30

100 400 14 + 4 = 18

0 500 0+ 5= 5

Forz = 400,y = 400,andx — y = O, thereturnf(y)is47 + 0 = 47*
300 100 38 +1 =39

200 200 27 + 2 =29

100 300 14 + 3 = 17

0 400 0+4= 4

and so on, for x = 300, 200, 100, O.

When fully calculated the series of observations of y(xr) and fi(z) is
summarized as:

= R0
500 500 54
400 400 47
300 300 38
200 200 27
100 100 14
0 0 0

We are now ready to compute the second iteration which uses, as will any
subsequent iterations, the recurrence relation from equation (3). The last
term of this equation is the function f(x) calculated at the previous iteration.
Enumerating, again for only two of the six values of z:

Forx = 500,y = 500andx — y = Othereturnf(y)is54 + 0 + 0= 54

400 100 47 4+ 1 + 14 = 62
300 200 38 + 2 4 27 = 67
200 300 27 4+ 3 4 38 = 68*
100 400 14 + 4 + 47 = 65

0 500 0+ 35+54=159
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Forz — 400,y = 400andz — y = Othereturnf(y)is47 + 0 4+ 0 = 47

300 100 38 +1+4 14 =53
200 200 27 4 2 + 27 = 56*
100 300 14 +3 + 38= 55
0 400 0+ 4+ 47 = 51
and so on, for x = 300, 200, 100, 0. Summarizing for N = 2, we have:
h yo2) fo(2)
500 200 68
4060 200 56
300 100 43
200 0, 100 29
100 0 15
0 0 0

Another application of the recurrence relation yields the best initial allo-
cations for a three-stage process, and since we are only considering a three

period situation, this is the final iteration. The solution for N = 3 is:
yale) ol
500 100 74
400 0, 100 60
300 0 46
200 0 31
100 0 16
0 0 0

The overall results are best summarized as in Table 1. This table is read as
follows: Starting with ¢ = 500, the best allocation is y = 100 in the first
period (read from line 1), leaving 400 for reallocation in period 2. This is
best deployed by allocating 200 acres (read from line 2), leaving 200 acres, all
of which should be allocated in period 3 (read from line 4). The return
achieved by this course of action is 74 units read from the list of f.(r) above.
If there were only 400 acres to begin with, Table 1 indicates two optimal
policies, viz. 0, 200, 200 or 100, 100, 200, each leading to a return of 60.

TABLE 1

Solution to Allocation Example

; Optimal Allocation of y: acres
x at Start of Period | _

(Acres)
Period 1 ‘ Period 2 | Period 3
| | -
500 : 100 i 200 : 500
400 i 0, 100 200 . 400
300 ‘ 0 ’ 100 i 300
200 0 0, 100 J 200
100 0 0 100
0 0 0 ‘ 0
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(iii} DYNAMIC ASPECTS OF THE MODEL

The already dynamic nature of this model is complicated by the fact that
the returns from an allocation of y in any period are generated not only in
that period, but also in as many succeeding periods as constitute the pasture’s
productive life. Letr = 1,2,..., T denote the stages in the life of a pasture,
measured in some convenient units, such as years; ¢ is a relative measure of
time, i.e., related to the date of pasture establishment. Suppose also that we
fix absolute time by defining the stage in an overall N-stage process by the
subscript k. A farmer following a feasible policy might allocate y,, ya, Vas
. . . .acres to pasture in periods & = 1, 2, 3, . ... Thus at any stage &
(where k > 1), there may exist on his farm pastures at various stages (¢} of
development. For instance, in year ¥ = 3 there might be pastures on the
farm for which r = 3 (sown in k& = 1)}, some for which r+ = 2 (sown in
k = 2), and so on.

Since we are using present value as the measure of the profitability of
investment in pasture improvement, we must discount future money flows at
an appropriate discount rate. This is achieved in our generalized model by
discounting relarive to t, i.e. using the assumption that the farmer engaged in
a sequential decision process will view the future relative to the time each
decision has to be made, and not relative to the very beginning of the overall
process.® The usual procedure is employed for calculating the present
value of the investment, 3 although we make use of the term discount factor,
represented by d;; any monetary value in period ¢ is reduced to its present
value in r = 1 by multiplying it by 4;3; i.e. if d* = discount rate,

1 ,
(I + %t
It is assumed that the discount rate is constant, although in some cases there
may be special grounds for considering discount rates which fluctuate
continuously® of discontinuously3® with time.

(5) dy =

32There were two main reasons for adopting this form of discounting: (a) It fits
a conceptual framework in which the farmer is assumed to make decisions at a series
of discrete stages, rather than by one overall decision: (b) It permits greater
generality in interpreting empirical results, since a particular programming run does
not have to be committed beforchand to set a number of stages. In any case,
empirical testing of both methods showed little difference in patterns of solution
between the two methods, even for relatively high discount rates.

33yiz.
PV = NR + NR: + NRy + ...+  NRr
(l + dt)l (1 -+ d*)z (1 -+ d*)’l‘—l
Where PV = Present Value.
NR, = Net Returninperiod ¢t (+ = 1,2,. .. ,T).
d* = discount rate. :

34c f. Hicks use of the term discount ratio, given as
1
(1 + d%
see J. R. Hicks, Value and Capital, (Oxford: The Clarendon Press, 1957), p. 185.

335¢e, for example, R. H. Strotz, *“ Myopia and Inconsistency in Dynamic Utility
Maximization , Review of Economic Studies, Vol. XXIII, (1955-6), p. 175.

3sc.f. M. W. Hoag, *“ The Relevance of Costs in Operations Research »’, Operations
Research, Vol. 4, No. 4, (August, 1956) pp. 457-8; for some empirical data on
farmers’ views of the future, see J. A. Boan, *“ A Study of Farmers’ Reactions to
Uncertain Price Expectations **, Journal of Farm Economics, Vol. XXXVII, No. 1,
(February, 1955), pp. 90-5.
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A word might now be said about additivity of g(y), (which is derived over
T periods), and A(x — y), (which is derived over only one period). Itis a
common and justifiable practice in general programming problems to include
in the objective functions terms derived over different time periods provided
they are expressed in summable units: witness, for example, the additivity
of ‘““ net cash returns ” in the objective function of a dynamic linear pro-
gramme,®” where different activities cover different numbers of stages. In
our model the resource, land, once allocated, becomes ‘‘ committed > for T
periods under improved pasture; the amount not allocated earns a return
expressed by the function A(z — y») and is then available in the next period
for allocation to pasture or for the earning of another period’s non-pasture
return. Thus, in arriving at the maximum at each stage, the model compares
(a) the returns from T years of improved pasture, with (b) the returns from
one year of unimproved pasture plus the return from following an optimal
policy over the remaining stages. This should be apparent from the basic
recurrence relation which contains on its right-hand side one term in « and
two terms in (z — y).

