|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Page 112 REVIEW OF MARKETING AND

FITTING PRODUCTION FUNCTIONS TO EXPERIMENTAL DATA

C. D. THROSBY*

Economics Research Officer

1. INTRODUCTION

This article presents in simplified form the mechanical aspects of fitting
production functions to experimental data using least squares regression
and of deriving production surfaces and economic optima with the aid of
the fitted function. The techniques are illustrated step by step with the
aid of a worked example which uses a set of actual experimental results.
The fitting and extrapolation procedures are shown in detail for a quadratic
polynomial function, and brief sections are included showing how these
processes are adaptable for use with a Cobb-Douglas, a transcendental and
a Spiliman function. The article is intended only as an elementary reference
on production function techniques, although it covers sufficient ground to
enable an agricultural research worker or student to use it as a reasonably
comprehensive “recipe-book™ in the analysis of suitable data. It is designed
to be intelligible to readers with only a basic mathematical or statistical
background, and as such may be useful as a supplement to textbooks which
presume a higher degree of mathematical sophistication.

Although originally regarded with some suspicion, the production function
approach is now receiving increasing attention from agricultural scientists
overseas. In this country, agricultural economists have used production
functions in cross-sectional farm studies to compute resource productivities,!
but as yet their application to Australian experimental data has been little
explored. To a large extent this has been due to a continuation of the
=uspicion noted above and as a result many Australian agricultural experi-
ments have been inadequately analysed or have lacked economic signifi-
cance.? Tt is hoped that an article such as the present one may, by
commencing with first principles and clarifying the mechanics of fitting and

* The author wishes to thank Mr. C. H. Gray, Biometrician with this Depart-
ment, for some helpful comments on a draft of this article.

1For example:

J. L. Dillon, “Marginal Productivities of Resources in two Farming areas
of N.SW.” Economic Monograph No. 188 (Sydney: The Economic
Society of Australia and New Zealand), May, 1956.

H. P. Schapper and R. G. Mauldon, “A production function from farms
in the wholemilk region of Western Australia”, Economic Record, Vol.
XXXIII, No. 64 (April, 1957), pp. 52-39.

F. G. Jarrett, “Estimation of Resource Productivities as illustrated by a
survey of the Lower Murray Valley dairying area”, Australian Journal of
Statistics, Vol. 1, No. 1 (April, 1959), pp. 3-11.

J. H. Duloy, “The Allocation of Resources in the Wool Industry”, Paper
presented to Third Conference of the Australian Agricultural Economics
Society, Canberra, February, 1961.

2 For a more detailed account of economic aspects of agricultural experiments,
including a treatment of the place of production functions, see Alan G. Lloyd,
“Agricultural Experiments and their Economic Significance”, this Review, Vol.
26, No. 3 (September, 1958), pp. 185-209.
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extrapolating from functions, stimulate some agricultural research workers
towards adopting a functional approach in the analysis of their experimental

data.
2. WHY THE PRODUCTION FUNCTION APPROACH?

It has been traditional in analysing the results of agricultural experiments
such as fertilizer or feeding trials to submit the figures to some statistical
test of significance such as the analysis of variance. However, once a
significant difference between treatments has been demonstrated, the statisti-
cal investigation often stops. In pure research this is not necessarily a
shortcoming, since the experiment may be orientated towards verifying
hypotheses, such as the deficiency of a particular element in a soil, or
towards observation of new phenomena, such as the effect of an untried
feed component in livestock rations. In addition the qualitative outcome of
such research is often of equal or greater importance than the quantitative
results. On the other hand, in applied agricultural research, where derivation
of farmer recommendations involving a level or levels of a variable factor
or factors such as fertilizer, is one of the main aims, significance tests such
as the analysis of variance cannot alone extract from the data sufficient
information to enable sound recommendations to be made. To illustrate,
superphosphate recommendations for some areas of this State have had to
be made on the intuition of an extension officer; yet research undertaken
to determine the true optimum level for these areas has frequently been of
little more economic value than the original intuitive judgment due to
shortcomings in the analysis of results. Recommendations made from levels
defined as “optimum” in some loose technical sense, or from “optimum”
levels calculated only from the raw data at the rates of the independent
variables used in the experiment can, if applied unquestioningly, lead to
substantial misallocation of farm resources.

Not only agricultural economists but also statisticians have been critical
of the inadequacy of significance tests in the analysis of experimental results.
Yates has said:

“The emphasis on tests of significance, and the consideration of the
results of ecach experiment in isolation have had the unfortunate con-
sequence that scientific workers have often regarded the execution of a test
of significance on am experiment as the ultimate objective. Results are
significant or not significant and that is the end of it.”8

The functional approach helps to surmount some of these short-
comings. A production function is a mathematical expression defining the
way in which a dependent variable changes as a result of changes in one
or more independent variables. In regional studies in agriculture aggregate
production functions have been used to determine the influence on farm
income of the resources used in producing it,* whilst the functional approach

3F. Yates, “The Influence of Statistical Methods for Research Workers on
the Development of the Science of Statistics,” Journal of the American Statistical
Association, Vol. 46, No. 253, (March, 1951), p. 33. See also for example in E.
J. Williams, Regression Analysis, (N.Y.: John Wiley), 1959, Chap. 1, and
G. E. P. Box, “The Exploration and Exploitation of Response Surfaces: Some
gcéngéal considerations and examples”, Biometrics, Vol. 10, Part 1 (1954), pp.
16-60.

4See a summary in E. O. Heady and J. L. Dillon, Agricultural Production
Functions (Ames: Towa State University Press, 1961); Chapter 17, “Comparison
og }’Grfgiuctlon Function Estimates from Farm Samples over the World”, pp.
585-643.
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in the experimental field involves relating the inputs varied during an
experiment (e.g., fertilizer, feed) to output of product (e.g., pasture, grain,
meat).

Given a set of experimental results amenable to a production function
analysis, a research worker is able to compute the function which best fits the
data. If goodness of fit tests are satisfactory, this function may then be taken
as an adequate approximation to the real physical relationship which it
represents and extrapolation may be made in a statistically significant
manner. This fact is the essence of the argument in favour of the
functional approach ; i.e., this extrapolation, on the basis of which optimum
recommendations, etc., can be calculated, can be made from a mathemati-
cally defined function, whereas it cannot be made from an ill-behaved set
of raw data, nor from mean or point estimates of the variables.

3. FORMS OF PRODUCTION FUNCTION

Tt was noted above that, applied to agricultural experimental data, a
production function represents a mathematical approximation to the real
physical relationship which exists between the dependent variable and the
one or more independent variables studied in the experiment. In the real
world, the actual production function defining, for example, pasture output
may be:

4} Y=f(Xy, Xo, Xg .. Xp)
where Y production of pasture,

X; = seeding rate,
X, = superphosphate rate,
X, = rainfall,

and so on, through all the other variables which have even the slightest
affect on pasture growth. In an agricultural experiment designed to
determine this relationship, it is obviously not possible to control all the
independent variables in equation (1). The research worker therefore
varies only one or two and holds the others, or assumes them to be held,
constant. In other words he estimates, say,

#)) Y = f(Xy, Xp), (X3, Xy, . . ., X, constant),

by growing pasture at a variety of seed and superphosphate rates under
otherwise controlled conditions.

The results of this experiment would comprise a set or sets of values for ¥
corresponding to the levels of X; and X, used by the experimenter. By a
process of trial and error he must now do away with the generality of
equation (2) by determining which algebraic form of function out of the
many available best characterises his data. On the other hand, he may have
intuitive grounds for preferring a particular functional type in which case he
may proceed directly with determining whether it does in fact describe his
data adequately.

The simplest type of specific functional relationship which could
conceivably be applied to agricultural data is a linear function of the form

3) Y=a+ bX

or, in our pasture example, where there are two independent variables:
@  Y=a+b X+ by X,
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Equation (3) can be represented graphically in two dimensions as a straight
line whose slope® is measured by b and which cuts the vertical axis at a point
a units above the origin (i.e. when X = 0,Y = a.) Equation (4) is represented
in three dimensions by a flat plane.

Functions in more than three variables cannot be represented diagram-
matically in full. However two dimensional diagrams of the response curve
for one input or three dimensional representations of the production surface
for two inputs can be made by holding all other independent variables in
such a function constant at some predetermined level.

