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Subjective Risk, Confidence, and Ambiguity

1 Introduction

The paper extends the standard recursive utility model by introducing a degree of
confidence into probabilistic beliefs. The idea of attributing a degree of confidence
to lotteries goes back to Ellsberg’s (1961) suggestion for solving the paradox today
carrying his name. In distinction to most of the ambiguity literature that took up
the challenge of the Ellsberg paradox, the present paper keeps the concept of proba-
bilities rather than extending it to capacities or sets of priors. Moreover, instead of
abandoning independence, I show that labeling lotteries by their degree of confidence
makes it possible to capture Ellsberg type and more general behavior in a setting
building on the classical von Neumann & Morgenstern (1944) axioms. A different
perspective on the confidence index is as a label for the degree of subjectivity of a
lottery.

For the special case of two degrees of subjectivity I obtain a generalized version
of the smooth ambiguity model by Klibanoff, Marinacci & Mukerji (2009). It is
more general in two respects. First, the current model does not assume a restrictive
two stage hierarchical structure of subjective lotteries over objective lotteries, but
permits any composition of objective and subjective lotteries in an arbitrary amount
of layers. More importantly, the current model relaxes the assumption that objective
lotteries are evaluated intertemporally risk neutral, meaning that risk aversion to
objective risk is only driven by aversion to intertemporal consumption fluctuations
while risk aversion to subjective lotteries incorporates as well intrinsic risk aversion.
My generalized framework incorporates both, intrinsic risk aversion to objective as
well as to subjective risk. Relating the two gives a better understanding and a more
precise definition of the measure of smooth ambiguity aversion promoted in Klibanoff
et al. (2009). The two degree of subjectivity version of the model facilitates a three-
fold disentanglement of dimensions of preference. One way to span these dimensions
is in terms of intertemporal substitutibility, aversion to objective risk, and ambiguity
aversion. Alternative coordinates for these dimensions are offered.

I extend the concept of smooth ambiguity aversion to situations with an arbitrary
number of subjectivity labels. Here, a generalized form of ambiguity aversion trans-
lates into an aversion to the degree of subjectivity of (or the lack of confidence into)
a probabilistic belief. A vantage of the current formulation as opposed to other rep-

resentations is that the present work detaches uncertainty attitude from the lottery
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level. Because other papers do not introduce the notion of subjectivity or confidence
explicitly, they have to make evaluation depend on on the layer in a compound lottery
in which it takes place. In my presentation a lottery will be evaluated independently
of the level of a decision tree in which it shows up, as long as the assigned degree of
subjectivity coincides. Three more aspects of the paper distinguish it from most of its
relatives in the decision theoretic literature on ambiguity. All of these aspects aim at a
broad reception and applicability of the model. First, the paper develops an as simple
as possible representation whose application only uses tools from standard risk theory.
Second, the paper presents the axioms in a framework as close as possible to those
by von Neumann & Morgenstern (1944), the arguably best known axiomatic frame-
work on decision making under uncertainty among economists. Third, in addition to
describing observed behavior under uncertainty, the paper aims at a representation
that also serves as a decision support model. For this purpose, I base the repre-
sentation on normatively attractive axioms including time consistency and the von
Neumann-Morgenstern axioms. The paper delivers more than an extended treatment
of explaining Ellsberg (1961) type behavior. The model incorporates a dimension into
decision processes that has been identified as missing also in the policy arena. For
example, the latest report of the International Panel on Climate Change takes a first
step to distinguishing between confidence and likelihood (IPCC 2001, Box TS.1, p
22). While both are connected in the end to probabilistic beliefs, the report clearly
expresses the need to distinguish between probabilities that are well known, or widely
believed in, as opposed to those probabilities that are only based on very recent and
scattered explorations or little facts. However, currently these distinctions end in the
science part of the report and are not integrated into the economic evaluation. The
paper outlines a possible framework for doing so.

The closest relative to my model is the mentioned paper by Klibanoff et al. (2009)
together with its predecessors and variants including Segal (1990), Klibanoff, Mari-
nacci & Mukerji (2005), Seo (2009), and Ergin & Gul (2009). I already pointed
out the major differences to Klibanoff et al.’s (2009) paper and will discuss them in
detail in section 5.1} These differences apply to all of the above papers. Following
this introduction, section 2 introduces the technical setting of the paper. Section
summarizes the axioms underlying the representation. Section [4] states the represen-
tation. In section [}, I discuss the representation, relate it to the literature, and use it

to render more precise and extend the notion of smooth ambiguity aversion. Section
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[0] gives a brief sketch how the model can be used in the context of climate change

evaluation. Section [7] concludes. All proofs are gathered in the appendix.

2 The Setting

Time is discrete with a planning horizon 7" € IN. In the usual abuse of notation T
will at the same time denote the set {0,...,7'} . Current outcomes in period t € T
are described as elements x of a connected compact metric space X*. These elements
represent consumption levels or more general descriptions of welfare relevant charac-
teristics. To avoid repetition, I introduce several definitions using a generic compact
metric space X instead of X*. The Borel o-algebra on X is denoted B(X). Let S be
a finite index set. The decision maker employs the index s € S to distinguish between
lotteries (denoting general uncertain situations) that differ in terms of subjectivity
of or confidence into the probabilistic belief. For every s € S, I denote by A (X)
a space of Borel probability measures on X that describe a lottery with degree of
subjectivity s. Formally, these different lottery spaces are a family {(A(X), s) }se 5
Each space As(X) is equipped with the Prohorov metric giving rise to the topology
of weak convergence. For notational convenience, I introduce an element s & S and
define S = S UsY and, under slight abuse of notation, Ao (X) = X. I introduce
higher order lotteries inductively over the parameter n € N = {0,1,..., N} defining
the maximal depth of the decision tree[|] Let Z°(X) = Y°(X) = X. In the first in-
duction step I define for n > 0 the lottery spaces Y*(X) = A, (Z"1(X)) forall s € S.
It describes a decision tree of maximal depth n with a rootf| lottery of subjectivity s.
In the second induction step, I define the general choice space Z™(X) = U,cgY(X),
which collects decision trees with different degrees of subjectivity in the root. Note
that inclusion of s® when forming the (disjoint) union allows the decision tree to have
branches of differing length. The spaces Z™(X) are equipped with the (disjoint) union

topology and, thus, compact. In a static setting the decision maker’s choice objects

'T refer by the name decision tree also to an “uncertainty tree”, which simply represents un-
certainty. Here, the actual choice is that for a particular decision or “uncertainty” tree. Decision
nodes could be introduced at any point in the “uncertainty” trees the same way as done in Kreps
& Porteus (1978). However, no additional insights would be gained from doing so and the more
complicated notation would rather be obstructive.