Part I1: Pasture Improvement Section

We may now turn to that part of the model which generates the dynamic
programming return functions, This is no more than a simple character-
ization of the economic processes involved in pasture improvement.

First it must be noted that the pasture improvement model includes only
those quantities which are assumed to change over the time period considered,
as a result of the introduction of a pasture improvement programme. Thus
fixed costs such as rates, rent, etc. and returns and costs associated with
enterprises not connected with pasture improvement are omitted, as are such
quantities as depreciation on machinery, repairs to plant and equipment, etc.
which may, under suitable assumptions, be regarded as unaffected by pasture
improvement. Thus the model is not a complete representation of a whole-
farm situation; rather it considers only thati segment of farm organization
with which pasture improvement is directly concerned.

Further, it should be noted that the model does not spread the cost of
investment in fixed equipment such as fencing, but considers it as a once-
over cash outflow which is a discontinuous function of y. There is thus no
conceptual distinction in the model between investment in fixed capital
and in, say, an extra unit of labour, although their functional forms differ.
These assumptions are by no means necessary—any investment pattern
could be assumed.

The receipts and expenses involved over time as a result of an allocation
of y acres to pasture improvement are considered to be non-linear functions
of y. Call aggregate returns and costs R and Q respectively; then we can
write:

(6) g(») = R(y) — Q)

¥7See, for example L. D. Loftsgard and E. O. Heady, ** Applications of Dynamic
Programming Models for Optimum Farm and Home Plans *°, Journal of Farm Eco-
nomics, Vol. XLI, No. 1, (February, 1959), pp. 51-62; W. Candler, * Reflections
on ‘Dynamic Programming Models’ *, Journal of Farm Economics, Vol. XLII,
No. 4, (November, 1960), pp. 920-6; C. D. Throsby op cit., (footnote 27); c.f.
also E. O. Heady and W. Candler, Linear Programming Methods, (Ames: Iowa
State College Press, 1958) p. 17.
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Now let rgy) and g{y) denote respectively the individual return and cost
functions for period . Remembering that ¢; refers to the discount factor in
period ¢, we can define:
T T
) R(yy = Eldt . rn(y) and Q(y) = El de . qdy)
[== =
Before considering ry(y) and g¢(») in greater detail we list below the notation
used in subsequent equations; with the exception of r, ¢ and i, lower case
letters in the following list refer to variables measured on a per acre basis,
upper case letters refer to aggregate variables (generally functions of y). All
monetary variables should be interpreted as being measured in equivalent
units.

Let:—

Siy) = return function for sheep in period 1;

5t = net returns per acre of y from sheep in period ¢,

W(y) = return function for wheat (only relevant in r = 1);

Yw = upper bound on the acreage of wheat which may be established
In one period;

w = net returns per acre from wheat sown;

z = gross returns per acre from wheat, after deducting marketing
and freight charges (Z(») is used subsequently to indicate
aggregate wheat returns);

Iy = Jabour cost per acre of y, involved in establishment of pasture
and/or wheat in period + = 1, or in maintenance of improved
pasture in period + > 1;

my = fuel cost per acre of y involved in establishment of pasture
and/or wheat in period + = 1, or in maintenance of pasture
in period r > 1I;

u = seed cost involved in establishment of pasture and/or wheat;

g = fertilizer cost per acre of y involved in establishment of pasture
and/or wheat in period + = 1, or in maintenance of pasture
in period ¢t > 1;

h = harvesting cost per acre of wheat (H(y) is used subsequently
to indicate aggregate harvest costs).;

E(y) = establishment cost function (only relevant in 1 = 1);

ef = establishment cost per acre of y when the farmer undertakes
establishment himself;

ec = establishment cost per acre of y when the farmer calls in a
contractor to undertake the establishment;

Ye = upper bound on the acreage which the farmer can, with
available plant, labour, etc,, establish himself in one period;

A(y) = agistment cost function (only relevant in r = 1);

Liy) = investment function for labour, (or other ancillary investment)
in period ¢;

My(y) = investment function for fencing in period r;

I{y) = function expressing interest on establishment capital chargeable
in period ¢;

i = rate of interest charged on investment capital;

Jt == variable costs per acre of y incurred in maintaining pasture in
period r;

ag = returns per acre of y from sheep sold in period ¢;

b = cost per acre of y of sheep purchased in period ¢;

C = return per acre of y from wool sold in period ¢;

ng = running costs per acre of y of sheep carried in period ¢;
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A prime (‘) on the variables 5, a, ¢, and » indicates that they relate to
unimproved pasture.

Three sets of equations express the relationships between these variables
in the formation of ri(y) and g;(») and one set shows the derivation of Az — y).
(i) RETURNS TO IMPROVE PASTURE IN PERIOD [ = 1

The first set of equations shows gross returns in the first period as the
sum of the aggregate returns to sheep and wheat®, the latter being subject
to a restriction imposed on the acreage which may be sown to wheat in any
one period.

Thus, we have:

(8) =50+ Wy
where

wy for 0 < y < Yuw
&) Wiy =

Wyw for yy <y <
with
(10) w=z U+ m-+ u-+ v+ h
(ii) CosT OF IMPROVED PASTURE IN f = |

The second set of equations simply expresses costs incurred in period
t = 1 as the sum of expenditures on establishment of pasture, on additional
fencing and labour or other ancillary investment necessary in the first period
and on agistment of sheep.

We have, then:

(11) g =EW + Ap + Ly + M (»
where

ery for0 < y < ye
(12) E(y) = {

erve + e.(y — yo)fory, <y < x,
with
(13) ef = I, + m + u + vy

(iii) RETURNS AND COSTS ASSOCIATED WITH PASTURE IN PERIODS { > 1

The following equations show the net money returns in period ¢ as equal
to the net returns from the sheep (i.e. gross returns from the sale of wool
and sheep, less sheep purchase and sheep running costs) minus the costs of
maintaining the pasture improvement investment (i.e. variable maintenance
costs incurred by topdressing, expenditure on ancillary investments, and
interest on establishment capital).