The functions in equations (3) and (4) are linear and as such are rarely
satisfactory for describing agricultural processes. If equation (4), for
example, were assumed to be the production function for pasture, then it
would follow that infinite production could be obtained from a given area of
soil merely by applying infinitely large quantities of seed and fertilizer. Thus,
what we require is a functional form which allows for non-linear response,
j.e. which permits, amongst other things, the common phenomenon of
diminishing returns to be accounted for.

Introduction of transformations of the original variables, such as power or
exponential terms, enables the description of non-linear responses. Of the
many such functional forms available, the present article is restricted to
four of the most commonly used variants, the polynomial, the Cobb-Douglas,
the transcendental, and the Spillman-Mitscherlich. All the illustrations are
made in terms of the quadratic polynomial form, the relevance of the
techniques used to the other three forms being presented largely without
illustration, due to space limitations. The characteristics of the various
forms of production function, and the criteria to be used in choosing between
them have often been discussed in the literature, and the reader is referred
elsewhere for details. ®

A brief outline of the algebraic form of each function is given at this stage.

(/) Quadratic polynominal
Quadratic expansions corresponding to equations (3) and (4) are:
5 Y=a+ b; X+ by X?
and,
© Y=a+ b X;+ by Xy + by Xo* + by X;? + by X; Xo
Equation (5) is the second degree polynomial involving one factor X. It
contains the linear term in X as well as the term in X raised to the power

two. Equation (6) is the second degree polynomial involving two factors
X, and X,. It contains the linear terms in X; and X, as well as the terms in

& The slope of the line is given as:

3 Y
b=s5x

where 8 Y signifies the change in ¥ caused by 3X, a given change in X.

¢ For example, Heady and Dillon, op. cit., Ch. 3; (this text also contains a 270-
item bibliography of production function literature on pages 645-63); E. O. Heady,
“ Use and Fstimation of Input-Output Relationships or Productivity Coefficients ”,
Journal of Farm Economics, Vol. XXXIV, No. 5, (December, 1952), pp. 775-86;
R. M. Parish and J. L. Dillon, ¢ Recent Applications of the Production Function
in Farm Management Research *, this Review, Vol, 23, No. 4, (December, 1955), pp.
215-36; etc. Further references for specific functions are given below.
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X, and X, of exponent two, viz. X;2, X;%, and X, X, Similarly if we had
a second degree polynomial involving X;, X, and X, it would involve linear
terms in X7, X, and X as well as six terms with exponent two, viz. X 1% Xa%,
X# X1X,, X;X,; and X,X; The second degree polynomial involving
more than three factors may be generalized from this.

Another polynomial of use in describing agricultural phenomena is the
square-root form:

) Y=a+ b X + by/X
and, for two independent variables,:
®) Y=a+b X+ by Xo+ by VX, + by VX, +4/X X,
Only the quadratic form ( equations (5) and (6) ) is used here, and is
referred to hereafter simply as the ‘“ polynomial >’
(i7) Cobb-Douglas Function

The power or Cobb-Douglas function, so named after its originators?,
takes the general form:

b, by by
©) Y=aX, X, ...X,

(iii) Transcendental Function
¥ This hybrid form8, which is more versatile than the preceding ones, but
which has associated drawbacks, is represented for n resources by:
b, X b, c,X, b, ¢ X,
(10) Y=aX1 [ X2 e ...Xn [
where e = base of natural logarithms.

(év) Spillman Function
Two exponential functions, similar in form, were evolved independently by
Spillman and Mitscherlich early in this century. That most often used is
the Spillman function®, which, for one input, is of the form:
(1) Y= M — ARx
where M = maximum total production obtainable by the use of resource X,
A = increase in output due to X (i.e. max. ¥ — min. ),

R = ratio of successive increments in output to total output. In
cases where a zero level of X produces no Y, M = A and the Spillman
function devolves to:

(12) Y= A1 — R
Generalizing equation (12) to » inputs, we have:

(13) Y=A(0—R YU —Ry ?...(l —R. ™

7 C. W. Cobb and P. H. Douglas, ““ A Theory of Production ”, American Economic
Review, Vol. XVIII, (Supplement) (March, 1928), pp. 139-165.

8See A. N. Halter, H. O. Carter and J. G. Hocking, ““ A note on the Trans-
cendental Production Function ”, Journal of Farm Economies, Vol. XXXIX, No. 4,
November, 1957, pp. 966-74. To call this rhe transcendental function is perhaps
misleading since it is only a transcendental function of the form shown in equation
(10). Literally * transcendental ” means *““ a priori”’, or “ based on intuition ».

® See, for example, W. J. Spillman, Use of the Exponential Yield Curve in Fertilizer
Experiments, U.S.D.A., Technical Bulletin No. 348, 1933,
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4. THE DATA

The source of the data used for illustration in this article is a seed-super-
phosphate trial which was conducted by Research Agronomist J. Strang at
Berry on the South Coast of New South Wales during 1959-60. The
subsection of the experiment from which these figures were taken involved
four superphosphate levels, three rates of seeding of Clare subterranean
clover and two replications. There are thus twenty-four observations of
Y, which is measured in cwt. of total dry matter per acre. Phalaris tuberosa
was sown on all plots at a constant seeding rate as a common grass. The
data are shown in Table 1.

TABLE 1

Pasture Production at Berry as Influenced by
Seed and Superphosphate Rates: cwt. Dry Matter per acre

X, Seeding Rate (Ib. per acre)
X
Supér- 2 8 24
phosphate
Rat t.
pgr"ag"r‘g) Replication Replication Replication
1 I I I I I
0 11.7 13.3 17.2 30.7 17.9 24.0
2 31.5 30.9 41.7 33.1 58.0 46.4
4 37.2 23.3 45.6 55.5 51.2 50.4
8 46.5 44.9 55.4 56.2 53.5 55.2
|

5. FITTING THE POLYNOMIAL FUNCTION

Fitting polynomial, Cobb-Douglas and transcendental functions involves
estimating @ and the required number of b’s (b,) in equations (6) and 9),
and @, b, and ¢; in equation (10). The Spillman, which presents some
special problems, involves the estimation of M, A4 and R.

The technique of regression is used to estimate these unknowns or
parameters. The simple elements of the theory behind regression can best
be understood by considering a two-dimensional scatter diagram of observ-
ations of Y at various levels of X. If a marked trend is noticeable, a free-
hand line could be drawn on the graph. Regression fits a marhematically
defined line through these points such that the dispersion of the points about
the line is as small as possible; i.e. it places the line of ** best fit >’ in a position
such that the sum of squares of deviations of points from the line is
minimized. Hence the term * least squares regression .10

1% It might be argued that “* regression function ** might be a more apt name for
the production function. However, not all production functions need be derived
by regression. Thus, not all production functions are regression functions, and, by
the same token, not all regression functions are production functions.
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For two independent variables, the process fits a three dimensional
regression plane such that the dispersion of points around the plane is
minimized. This process is generalized for # independent variables by fitting
the “ plane > of best fit in n—-dimensional space.

The equation we aim to derive for illustrative purposes is a polynomial
of the form shown in equation (6). For convenience of notation we shall
put X; instead of X% X, instead of X,2 and X; for X; X,., We should
also write in an error term, &, to account for the effect on Y of random
variations in inputs not considered. Thus the equation for which we want to
find the parameters a, b, (/ = 1, .. ., 5) is:!

(14) Y=a+b1X1+b2X2+b3X3+b4X4+b5X5+e
where the values of X; and corresponding observations of Y are as shown in
Table 2.

TABLE 2

Raw Data Ready for Fitting Polynomial Function

Y X, X X, X, Xs
11.7 2 0 4 0 0
13.3 2 0 4 0 0
31.5 2 2 4 4 4
30.9 2 2 4 4 4
37.2 2 4 4 16 8
23.3 2 4 4 16 8
46.5 2 8 4 64 16
44.9 2 8 4 64 16
17.2 8 0 64 0 0
30.7 8 0 64 0 0
41.7 8 2 64 4 16
33.1 8 2 64 4 16
45.6 8 4 64 16 32
55.5 8 4 64 16 32
55.4 8 8 64 64 64
56.2 8 8 64 64 64
17.9 24 0 576 0 0
24.0 24 0 576 0 0
58.0 24 2 576 4 48
46.4 24 2 576 4 48
51.2 24 4 576 16 96
50.4 24 4 576 16 96
53.5 24 8 576 64 192
55.2 24 8 576 64 192

The first task is to calculate the sum, sum of squares and mean for each
column of Table 2. These are shown in Table 3, together with the standard
deviations. The latter need not be computed at this stage, as they are
obtainable more easily later in the calculations.