2The root of a decision tree is its first element. By root lottery I therefore denote the “outermost”
lottery or the lottery corresponding to the root of the decision tree that describes the composed
lottery.
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Figure 1: Example of two decision trees, p; € Z2(X* x Piy1) and p} € Z2(X* x P,y1), depicting
uncertainty resolving in period ¢. Each uncertainty node is labeled with the degree of subjectivity of
the corresponding lottery. The leaves of the trees are omitted and would consist of differing elements
(x4, pt41) € X* X Pyyq. Lottery p} differs from lottery p; only and that the root lottery is collapsed
with the subsequent layer of uncertainty sharing the same degree of subjectivity. A decision maker
satisfying axiom is indifferent between the two depicted decision trees.

would be described as the elements z € Z¥(X*). These elements represent arbitrary
concatenations of lotteries with differing degrees of subjectivity with a maximal con-
catenation length (decision tree depth) of N. An example for N = 3 with simple
probabilities is depicted in Figure [T}

I construct the general choice space in the intertemporal setting recursively. In
the last period, choices are pr € Pr = ZV(X*). Preceding choice spaces are defined
by Py = ZN(X* x P,) for all t € {1,...,T}. Thus, at the beginning of every
period uncertainty is described as a composition of lotteries with differing degrees
of subjectivity over current outcomes and over the uncertainty that describes the
decision maker’s future starting in the next period. I call the choice object p; € P,
in period t a generalized temporal lottery. They extend Kreps & Porteus’s (1978)
concept of a temporal lottery. I define the rank n of a lottery p; € P, by the function
N Uer Py — N with n(p;) = n if p, € Y(X* X Pyy) for some s € S, t € T, and
n > 1, and n(p;) = 0 otherwise. The rank captures the level of compoundedness
or concatenation of a lottery, which corresponds to the depth of its representing
decision tree (within a given period). I define the function § : UerP, — S by
S(pr) = s if py € Y (X* X Piyy) for some s € S, t € T, and n > 1, and by §(p;) = s°
otherwise. It maps every uncertain choice object into the degree of subjectivity of

its root lottery and assigns s° to a degenerate root lottery. For a degenerate lottery
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pe = (4, piy1) € Z°(X* x Pryq) T introduce the notation

Lif (24, piy1) € B

t = (Zt; Pt+1 = Oarpe B
pe(B) = (2, pr41)(B) @) (B) {Oif(%,]%ﬂ)gB

for all B € B(X* x P,y1)f| The space PP = {p, € P, |3(p;) € {s,s°}} denotes the
space of all compound period t lotteries in which the root lottery has a degree of
subjectivity s (asin Figure and includes the certain outcomes. I define the following
composition of two lotteries with coinciding degree of subjectivity. For any s € S,
p,p, € P? and a € [0,1] I define a probability o mixture by the operation &% :
Py x P? — P that maps (pt, p)) — pt BS p) € Yoo e qefined by

(1 . Ck) p; (B N Zmax{fz(pg)fl,O}(X* « PtJrl))

for all B € B (Zzmadtnpd):ale)3-1(X* x P,1)). Note that the lottery resulting from
this mixture lives in the same space as the lottery of p; and p; with the higher rank.

Whenever the root lottery p, € P, shares the same degree of subjectivity with
the subsequent layer of uncertainty (as on the left hand side in Figure [1)) I define
a reduced lottery that collapses the same degree of subjectivity uncertainty into a
single layer. Hereto I define for any lottery p; € A (Y(X* X Pyyq)) of rank n + 1
the reduced lottery p; € Y*(X* x Pi41) of rank n by

pi(B) = [ pu(B) dp(pr) (1)
Y (X*XPyy1)

for all B € B(Z"1(X* X Piy1)). An example is given in Figure (1| where the lottery
p; collapses the root lottery and the subsequent layer of uncertainty sharing the same

degree of subjectivity in lottery p; into a single layer of uncertainty.
The space X = X* 1 ¢ Py characterizes the set of all certain consumption paths
faced in the present. A consumption paths x € X is written x = (xg, ..., zr). Given
x € X, I define (x_;,z) = (xq, ..., i1, T, Tit1, ..., o7) € X as the consumption path

that coincides with x in all but the i** period, in which it yields outcome z. I denote

*T have not assigned a degree of subjectivity to (¢, pi41)(-) = Oz, prsy)(-)- It is by itself not
a lottery that is part of the choice space P;, but only a notational object used in defining choice

objects — it only describes a possible first entry of the choice objects of type (-, s) € {(A(X), s) }Ses.
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the set of certain consumption paths faced in period t by X! = X7~ C P,. In every

period t € T' the decision maker’s preferences >; are a binary relation on F,.

Further Remarks: The operator @&¢ mixes same degree of subjectivity lotteries
within a given level of compoundedness (which is given by the lottery with the higher
rank). Instead, I can as well define a composition where the mixture of two such
lotteries elevates compoundedness by one level. Herto, for any n € N, s € S, and
pr € Z'<"(X* X Pyyy), I define the lottery §»° € Y* by

lifp, € B
wem=y

for all B ¢ Z"1(X* x Pyy). For any s € S, a € [0,1], and p;,p, € P with
n* = max{n(p;),n(p;)} +1 < N, I define an elevating probability o mixture by the
operation ®% : P, x P, — P? that maps (p;, p}) +— p: ©% p} € Y defined by

pe O B(B) = a6, (B) + (1 — )b, *(B) (2)

for all B € B(Z™H(X* x Ppiy)).

Moreover, if both mixtures share the same degree of subjectivity, it lies at hand
to assume that a decision maker does not care whether probabilities are manipulated
at the same lottery level or whether the manipulation takes place at an elevated level.

Such an assumption corresponds to the statement
pe O Py~ pr B2 for all  pg,p, € P with n(p,), n(p;) < N . (3)

Indifference in equation (3)) is a special case of an axiom requiring indifference to the

reduction of same degree of subjectivity lotteries introduced in the next section.

3 Axioms

The first axiom makes the decision maker indifferent to the reduction of same degree of
subjectivity lotteries. Using the notation of a reduced lottery introduced in equation

such an assumption writes as

A1 (indifference to reduction of lotteries with same degree of subjectivity)
ForallteT,se S, n<N,p € Ay (Y X* X Pr1)): pe Dy
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A decision maker who satisfies axiom Al is indifferent between the two lotteries
depicted in Figure [II The literature discussed in the introduction lives of the fact
that axiom All|is not satisfied. These papers need to distinguish evaluation of lotteries
on different levels because the level at which the mixture takes place is the only way
they can distinguish between e.g. objective and subjective lotteries. I favor tying
difference in uncertainty attitude directly to subjectivity and confidence as opposed
to the level or order in which uncertainty strikes the agent. That step makes it possible
to impose axiom (and satisfy equation [3|) without collapsing the representation
to the standard von Neumann-Morgenstern representation one losing the additional
dimension of decision making.

The following three axioms mostly replicate the standard von Neumann & Mor-

genstern (1944) axioms for the compact metric space setting (e.g. Grandmont 1972).