We have, then:

(14) r(y) — qi’y) = sy — jry — Ly) — My) — I(y)
where
(15) st = ag — by + ¢t — m
and
(16) Jo =l + mg + vy
and
!
(17 I(y) = 100 E(y)

3*For wholly grazing properties, or other farms where wheat is not relevant, the
wheat costs and returns in subsequent expressions should be regarded as taking
zero values.
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(iv) RETURN FUNCTION FOR NON-IMPROVED PASTURE

h(x — ) is a simple linear function defined as:

(18) Wz — y) = s . (@ — y)
where
(19) s =a 4+ ¢ —n

In the generalized model above, g(y) is assumed repetitive, i.e., having
the same value at all stages in a multi-stage process. When g(y) appears
in this form, an assumption is necessary that physical input-output relation-
ships involved, as well as the economic climate, are the same at all stages.
If it is desired to relax this assumption and consider variations in g(y) (and
h(x — y)) between periods, the subscript & must be written in to all the
above equations. For example, equation (6) becomes

(20 grx(y) = Ri(y) — Or(»)
where
r
21 Ri(y) = Z re, k()
r= 1
etc.

4. COMPUTATIONAL ASPECTS OF THE MODEL

Let us now Jock further at some computational aspects of the model.

1t should be apparent from the empirical example given earlier that each
step of the calculations involves the location of the maximum of f(y) for
given .

(a) If g(¥) and h(x — y) are continuous functions and it eventuates that
f(») is always differentiable, calculus can be used to find an exact maximum,
although boundary points will still have to be examined separately. In
more complex cases, (for example when another dimension is introduced),
Lagrange multipliers can be employed.?®

(b) If g(y) and A(x — y) are not well-behaved but f(¥) can be approximated
by a continuous function, we can proceed as in (a).

(¢) Whatever the nature of g(y) and #(z — ), they can be approximated
by a series of discrete observations, and f(y) will then also be similarly
described. Locating the maximum of f(y) will simply involve a search
through the discrete observations of f(y). This is precisely the technique
used on the above example and, indeed, throughout the present study.
Besides computational simplicity, its chief advantage is that it permits
handling of functions which are otherwise quite beyond mathematical
definition. This would appear to be a fairly common way in which dynamic
programming problems of low dimension are attacked,’® (i.e. problems in
which maximization is over only one or two dimensions at each stage).

In our example we had, at most, six observations of f(y) to examine at a
time. If this number were six hundred or six thousand it would take some
time to locate the maximum. By starting with a * coarse ™ grid, however,
one can frequently define the region of the maximum and then search

3%¢.f. R. E. Bellman and S. E. Dreyfus, op. cit., (footnote 3);7;; 47 fT.

0S. E. Dreyfus, ** Computational Aspects of Dynamic Programming **, Operations
Research Vol. 5 No. 3 (June, 1957), p. 411.
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o 500 {000

Y

Fig. 1.

thoroughly in this area for its exact value. For example, if one had one-
thousand observations of the function f(y) shown in Figure 1, one could

determine, by looking at f(y) only at the points y = 0, 100, 200, . . ., 1,000,
that the maximum lies within the range 700 < y <C 800. One could then
search through the points y = 710, 720, 730, ..., and establish a smaller

area in which the maximum exists, and so on. This is known as
approximation in function space* and greatly reduces computing times for
large problems.*? It should be remembered, however, that if f()) possesses
a series of local maxima, approximation in function space is liable to error.

An analagous approximation procedure can be applied to the functions
y(z) which define optimal policies at each stage of the process. Where
y(x) is a single-valued function (which was not always found to be the case
in our present study) an initial guess at its value can be successively refined
in a similar manner to the above, until an optimal solution is reached.
This has been termed approximation in policy space.®

Although the technique of defining a function by a table of discrete
observations is extremely useful, it is not without its drawbacks. The chief
one is the lack of a clear definition of an extremum in some cases; a computer
might, for example, output two adjacent grid points as the values of y

“Approximating an exact solution and refining it by successive steps is a common
procedure; see, for example, H. S. Houthakker, * On the Numerical Solution of
the Transporation Problem >, Journal of the Operations Research Society of America,
Vol. 3, No. 2, (May, 1955), pp. 210-14; see also R. Bellman, op cit., (footnote 2),
Chap. V ef seq.

#2[n the example given, a search through 10% alternatives was reduced to one
through 3 x 10 alternatives.

“An excellent numerical example of this procedure is given in G. E. Kimball
and R. A. Howard, * Sequential Decision Processes ”’, Massachussetts Institute of
Technology (O. R. Centre), Notes on Operations Research, 1959. (Massachussetts
Technology Press, 1959), pp. 153-78.
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maximizing a given f(), where in fact the true maximum might lie uniquely
at some point between them. The easiest solution to this problem is to
set the grid size small enough to make it irrelevant which one is selected
as the maximum. In empirical practice a compromise must be struck
between (a) smallness of grid size; (b) availability of data to specify functions
accurately over small ranges; and (c¢) expected computational times.

Progress has been made in developing dynamic programming algorithms.
For instance, Bellman and Dreyfus have published a series of papers under
the general title *“ On the Computational Sclution of Dynamic Programming
Processes 7’4 which outline routines adaptable for specific dynamic programm-
ing formulations. Howard* developed a ‘ value-iteration method ™ (for
processes of short duration) and a “ policy-iteration method * (for lengthier
problems); both are computational techniques similar in some respects to
the approximation methods discussed above, which may be capable of wider
generalisation. In our present study it was found that specifying the
functions g and / as a set of discrete approximations, determining y(x) by
computing a series of f(y) and searching for their maxima, and tabulating
at each iteration y(z) and f(z), proved the most satisfactory method.

Finally in this section on computational aspects we note the existence of
a certain ** duality "’ in the formulation of our model. In computing optimal
allocation sequences throughout the present study, we always compute the
last stage first, working backwards through the system until optimal policies
from every point within the system to the end of the N-stage process have
been determined. But an equivalent solution can be obtained by working
forwards iteratively, determining at each stage the best path fo (instead of
from) a given point. At each stage we would obtain a table showing the
optimum y to be allocated in this period in order to have given amounts of
(r — y) available for the next period. To read off an optimal policy at
the end of the calculations, however, we would have to work backwards
through our table of results (c.f. working forwards through Table 1). This
is somewhat tedious for the allocation process, although for a number of
situations (for example, network problems) it would be equally easy to
work in either direction. In choosing between the alternative methods for
the present study, several factors had to be borne in mind. Conceptually
it appeared less easy to handle the forward allocation method. It seemed
more desirable to have as the results of a computation the optimal allocation
sequences for a whole range of initial resource availabilities at the start of
the process, rather than for a range of “left-overs” at the end. It was
found, too, that solutions forward through time were subject to exactly the
same computational difficulties as was backward allocation. Thus, the
method as described above was chosen.