1 The regression coefficients b; which are to be derived are in fact only estimates
of the rrue regression coefficients B4; it will be shown later that confidence limits
can be calculated within which the $; will be known with given probability to fall.
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TABLE 3

Sums, Sums of Squares, Means and Standard Deviations

Quantity Y X X, X, X, X
Sum E_X .. 931.3 272 84 5,152 504 952
J
Sum of squares
5.:‘()(')2 ..| 41,310 5,152 504 2,687,104 26,208 108,192
7
Mean Z'X .. 38.80 11.33 3.50 214.67| 21.00 39.67
J
n

Standard devia-
tion (see text) 14.68 9.29 2.96 256.67| 25.51 54.17

Note: In calculations throughout this article, more decimal places have been
carried than are generally shown, in order to minimize rounding errors. On this
point see, for example, G. W. Snedecor, Statistical Methods, (5th Edition, Ames:
Iowa State College Press 1956), p. 440.

We may now derive the variances for each variable and covariances for
each pair of variables. The variances are obtained from the relationship:'?

n
(1) 2 o T(X;— XP
[ j=1
n

where ¢;2 = variance of X,
= the j* observation of X,

-

== mean of X,
== number of observations,

=M
|

or, if n is small a truer estimate of the variance is obtained from:

T(X;— X)¢
(16) o= j
n—1

12 For the sake of simplicity, suffixes in mathematical expressions have been
omitted as far as possible. In reference to Table 2, the suffix i denotes columns of
the table, j denotes rows, and this notation is maintained in similar fashion through-
out following sections.
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The co-variance between any pair of variables, for example between
Y and X, is given by:

) Z(Y;— Y) (X5 — X7

Oyx, = d

n

The variances and co-variances can be arranged to form a symmetrical
matrix, as is shown below. Direct substitution into equations (15) and (17)
is an arduous means of obtaining this matrix; hence an alternative method
is used.

The top lines of the right-hand sides of equations (15) and (17) represent
the sums of squares (equation (15)) and cross-products (equation (17)) of
deviations from the respective means. Call the top line of the right-hand
side of equation (15) =x2 and that of equation (17) Zyx,; these quantities
which are known as the product moments are calculated using equations
(18) and (19):

(Z X)
(18) x2 = T (X% — 7
J n
LY X,
(19) S yx, = Z(YXI)_—’T’—
J

After computing the square term for each variable and the cross-product
term for each pair of variables, they can be arranged to form the symmetrical
product moment matrix!3, as shown in Table 4.

TARBLE 4

Product Moment Matrix

ZyR

Ty x; Zx,?

Iy X, Zxy x, Txy?

Zy x, Ix, x, ZXgXp o e n . Zx 2

12 The matrix is symmetrical because the covariance of A with B is identical
with the covariance of B with A. i.e. the above-diagonal terms of Tables 4 to 9
represent a ““ mirror image >’ of the below-diagonal terms.
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To illustrate, we calculate the numerical values for Table 4 which
correspond to our set of data. These are shown in Table 5. The examples
given in equations (20) and (21) should be sufficient to explain the use of
equations (18) and (19) in deriving the values in Table 5.

3)2
20) Ty = 41,310.11 —%)ﬁ = 5,171.81
@D Sy x; = 11,720.2 _313x2712 1,165.47
1 24
TABLE 5

Product Moment Matrix for Data in Table 2.

5,171.81
1,165.47 2,069.33
770.05 0 210.00
27,905.33  56,362.67 0 1,581,141.33
5,569.10 0 1,740.00 0 15,624.00

12,464.03  7,242.67 2,380.00 197,269.33 19,720.00 70,429.33

The variance-covariance matrix, which is shown in Table 6, is obtained by
dividing each element of the matrix in Table 5 by n (i.e. by 24).

TABLE 6

Variance—Covariance Matrix

215.49
48.56 86.22
32.09 0 8.75
1,162.72 2,348.44 0 65,880.88
232.05 0 72.50 0 651.00
519.33 301.78 99.17 8,219.55 821.67 2,934.55

The square root of each element on the diagonal of the variance—covariance
matrix provides the standard deviation of each variable, which may now be
entered into Table 3.

The sample correlation coefficients (r;;) between any pair of variables can
be calculated from quantities contained in either of the matrices in Tables 4
or 6. Using variances (or standard deviations) and covariances the sample
correlation coefficient between, say, X; and X, can be computed from:

g
X1 Xg Ox, X
22) Ry Ky = e = L2
N/ 62 of 6 ©
Xl Xz Xl X2
where %%y Xy = covariance between X, and X,
2 . ..
%%, = variance of X 1 (similarly for X,)
G

X; = standard deviation of X, (similarly for X,)
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Alternatively the same equation can be written as in equation (23), for use
with the product moments shown in Tables 4 and 5.

@3 . T N
1%2 7 /¥x? Sxgt
For example, using equation (22):
24 48.56
ry X, = e
4/14.68 x 9.29
By this means we construct the correlation matrix which, like the variance—
covariance matrix, is symmetrical about the diagonal. ~Each variable is of

course perfectly correlated with itself, ie. »r = 1 on the diagonal. The
correlation matrix in lower triangular form is shown in Table 7.

= 0.356

TABLE 7

Correlation Matrix

1.000

0.356 1.000

0.739 0 1.000

0.309 0.985 0 1.000

0.620 0 0.961 0 1.000

0.653 0.600 0.619 0.591 0.595 1.000

The sample correlation coefficients merely measure the degree of
association between two variables without holding the others constant. Thus
no causal implications should be inferred.

Upon reaching the stage in the sequence of computations of having to
hand either the product moment matrix as in Tables 4 and 5, and/or the
variance—covariance matrix as in Table 6, there are a number of ways to
proceed, each leading ultimately to the regression coefficients. For purposes
of illustration three methods are treated here. Firstly, we solve a series of
simultaneous equations which yields directly the b;. The second method
involves inverting the variance—co-variance matrix. The third computes
the regression coefficients via the * Gaussian multipliers ”. The first two of
these are included here for the sake of completeness; however it will usually
be found that use of the Gaussian multipliers is the most satisfactory
technique.

(a) The normal equations

The normal equations in their general form are written as in (25), with
coefficients taken directly from Table 4.

b, Ex12 + by Txoxy + ... F b Ex,xy = Zx1y
b]_ Exlxz + b2 ZX22 + . s + bnzxnxz - EX2y
(25) . .

b1 Exlxn + b2 EX2xn + PR —[— bn anZ = any
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() Inversion of the variance—co-variance matrix

If A is a square matrix and B is another square matrix of the same order
(i.e. the same size) having the property that B4 = I where I is the identity
matrix (a square matrix in which all elements are zeros except for one set
of diagonal elements, which are ones) then B is defined as the inverse of A.
For example, a 4 X 4 matrix when multiplied by its inverse gives the matrix:

1 0 00

SOo

i
0
0

(=

0
0
1

There are several methods for finding the inverse of a matrix. One
involves the solution of n sets of simultaneous equations:

erap,+ cap+ ...+ cepa,=10,...,0

€1+ Calgy+ ...+ cCray,=01,..,0
(27

€18y + Cpuo + ...+ cpay=00,...,1

For our problem a;; are elements of the variance—covariance matrix. If
the solutions for ¢ are called d;, then:

Cy = dll’ d12, T dlﬂ
€y = doy, dag, + « oy oy

(28)

Cp = d’nls dnz, PR dnn
where d;; are the elements of the inverse of the variance—covariance matrix.

The regression coefficients are obtained by dividing each element of the
first column of the inverse below the diagonal by the first term of the column,
and reversing the sign. It can be seen that if only the regression coefficients
are required, and not the complete inverse of the variance—covariance
matrix, only one of the n sets of equations in (27) need be solved, viz.:

ciap +cgap+ ..+ cpa, =1
€10y + Calgg + ...+ Cpag, =
(29) . .

€1 Ay + Co8ye+ ...+ 0y, =0

since this yields d,q, dyy, - . ., d,; which is the required first column of the
inverse.