A2 (weak order) For all t € T preferences =, are transitive and complete, i.e.:
— transitive: For all p, p},p} € Py : py = p, and p; = pi = py = pY
— complete: For all p;,p, € P, :py = p} or p, = py .

A3 (independence) Forall se€ S, a€[0,1], and t € T:
For all py,pj,pi € P pezepy, = pe@®Spl =e p &P

A4 (continuity) Forall t € T, for all p;€ P, :
{p,€P :p, = p} and {p,€ P, : p, = p,} are closed in P, .

The independence axiom is the only axiom that is slightly modified and I might call
it “independence with respect to same degree of subjectivity mixing”. Requiring the
same degree of subjectivity for the lotteries p;, p},p} € Pf and the &2 operator is a
technical assumption to permit a meaningful mixing at the same lottery level. The
fact that mixing is required to take place at the same lottery level will be further
discussed in a remark at the end of this section. There, I also discuss an alternative
independence axiom that mixes lotteries differing degrees of subjectivity at a higher
level.

In order to match the predominant time-additive framework for certain intertem-

poral choice, I add additive separability on certain consumption paths. I employ the
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axiomatization of Wakker (1988)E|

A5 (certainty separability)
i) For all x,x" € X, z,2’ € X* and t € T":

(X—twf) ~1 (XLt,I> < (X—taxl) =1 (XLNI/)
it) If T'= 1 additionally: For all z;,z}, 2} € X*, t € {0,1}

(2o, 1) ~1 (z0,27) N (g, 2)) ~1 (25, 21) = (w0, 27) ~1 (g, 27) -

Wakker (1988) calls part i) of the axiom coordinate independence. It requires that
the choice between two consumption paths does not depend on period ¢ consumption,
whenever the latter coincides for both paths. Part i) is known as the Thomsen
condition. It is required only if the model is limited to 7' = 2 periods[| Preferences
in different periods are related by the following consistency assumption adapted from
Kreps & Porteus (1978).

A6 (time consistency) For all t € {0,...,T — 1}

(T4, De41) =t (T4, D41) € Dot =41 Doy V@ € X7, pry1, Dyyy € Py

The axiom is a requirement for choosing between two consumption plans in period ¢,
both of which are degenerate and yield a coinciding outcome in the respective period.
For these choice situations, axiom Aff] demands that in period ¢, the decision maker

prefers the plan that gives rise to the lottery that is preferred in period ¢ + 1.

Further Remarks: I pointed out that the operator @&¢ and, thus, the independence
axiom Af] mixes same degree of subjectivity lotteries within at a given lottery level.
In the remark of the preceding section I defined an alternative mixture composition
©¢ where the mixture of two lotteries elevates the level of compoundedness by one.

An alternative to axiom A]is the following axiom

4Other axiomatizations of additive separability include Koopmans (1960), Krantz, Luce, Suppes
& Tversky (1971), Jaffray (1974a), Jaffray (1974b), Radner (1982), and Fishburn (1992).

°In the case of two periods parts i) and 4i) can also be replaced by the single requirement of
triple cancellation (see Wakker 1988, 427).
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A3 (elevating independence) For all s € S, a € [0,1], t € T, and p, p,,p} € B

with 2(pe), n(p), n(pf) < N: pezep, = peOI P =i P OF pY
It differs from axiom in two respects. First, it no longer requires the lotteries
pt, P}, and p} to share a common degree of subjectivity. Second, it creates the lottery
mixture on a higher level than either of the individual lotteries. The first change
makes it stronger, however, the second change disconnects the levels of the primitive
lotteries and the mixed lottery. Under the assumption of indifference to the reduction
of same degree of subjectivity lotteries (axiom it is easily verified that indifference
between the @¢ and the ©% operations holds in the sense of equation ﬁ Therefore,
under assumption axiom AR implies axiom AB|[] and axiom implies axiom
AR restricted to same degree of subjectivity lotteries.

It might be less obvious that axiom together with axiom is already enough
to imply axiom axiom AP for same degree of subjectivity lotteries. The reason is
that axiom already contains an assumption of indifference to the reduction of
degenerate lotteries. In axiom choose lotteries p,p/,p” € P; satisfying n(p;) =
n < N and n(p;) = n(p/) =n+ 1. Then, a a = 1 mixture of the lotteries delivers

Dt =t pé = Dt 69‘;“292/ ¢ p; Dy p;/ = 0y =t p;

where 6,, € A(-). By completeness of preferences (axiom A2)) and repeated applica-

tion I obtain
0p° ~t Di (4)

for s € S and n* > n. Thus, for arbitrary lotteries py,p},p/ € P; and n* =
max{n(p), 2(p}), (p{)} +1 < N, I find

/ * n’s * n%s nis nis
Dt >__t pt = 5;13 tt 5172 = é;f)lt @? 6]);/ tt 517; @g 517;/
= pOLP = Of Py
using first equation and then axiom . Note, however, that axioms 7 and
together do not imply equation . For indifference in equation I need to impose

axiom Alll

6Use the definition of ® along with equation and equation .
"For lotteries satisfying n(p;), n(p,), n(p}) < N. Otherwise the elevating independence axiom
creates a mixture outside of the preference domain.
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4 The Representation

The representation recursively constructs a welfare function u; : X* x Py — Uy C IR
evaluating degenerate outcomes in every period. Within a period, the representa-
tion recursively evaluates the different layers of uncertainty (branches of the decision
tree in Figure . All uncertainty nodes are labeled by their degree of subjectiv-
ity. The risk aversion when evaluating a lottery at a particular node is tied to its
degree of subjectivity. This risk aversion can be captured by a set of continuous
functions ft = (f7)ses, 7 : R — IR. I call these functions uncertainty aggregation
weights. Given a continuous bounded function u; : X* x Py — U C IR evaluating
degenerate outcomes and a set of uncertainty aggregation weights ft = (f)ses, 1
define the generalized uncertainty aggregator ./\/l{ft : P, — IR recursively by setting
Mf;tt(xt,ptﬂ) = Uy(xy, pra1) for degenerate lotteries p; = (24, pip1) € P and then
inductively increasing its domain to lotteries of rank n(p;) = 1,2,..., N by deﬁningﬂ

" . -1 5 f
Mip= (£7) " [ e v o). )

ZP)=1(X*x Pyi1)

Graphically, the expression M{ft P, captures the evaluation of all the subtrees that lead
into the node making up lottery p;. Each of these possible outcomes is weighted with
the uncertainty weighting function ftg(p 2 corresponding to the degree of subjectivity
of the lottery p;. The integral sums over these weighted subtree evaluation and,
finally, the function ( ftS ( *))_1 is applied to renormalize the expression making the
generalized uncertainty aggregator a generalized mean.

