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Estimating Agricultural Pollution
Abatement Costs at the Plot
Level Using Experimental Data:
A Maximum Entropy Approach

Craig A. Bond and Y. Hossein Farzin

This paper uses a directional output distanee function to estimate s multi-output
production frontier for a sample of experimental plots grown for the Sustainable
Agriculture Farming Systems project at the University of California, Davis, Cross-
sectional technical efficiency indices are estimated that take into account two proxies
for undesirable output: number of trips across a field 4s a proxy for air pollution and/
or soil erosion, and pints of pesticides applied to account for potential leaching and/or
health risks. Shadow price estimates based on marginal rafes of transformation
ranged from $8-521 for trips, while shadow prices for pints of pesticides averaged
$23-837.

Keyv worda: directional distance function, spvironmental efficiency index, shadow
prive

Introduction

Agricultural economists and agronomists have long been interested in the response of
crop outputs to various inputs in the production process in order to recommend optimal
management practices based on marginal economic principles. Much of the attention
has focused on crop response to directly applied marketable inputs, such as fertilizer and
pesticides (see, e.g., Llewelyn and Featherstone, 1997, Frank, Beattie, and Embleton,
1990), with relationships estimated in a single-output, multiple-input empirical frame-
work. Increasingly, however, the notion of the agricultural production system is being
expanded to include not only directly marketa ble inputs and outputs, but also the effects
of a given production system on the productivity and quality of the land, as well as the
negative consequences of production on various aspects of environmental quality. Often,
analyses of this broader system are conducted under the umbrella term “sustainable
agriculture,” which generally implies some interest in gither off-farm effects, reduced
agricultural inputs, or both.

Of specific interest are the implicit tradeoffs that can be (and, in fact, are) made
between components of the broad resource system, especially with regard to management
decisions. Since many of these tradeoffs are not manifested in the market, however, a
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convenient valuation statistic, such as a price, is not readily observable as it is with a
marketable input or output. Thus it is necessary to use empirical techniques to estimate
such shadow prices, which can subsequently be used to guide development of alternative
production systems and/or policy. For example, an estimation of the expected marginal
benefit of a nonmarketable desirable input, such as the shadow price of one unit of
indigenous nitrogen in the soil, can aid in the design of optimal farm management
practices in low-input agriculture, and these prices can be used as weights in a variety
of cost-benefit analyses and valuation exercises, such as comparing production technol-
ogies or valuing land as a stock of natural capital. A (negative) shadow price for a non-
desirable output, such as pesticide runoff, can be used to inform policy makers about the
relative costs of pollution abatement. In the case of negative externalities, the predicted
abatement costs can be used in developing price-based incentives (taxes and subsidies)
to internalize the external costs of production agriculture (Koundouri and Xepapadeas,
20040,

In order to quantify several of these tradeoffs across alternative agricultural produe-
tion systems, this paper employs a multi-output parametric directional distance funetion
approach using experimental data from the Sustainable Agriculture Farming Systems
(SAFS) plots at the University of California, Davis, over the period 2003-2005. In
particular, we focus on the abatement costs associated with two potentially pollution-
generating production activities: the number of mechanized trips across a field, which,
among other things, generates air pollution; and the total quantity of pesticides
(herbicides and fungicides) used in production, which has the potential to contaminate
ground and surface water.”

Each of these elements of production are treated as undesirable outputs that are
jointly produced with marketable crop yields, and the ratio of the derivatives of the
estimated distance function indicates the marginal rate of transformation between the
undesirable and desirable elements of the expanded production system. A normalization
allows for recovery of the appropriate shadow prices, and thus the marginal abatement
costs for each observation in the sample (Fire and Grosskopf, 1990, 1998; Fare et al.,
1993). In addition, the distance function approach can lend insights into the nature of
the substitutability properties between nonmarketable and marketable inputs and
outputs in a multivariate setting, as well as estimating the relative efficiency of various
production systems (Paul and Nehring, 2005; Murillo-Zamorano, 2004). This relative
efficiency, and the efficiency rankings between systems, is shown to be sensitive to the
inclusion of environmental outputs.

This paper contributes to the literature in a number of ways. First, to our knowledge,
it is the first application of the directional distance function to micro-level agricultural
data. Previous studies have used the more specific Shephard distance function that only
allows for proportional changes in all outputs or inputs, regardless of the nature of
that input or output (Fére et al., 2005), Second, in contrast to studies using aggregated
regional- or national-level time-series agricultural data in order to estimate refative

Ptdealty, ashirect mensure of pollution would be nsed in the analvsis. However, as this information was not svailable, these
measures are used as progies for nndesiralde sutputs,