Using equations (27) and (28) is a laborious way of inverting a symmetrical
matrix, since a much quicker method is available (analogous with the Doolittle
method) which is applicable specifically to symmetrical matrices.l®

15 See J. Friedman and R. J. Foote, Computational Methods for Handling Systems
05 5Simuh‘am:ous Equations, U.S.D.A., Agricultural Handbook No. 94, November,
1955, p. 9.
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The symmetrical inverse of the variance—co-variance matrix from Table 6
is shown in Table 8.

TABLE 8

Inverse of Variance—Co-variance Matrix

0.02929
— 0.08503 0.66186
— 0.27683 0.85621 4.26616
0.00244 — 0.02131 — 0.02311 0.00073
0.01969 0.05716 — 0.35087 0.00164 0.03312
0.00055 — 0.00625 — 0.02026 0.00005 0.00037 0.00134

The regression coefficients are derived in the manner explained above:

by = 2.9030
by =  9.4513
by = — 0.0835
by = — 0.6723
by = — 0.0189

(¢) The Gaussian multipliers

The Gaussian multipliers are derived by removing the first row and column
of the matrix in Table 4 and inverting it. To put it more formally, the
solution of equation system (30):

,0,...,0

clz‘?nx12+c22x1x2+...+c,,2x1x,,=(1)1 9

L Zxg x; + ca Bx2 4+ ...+ ¢, Xy x,
(30)

G Ixp Xy + G Ex,xe+ ...+ 6, 2x2=0,0,..,1

yields a series of solutions for ¢ called:

€1 = 8115812+« + 5 81
Cy = £21> 822 + ++ > 8on

31

Cu = gnl, gn23 0wy gnn

where g;; represent the elements of the symmetrical matrix of Gaussian
multipliers.

In our example the matrix to be inverted, using one of the methods noted
above, is found by removing the first row and column of Table 5, This
matrix and its calculated inverse are shown in Table 9.
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TABLE 9

Inversion of Matrix to Obtain Gaussian Multipliers

Matrix for Inversion (from Table 5)

2,069.33
0 210.00
56,362.67 0 1,581,141.33
0 1,740.00 0 15,624.00
7,242.67 2,380.00 197,269.33  19,720.00 70,429.33
Inverse
0.01729
0.00219 0.06874
— 0.00059 0 0.00002
0 — 0.00687 0 0.00083
— 0.00019 — 0.00063 0 0 0.00006

The regression coefficients are found by substituting in the equations:

(32) by =g Zx1y + g1 Expy+ o+ g1 X,y
by = g9 Zx1y + o2 Zxa ¥ + ... + g2y Tx, ¥

by = gm Zxy ¥ + Zna Txos ¥y + ...+ Zun ZXp Y
For example,
(33) by = 0.01729 X 1,165.47 + 0.00219 x 770.05 + ... etc.

= 2.9036
By this means the regression coefficients are calculated as follows:
b, = 2.9036
by = 9.4523
by = — 0.0848
by = — 0.6725
b; = — 0.0193

Whilst any of the above methods might be used to derive the b, the last
one presents several attractive features which may swing the balance in its
favour. It will be noted that the matrices in Table 9 are independent of Y.
This means that once the Gaussian multipliers have been found, they are
applicable to any number of different sets of values of ¥ which are dependent
on the same set of independent variables. For instance, in the seed-super-
phosphate trial from which our data are taken, grass and clover fractions
and phosphorus and nitrogen contents of the tops were determined for each
of the 24 observations of total dry matter yield. Using the Gaussian
multipliers, the regression coefficients for functions relating each of these
individual quantities to seed and superphosphate are obtainable simply by
computing the values of Zx;» in each case and substituting into equation
(32). In addition the Gaussian multipliers can be used directly to determine
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the precision of the regression coefficients, as is seen below. On the other
hand, method (a) may be preferred in some cases, €.g., when it can be seen
by inspection that unknowns can be eliminated quickly from the normal
equations, leading to a speedy solution.

Having ascertained the b,, it only remains to calculate g, the constant
term, to complete the regression equation. This is achieved using equation
(34):

€L a=Y— ZhX,

where Y = mean of dependent variable,

il

= means of independent variables (from Table 3).

Hence, using the regression coefficients calculated by method (b),'¢ we
derive, for our example:

(39 a = 38.8042 — (2.9030 x 11.3333 4 9.4513 X 3.5000 —. ..
— 0.0189 X 39.6667)

= 56168

The completed regression equation is shown using our original notation,
in (36).

(36 Y = 5.6168 + 2.9030 X; + 9.4513 X, — 0.0835 X,* —
0.6723 X, — 0.0189 X, X,

Equation (36) represents the quadratic polynomial production function
which describes the data in Table 1, and as such can be used for prediction
purposes, for examining the pattern of substitution between the two inputs
studied, for calculating economic optima, etc. Before being justified in
proceeding, however, it is necessary to apply several tests of significance to
the function to determine (@) how well it describes the original data, (b)
whether the individual regression coefficients are significantly different from
zero and (c) whether in fact there was a significant increase in Y due to the
treatments in the experiment. (a) is achieved by computing the multiple
correlation coefficient R, (b) is determined by applying the r-test and (¢)
via the analysis of variance.

Using equation (36), the predicted value of Y, denoted f’, can be calculated

for any feasible level of X, and X,. If Y is computed for the levels of X,
and X, used in the original experiment, the quantity ? (Y; — Y;)? which
is termed the residual sum of squares, may be worked out. This measures
the deviations of the actual values of Y from the fitted regression line or
plane. If the residual sum of squares is expressed as a fraction of the total
sum of squares (the sum of deviations of the actual values of Y from the
mean), then we have a measure of the tendency of the actual values of Y to
lie around the fitted line or plane rather than to be scattered randomly around

16 The differences between the same regression coefficients calculated by the
different methods are attributable to rounding errors. The reason for using those
from method (b) in the subsequent illustrations is that they were derived entirely
by a computer using a programme with built-in routines for minimizing rounding
error. The regression coefficients found via method (4) were derived entirely by
hand, and those from (c) were calculated partly by hand and partly on the computer.
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their mean value. In practice this fraction is subtracted from 1 to give R3,

the square of the multiple correlation coefficient. The closer the ¥ lie to ¥

rather than to Y, the smaller the ratio of residual to total sums of squares,
and the closer R* and R to unity.

If the inverse of the variance—co-variance matrix has been computed
(Table 8) then the residual sum of squares (RSS) is available as » times the
reciprocal of the diagonal element corresponding to the dependent variable.
ie.

1
whence R? is found as:
819.40
2 — 1 — .
G8) R =1 5,171.81
= 0.8416

If the residual sum of squares is not available directly, use may be made
of equation (39) to obtain R2.

R — byZxyy + by Zxgy + ...+ b, Zx, y

(39) o

For example using data from Table 5:

(40)

R — 2.9030 < 1,165.47 + 9.4513 x 770.05 — . .. — 0.0189 x 12,464.03
- 5,171-81

= 0.8416

and hence R = 0.9174. The significance of this number can be ascertained
by referring to a table of values of R for different levels of significance. In
this way it is found that the R value for our regression relation is significant
at the 1 per cent level.

In order to determine whether the regression coefficients b; are significantly
different from some hypothesized value B; (usually zero), a r-test is performed;
i.e. ** Student’s >’ ¢ is determined for each b; and its level of significance found
from a table of r-values. First, however, an estimate must be made of the
variance of the error term in the regression relation (i.e. the variance of ¢ in
equation (14)). This is called s* (being only an estimate of o?), and is given
by:

RSS
1 LRSS e
W = e o
where RSS = residual sum of squares as defined above,
n = number of observations,
k = number of independent variables.

For our example:

2o 819.40
18
whence s = 6.747

(42) = 45.522
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A number of means are available for deriving r. If the Gaussian multi-

pliers have been determined (equation (31), Table 9,) the value of ¢ for each
of the b; is obtainable from:

b. — 8.
43y == B
N8y
where g;; is the diagonal element in the matrix of Gaussian multipliers which

corresponds to independent variable X;. In the case of X, for example,
taking B, as zero:

209030
6.747 1/0.01729

If the inverse of the variance—co-variance matrix is available (equation (28),
Table 8), then the relationship equivalent to equation (43) is:

44 4 3.273

45y o P
@3 = S/ Px; x;
n
or, alternatively:
(b; —B)Pn
46 2 Yt T 7
(46) $* Dy %
where
d?x.
47) Dy x, = dx; x;— —L

dy y
where d are the elements of the inverse of the variance—co-variance matrix
corresponding to the row and columns shown.?