Theorem 1: The sequence of preference relations (>;)c7 satisfies axioms A@ if,
and only if, for all t € T" there exist a set of strictly increasing and continuous
functions ft = (ff)ses, 7 : R — IR, and a continuous and bounded function
uy : X* — U C IR such that by defining recursively the functions 4y = ur and
U1 : X*x P, — R by

U1 (211, p0) = U1 (1) + MQJZ Dt (6)
it holds for all ¢t € T" and all p;, p}, € P,

Pz P Méipt > Mittp:t (7)

8The sign o emphasizes the functional composition of f**)o ./\/lﬁi p, = fi®) [,/\/li’t i)

10
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Preferences (=)t over the space of generalized temporal lotteries can be represented
by the sequence ( ft, ug)ier- The functions ft inform the generalized uncertainty eval-
uation where risk aversion depends on the degree of subjectivity of a lottery (equation
. The functions u; represent per period utility and inform the recursive construc-
tion of the intertemporal utility or value function 4; (equation @ Note that the
representation in Theorem (1] is linear in every time step. In a setting where lotteries
would not be distinguished by their degree of subjectivity, the setting of this paper
would relate closely to Kreps & Porteus (1978). In their representation, Kreps &
Porteus (1978) use a linear uncertainty aggregation at the expense of a non-linear
time aggregation. I show in Traeger (2007) how to shift the non-linearity between
the time and the risk dimension in such a setting. In the current setting, however,
lotteries vary in their degree of subjectivity. Here, giving up linearity in the time step
in equation () would only facilitate the linearization of ff for one s € S and would
not permit a linear aggregation over uncertainty in general. Thus, I consider the em-
ployed linearization over time to be the more reasonable representation. Finally, note
that affine transformation of the functions ff are allowed in the representation. Affine
transformation of the functions u; are restricted to a common multiplicative constant

in different periods and have to be accompanied with a coinciding transformation of
the functions ( fts) _1H

Further Remarks: The representation building on axioms to Alf] satisfies as
well elevating independence mixing lotteries of differing degrees of subjectivity AR,
which might be a desirable property for a normative application of the representation.
Axiom is responsible for connecting the uncertainty weights on the different layers
permitting a unique set ft evaluating lotteries independently of their level in the

decision tree.

5 Discussion of the Representation

The discussion of the representation in Theorem [1| proceeds in two steps. First, I

analyze a restricted version of the model limiting the space S to only two degrees of

9Which implies composing the function ff with the inverse of the affine transformation from the
right to obtain the new representing sequence f’7.

11
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subjectivity. This restricted version of the model is a straight forward generalization
of Klibanoff et al.’s (2009) smooth ambiguity setting. I show that Klibanoff et al.’s
(2009) definition of smooth ambiguity aversion is somewhat “ambiguous” and render
the definition more precise. Moreover, I disentangle intertemporal substitutability
from risk aversion and ambiguity aversion. Then, I proceed to discuss the general
setting with an arbitrary number of degrees of subjectivity in the lottery space. In
particular, I generalize the definition of smooth ambiguity aversion in this setting to

characterize aversion against the degree of subjectivity of a lottery.

5.1 A binary classification of subjectivity or confidence

I start with interpreting a special case of the representation that is obtained by
restricting the degree of subjectivity to #5 = 2. I associate the two elements s € S =
{subj, obj} with subjective and objective beliefs. Two further restrictions transform
it into the smooth ambiguity model of Klibanoff et al. (2009) — translated into the
von Neumann-Morgenstern setting. First, the evaluation of objective lotteries in
Klibanoff et al.’s (2009) setting is (intertemporally) risk neutral in the sense that
) — id is linear in (or rather absent from) their representation. This latter point
will be discussed in detail further below. Second, Klibanoff et al. (2009) restrict
the level of compoundedness of the lotteries to N = 2 and impose a hierarchy of
beliefs implying that decision makers can only face subjective lotteries over objective
lotteries, but not vice versa. For example, a situation where a decision maker flips a
coin to decide whether he takes a riskless action or enters a subjective lottery cannot
be captured in such a settingEU] In contrast, the representation in Theorem [1| permits
an arbitrary sequence of subjective and objective lotteries (within every period).
Maintaining all of these restrictions, the first interesting insight to be gained is
that representation Theorem [1] only requires a minimal deviation from the standard
von Neumann-Morgenstern setting and preserves even the independence axiom, only
labeling lotteries by their degree of subjectivity. Thus, explicitly introducing the di-
mensions that Ellsberg (1961) already found missing in the Savage framework, i.e. a

degree of confidence or subjectivity of belief, leads straight forwardly from von Neu-

10A similar lottery could be captured, though, under the assumption that the subjective lottery
follows the objective lottery with one period of delay. As I will explain below, however, a period of
delay will also introduce aversion to intertemporal substitution.

12
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mann & Morgenstern (1944) to a model of smooth ambiguity aversion. The next
insight concerns the the interpretation of Klibanoff et al.’s (2009) smooth ambiguity
aversion. Hereto, I briefly relate the representation in Theorem (1| to the general-
ized isoelastic model of Epstein & Zin (1989) and Weil (1990). A priori, a decision
maker’s propensity to smooth consumption over time is a different preference charac-
teristic than his risk aversion. However, the intertemporally additive expected utility
standard model implicitly assumes that these quite different dimensions of preference
coincide. Epstein & Zin (1989) and Weil (1990) observed that in a one commod-
ity version of Kreps & Porteus’s (1978) recursive utility model of temporal lotteries
these two dimensions of preference can be disentangled. In Traeger (2007) I show, in
a setting corresponding to an #S = 1 version of the current model, that the func-
tion f; measures the difference between Arrow Pratt risk aversion and aversion to
intertemporal substitutionE I name f; a measure of intertemporal risk aversion. It
measures the part of risk aversion that is not simply a cause of a decision maker’s
propensity to smooth over time, but due an intrinsic aversion to risk. The concept
of intertemporal risk aversion is not limited to the one-commodity setting of the
Epstein & Zin (1989) framework, but generalizes to arbitrary dimensions and to set-
tings without a naturally given measure scale of the good under observation. The
following axiomatic characterization is put forth in Traeger (2007). For two given
consumption paths x,x’ € X*, I define the ‘best of combination’ path xM&!(x, x') by

high(

(x o

x,X')); = argmax,cx, x/ U, () and the ‘worst off combination” path x**(x, x’)
by (X'V(x,x'))r = argmin,cx_x: u-(x) for all 7 € {t, ...,T}.H In every period the
consumption path x"8%(x, x’) picks out the better outcome of x and x’, while x'*%(x, x')
collects the inferior outcomes. A decision maker is called (weakly)lﬂ intertemporal risk

averse in period t if and only if for all consumption paths x,x’ € X’
x~xX = ox = 3 xXMER(x X)) + 5 X (x, X)), (8)

where £ x™M&h(x,x’) 4+ 1 x'°"(x,x) denotes a lottery with equal chance between the

paths xMeh(x, x’) and x'°%(x,x’). The premise states that a decision maker is indif-

11 Ag there is only one type of risk, there also is only one function f; in every period used for
uncertainty aggregation.