“This study originally intended o inelude sonmarketable inputs tsnil quality indicatorsi as well, However, incompatibility
hotween soil data across the thres vears of the study period preciuded inelusion at this time, Of course, the distanee funetion
methodology s well suited for analvsis of this sort, ard the techniques contained barein can eastly be adapted for multiple
marketable and nonmarketable inputs
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technical efficiencies and shadow prices over time, we focus on a cross-section of alter-
native cropping systems at the micro level, based on experimental data. Finally, we
llustrate the use of generalized maximum entropy (GME) as an estimation technique
that allows for imposition of theoretically consistent monotonicity constraints in a
stochastic framework, rather than the deterministic approach of Aigner and Chu (1968)
that has been used in other empirical work (see, e.g., Fire et al., 2005; Hailu and
Veeman, 20001

The Distance Function Methodology

Originally introduced by Shephard (1970), an output or input distance function essenti-
ally measures the efficiency of a production point relative to the production frontier, and
represents a complete characterization of any production technology so long as free
disposability of positively valued outputs or inputs is assu med (Fare and Grosskopf,
1996).° Utilizing duality results from production theory and assuming that at least one
observed output or input price equals its accounting price, the shadow prices of the
nonmarketable input and output commeodities can be recovered {(Fare et al., 1993; Fére
and Grosskopf, 1990, 1998). A major advantage of this approach is that it does not rely
on maintained behavioral assumptions of profit maximization or cost minimization with
respect to market prices, and thus the method is appropriate for experimental data
(Fare, Grosskopf, and Nelson, 1990). Shephard’s distance function assumes proportional
expansion (contraction) of all outputs (inputs), and is a special case of the directional
distance function model of technology presented below.

In practice, the literature has tended to focus on undesirable outputs, with examples
including shadow pricing of water pollution from paper and pulp mills (Fare et al., 1993;
Hailu and Veeman, 2000}, air pollution from electricity production (Lee, Park, and Kim,
2002; Fiare et al., 2005), and excess nitrogen from production agriculture (Shaik,
Helmers, and Langemeier, 2002). On the input side, Koundouri and Xepapadeas (2004)
estimated the shadow price of common property groundwater for use in irrigated
agriculture, while Piot-Lepetit and Vermersch (1998) computed the shadow price of
organic nitrogen in the French pig sector. Interestingly, Jaenicke and Lengnick (1999)
and Jaenicke (2000) use distance functions in an agricultural setting to estimate a soil-
quality index and the effect of crop rotations on productivity growth, respectively, but
do not report shadow values for the nonmarketable inputs.

In brief, the directional (output) distance function is a univariate measure of the
distance between a given production point (in multivariate space) and the technologi-
cally efficient production frontier (Chambers, Chung, and Fiire, 1998; Fire et al, 2005}
Assuming certain convexity, closure, and disposability axioms on the set of all possible
outputs (documented in Fiire et al., 2005), this function is a complete representation of
the production technology, and provides a natural estimate of the relative efficiency of
each observation. A major advantage of this approach over more traditional production
function methodologies is the ability to represent multiple, or joint, outputs, some of
which may be negatively valued by producers and/or society (i.e., “bads”).

¢ Pree disposability implies that if an fnput vector is a member of the technieally leasible sutput set. then a proportional
sealing up of this input vector is alai a member of this same set tzev, .4, Hailu and Veeman, 2000, p. 256), Semilarly, for an
sutput vestar, & proportional sealing down of the vecter is a member of the set.
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Mathematically, the directional output distance function is defined as:

£
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where for each observation i, ye %" is a vector of positively valued farm outputs (e.g.,
crops or livestock biomass), z& % ¥ is a vector of negatively valued farm outputs (e.g., air
or water pollution) that cannot be freely disposed, x ¢ $®7 is a vector of farm inputs, and
¢, represents the maximum proportional expansion of good outputs y, in the vector
direction g, and the maximum contraction of bad outputs z, in the g, direction that could
be produced with the identical input vector x. L(x) is the aforementioned set of all
possible outputs that can be produced by the input vector x. Points on the production
frontier are defined by the property DA X.,¥,2.84,, &) =0, such that there 18 no feas-
ible proportional expansion of goods and bads in the direction (g, g, In addition, the
directional output distance function is nonincreasing in desirable outputs and non-
decreasing in undesirable inputs, concave in all feasible outputs, and satisfies the trans-
lation property, defined by
DY x. y, «0g.z 0g.8, &) E}f}{xi, vz g, £ 0, 8t
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Shadow prices p, and p, are introduced through the revenue function:

" ) e s NN R,
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Assuming that the observed price of a marketable input or output (say p,, yis equal to
the true shadow price in the revenue function,’ the chservation-specific shadow prices
(or marginal abatement costs) of undesirable outputs can be recovered through the fol-
lowing equation:

D (%, ¥, 28, 8,1/ %
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Note that the relative abatement cost, or shadow price, of an undesirable output is equal
to the marginal rate of transformation between outputs along the production surface,
and as such provides the marginal opportunity cost of reducing that output. For a more
detailed exposition of the directional distance function, the reader is referred to
Chambers, Chung, and Fare (1998) and Fare et al. (2005). For a correaponding discus-
sion of Shephard’s radial output and input distance functions and derivation of the
shadow price equations, the reader is referred to Fare, Grosskopf, and Nelson (1990) and
Hailu and Veeman (20001,