5. SOME ASSUMPTIONS

Before examining the properties of this model, it will be useful to summarize
the assumptions upon which it is based. It should be apparent from the
formulation of the model in previous pages that we are assuming the farmer
to be making decisions under conditions of certainty, and that he is rational,

“R. Bellman and S. E. Dreyfus, On the Computational Solution of Dynamic
Programming Processes, RAND, RM-1745 to 1752, (1956 to 1958); see also S. E.
Dreyfus, On the Computational Solution of Dynamic Programming Processes, XV
RAND, RM-2134, (March, 1958) and Dynamic Programming Algorithms and
Formulations, RAND, P-1527, (October, 1958).

*R. A. Howard, Dynamic Programming and Markov Processes, (Massachussetts:
Tech. Press of M.I.T., 1960), Chapters 3-9, especially Chapters 3 and 4.
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i.e. is attempting to maximize his utility, the latter being directly measurakle
as net financial gain. The system is assumed “ closed > and the only variable
under the farmer’s direct control is the amount of land allocated to pasture
improvement each year. A particularly important group of assumptions
contains those dealing with the decision maker’s outlook on the future. The
use of present values enables the returns from each pasture improvement
allocation to be expressed in terms of its utility to the farmer in the year in
which it is undertaken. Thus, despite the fact that pastures laid down in the
later periods will be continuing beyond the N-th stage, their utility to the
decision maker will have been reduced to terms of their present value in their
establishment year which will be at or before the N-th stage. Anticipating
a little, it was deduced by empirical analysis that this assumption could be
defended where the series of allocations extended over a long period and the
overall best policy was being sought; however, if the time planning horizon
of the farmer was considered to be short, an alternative would be preferable,
e.g. strictly limiting the system to a given number of stages.’® This question
is pursued further later. :

It might be noted in passing that since such importance may hinge on
the present value assumptions of this model, a variable discount rate
(mentioned already on page 159) might well be appropriate here, allowing
the * future-future > (present values at later stages) to be discounted much
more heavily than the *‘ present-future ” (present values at earlier stages).
This raises the interesting question of how these discount rates might be
estimated in practice, but we shall conveniently sidestep this issue at this
point.

In the following sections a number of theoretical properties of both parts
of the model are derived. The knowledge about its workings gained thus is
useful in two ways (a) it indicates the nature of actual empirical solutions
which might be expected if real data were applied to the model; and, more
importantly, (b) it gives an insight into the srrucrure of the decision process
under study and of the optimal policies generated by the model. As
mentioned earlier, in many economic¢ analyses quantitative information about
the structure of a system is often of greater value than specific numerical
results?”. The methodology used here is to draw up simple hypotheses about
the nature of each component of the pasture improvement section of the
model; in this way it is possible to specify fairly closely the expected nature
of the return functions g(y) and A(x — y). The expected forms of these
functions are then ‘“ plugged in "’ to the dynamic programming system and
general properties of the solutions established. When this analysis was
being carried out, computer time was a strictly limited quantity and we were
confined to constructing only one set of assumptions about these components
of g(¥) and A(x — y); the same restriction limited the range of properties
of the overall model which could be examined.

6. PROPERTIES OF THE MODEL

Part I: Structure of the Pasture Improvement Section

Remember that g(y) covers the whole range 0 < y < z, where x, is the
total initial amount of land available. In other words for any farm it expresses
the profitability of committing to pasture in a given year, areas of land

“Under this system g(») for period N would cover only + — 1, for period N—I
it would cover only + = 1 and 2, and so on.

470 f. further K. J. Cohen and R. M. Cyert, *“ Computer Models in Dynamic
Economics *°, Quarterly Journal of Economics, Vol. LXXV, No. 1, (February, 1961)
p. 115.
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ranging from a few acres to the whole farm. Land not committed this year
is available for re-allocation next year. Let us examine six components of
g(y) which were introduced in Section 3 and consider their likely influence of
£(»). The components to be considered are: (i) costs of establishing improved
pasture in f = 1; (ii) costs and returns associated with sheep in r = 1;
(iii) costs and returns associated with improved pasture and sheep in t = 2
to T; (iv) lumpy components: investments in fencing and labour; (v) interest
on capital; and (vi) the procedure of discounting.

(i) CosTs OF ESTABLISHMENT OF PASTURE

As noted in Section 3 there are assumed to be two major components of
the function E(y), which expresses the costs of establishment of pasture as a
function of the number of acres sown. These are the variable costs of the
farmer’s own establishment activities (incurred up to a limit of y, acres),
and, beyond this amount, the price which he must pay out to a contractor.
It is postulated here that () both of these quantities are approximately linear
functions of the number of acres established, and (b) that the cost of the
contractor’s services are greater per unit than those incurred by the farmer
doing the same job himself, since the contractor includes in his charge per
acre allowances for a profit margin, depreciation and maintenance of his
plant, transport to the farm, etc. This leads to an expected shape for E(y)
as shown in Figure 2.

E(y)

0 A
Ye %o
Fig. 2.
(ii) CosTs AND RETURNS ASSOCIATED WITH SHEEP IN f = |
Sheep contribute two components to g(y) in period ¢+ = 1, viz. 5,0, the

returns from sheep displaced from land put under establishment, and A(y)
the cost of any agistment which has to be sought. It is reasonable to suppose
that if only a small area of improved pasture is sown in any one year the small
number of sheep displaced by this area being put out of production couid be
carried on remaining land on the farm without ill effects either to themselves
or to the stock already carried there. In fact, since it appears that pastures,
both natural and improved, are frequently undsrstocked,*® the number of
extra sheep which this remaining land could carry might be quite considerable

“#This statement is made on the basis of discussions with Departmental agronomists
and fieldworkers.
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especially in a good season. It is likely, however, that as the stocking rate
on the remainder of the farm is increased, the returns per sheep displaced will
begin to decline. It is hypothesized, for present purposes, that the stocking
rate on remaining pastures could be doubled, but that by this stage returns
per sheep displaced will have fallen to zero. In other words, for the first
acre of y returns per sheep displaced will be the same as they were earning
on natural pasture, and for the last acre of y before 0-5 x, returns per sheep
displaced will be zero. If, in the absence of any other information, we assume
a linear trend between these two reference points, it will be seen that total
returns take the form shown in Figure 3.

& N 0.5X

Fig. 3.