12Tn Traeger (2007) I show how these paths can be defined purely in terms of preferences.

13 Analogously, a strict intertemporal risk averse decision maker can be defined by assuming in
addition that there exists some period ¢* such that u(X:+) # u(X}.) and requiring a strict preference
> rather than the weak preference >~ in equation .

13
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ferent between the certain consumption paths x and x’. Then, an intertemporal risk
averse decision maker prefers the consumption path x (or equivalently x') with cer-
tainty over a lottery that yields with equal probability either a path combining all the
best outcomes or a path combining all the worst outcomes. The cited paper shows
that the function f; in the representation is concave if and only if equation holds.
In the certainty additive representation employed here, intertemporal risk aversion
can as well be understood as risk aversion with respect to utility gains and losses.
The definition of intertemporal risk aversion extends straight forwardly to a setting
with differing degrees of risk aversion to objective and subjective lotteries. I charac-
terize intertemporal risk aversion to objective lotteries by requiring for all x,x’ € X

. 1
x~xX = ox oz XM (xX) @7, XV (x,x) (9)

implying concavity of f; *7and similarly intertemporal risk aversion to subjective
lotteries by requiring for all x,x’ € X

. 1
XX = ox o XX X)) @2, XV (x, X)) (10)

implying concavity of f; b7 Klibanoff et al. (2009) implicitly assume that f°% = id
corresponding to indifference in equation (@ This assumption implies that uncer-
tainty evaluation with respect to objective (or first order) lotteries is intertemporal
risk neutral. Only when it comes to subjective lotteries, Klibanoff et al. (2009) in-
troduce a non-trivial function f*“% and, thus, allow for intertemporal risk aversion.
Now Klibanoff et al. (2009) define ambiguity aversion by the concavity of f; " in a
setting assuming f; % — id. This concept earned the name smooth ambiguity aver-
sion in the decision theoretic literature. Releasing the restriction ffbj = id sheds
more light onto this definition. In principle, there are two sensible ways of extending
Klibanoff et al.’s (2009) representation to incorporate the missing non-linearity f; b
The representation I have chosen in Theorem [1| introduces the function f;” " in such
a way that it measures intertemporal risk aversion with respect to objective lotteries
without changing the interpretation that f“bj measures intertemporal risk aversion
with respect to subjective lotteries. Given the hierarchical order of subjective over
objective lotteries in Klibanoff et al.’s (2009) setting, I could as well introduce a func-
tion fom = % o (f7*)~" to eliminate f{"” from the representation. Observe the

following transformation of the representing equation (7)) where p; and p} are different

14
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subjective lotteries over the set of objective lotteries whose representatives are p;
peo=ep e Mip > MLy,

<:>( sub]) f dp. () sub] ( tobj)fl f (20, Pr1) f:bjoﬁt(l"t,pt-i-l)

zZ1 (X*XPt+1) X*Xpt+1
> ( SUb]) f d SUbj ( Ob]) f dpy $t,pt+1)f o Out(xt»PtH)
Zl(X*XPt+1) X*X P41
<:>( amb) f dpy pt) amb f dpt(xtathrl)ft Out(xtathrl)
Zl(X*XPt+1) X*XPiqq
( amb) f d amb f dpt(xt7pt+1)f o Out(% pt+1)
Zl(X*XPt+1) X*XPt+1
This new function f@ = f#* o (f**)=! then measures the additional aversion
to subjective risk as opposed to objective risk. For this interpretation, note that
Subi o (fP%)=1 concave is a definition of f** being more concave than f* (Hardy,

Littlewood & Polya 1964). Because in Klibanoff et al.’s (2009) setting it is 7 = id,
their definition of ambiguity aversion does not pin down whether smooth ambiguity
aversion should be captured by intertemporal aversion to subjective risk captured in

ts”bj and characterized by the lottery choice or whether it should be characterized
by the functions f#™ measuring the additional risk aversion to subjective risk as
opposed to objective risk. I suggest to call the latter a measure of smooth ambiguity

aversion.

Definition 1: A decision maker exhibits (strict) smooth ambiguity aversion in pe-

riod t if the function

o= o ()

in the preference representation of Theorem |1|is (strictly) concave.

I follow Klibanoff et al. (2009) in defining the term by means of characteristics of the
representation. However, (strict) concavity of the function f®? is purely a charac-
teristic of preferences and does not depend on a particular version of the represen-
tation (even though choices of 4, and ft are generally not unique). An axiomatic

characterizations of smooth ambiguity aversion in terms of preferences and choices

HHereto observe that f@™ concave and ff*% = fomb o (%) implies that f"* is a concave

bj
transformation of f;™.
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follows. Employing equations @D and the condition @™ = f“bj o ( t"bj )~! con-
cave translates smooth ambiguity aversion in period ¢ into the requirement that for

all x,x',x" € X!

. 1 . 1
hlgh(X’ X/) 2 XIOW(X’ X/) = x it Xhlgh(X, X/) 2 XIOW(X,XI) ]

/
X~ X Zp X obj subj

However, ambiguity aversion can be characterized simpler by recognizing that the

intertemporal aspect of the risk comparison can as well be dropped.

Proposition 1: A decision maker exhibits (strict) smooth ambiguity aversion in the
sense of Definition |1|if, and only if, for all x,x’ € X

1 1
2 !/ 2 !/
x 69obj X 7y ( i ) X 69subj x

For the one-commodity settinﬁ the model gives rise to a three-fold disentanglement
that can be expressed in terms of 6 diffing related concepts (sharing three degrees of

freedom):

e the functions u; characterize aversion to intertemporal substitution,

bj

e the functions f;*” characterize intertemporal risk aversion to objective risk,

e the functions f;” characterize intertemporal risk aversion to subjective risk,

. bi bis_ . L. .
e the functions f@™> = £/ o (f”)~! characterize smooth ambiguity aversion,

. b bi _ . . .
e the functions ¢/” = f” o u; ! measure Arrow Pratt risk aversion with respect

to objective lotteries, and

. bi bi ) . .
e the functions ¢;*” = f7” ou; ! measure Arrow Pratt risk aversion with respect

to subjective risk.