Using X again as the example:

( — 0.08503)2

D = —
(48)  Dx, x, = 0.66186 563955

= 0.41502

and hence, for 8, = 0:
(2.9030)? x 24
2 =
@) 8= 3553w 041502
and 1, = 3.273

= 10.7057

In a similar fashion the ¢-value for each regression coefficient may be
determined and the probability level with (n — k& — 1) degrees of freedom
ascertained from the *“ Student’s ” distribution table. It will be seen from
equation (43) that the r-values represent the ratio between the regression
coeflicients (assuming 8; = 0) and their standard errors. It is of interest to
have the standard errors of the estimated coefficients B, given by:

D,
1T
s:\/;—; or sN| g

since they may be used to calculate the * fiducial >’ or “ confidence > limits

17 The values Dx; X; are actually diagonal elements of the inverse of the variance—
co-variance matrix of independent variables. Since this inverse has not been
determined directly, the relevant elements must be obtained from the inverse of the
variance—covariance matrix of all variables, using equation (47).
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of the actual regression coefficients 8;. The fiducial limits for each b; are
given by:
(50) b; -+ t X (standard error of b))

where ¢ is read from the * Student’s” distribution table for the desired
confidence level and (n — k — 1) degrees of freedom.

For example, the 95 per cent. fiducial limits of b, are found as:
5h 2.9030 -+ 2.101 x 0.887 = 4.767 and 1.039

Table 10 shows the #z-values, approximate probability levels, standard
errors and 95 per cent fiducial limits for the regression coefficients of our
polynomial function in equation (36).

TABLE 10

t-values, Approximate Probabilities, Standard Errors,
and 95 per cent Fiducial Limits for Regression Coefficients

i 95°% Fiducial Limi
Coefiient | ¢ | AfBioimete| Stndma |5 MU s
Y Upper i Lower
b, 3.273 0.01 0.887 4.767 1.039
b, 5.343 0.001 1.769 13.168 5.735
bs 2.768 0.02 0.030 — 0.021 — 0.147
b, 3.462 0.01 0.194 — 0.265 — 1.080
by 0.377 0.80 0.050 0.086 — 0.124

The probability column of Table 10 shows the chance of the difference
between b; and B3; being due to random variation. It is seen that by, by, by
and b, are all significantly different from zero at least at the 2 per cent level,
but that in the case of by the ‘“ null hypothesis  (i.e. the hypothesis that
B; — b; = 0) cannot be rejected.

However, although a r-test may indicate that a particular regression
coefficient is not significantly different from zero, this is not necessarily a
sufficient reason for dropping it and its associated term from the regression
equation. In the first place, if the production function form under consid-
eration has been chosen on a priori grounds as that which might best
characterize the production relationship concerned, deletion of terms will
cause alteration to the projected response pattern. Secondly:

«“ The nature of a testof significance is that it evaluates the strength of
evidence against a null hypothesis. It is extremely unlikely a priori that the
true coefficient in question is exactly zero, and even if the evidence against it
being zero is meager, the best estimate is still that available from the data. If
a variable is to be dropped out of the system, a more logical basis for doing so
lies in the extent to which the yield estimates and their standard errors are
actually changed by its omission. In making this decision, all terms, or at
least all terms of a given order, involving this variable should be considered as
a group .18

For this latter reason the b, term in our fitted regression equation is
retained in the subsequent analysis.

As noted in connection with equations (3) and (4) the regression coeffi-
cients measure the influence of each variable on Y. Since the independent
variables are usually measured in different units, their regression coefficients

18 R, J. Hader et al, *“ An Investigation of Some of the Relationships between
Copper, Iron, and Molybdenum in the Growth and Nutrition of Lettuce: I.
Experimental Design and Statistical Methods for Characterizing the Response
Surface,” Proceedings of the Soil Science Society of America, Vol. 21, (1957), p. 63.
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are not directly comparable, However, standardizing the regression coeffi-
cients enables a direct comparison. The simplest way to standardize them
is via equation (52):

2 X
y
where b’; = standardized partial regression coefficient;
ox; = standard deviation of X,

oy = standard deviation of Y.
Equivalently, this equation may be written:

(53) S 2
b= b, [E5
Xy?

In this way the standardized partial regression coefficients for the b; in
our example are calculated as:

by =  1.8363
by = 19045
b’y = — 1.4601
b, = —1.1683
b5 = — 0.0697

There are several ways of conducting an analysis of variance on the
original data in such a way that the overall significance of the fitted regression
is also tested. The method used here serves as a sufficient illustration. The
total sum of squares with n — 1 degrees of freedom has been calculated
already (Table 5). The replicates and treatments sums of squares are
derived in the usual manner, as would be done if a simple analysis of variance
were being carried out on the raw data resulting from the experiment.’® As
a subsection of the treatments entry the sum of squares due to regression is
calculated. This is given as the difference between the total and the residual
sums of squares, the former available from Table 5, the latter from equation
(37). Equivalently, the sum of squares due to regression is given by the top
line of the right-hand side of equation (39). The difference between the
treatment and regression sums of squares is a measure of the lack of fit of
the regression line or plane. As a measure of the effect of the two inputs
and to ascertain the extent of any interaction between them, the quantities
which would normally be calculated in an analysis of variance may be
computed and inserted at this point if so desired. The last entry in the sums
of squares column is the error term, which is found as usual by difference.
The sums of squares are divided by the degrees of freedom to give the mean
squares, and F values where relevant are computed as ratios between individual
mean squares and the error mean square. The values of all these quantities
corresponding to our example are shown in Table 11.

19 For example, the treatment sum of squares is given by:

(17 + 133)F (315 -~ 30.9)? (53.5 + 55.2)7  931.3:
[ 2 + 3 et 2 ] — 24

and the replicate sum of squares by:

(11.7 4+ 315 + ... + 53.5)% . (133 +309 + ... + 55.2)2] 93132
[ 12 12 24
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TaBLE 11
Analysis of Variance of Replicates, Treatments, Regression and Raw Data
Source of Variation * d.f. ’ %ggl;rg: Mean Square F
Total - .. .. .. 23 5171-81 224-86
Replicates .. .. 1 0-51 0-51 ..
Treatments .. .. .. 11 4807-38 437-03 13-21*
Regression .. 5 4351-56 870-31 26:31%
Lack of Fit.. 6 455-82 7597 ..
Superphosphate 3 3525-13 1175-04 35-52%
Seed.. .. .. .. 2 976-83 48842 14-76*
Super x Seed interaction .. 6 305-42 50:90 1-54
Error .. e . .. 11 363-92 . 33-08

i Significant at the 0-1 per cent level.

6. FITTING THE COBB-DOUGLAS, TRANSCENDENTAL, AND
SPILLMAN FUNCTIONS

(i) Cobb-Douglas Function

The generalized Cobb-Douglas function was given in equation (9). It
will be seen that this equation is linear in logarithms and hence must be
converted to log form before using regression to estimate the parameters.
For instance, to fit a Cobb-Douglas function to the data in Table 1 would
require estimation of a4, b; and b, in the equation:

b b
1 2
Representing this in either natural or common logarithms gives equation (55):
(55 log Y = loga + b, log X; + b, log X,

and the problem would then involve simply using the above regression
techniques to calculate b,, b, and the constant term in a system containing
two independent variables, log X;, and log X,, with dependent variable
log Y.

It should be noted that in equation (54) if any X is zero, then Y is also
zero. This may not always be realistic. For instance, one of the treatments
in our example involves a zero level of superphosphate yet this does not
lead to zero production of pasture. This difficulty can be overcome easily
by adding a constant to all values of the independent variable in question.
Thus, in drawing up the values of the variables for this problem as was done
in Table 2 for fitting the polynomial, the arbitrarily selected constant 1 is
added to all X, making them 1, 3, 5 and 9, instead of 0, 2, 4 and 8. Care
should be taken to remember this when using the function for prediction
purposes,

Thus, the equation we would derive by regression®®is:

(56) Y'=a'+b1X'1+b2X'2
where Y’ =log Y
a = loga
X'y = log X,
X'y = log (Xy + 1)

% The Cobb-Douglas function derived for the data of Table 1 was:
Y = 3.107 X, 099 (X, + 1) %471 with R = 0.9036.
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(ii) Transcendental Function

Although this function has not often been used to describe agricultural
experimental data, it is interesting to note that when applied to the data of
Table 1 in our present example, it gave an R-value which was more significant
than that derived for the polynomial or the Cobb-Douglas function. Its
<hief disadvantage is not so much in the fitting of the function as in its sub-
sequent use in prediction. Equation (10) gave the transcendental function
for n resources. For a given problem of, say, two inputs, we would require
to estimate the parameters of equation (57).