For values of y between 0-5z, and , (i.e. when more than half of the farm
is under establishment in one period), sheep will be displaced with nowhere to
go. For simplicity it is assumed the farmer’s only possibility is to buy
agistment. (An alternative would be to sell the displaced sheep and buy
them back when pastures have become established.) Under these circum-
stances we would be confronted with a similar analytical situation to that
described above for the returns from sheep. As y increases, the first few sheep
put on agistment might not have to remain there for long: seasonal trends
in pasture production on the area of the farm not under establishment would
perhaps permit the agisted sheep to be brought back after a few months,
But as y increases further this possibility would become less and less available,
until the point where y = z, where all the sheep on the farm must be moved
off to make way for pasture establishment; they can only be brought back
when the newly established pastures are capable of carrying them. It seems
reasonable to assume that this will not be until + = 2. Between the
referenced points y = 0-5z, where agistment costs are zero, and y = %,
where agistment costs per head are at a maximum we assume a linear relation-
ship between sheep displaced and costs of agistment per sheep, in a similar
fashion to that used with sheep returns when y <C 0-5z. It is found under
these assumptions that as y increases, A(y), the agistment cost function,
exhibits the shape shown in Figure 4. Combining these two functions (sheep
returns and agistment costs) gives a contribution by sheep to the r = 1
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component of g(y) shaped approximately as in Figure 5. It is obvious that
the above scheme is quite idealised, and that a variety of circumstances might
in fact prevail in the real world. However, the functional shape shown in

Aly)

o

O.5><O v X

Fig. 4.
Figure 5 does seem intuitively reasonable for the purposes of ** plugging in ™
to the model as formulated here. It should be borne in mind, of course,
that even if the general shape of Figure 5 is granted, the exact point at which
the curve would cut the y axis might still vary quite widely.

@)

S](Y)“A(Y)

°lc 0.5x% X5

Fig. 5
(iii) Costs AND RETURNS ASSOCIATED WITH SHEEP IN f — 2 10 T

Once pastures have been established and become productive it is hypo-
thesized that provided they are uniform in quality over the whole farm, there
would be no financial ““ destabilizer >’ in r{y) — g:(») other than “ lumpy ™
expenditures considered in the next section. In other words if the above
uniformity assumption holds, carrying capacities can be assumed the same
over all areas of improved pasture at the same stage of development. and



Page 170 REVIEW OF MARKETING AND

hence the costs of any sheep bought to reach the required stocking rates, the
gross returns from wool and meat sold and the gross costs of maintaining
sheep and pasture, are likely to be approximately directly proportional to
y, i.e. the main components of r(y) — gi(y) for + > 1 are likely to be close
to linear. Thus we adopt the hypothesis that returns from the sale of sheep
and wool derived from improved pasture and the costs associated with pasture
maintenance (fertilizer, labour, fuel) and sheep (purchases to make up numbers
and running expenses) are all linear components of ri(y) — ge{y) forr > L

(iv) Lumpy COMPONENTS: INVESTMENT IN FENCING AND LABOUR IN ¢ = |
10 7.

It is postulated that as y increases there will be an increasing need for
investment in permanent improvements such as fencing, water points,
buildings, machinery, and in other resources such as labour, at some time
during the pasture improvement programme. Not only the quantity but
also the timing of this investment will be dependant on the size of y. If
large areas of pasture are sown down in one year, it is feasible that investment
in, say, fencing, to enable efficient management of the pasture, will be required
sooner than if only a small area were established. It is also hypothesized
that this investment is not likely to be a continuous function of y, nor even
readily approximable by a continuous function. Investment items such as
buildings and tractors are ‘“ lumpy *’ inputs, and are largely indivisible. For
example, it may be that if the area sown to pasture in one year exceeds a
certain level, say yq, an extra permanent hand will become necessary, requiring
a large single expenditure in that year for levels of y beyond yq.

We have included in the model two components to allow for these ancillary
investments, viz. L) called the ** labour investment » and My) called the
“ fencing investment . It is stressed that it is not intended that these
quantities be thought of as referring solely to expenditure on those two items;
rather it is intended that they be construed as covering any similar item of
investment necessitated by the adoption of a pasture improvement programme
in any application of the model to empirical situations. (They have been
called labour and fencing in our formulation because these were the only
two investment possibilities which we treated in subsequent empirical investi-
gations),

These investment functions might have a variety of forms. Two typical
shapes for these investment functions (which were examined in the empirical
section of this project) are shown in Figure 6.

A. B.

M (v) Mt(y)

Fig. 6.
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(v) INTEREST ON ESTABLISHMENT CAPITAL

The effect of the function I¢(y) on the shape of ry(y) — qi(») is likely to be
small, because of its relatively small numerical size. Being related to E(y)
(see Figure 2) its only contribution to g(y) will be reinforcing the effects of
EW.

(vi) EFFECTS OF DISCOUNTING

We have seen already that discounting of future money flows is assumed
in the model to be effected relative to ¢. The implications of this for the
shape of the functions discussed above is, of course, that it reduces the
influence of return functions on g(y) as ¢ increases. (Conversely the
importance of the establishment year and of the early years of the pasture’s
life is increased). For example if the * steps >’ in Figure 6B are generated in
sequential time periods, approaching the present as y increases, then
discounting tends to give the function a rising trend as shown in Figure 7.

Mt (y)

>/ (o]
Fig. 7.

We may now postulate the expected shape of g(y). Given the formulation
of our model and the above hypotheses about the nature of the various
functions of which g(») is composed, it is found that:

(a) g(y) is concave to the origin (i.e., shows diminishing returns to scale).
(b) for low values of T, g(¥) possesses an interior maximum; and
(¢) as T increases, g(y) takes higher values and tends towards linearity.

Figure 8 shows these conclusions graphically, with discontinuities smoothed
out. Even though Figure 8 gives ground for some interesting speculation
about the structure of the decision process under study, a true picture cannot
be obtained until the functions derived above are incorporated into the rest
of the model.

Let us turn now to the theoretical shape of #(x — y). In the formulation
contained in Section 3 A(x — y) was constructed as a lincar function. This
simplifies the analytical and empirical analysis although the nature of the
model by no means necessitates such an assumption: A(z — y), like g(y),
could assume any desired form. Nevertheless the linearity assumption may
not te inconsistent with the nature of the real-world relationship which it
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represents. This return to (x — y) acres of unimproved land involves
receipts and costs associated with sheep grazing natural pasture. Fixed
costs per se are not included in the model, as noted earlier, but only those
quantities which vary with the number of sheep carried (receipts from the
sale of wool and meat and sheep running expenses). Since it is reasonable
to suppose that these receipts and costs are, in the aggregate, directly pro-
portional to sheep numbers and since stocking rates are assumed uniform over
all areas of unimproved land on the farm, it will be realized that Az —. )
might indeed be close to linear.