If follows immediately that in the one-commodity setting smooth ambiguity aversion
can as well be expressed as the difference in Arrow Pratt risk aversion with respect

to subjective risk and Arrow Pratt risk aversion with respect to objective risk:

=g o ()7

150nly in the one-commodity setting the inverse of u and the Arrow Pratt measure of risk aversion
as well as the measure of intertemporal substitution are unidimensional and well defined.
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5.2 The general representation and aversion to the subjec-

tivity of belief

A unique measure of ambiguity aversion is tied to the setting with #S = 2. In
general, a decision maker will not always be able to make a binary classification of
subjective versus objective lotteries or of only two classes of confidence in beliefs.
While objective probabilities are generally classified as those derived from symmetry
reasonings or long-run, high frequency observations, subjective risk is basically any
probabilistic belief not obtained in that way, leaving a wide field of beliefs for a single
category. For example the odds based on a somewhat shorter time series or a slightly
irregular coin, a horse race lottery, the odds of a 2°C global warming by 2050 due to
climate change, or weather characteristics in Tomboctou on November 22nd 2010. In
general, different decision makers are likely to classify different lotteries in different
categories. A useful characterization of a decision maker’s preferences for the general
setting with #S5 > 2 is as follows. Assume that the decision maker has a complete
order over the elements in S in terms of subjectivity. Let s> s’ denote that a lottery

labeled s is more subjective than a lottery labeled s'.
Definition 2: A decision maker is (strictly) averse to subjectivity of belief if

/

sps e fPo(fF)7! (strictly) concave Vs, s’ €S .

Alternatively, the situation s> s’ can be interpreted as a decision maker being less
confident in lotteries of category s than in lotteries of categories s’. Then, aversion to
subjectivity of belief is equivalent to aversion to a lack of confidence in beliefs. Defini-
tion [1] of smooth ambiguity aversion is the special case of aversion to the subjectivity

of belief (or to the lack of confidence) in the case #S = 2. The characterization in

terms of preferences carries over straight forwardly to the generalization.

Proposition 2: A decision maker exhibits (strict) aversion to the subjectivity of
belief in the sense of Definition [2]if, and only if, for all x,x’ € X" and s,s’ € S

with s> &
1 1
X@LxX = () x®EX .

With respect to the broader literature on ambiguity it is interesting to analyze how the

description of the Ellsberg (1961) paradox would differ for a decision maker employing
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the representation of Theorem [I| as opposed to the multiple prior approach or the
Choquet expected utility approach. In the setting of the Ellsberg paradox a decision
maker has to bet on the color of a ball that is drawn from an urn. The crucial feature
of the various variants of the setting can be reflected by the following simplified choice
situation. In one urn, the decision maker knows that half of the balls are red. In
another urn, the decision maker only knows that it contains nothing but red and blue
balls. In the first case, the earn draw gives him what I would consider an objective
probability of % that a red ball is randomly drawn. For the second urn, the principle
of insufficient reason would render him a probability of % as well. However, a good
fraction of the individuals in comparable settings tend to prefer betting on the first
urn where they know the number of red balls["] The Choquet approach to explaining
the paradoxical preference for the urn with the known amount of red balls abandons
the concept of a probability and replaces it with a non-additivity set function. The
latter captures the decision maker’s ambiguity about the red balls in the second
urn. Choquet integrating over the capacities induces aversion to ambiguity. The
multiple prior approach instead attaches a range of different probability distributions
to drawing a red ball from the second ball and, e.g. in the simplest such approach
formulated by Gilboa & Schmeidler (1989), evaluates the bet by the worst expected
outcome possible within the range of priors. The Klibanoff et al. (2009) approach
assigns a second order probability distribution to the urn with the unknown number
of balls. The way to think about this latter approach is that each possible number
of balls corresponds to an objective or first order lottery. Not knowing the number
of balls then translates into a second order or subjective lottery over the first order
lotteries. Obviously, the Ellsberg paradox can be handled the same way by means of
the representation in Theorem However, there is an alternative way to describe
the behavior by means of representation theorem [I] The decision maker attaches
a probability of a half to the event drawing a red ball for both urns. However, he
labels the urn where he knows the number of balls to be an objective lottery and he
labels the lottery where the probability of a half is only obtained from the principle
of insufficient reason to be a subjective lottery. If the decision maker is averse to

the subjectivity of probabilistic beliefs, he prefers to bet on the “objective” urn.

6Note that the real versions of the Ellsberg (1961) paradox are set up slightly more elaborate in
order to assure that no possible probability assigned to the distributions in the urn can explain the
described choice within the standard risk setting.
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Note that in the current setting not only those decision makers who are ambiguity
neutral, but also those who consider all of the involved urn lotteries to be objective
would not exhibit the “paradoxic behavior” predicted by Ellsberg (1961), a behavior
that is generally only observed for some fraction of the participants of an according

experiment.

6 A Sketch of Possible Applications

I briefly sketch out two possible applications of the model. One is quasi-static in that
it uses the representation only for an evaluation of a given future. The other appli-
cation is dynamic and relates the model to a particular possibility of tying the model
to Bayesian updating. Both examples are drawn from the context of climate change
economics. In the first example, a decision tree for a given period in the future starts
with the root lottery capturing uncertainty about the stock of greenhouse gases in the
atmosphere. For every given pollution stock there is a subtree describing uncertainty
about the temperature in the same period. For a given (average) temperature there
is uncertainty about precipitation. Given precipitation, there is uncertainty about
agricultural yield. Given agricultural yield there is uncertainty about market prices
and so on. Now, given this decision tree, the decision maker has to assign his de-
gree of confidence or of subjectivity to each of these lotteries. For example, for the
subtrees that correspond to low emission stocks, he might be more confident into the
probability distributions over temperatures and precipitation. In the subtrees corre-
sponding to a very high realization of the greenhouse gas stock, the decision maker
is likely to consider his probabilistic estimates of the temperature change or the pre-
cipitation distribution as less reliable, labeling it more subjective. Assume that the
decision make is averse to subjectivity of belief as formalized in definition [2 Then,
he attaches a relatively lower value to the more subjective subtrees stemming from
a higher perturbation of the climate system than would a decision maker who does
not distinguish lotteries by their confidence of subjectivity. Thus, a first conjecture
in such a context would be that a decision maker with aversion to the subjectivity of
belief would be willing to invest more into measures keeping him in a climate region
that he can predict more confidently.

In the second example, I connect the representation in the simplest possible way
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with a Bayesian setting where a decision maker learns about fundamental parameters
of his environment. The setting of this paper permits the decision maker to attach
a different degree of subjectivity to his priors capturing different uncertainties. For
example, let p characterize the average temperature distribution in the central valley
in California in 2050, the heart of Californian agricultural production. I model a
decision maker who is aware that he can adapt to new information as uncertainty
resolves over time. The decision maker employs a regional climate model for California
that is coupled to a global climate model. Given his model is correct he obtains a
probability distribution for the temperature T. However, there are unknowns 6 in the
characterization or quality of the regional climate model. Also there are unknowns
0y with respect to the quality of the global model to which the regional model is
coupled. Given both, #; and 65, the probability distribution for the temperature
is given by the likelihood function {(T'|6;,60s). Given 6; and 6, he trusts his model
enough to label the lottery [(7|0;,602) objective. However, he is aware that there
are severe issues with regional modeling so he labels the prior p;(6;]02) over the
unknowns 6 of the regional model, which might depend on unknowns in the global
climate model, to be subjective of degree s. The unknowns of the global model are
captured by a prior ps(62) with a degree of subjectivity s’ < s somewhere in between
the other two distributions. The decision maker can obviously calculate the expected
probability distribution over the temperature in 2050 by integrating out the priors
to p(x) = [ [1(x|6:,0)dp1(61]02)dpus(62). However, from an evaluative perspective
there is no use in doing so, because the different layers of uncertainty correspond to
different degrees of confidence or subjectivity. Therefore, they have to be evaluated
recursively, each with the corresponding degree of aversion. Both priors j4(6;]62) and
2(02) can be updated as in any standard Bayesian model of learning. With sufficient
information, in the long run, the priors would shrink to a singleton and the decision
maker would be left with the objective uncertainty or volatility of the temperature
predicted by the model. The described procedure is not the only way to connect the
representation of this paper with Bayesian learning. Of course, another interesting
reasoning about learning in the present context will be to explicitly model changes
in the degree of confidence instead of just shrinking priors. This question opens up a

wide alley of future research.
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7 Conclusions