'(57) b ca b cx
Y=aX11311 X22822

As with the Cobb-Douglas function this may be achieved by first converting
iit to linear form. Taking logarithms, we derive:
(58) log ¥ =loga + bylog X; + ;X loge + bylog X, + cyX,loge

which is a linear function in the transformations of the variables. Thus,
-our task resolves itself into estimating a’ and &’; in:

4{59) Y =a + b\ X'y + b3 X'y + b3 X'y + b, X',
where Y’ = log ¥,
a = loga,
b'y = by,
X'y = log X,
b’y =c,loge,
X'y = X, etc.,

which is a simple problem in least squares regression. The table
«corresponding to Table 2 would have five columns, log Y, log X;, Xy, log X,
X, and the regression proceduies thenceforward are exactly the same as
-described for the polynomial.2!

(iii) Spillman Function

The techniques of least squares regression cannot be used to estimate
functions which are non-linear in the parameters or which cannot be
«converted to a linear function via some simple transformation of the variables.
Exponential functions such as the Spillman-Mitscherlich function are of
‘this nature, and to estimate them, tedious iterative procedures are required,
which will not be discussed here. In fact, Heady and Dillon go as far as to
:say:

*“ Since any production surface can be fitted reasonably well by an
easily calculated polynomial type function, there seems little justifi-
cation for persevering with functions requiring complex iterative
procedures.”#2

21 The transcendental function derived for the data of Table 1 was:
Y = 12.410 X, 0870 o —002x (Y, 1 1) 04785 g—0-089(z,+1)
with R = 0.9310.

22 Heady and Dillon, ap cit., p. 126.
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There is, however, one possible method for estimating a Spillman function
via least squares regression, which may prove of limited value.?® By re-
arranging and taking logarithms of the simple Spillman function of equation
(11), we may derive:

(60) log(M — Y)=1logA+ XlogR

If an estimate is made of M, the maximum Y obtainable from any level of
X, then a simple regression equation:

(61) Y=a+bX
may be fitted, in which

Y =log(M—Y)
a=logA
b=1log R

For example, the figures in Table 12 were taken from a section of the same
trial as were those in Table 1; Y again measures pasture output in cwt.
per acre, and X is superphosphate rate in cwt. per acre.

TABLE 12

Pasture Production Data for Fitting Spillman Function:
cwt. Dry Matter per acre

X e
Super- Replication
ph%sphate
ate

(cwt. per acre) I I 11 v
0 8.3 13.7 4.6 4.9
2 18.6 13.5 12.6 6.5
4 252 211 18.8 18.2
8 28.9 26.0 26.4 25.5

An estimate of M = 29.00 was made and the following function fitted:
(62) Y = 29.00 — 16.68 (0.7958%)

with a correlation coefficient for the simple regression of 0.975 (significant
at 0.1 per cent. level). Predictions made from equation (62) are shown in
Table 13.

TABLE 13
Pasture Production Predicied from Spillman Function

Superphosphate
Level, cwt. 0 1 2 3 4 5 6 7 8
per acre

Pasture output,

cwt. dry matter |12.32 (15.73 | 18.44 |20.59 |22.31 |23.68 |24.76 |25.63 |26.32
per acre

This procedure might be invalidated if a sufficiently large error were made
in estimating M.,

?After Snedecor, op. cit., pp. 451-2.
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7. EXTRAPOLATION FROM THE FITTED FUNCTION

The value of the production function approach in enabling maximum use
to be made of a given set of experimental data has been noted already. We
shall now examine some of the uses to which a fitted production function
can be put.

The level of output from any combination of inputs can be predicted by
substituting for all X, into a given production function. Although any
feasible value of the resource levels can be used for prediction, one can only
have faith in predictions made within the range of levels used in the original
experiment. This will become more obvious later.

Predictions of pasture output made from the polynomial production
function in equation (36) are shown in Table 14. The columns of Table 14
represent the response of pasture to superphosphate at various seeding
rates; similarly the rows denote the changes in output caused by increasing
seeding rates at constant levels of superphosphate. Either the columns
and/or the rows of such a table of predictions may be depicted graphically
if so desired. For example, the columns of Table 14 are shown in Figure 1.
The effects on yield of two factors together can only be shown diagram-
matically in three dimensions, as explained in connection with equation (4).
A perspective drawing of the production surface (also called * response
surface ”’, ** prediction surface >’} constructed from the figures in Table 14
is shown in Figure 2. A diagram such as this is of illustrative value only;
for analytical purposes we must use more precise representation.

TABLE 14

Predicted Dry Matter Yield of Pasture: cwt. per acre

Superphosphate Seeding Rate (Ib. per acre)
Rate (cwt.
per acre) 2 6 10 14 18
0 11.1 20.0 26.3 29.8 30.7
2 27.2 36.0 42.1 455 46.2
4 38.0 46.6 52.5 55.8 56.3
6 43.4 51.9 57.6 60.7 6l.1
8 43.4 51.7 57.3 60.3 60.5

This is achieved by deriving a *‘ contour ” diagram of the production
surface. Suppose contour lines are drawn on a model of a production
surface; since each line is the same height from the base throughout its
length, and since the vertical axis measures output, each contour line indicates
one level of production. Now, a viewer who looks down from directly above
the production surface will see two input axes, and a series of contour lines
each denoting a certain level of output. Since this view only takes in two
dimensions, it may be graphed accurately in two dimensions.
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These lines indicating levels of production are known as isoquants and may
be derived graphically or mathematically. If a horizontal line is drawn on
Figure 1 at, say, 40 cwt. dry matter production, it intersects the 18, 14,
10, 6, and 2 1b. seeding rate lines at superphosphate levels of 1.0, 1.2, 1.6,
2.6, and 4.5 cwt. respectively; i.e. combinations of seed (Ib.) and super-
phosphate (cwt.) of 18 and 1.0, 14 and 1.2, 10 and 1.6, etc. all produce a
yield of 40 cwt. A series of such horizontal lines yields a series of isoquants,
which may be drawn on to another graph.

Mathematical derivation of the isoquants is much more satisfactory.
Consider the polynomial function shown in general form in equation (6).
Rearranging the terms, we have:

(63) ba X224 (by + by Xp) Xy + (@ + by Xo 4 by X2 — V) = 0
Since this is a quadratic equation in X;, we may use the general formula:
(64) x=_bi\/b2—4ac

2a
to solve it, where a, b, ¢ are the coefficients of the general quadratic equation
ax?+ bx 4 ¢ =0. Applying equation (64) to (63) we derive:
(65) X, = —(b1+ b5 X5) +V(by + by X —4bg(a+ by Xy + by X2 — ¥
This is the isoquant equation and may be solved for X, using various levels

of ¥ and X,. It should be remembered that a production surface,
isoquants, etc., can be derived for any pair of independent variables in a
production function with more than two inputs, by holding the other inputs

constant at some predetermined level and predicting ¥ for a range of the
two variables under consideration.

Substituting into equation (65) the values of a and b; shown in equation
(36) leads to:

(66)

X, = — 29030 + 0.0189 X, 4 +/10.3034 + 3.0470 X, — 0.2241 X, — 0.3340 g
— 0.1670

which could be solved using any desired levels of X, and Y. To illustrate,
equation (66) was solved for X; with ¥ = 30, 40, 50, 60 cwt. and X, ranging
from 0 to 10 cwt. The isoquants thus derived are shown in Figure 3.

The limits of experimental observation (2 — 24 1b. seed, 0 — 8 cwt. super-
phosphate) are drawn onto Figure 3. The positions of the isoquants outside
the rectangle formed by the experimental limits cannot be trusted, since any
trends in this region were not measured by the experiment,

It will be seen from Figure 3 that a yield of, for example, 50 cwt. can be
obtained by combining 23 1b. of seed with 3 cwt. of superphosphate.
Obviously it would be irrational to operate at this point since the same
production can be obtained from the same superphosphate rate by using
only 124 1b. of seed. Similarly, 7 Ib. of seed and 8 cwt. of superphosphate
is an irrational combination, because the same results can be achieved using
7 ib. and 5 cwt. The two points where a given isoquant is closest to each
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Fig. 3. Yield Isoquants for Pasture Outputs of 30, 40, 50 and 60 cwt. per
acre in Relation to Seed and Superphosphate Rates.

of the two axes of Figure 3 represent the edges of the rational phase of
production for that isoquant, and the two lines joining these points on
different isoquants are called the ridgelines. The ridgelines enclose the
rational area of production, and may be fitted by eye, or derived math-
ematically, as explained at a later stage.