T=6
/
T=5
T=4
9
T=3
o
o X
Y- qacres o
T=2
T=1

Fig. 8.
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Part II: Structure of Optimal Solutions

Given some definite notions about the shape of the main component
functions in the pasture improvement section of the model, let us consider
the effects of using such functions in the other part of the model. More
precisely, the questions now posed are: what is the general nature of solutions
generated by the model, and how much are they dependant on the form of
the functions g and #? The term ‘* solution *’ is used to include:

f(), the returns for the range of y at a given z, from which the maximum
is selected;

f(x), the collation of all these maxima to make up the optimal return for
the complete range of x available at any stage;

y(x), the optimal allocations of y as a function of the amount of land
available at any stage; and

y(k), the overall allocation sequence yielding the optimal return for a
given initial amount of x.

In the following discussion we establish six general properties of these
functions which give in roto the overall resolution of the decision problem
under study as generated by our model. These properties concern:

(i) the shape of f();

(ii) the behaviour of f(y);

(iii) the shape of y(x);

(iv) the shape and behaviour of f(x);

(v) the behaviour of y(z); and

(vi) the shape and behaviour of y(k).
All these properties have been established by enumeration rather than by
formal mathematics. Enumeration is an inductive method which infers
general properties of a system from the results of a series of carefully chosen
empirical tests. It should be noted that the following properties apply in
full only when g(y) is a continuous concave function. Discontinuity and
deviations from a well-behaved shape produce some anomalies. Occasionally
fairly small abnormalities and complexities can be sufficient to lead to
results inconsistent in one or another respect with these general properties.®
(In specific empirical circumstances, of course, one would include such
deviations from a well-behaved pattern as were relevant, and would be able
to observe departures in solutions from the regular pattern.) It should be
remembered also that the results below only apply if g(¥) and A(x — y) are
the same at each iteration. (i.e. do not vary from stage to stage in the overall
process) and are both positive.

(i) SHAPE OF f(y)

Given that g(3) is concave and A(x — ) is linear, it is possible to show that
that f(») is also concave, and may possess an interior maximum. i.e. f(y)
may assume a shape such as in Figure 9 in which case its maximum does
not lie at an end point of the curve. It can be shown that if g(y) is convex
(i.e. shows increasing returns to scale) and A(x — y) linear, f(y) will be
convex also and its maximum will always liec at an end point, i.e. where
y = 0 or z, as Figure 10 shows. Under such a system an optimal policy
always involves allocating ““ all or nothing ” at any given stage. But since
we are not concerned with a convex g(y) this point is only of academic
interest here,30

49¢.f. R. Bellman, op. cit., (footnote 25), p. 25.

5Both of these properties have been established rigorously by Bellman for the
model already cited (see particularly, Bellman, op. cit., (footnote 25) pp. 19-25).

The present author has confirmed by enumeration that Bellman’s conclusion is
applicable also to our model.
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f(¥) )

Y Y

Fig. 9. Fig. 10.

(ii) BEHAVIOUR OF f(»)

For a given value of z, f(y) grows larger at each iteration and the values
of y at its maximum tend towards zero. Showing graphically, as the

lteration
5
T
4
+ (Y) / T
3
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number of stages is increased f(») tends to move as shown in Figure 11.
Remember there is a different set of these curves for each value of z.

It might be noted that this property could be used in optimizing the search
for the maximum of f(»): the maximum always lies at values of y less than
the maximizing value for the previous iteration, (provided the continuity
conditions etc. hold).

(iii) SHAPE OF y(¥)

It can be shown (and it follows in part from (ii)) that y(z) at each iteration
is equal to or smaller than its values at the last iteration.

Showing graphically it exhibits the pattern described in Figure 12. We
shall call the triangular space enclosed by the first iteration the * decision
region .

Iteration
|

/2

0 X
X (@)

Fig. 12.

(iv) SHAPE AND BEHAVIOUR OF f(x)

Firstly, for any stage f(x) never decreases as x increases. This is because,
according to our model, it is never unprofitable to own some land, and hence
the same or greater profit can always be made by having more of the resource.

Secondly, if N (the overall number of stages) is left unspecified, the objective
function of our model is unbounded, i.e. can increase indefinitely. The
function y(z) reaches a steady state at zero (cf. Figure 12), but f(z) continues
to increase.’! The reason for this is that of the recurrence relation in the
mode] deals with a * once-over > allocation, and does not include a term
for “ feeding back > land into the system when pastures expire. For

1]t is interesting to compare this result with that derived for Bellman’s model
mentioned above (see footnote 49). In Bellman’s model f(x) converges.
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problems where the number of iterations required for y(z) to reach zero is
less than or equal to 7, this does not present any problem.52 In such cases,
as mentioned earlier, either the present value assumptions are adequate to
take care of the problem, or the overall process can be strictly curtailed to
N periods. (See footnote %). In the general case the objective function
can be constrained, by presetting the parameter N. This is by no means
an ad hoc procedure. There may be reasons for ascribing it a particular
value before computing a programme; on the other hand, if it is desired to
find the best general policy, it seems most appropriate to let the running of
the programme itself compute N as the number of iterations required before
¥(x} reaches a steady state at zero. If NV is greater than this, optimal policies
will advocate doing nothing for several periods,?? if it is less there may be
surplus resource at the end of the process. We call this number of iterations
N*. 1In other words, N* defines the number of periods required to allocate
all the available resource using an overall optimal policy, given the structure
of the model.

(v) BEHAVIOUR OF y()

It can be shown that the behaviour of y(x) within the decision region,
and the shape of the decision region itself, are dependent on the nature of
g(y) and h(x — y). The following are the five most important properties
as established by enumeration:

(@) If g(y) is linear and greater than h(z — ), the optimal solution is to
allocate all the available land to pasture at one stage. (If g(») is linear and
less than A(x — y) the optimal solution is never to allocate any land to
pasture).

(6) As diminishing returns become more marked in g(y)—i.e. as it becomes
more sharply concave—N* increases (provided the value of g(y) at its
maximum remains the same). Under these circumstances the decision
region may become smaller.

(c) If g(y) has an interior maximum where, say, y = y,, its position in
the region y, << y < z, has no effect on optimal solutions.