The paper presents a model for evaluating scenarios that involve probabilistic beliefs
that differ in their degree of subjectivity (or confidence). The evaluation of scenarios
only employs simple tools from risk analysis. The representation facilitates a unified
framework for representing aversion to intertemporal substitution, aversion to objec-
tive risk, aversion to subjective risk, and smooth ambiguity aversion. It respects the
normatively desirable axioms of von Neumann & Morgenstern (1944) and of time
consistency. Moreover, the representation facilitates a better understanding and a
more precise definition of smooth ambiguity aversion as the additional intertemporal
risk aversion to subjective as opposed to objective lotteries. The concept of smooth
ambiguity aversion is put forth in the literature in a hierarchical and binary context
of purely subjective second order beliefs over purely objective first order beliefs. The
representation of this paper frees the degree of subjectivity form this straitjacket by
incorporating the degree of subjectivity straight into the notion of a lottery. I briefly
sketched out two possible applications of the model. The more elaborate application

to learning opens up a wide alley for future research.

Appendix

Proof of Theorem [Ik

Part T develops the representation for a single layer of uncertainty in a given period.
Part II builds the recursive evaluation of a general decision tree within a given period.
Part III constructs the intertemporal aggregation. Part IV shows that the axioms are
satisfied by the representation.

Part I 1) I denote the underlying choice space in a given period t by X; = X* x P,y
(for the last period is X7 = X*). By axioms and there exists an ordinal
representation @; : X; — IR of preferences =, |x,, i.e. preferences over degenerate
period t choices only. I denote the evaluation function for these degenerate lotteries

pt € Py with a(p;) = 0 also by

Ve (Pt) = Uy (pt)

2) For a given parameter s, axioms on A4(X;) are the standard von Neumann-

Morgenstern axioms for a compact metric setting that permit an expected utility
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presentation on Ag(X;). The only distinction to the standard presentation is that I
formally distinguish an element p; € X; from the degenerate lottery 6,° € Ay (Xy).
However, as I pointed out in the context of equation axioms Al2land imply Dy~
5;;5 for p; € X, so for employing the standard mixture space arguments the two can
be identified. The standard von Neumann-Morgenstern reasoning shows that there
exists a particular version of u, that makes it possible to represent preferences over
lotteries in the expected utility form. Instead of using the standard representation,
I follow Traeger (2007) and build the representation on an arbitrary function a, :
X; — IR representing degenerate choices =, |x,. At the current point @; could be the
function singled out by von Neumann-Morgenstern as well as any strictly increasing
and continuous transformation of it. For a given parameter s, Theorem 1 in Traeger

(2007) translates into the following preference representation:

Given is 4; : X; — IR with range(@;) = U representing preferences =, |x,. Then
= |a.x, satisfies axioms if, and only if, there exists a strictly increasing

and continuous function f; : U — IR such that

Vsl(p) = (fts)il ft oty dp

Xt

represents =

Au(xy) for all p € Ay(X;). Moreover, f and f’ both represent > in
the above sense if, and only if, there exist a,b € IR, a > 0 such that f' = af+b.

3) Undertaking step 2) for all s € S results in a sequence of increasing and continuous

functions ft = (fS)ses, [7 : R — IR, as stated in the theorem, and a representation

of =¢ |z1(x,) by

Vl(p ) _ { v0<pt) = ~1t(29t) if ﬂ(pt) =0
Vl(pt) = fté(pt))_l th ftg(pt) o Uy dpy if n(p) =1

Part II constructs inductively a representation of >, | zp(x,) forn € N.

4) Let V™ : Zp(X;) — IR represent = |zn(x,). By equation I can evaluate
degenerate lotteries in A (Z7'(X;)) just as the corresponding elements in Z;*(X}).
That identification makes V™ a representation for degenerate lotteries in Z]"™(X,).
Thus, for given s, by axioms and Theorem 1 in Traeger (2007), cited in step
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2, the lotteries in A (Z}'(X})) can be represented by

VI ) = () fypnny F2 © VPO r) dpi(n)

for some strictly increasing and continuous function fts :range(V") — R. Employing
the representation theorem for each s € S delivers a representation over the union
Z"NXy) = UgesY(X,) including Y7'(X;) = Z"(X,) that evaluates lotteries
p € Z"H(Xy) by

VO(pe) = tiu(pe) if n(p;) =0
Vi) = ()7 1% oy, dp, if A(py) = 1
Xt

vt (Pt) =

Vit (p) = (FFON T P oV (5,) dpy(p) i Alp) =n+ 1.

\ Zn(Xt)

5) I show that the ff in V™! can be chosen to coincide with the f# in V" (and, thus,
in all the V'="). Let p,p/,p" € P* C Z(X;). Reduction of the following lottery gives

(05 2 0] (B) = [ pu(B) d (6 B5 0y (1)

Y (Xe)
=a | nB)d0) B)+1=a) | p(B) d () (p)

= api(B) + (1 — a)pi(B)
for all B € B(Z"'(X,)) and, thus, [d,, ®¢ 6,]" = p; ® p;. Then, by axiom
Op, D 5p2 ~t [51% S MT = p ®Y P,
Translated into the representation I find that

VIO, @2 0g) = (] @ [ oV (5) dby, ()

Zm(Xt)
+(1=a) [ froV"(h) ddy(p)]
Zm(Xt)
=) afro U [ fro VA dpi(h)

Z"_l(Xt)

A =a)fpo () [ fro Vi) dpl(i)]
Zn=1(Xy)
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has to equal

Vsn(pt Dy p;) = (ftsyl [ o fio Vn_l(ﬁt) dpt(ﬁt)
Zn—l(Xt)
+1—a) [ froVriE) dph)) -
Zn—l(Xt)

Abbreviating K (p) = . zn-1(x,) i © V=1 dp, equivalence of the two expression results

VI (0 ©5 0y) = Vi (pe @5 1)

& () oo ()7 Kp) + (= a)fy o () K(n))]
= ()7 0K () + (1 = @)K (p)]

& afto () K+ (1-a)fe o () Knh)
= Jo (f) 7 0K (po) + (1 - ) K(8))]

Because preferences are non-degenerate, K (p) can be varied on a continuum and by
Hardy et al. (1964, ) the continuous function ffo(f$)~" has to be linear implying f# =
aff+b for some a € R, and b € IR (on the domain relevant to the representation).
As affine transformations of the uncertainty aggregation weights do not change the
representation (see step 2), I can choose fts = f7.