Let us turn now to the derivation of economic optima from a fitted
production function, still using the quadratic polynomial as our example.
Taking partial derivatives of the function in equation (6) gives:

3Y
(67 5%, by + 2b3 Xy + b5 X,
3Y
and m= b2+ 2b4X2+ b5X1
whence:
68) 83X, by +2b3X,+ b5 X,

38X, by+2b X, + b5 X,

Equation (68) represents the exact marginal rate of substitution between X,
and X,; it should strictly be negative, but since it is negative for all rational
areas of production, the minus sign is often omitted.?® Theoretically the
optimum combination of two factors X; and X, is given when the marginal
rate of substitution of X, for X, (8 X,/8 X,) equals the ratio of prices of X
to X2 ; i.e., where:
(69) 5 X, = p_xl
3 X; Px,

2 See BE. O. Heady: Economics of Agricultural Production and Resource Use,
(Englewood Cliffs: Prentice Hall, 1957), p. 141,

% jbid. p. 171 ff.
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Let px1/Pxs = P; then the optimum is given where:
by + 2b; X; + b; X,

by + 2b, X, + b, X,

Solving this for one factor, say X;, gives:

by — by P + (by — 2 b, P) X,
b, P — 2 b,

700 P=

1) X, =

which the reader may verify algebraically if desired. By substituting a
given price ratio P into equation (71) the isocline for that price ratio can be
found. An isocline is a line joining a series of isoquants through points at
which the isoquants have the same slope. Thus the isocline for price ratio
P joins the points where the isoquants have slope measured by equation
(69), and represents the least cost expansion path for that price ratio.

Where the marginal rates of substitution of X; for X, and X, for X, are
zero, the ridgelines are found; i.e. where:

Hence, the ridgelines are given by the equations:
’—‘bl—"'baXz ——'b2“2b4X2
2 by b

which are derived from equation (72), and which the reader may check if
desired.

(72)

73 X,= and X; =

Equations (71) and (73) show that the isoclines and ridgelines are linear.
On the production surface they converge towards the peak. Thus the
point where they all intersect on Figure 3 represents the maximum output.
possible from any combination of X; and X, The levels of X; and X,
required to produce the maximum ¥ can be read from Figure 3 when the:
isoclines have been drawn in, or may be calculated using:

by by —2 by b 2by by —b, b
4 — 2 5 1Y — 2 ¢3 15
(9 XY= o —pe M X =

of which the expression for X, is derived by equating the right-hand sides.
of the two equations in (73), and that for X, from equation (72) in a similar
‘fashion.

Let us now illustrate the points made since equation (67) by referring
back to our example. The marginal rate of substitution equation is calcu-
lated from (68) as:

3 X, _ 2.9030 — 0.1670 X; — 0.0189 X,
5§ X; 9.4513 — 1.3446 X, — 0.0189 X,

Assume that the price of superphosphate is likely to range from 12s. to 16s.
per cwt. and the price of seed from 5s. to 15s. per Ib. Thus the price ratio,
P, might be expected to vary from about 0.25 to 1.25. For five possible
price ratios, 0.25, 0.50, 0.75, 1.00 and 1.25, isoclines are derived using
equation (71). For example, for P = 0.50, the isocline equation is:

(76) X, = 4.1486 X, — 11.5727

(75)
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The ridgelines are found from equation (73), for example, the upper ridge-
line is given by:

_ —2.9030 + 0.0189 X,

an - X = — 0.1670

The maximum yield of pasture of 61.85 cwt. is achieved by combining 16.62
Ib. of seed and 6.80 cwt. of superphosphate, calculated from equation (74).

The isoclines and ridgelines are shown on a diagram of the relevant area
of the production surface, in Figure 4. The derivation of a diagram such as
Figure 4 is of significance for extension purposes, not only for individual
farmer recommendations, but also as an easily understandable aid when
discussing experimental results with farmer groups.

20 1
A0 cul. 50 cwl.
pper Ridlowline
7 va;nzum.
i ™ Production
15 _

1
n - b
]
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~
5 16

-1 L
o //?:;’;:}/h
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Fig. 4. Yield Isoquants for Pasture Outputs of 30, 40, 50 and 60 cwt. per
acre and Isoclines for Various Price Ratios.

The isocline analysis indicates the minimum cost combinations of seed
and superphosphate when capital available for their purchase is limited. As
increasing amounts of capital become available the use of the two factors
should be expanded along the isocline corresponding to the ruling price
ratio. If capital is non-limiting, the farmer would be interested in expanding
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production to the maximum profit point. This will vary not only with the

costs of the two inputs but also with the price of the product. The profit
maximization point is found where:

P Px,
(78) S—Y. = ﬁand .8_}: = X2
Thus, by substituting equation (67) into (78) we obtain:
p
y
Px,
andb2+ 2b4X2+ b5X1=
y

which can be solved simultaneously for X; and X, for any desired ratio
between the prices of the three variables. By substituting the values so
obtained for X; and X, back into the original production function, the output
of the dependent variable at the point of maximum profit can be predicted.
This process can be repeated for a range of feasible price levels, and the total
costs and returns, and net returns can be calculated in each case.

A significant feature of the production function approach in the analysis
of agricultural data should now be evident. The series of isoquants derived
from the experimental figures is of course independent of any economic
factors, being merely a representation of an underlying physical and biological
relationship. Hence, ¢conomic optima can be derived for any price and
cost conditions simply by superimposing ruling monetary values on to the
physical model. This generality of the production function analysis,
enabling its application to any feasible economic regime, gives it a con-
siderable advantage over less versatile analytical methods.

Computing the combinations of seed and superphosphate which maximize
profit in our example raises a difficulty which can be of importance in some
production function studies: what price or range of prices should be placed
on the product in the experiment? For trials studying commeodities placed
directly on the market, such as animal products, grains etc., the likely range
of market prices can easily be ascertained2s; however, if the product is not
sold but is used on the farm in the production of another commodity, a
price must be imputed for it. From an Australian point of view perhaps
the most important product in this category is pasture, which is also probably
the hardest to value. The simplest approach is to use its market price as
hay, but this may overlook important factors influencing its value to an
individual farmer if he anticipates using it for grazing. Another method is
to apply a series of conversion factors changing the dependent variable
from cwt. of pasture to 1b. of wool or meat, or gallons of milk; this approach
however, is highly susceptible to error viaz unreal assumptions.

We take the simplest course in calculating the profit maximization points
for our example, and assume that the pasture is to be sold as hay. Two
further complications are met. Firstly the demand for hay can vary markedly
with seasonal conditions, etc., leading to instability in its price and making
price forecasts difficult. Secondly, the experimental results were expressed
in dry matter terms, whereas baled hay may contain up to 15 per cent
moisture; thus an allowance should be made for this in estimating its price.

% For example, see W. O. McCarthy, “ Production Function Analysis of a,

Fertilizer Trial on Barley **, Australian Journal of Agricultural Economics, Vol, 3
No. 2, (December, 1959,) pp. 1—11.
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For the purposes of illustration we assume prices of 5s., 15s. and 25s. per
cwt. of pasture dry matter, corresponding roughly to hay prices of £5, £15
and £25 per ton respectively.

The two equations corresponding to (79) are shown in (80):

Px,
2.9030 — 0.1670 X, — 0.0189 X, = 'R
v

p 9
9.4513 — 1.3446 X, — 0.0189 X, = %

7
By substituting a range of values for pyq, Pxe, and py into these equations,
the profit maximizing rates of seed and superphosphate are found. These
are shown, together with the costs, total returns and net returns in Table 15.
The figures in Table 15 show that for a fairly wide range of price and cost

conditions profits are maximized by applying between 5 and 6 cwt. of
superphosphate and 10 to 15 Ib. of seed.

It is not proposed here to discuss the implications of applying experimental
results to actual farming practice. General statements such as that in the
preceding paragraph would certainly appear justifiable but the limits to the
accuracy with which recommendations can be made from experimental
results are by no means clear.2?