(d) As the values of y at which g(y) reaches a maximum decrease (provided
the value of g(y) at the maximum remains the same) the decision region
becomes smaller, but N* increases.

(e) For a given g(»), as h(x — y) approaches zero the decision region
gets larger (approaches g(3)), and N* increases.

These conclusions are perhaps the most important properties of our
model in that they give a direct picture of the effects of the nature of the
return functions for improved and non-improved land on optimal pasture
improvement policies. They are discussed with a more practical orientation
in the following section,

*In actual empirical cases examined this was almost always found to be the case.
There are also other ways in which this problem might be handled, besides incor-
porating feedback terms into the basic model. For instance, a “ rolling-planning
time outlook could be assumed, in which the decision maker's current planning
horizon is progressively replaced by a new one as land begins to become re-available
as pastures expire.

For example if N were made 100 years, an optimal policy might dictate something
such as ** Do nothing for 96 years, then allocate all the land to pasture within four
years .
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(vi) SHAPE AND BEHAVIOUR OF y(k)

The optimal allocations at each stage form a step function when expressed
relative to k, the stages in the overall multi-stage process, since k is measured
in discrete time periods. It was found in all cases studied that this function,
y(k), was an increasing function, i.e. exhibited a shape such as that known
in Figure 13. 1In other words optimal policies generated under the assump-
tions noted earlier advocate increasing allocations to pasture improvement
as time progresses. This was largely confirmed by the later analysis using
real-farm data. However, it should be noted that for programmes with N
strictly constrained in the manner described earlier (see footnote %6), y(k) is
no longer necessarily an increasing function.

I 2 3 4 5
K

Fig. 13.
7. CONCLUDING REMARKS

(i) IMPLICATIONS OF RESULTS

An empirical study of the use of this model was conducted as a part of
this project, based on case studies of five farms in New South Wales. The
return functions derived and the nature of the dynamic programming solutions
obtained confirmed in general the theoretical findings discussed above.
To conclude the present article, we consider briefly some real-world implica-
tions of some of the above theoretical results as suggested by the empirical
analyses.

(@) It was hypothesized above that the pasture improvement benefit
function shows diminishing returns to scale due mainly to the effects of non-
linear components in the establishment year, and to the necessity for
increased ancillary investment during the programme if y is large. It was
shown that the degree to which diminishing returns are evident has a marked
influence on the optimal policies generated by the model. If g{y) is markedly
concave the optimal allocation sequence is spread over a number of time
periods, involving relatively small optimal allocations at each stage. This
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would appear to be characteristic of smaller farms because the non-linear
elements mentioned above seem likely to be relatively larger numerically
than for larger farms. As the extent of diminishing returns in the pasture
improvement return function becomes less marked so does it become more
profitable to allocate greater amounts to pasture improvement at a time.
This was found to be more characteristic of larger farms, since here the
linear components of g(y) were found to be relatively stronger. If g(3) is
linear, the model recommends allocating all land to pasture in one stage.
It is suggested that this situation might be approached when aerial sowing
of pastures is involved, although no substantial empirical evidence was
available to support this hypothesis,3*

(b) 1t was also observed above that optimal policies generated by the model
involve increasing allocations of land to pasture over time. Such policies,
if N* were small, would lead to a sudden severe financial drain several periods
after the start of the programme, with the likelihood that capital constraints
would prohibit the attainment of an optimum-optimorum. Budgeting
methods analysing the adoption of optimal policies on the case-study farms
confirmed this, and produced income streams over time resembling those
observed by Campbell and Shand.?® It was found of course that the severity
of this problem was reduced if capital were able to be built up in the earlier
stages of the programme, for instance via the increased returns and cost-
sharing achieved by sowing pastures under a cash crop such as wheat. This
was confirmed strikingly by one Central-western farm of less than 1,000 acres,
where despite capital and other limitations the farmer was able to establish
an average of about 200 acres of pasture annually, sown under wheat or oats.

(¢) It was found that variations in some parameters causing a whole shift
in g(y) are likely not to have such a significant effect on optimal allocation
sequences as on expected returns. For instance it was observed that for a
given farm situation variations in establishment methods with different
productivity patterns had significant effects on returns, but not such a marked
effect on optimal policies. Similar remarks apply to the cost components of
one particular establishment method. In other words emphasis on individual
establishment cost components per se as determinants of optimal pasture
improvement policies might be misplaced if a long run optimization is
required. On the other hand optimal allocation sequences were found to be
quite sensitive to parameter variation which affects the shape of the return
functions, for example by influencing some non-linear elements more than
linear ones, or by affecting only a section of g(y) and #(x — y). In particular,
interesting results were obtained by considering variations in the time planning
horizon of the farmer, either through the rate at which future income streams
are discounted or via the placement of strict limitations on the number of time
periods the farmer is assumed to account for in formulating plans; for
example, applying discounting relative to the start of the overall process,
rather than relative to each stage, causes optimal allocations at the beginning

54This situation was approximated on one of the farms studied where large areas
of pasture could be established by air at relatively low seeding rates; here the non-
linear element in ¢+ = 1 was not so important, hence g(y) tended towards linearity
making it feasible to sow down a major portion of the property at one time. Of
course the two factors modifying this picture in reality are capital availability and
risk considerations; in the case of the farm in question, however, it was apparent
that neither of these was of great importance to the farmer.

5K, O. Campbell and R. T. Shand, 4n Economic Study of Pasture Improvement
on Some Farms in New South Wales, (Sydney: University of Sydney, Department
of Agricultural Economics, Mimeographed Report No. 2), 1958.
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of the process to increase, whereas increasing the size of the discount rate
leads to increased allocations at the end. The extent of the differences,
however, is not great, and choice of discount rates and methods of application
can be dictated by individual situations. In general it was found that such
restrictions, since they involve the derivation of a sub-optimum rather than an
optimum-optimorum, lead to reductions in optimal allocations and expected
returns.

(i) Uses AND LIMITATIONS OF DYNAMIC PROGRAMMING

Let us now consider briefly some uses and limitations of dynamic pro-
gramming as brought out by this study.

Perhaps the greatest advantage of dynamic programming in this context
is the way in which it can handle non-linear and discontinuous functions.
If the pasture improvement problem considered here were formulated for
analysis by linear programming, it would be necessary to assume that the
function g(y) was linear subject to linear constraints or at least that it was
some well-behaved non-linear form such as quadratic. It has been shown
not only that this particular function is likely to be non-linear, but also that
its shape has important influences on optimal policies.