6) Steps 4) and 5) can be applied inductively for n € {1,..., N — 1}, yielding a
representation for >, | zN(x,) ==t Once the uncertainty aggregation weights f;
have been shown to coincide at the different levels, the functions V" can as well be

constructed inductively by defining V° = @, and

Vip) = ()7 [ P o v (py) dpy(py)
2 -1(X,)
for n € N (noting that n(p;) < n). Then, for a given sequence of uncertainty weights
f; and a given function 4, it is /\/lf;tt p. = V¥(p,). 1 have established the existence
of the sequences ff as in the theorem and the existence of some w; such that the
representation equation in the theorem holds.
Part III shows that the sequence u;,t € T constructed as stated in equation @

indeed gives rise to a feasible set of Bernoulli utility functions ;.
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7) Recall that the only requirement on the functions @, is that they have to be an
ordinal representation of preferences on the space of degenerate outcomes in period t,
Le. for =; |x,. Axioms AR] and Ap|imply a certainty additive representation for
preferences restricted to the subspace of certain consumption paths (Wakker 1988,
theorem III.4.1)B I denote the corresponding continuous per period utility functions
by u; : X* — IR. They are unique up to affine transformations with a coinciding
multiplicative constant (and heterogeneous additive constants).

8) For the last period I can choose 4; = G = up. [ show recursively that u; 1 (x;_1,p;) =
w1 (xe—1) + Mitt pe is an (ordinal) representation of =, 1 |x,_, given that 4, is an
(ordinal) representation of =; |x,. Note that by construction of the uncertainty ag-
gregator Mf:tt, a certain consumption path x; = (x4, 2411, ..., x7) is indeed evaluated
to 4 (x') = 327, u-(x,). 1 define a certainty equivalent of a lottery p, € P; to be
a lottery (z}",p}",) € P, that satisfies (z{*,p}},) ~ p.. For any lottery there exists
such a certainty equivalent and it does not matter which one is chosen.ﬁ By the

i

@ pe = (g, pt,). Moreover, by

representation already constructed, I know that M
inductively replacing p}%, with a certainty equivalent, I obtain a certainty equivalent
to the lottery p; that is a certain consumption path, which T denote by x}*.

9) Observe that by time consistency
P ~exg

& (41, pt) ~i-1 ($t—1jxft)

17A note on the details of the theorem’s applicability. If the sets {p) € Py : pj =o X} and
{ph € Py : X =o pj} are closed in Py for all x € XT+! C Py, then the sets {p) € Py : p) =0
X}NXTH = X' e XTHL . X/ =g X} and {ph € Py : X =0 pp} N XTI+ = {x' € XT*! : X = X'}
are closed in X7*! endowed with the relative topology for all X € X7+!. Moreover the relative
topology on X7+ is the product topology on X7 +!.

18The existence is most easily observed from the representation already constructed. The uncer-
tainty aggregator is a generalized mean and, thus, the value of any lottery lies between the value of
the worst and the best outcome. For more details see induction hypothesis H2 in proof of theorem
2 in Traeger (2007).
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and therefore

(Tt-1,D¢) =1 (Th_q, 1)
& (w1, xP) =1 (x:s—pxp;)
S u(p) + S0 ue(@) > wa(p) + Do ur(al)
& up1(pe) + M}fﬁ U > wa(py) + Mﬁi Dt

Hence 4,1 : X* X P, — IR with Gy_1(x4—1,pr) = ug—1(x4-1) + M{L’i p; is an (ordinal)

representation of >; 1 |x+xp,. Thus, indeed there exist continuous functions u; as
stated in the theorem so that feasible Bernoulli utility functions @; used in the rep-
resentation in part II are given by the functions u, constructed in equation @

Part IV proofs necessity of the axioms. Axiom is obviously satisfied. With

respect to axiom observe that for all t € T', py, p}, p/ € P;, and « € [0, 1]:

Pr e Py = qu% Dt 2 Métt Pi

= (ftg(m)) j‘ ff(pt)oMgtt B d]%(ﬁt)

Z7(P) =1 (X*x Pyy1)

> () 00 o AP 5 ol (5
> | fi f fi Vo s Pt pt(pt)

Zﬁ(iﬂg)*l(X* ><Pt+1)

. ~1 R R
N < fts<pt>) i o fts<pt>oM£tt b dpy () + K
Z7Pt)=1(X*x Py11)
> (e S0 o A 5, dul (5)) + K
>\ fi f a fy o i Pt pt(pt) +
7P (XX Py
where
K = 1 — 5(pt) Mft 5. do” (D
f ( a) fy o a; Pt APy (D) -

ZMPD 7 (X% Py)

If follows

oy -1 : ;
<fts(pt)> [ ftS(pt)o M{ft P d(pr B pY)(Dr)

Z"*_l(X* XPt+1)

> (£9) ] Ko ME pd(; a2 )5

Zn* =1(X*X Piy1)
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with n* = max{n(p;), n(p;), n(p})} and, thus,
N R N

To see that axiom AM]is satisfied note that in the union topology a set is closed if
each preimage of the set under the injection mapﬂ is closed. Thus, given that the
composition f o @ are continuous (and the topology of weak convergence) the sets
in axiom AM] are closed. Axiom is easily observed to be satisfied by recognizing
that the evaluation on certain consumption paths reduces to the formula 4 (x") =

Zfzt u,(x;). Finally, axiom A|§| is seen to be satisfied by inspecting equation (6]). O

Proof of Proposition
For all x,x’ € X" I have

XEB Xy XEB

obj sub]

A -1 (] A
) st st

subj -1 su t su At /
() s st
Defining K (x) = f% o ./\/l x = fY o 3T u-(x) 1 find
su obj -1 1
= f bi o < tbj> {5 [K(x)] + 5 [K(X)}:|

1 subj obj -1 su o -1

> 5 7o (£20) 7 [RG0] 4+ 5 o () IKO)
N -1

and, thus, fomb = f5% ( -0bj > concave by Hardy et al. (1964, 75) on the range

relevant for the representation. Analogously I find strict concavity to hold by replac-
ing >=; by >; and > by >. O

Proof of Proposition
For every pair s,s" € S with s s’ the proof is a copy of the proof of proposition [1}
O

9The s-th injection map inj, assigns an element of A(-) to the corresponding element in A(+), s) =
Ag(+) (e.g. Cech 1966, 85).
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