(80)

8. EXTRAPOLATION FROM THE COBB-DOUGLAS, TRANS-
CENDENTAL AND SPILLMAN FUNCTIONS

Although the principles applied in deriving isoquants, isoclines and
economic optima from logarithmic or exponential functions are similar to
those used above for the polynomial, the mathematics involved is some-
what more complicated. The reader is referred to the literature for a more
detailed account®, and only a brief outline is presented here,

(i) Cobb-Douglas Function

The isoquants are obtained by rearranging equations (54) or (55) such
that X; can be found by assuming a range of values for X, and Y. The
marginal rate of substitution between X; and X, can be obtained again by
partial differentiation with respect to each factor followed by division, as
was done with equations (67) and {68). It will be found that the marginal
rate of substitution derived from the Cobb-Douglas function (equation (81))
is somewhat simpler than that for the polynomial (equation (68)); viz:

83X, b X,
@1) X, by X,

The isoclines, which diverge outwards from the origin, are found by
equating (81) to the price ratio p,,/p,,. The profit maximizing rates are
obtained by solving simultancously:

p
82) b Xy= 1
p
y
P
by Xy = —2
P,

27 See, for example, E. R. Swanson, ‘‘ Problems of Applying Experimental
Results to Commercial Practice , Journal of Farm Economics, Vol. XXXIX,
No. 2 (May, 1957), pp. 382-9; also Lloyd op. cit., pp. 201-3.

28 See particularly Heady and Dillon, op. cit., Chapter 3.
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(ii) Transcendental Function
If the transcendental function for two resources is expressed in natural
logarithmic form as:

83) log ¥ =a + bylog Xy + by X, + bylog X, + by X,

then the isoquant equation is found by rearranging to give:

A range of values is assumed for ¥ and X, and equation (84) is solved for
X;. This requires iterative procedures to find an exact solution. However
an approximate solution is obtainable graphically by plotting the left-hand
side of (84) for a range of X7 and then reading off particular values of the
right hand side. The marginal rates of substitution equation, which can
be used to derive isoclines, profit maximizing points, etc., is:

(85)  8X, _ X, (b, + by X
8Afl Xl (b3+ b4 X2)

(ifi) Spillman Function
If the Spillman function shown in equation (13) is written for two inputs,
the isoquant equation can be derived by taking logarithms and rearranging
to give:
Y

log [1 e T
86) Xy = = ’?(1 — R
0g R,

The marginal rate of substitution equation for this function is given as:
(87) 83Xy, (I —R,*) (R, *!log, Ry

83Xy (1 — R ™) (R, %]og, Ry,)

9. SUMMARY OF PROCEDURES

Following is a summary of the minimum amount of calculations which
would be required to conduct a single production function analysis on a
set of experimental data.

(a) The regression relation to be fitted is drawn up in its simplest
“linear” form and the observations of the dependent variable and the
complete set of independent variables tabulated. (Equation (14) ; Table 2.)

(b) The sums, sums of squares and means are calculated. (Table 3.)

(¢) The sums of squares and cross products of deviations from the
respective means (product moments) are computed. (Equations (18),
(19) ; Table 4.)

(d) Next the matrix of product moments corresponding to the indepen-
dent variables is inverted to find the Gaussian multipliers. (Equations (30),
(31) ; Table 9.)

(¢) The regression coefficients and the constant term of the regression
relation are calculated. (Equations (32), 3

(f) Statistical tests indicating the significance of the regression relation
are conducted. The multiple correlation coefficient is found; a r-test is
performed on the regression coefficients ; and an analysis of variance is
carried out. (Equaticns (39), (41), (43) ; Table 11.)
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(2) Assuming the signifiance tests to be satisfactory, predictions of the
dependent variable are made for any desired levels of the independent
variables, by substitution into the fitted production function. From these
data the response surface may be drawn. (Table 14; Figure 2.)

(h) A series of isoquants for two inputs is obtained by substituting a
range of values for the dependent variable and one of the inputs into the
fitted production function, and solving for the other input. Any other
resources included in the function must be held constant. (Equation (65) ;
Figures 3, 4.)

(i) The marginal rate of substitution between two inputs is obtained by
partial differentiation of the production function with respect to each input
followed by division to eliminate the 3 Yterm. From this, the isoclines,
indicating least cost expansion paths, the ridgelines, indicating the bound-
aries of the rational area of production, and the profit maximizing com-
binations of inputs, are computed. (Equations (67) to (73), (78), (79} ;
Figure 4; Table 15.)

10, CONCLUSION

A large number of agricultural experiments are designed specifically to
study the response of a product to variations in one or more resources.
In the past, analysis of the results of such experiments have often used only
the classical analysis of variance model, thereby disregarding the fact that
the underlying physical or biological response is continuous rather than
discrete.

By adopting a functional approach in the analysis of data from many
experiments, both the technical understanding and the reliability and extent
of recommendations can be increased. This approach does not presume
to supersede the analysis of variance; rather, it supplements it. One of
its major advantages is that the regression model allows quantitative
description of the response over the whole of the relevant range of the
variables ; thus derivation of economic optima is more accurate, and the
application of a variety of price and cost conditions to the production
model is made possible.

APPENDIX

Some Short Cuts in Computations

Coding

It an experiment involves equally spaced levels of one or more inde-
pendent variables coding may be useful to simplify computation. For
example, if an experiment studied fertilizer at rates of 0, 56, 112, 168, 224
Ib. per acre the figures actually used in the regression could be made
0, 1, 2, 3, 4; when extrapolating from the fitted function, results will have
to be decoded, which requires a small amount of additional labour.

The Use of Computers

With the increasing availability of electronic computers, more and more
resecarch workers are taking advantage of their speed and versatility to
reduce the labour and widen the range of statistical calculations.
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Most computers will have a multiple regression programme in their
library which will compute the regression coefficients for a given set of
data and will also supply the user with most of the additional information
he will require (means, standard deviations, co-variances, correlation co-
efficients, etc.). Such programmes may sacrifice speed for completeness ;
i.e., whilst they may provide almost any of the quantities which the user
may want, they may also be relatively slower than routines designed to
carry out one specific task, such as matrix inversion. Thus, if expenditure
on computer time is restricted, a research worker may find it more satis-
factory to calcalate most of the regression by hand, and only use the
computer for the difficult or lengthy sections.

A suggested procedure is to work out the product moments terms
(Table 4 and 5) by hand—a simple matter with a desk calculator—then to
use a computer to invert the product moment matrix corresponding to
the independent variables; the Gaussian multipliers so obtained can be
used to find the regression coefficients. Matrix inversion, which is an
arduous and time-consuming task when done by hand, can be carried out
by a computer in a matter of minutes. For example, the inversion of the
matrix in Table 9 took the University of Sydnev’s SILLIAC one minute,
including input of programme and data and output of results.

Since most computers only work with any number n which is within the
range — 1< n < I, data will usually have to be scaled beforehand by the
user, so that all numbers lie within this range.29

In this context, scaling of a number greater than unity involves succes-
sive division by 10 (i.e., left-shifting the decimal point) until it is just less
than unity. This has no effect on the digital component of the interim or
final results of fitting a regression equation ; its only effect is on the position
of the decimal point. Hence results as supplied by the computer will have
to be descaled to bring them back to their original state. The following
rules of thumb should assist in descaling data:

(a) n left-shifts of the decimal point in X necessitate n right-shifts
of the decimal point in the sum, mean and standard deviation of X ;
2n right-shifts in the sum of squares, product moment and variance of
X : and 2n left-shifts of the corresponding diagonal element of the
inverted variance—covariance matrix and of the Gaussian multipliers
matrix.

(b) n left-shifts of the decimal point in X; and m in X, necessitate
(n—--m) right-shifts in the product moment and the covariance
between X; and X, and (n-+m) left-shifts in the corresponding
clements of the inverted variance--—covariance matrix and of the
Gaussian multipliers matrix.

A computer can be particularly useful in the calculation of iscquant and
isocline equations, especially with the more mathematically complex func-
tions. For instance isoquants can be plotted more accurately and for a
greater range of Y ; isoclines and profit maximization points can be com-
puted for a greater number of price and cost assumptions.

29Some computer programmes offer the facility of “floating point” operation,
which eliminates the necessity of scaling. Such programmes, however, are usu-
ally extremely slow.