The second important feature of dynamic programming is the way in which
it treats optimization over time. The problem considered here involved
decisions at a series of stages, where the effect of each decision itself influenced
a series of stages. This doubly dynamic nature of the decision process was
easily reducible to terms which dynamic programming could handle. The
emphasis throughout such a dynamic programming analysis as this is on the
sequential aspects of the decision process: this appears to be a more versatile
representation of time-dependant decision problems than that afforded by the
** once-over ” approach of, say, a dynamic linear programme.

This leads to the third major attractive characteristic of dynamic pro-
gramming, the generality of the results which it yields. It is possible to
compute in one single dynamic programming run, optimal policies for a
complete range of number of stages and resource availabilities. The results
thus exhibit a generality of application which linear programming lacks.
This feature also enables the experimenter to examine for specific problems
a variety of ‘*‘ sub-optima >’ where it is thought that an overall optimum is
unattainable due to risk aversion, capital restrictions, or other factors relevant
for a particular situation,

Turning to major limitations of dynamic programming in problems of
agricultural allocation, the most important is the severe restriction on the
number of alternative allocations which can be considered at each stage of
the programme. In our problem, maximization was over the domain of
only one variable at each stage, and hence computing difficulties were not
struck, However, it would not have been possible to extend this over more
than about two or three dimensions if feasible computing times were not to be
exceeded. In other words if it were desired to optimize multi-stage allocations
of land to pasture improvement by, say, several different establishment
methods, this type of dynamic programming model would be inapplicable if
more than about three methods were being considered. Hence for multi-
activity multi-resource optimizations linear programming and its variants
probably remain the most appropriate techniques. Dynamic programming
is only feasible if the number of alternatives at each stage can be refined down
to a small number without losing too much realism.
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Secondly, feedback problems may present difficulties. In single-
dimensional deterministic models these obstacles may be sidestepped by
assumption or simple manipulation of the functions (as above) or by incor-
porating a feedback term into recurrence relations (see further below). In
stochastic or multi-dimensional models, however, the existence of feedback
can complicate model construction and increase computing times, possibly
to the extent of making such models computationally infeasible.

(iii) FURTHER DEVELOPMENT

In this study we have constructed a simple model and examined in some
detail the structure of the decision process it represents. To conclude, let
us consider the question: what is the potential for extending this sort of
analysis? Essentially there are two possibilities: one is to seek more realistic
models, the other is to find better ways of quantifying theoretical models we
already have. There seems no clearcut choice. Certainly the high data
demands of dynamic programming where non-linear functions and stochastic
models are used suggest a prime facie case for improved data collection and
assembly. This is reinforced by the fact that current tools such as linear
programming are proving successful in handling an increasingly wide range of
dynamic and other problems. This has been demonstrated in the case of
pasture improvement, for instance, by the recent work of Pearse.’® However,
it is not necessarily axiomatic that building more complicated, more realistic
models makes data requirements more complicated or more extensive. For
example, research currently being undertaken by the present author suggests
that some dynamic programming models can be organized to make better
use of the existing amount of data needed in some linear programming
analyses. In any case there seems considerable scope for the use of dynamic
programming models as a means of clarifying the structure of decision
processes with which farmers are faced. In other words it is argued that
building and testing more comprehensive models is likely to increase our
conceptual (if not as yet our real-world-empirical) understanding of some
aspects of normative decision making at the farm level.

As a suitable coda to this paper we consider finally some ways in which the
dynamic programming section of the above simple model might be extended
towards a more realistic representation of the pasture improvement process,
following the lines suggested in the last paragraph. Some recurrence relations
are given below whose empirical workings the reader should be able to deduce,
using the principles outlined earlier in this paper.

Equation (22) shows the straightforward incorporation of a feedback
term into the original recurrence relation of equation (3). Notation is the
same as for (3):

(22)  fx(@) = Max [ g(») + h@z — ») + fx1l&@ — ¥ + fnr() ]
y

where r — number of periods land is * tied up ” under the one pasture
sward.

R, A. Pearse, * An Example of the Use of Linear Programming to Study Credit
Requirements for Pasture Improvement ”’, (Paper presented to the Annual Con-
ference of the Australian Agricultural Economics Society, Sydney, February, 1963)
and * Financial Returns and Capital Requirements for Optimum Pasture Improve-
ment Plans ”, this Review, Vol. 31, No. 4, (December, 1963). See also the earlier
work of F. H. Gruen, * Pasture Improvement—The Farmer’s Economic Choice ”,
Austlrézlﬁn Journal of Agricultural Economics, Vol. 3, No. 2, (December, 1959),
pp. 17-94.
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Note that in this and subsequent recurrence relations, “ infeasible ” terms
drop out; for example when N-r < 0, the term fu_¢{(») becomes “infeasible”
and disappears (c.f. the reduction of equation (3) to equation (2), where
fu_j(x — y) becomes infeasible in the last stage of the process).

This formulation could be extended further to encompass two different
methods of pasture establishment:

(23) /(@) = Max [ g0) + g (@) + g —y —2) +...]
Y, z
where g’(z) = return function for an allocation of z units of improved
pasture using the second establishment method.

However, a more satisfactory representation can be obtained by recasting
the recurrence relation completely so as to account for a series of “ activities *’
(establishment methods) in a series of stages. This disposes of the awkward
two-dimensionality of equation (23), yet allows any number of establishment
methods to be considered. However, some new computational problems
are introduced, for instance this model must be specifically constrained in
order that certain types of infeasible policies are not generated. The
recurrence relation (using a revised notation) is shown in (24):

(24) firlex) = Max [ gix(y) + firne@e — ») + f1,k+rj(J’) ]
¥y
where fjz(z) = total return over establishment methods Li+1L...,J
and periods k, k + 1, ..., K beginning in period & with a
quantity of land x; and using an optimal allocation policy:

&i(y) = return function for an allocation of y units of land to pasture
via establishment method j in period k;

r; = number of periods for which pasture remains down when
established by method j.

The rephrasing involved in this model overcomes the * dimensionality >
problem to the extent that computational time is only linearly related to the
number of establishment methods and number of periods considered, and
these quantities may thus be regarded as virtually unconstrained. One is
therefore free to incorporate a further resource into the model (leading to a
two-dimensional maximization at each iteration). In the case of pasture
improvement, this extra resource might be capital, and return functions would
then be expressed in matrix form, the general element &pq being the total net
return for a given establishment method in a given year for p units of land
and ¢ units of capital. The special theoretical and computational problems
raised by such models will be treated in a later article.
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