Estimation of Distance Functions

Output distance functions (or their value) can be estimated in a number of ways, broadly
characterized into parametric and nonparametric techniques, and deterministic
and stochastic specifications. Nonparametric methods are typically classified as Data

¢ Fare and Grosshopd (19901 ales note that 1 balanved budget or not-for-profit sssumption can be used for identifieation
PRATPORES,
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Envelopment Analysis (DEA), are generally deterministic, tend to be radial, or non-
directional, in nature, and result in a nondifferentiable production possibility set
consisting of the convex hull of all the observed input-output vectors in the sample, with
the outermost observations defining the production frontier surface in a piecewise linear
fashion (Murillo-Zamorano, 2004; Fare and Grosskopf, 1996). Imposing additional
structure on the distance function through a specific differential functional form, say
E}f}i X, V. 2.8, &) f(x,y.2;P.8,, -g,), where 8 is a vector of parameters to be com-
puted and f() satisfies the proper theoretical translation, monotonicity, and symmetry
properties, allows the derivatives in (1) to be easily computed, and allows for directions
to be explicitly specified.”

The parameter vector can be recovered either deterministically through nonlinear
programming, as in Aigner and Chu (1968), or through econometric estimation via
imposition of a compound error term. The deterministic recovery process envelops all
of the data and does not allow for statistical noise or measurement error, which is
conceptually unappealing from an econometric standpoint (Ruggiero, 1999; Ondrich and
Ruggiero, 2001). On the other hand, this approach has several advantages. First, the
theoretically desirable properties of the distance function can be imposed directly via
constraints on the programming problem, which is especially important in the case of
the monotonicity properties of the derivatives of the distance function with respect to
desirable and undesirable inputs (Hailu and Veeman, 2000), These take the form of
inequality constraints, which can be problematic in a standard econometric framework.
Second, finite sample performance, at least with respect to rank correlations hetween
estimated and true efficiency measures, has been shown to be superior using deter-
ministic methods rather than stochastic specifications (Ruggiero, 1999).° Finally, this
technique is feasible for smaller, ill-behaved samples while maintaining the advantage
of differentiability of the distance function (Fire et al., 1993). However, even the large
amount of a priori information imposed in the form of homogeneity, monotonicity, and
symmetry constraints may not be sufficient to adequately locate the reference technol-
ogy, especially if the problem is ill-posed due to a paucity of data.

An alternative to deterministic specifications is to assume a compound error stochas-
tic specification, in which deviations from the frontier can take the form of either
inefficiency or statistical noise/measurement error. Developed by Aigner, Lovell, and
Schmidt (1977), with firm-specific efficiency estimates provided by Jondrow et al. (1982),
the approach develops the estimating equation by exploiting particular properties of the
funetion to be estimated: homogeneity in the context of radial distance functions, trans-
lation in the case of directional distance functions. In the context presented here, each
observation can be identified relative to the technology frontier through

(2 flx,y. z:B.g, &) &0

where ¢, is a random disturbance term such thate, = v, -, 4, » 0is an i.i.d. random
rariable with positive support and finite variance representing deviations from the

5 Although the funetion F05 may not explicitly depend on g and g, the parameter vector § may depend on these values.

Rruggiere ! 19969 uasd Monte Carlo analyais to compare efficiency estimates from crosssectional deterministic and stischag.

tic parametric specifications for vadial distance functions o the true data-generating process in a single-output frontier maded,
and found that “the parametric determiniatic mede! ontperfirmend the stochastic frontier model in nearly all of the model
situations considered” (p. 3623 Rather than a linear programeming approsch, however, the authors wsed 8 oorrected QLS
propedurs to estimate paramater vadues. Greene (1883 has the detals,
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production frontier surface {in other words, the negative of the distance function), v, ~
i.i.d. (0, 07) is white noise, and u, and v, are assumed independent (Murille-Zamorano,
2004: Paul and Nehring, 2005; Koundouri and Xepapadeas, 2004). To obtain variation
on the right-hand side of {2) for estimation, the translation property is exploited such
that:

¥ &

(% 0, flx.y g0,z g9:B.g, g.) e

Depending on the distributional assumptions the researcher is willing to make concern-
ing the compound error terms, there are a number of ways to estimate (3), including
maximum likelihood, generalized method of moments, or even ordinary least squares,’

However, as Ondrich and Ruggiero (2001) show, identification of firm-specific ineffi-
ciencies [as identified by f.() or ;] are dependent on these distributional assumptions,
and no absolute measure of inefficiency can be caleulated, despite the conceptually
appealing treatment of noise. Thus, the stochastic specification may, in empirical prac-
tice. offer little or no advantage over deterministic models. Furthermore, these methods
of estimation are not conducive to application of monotonicity constraints on good and
bad outputs (or inputs), and unconst -ained estimation may result in an estimated
output distance function that is not consistent with theory.

Finally, these estimation techniques are subject to the same data constraints commaon
to all traditional econometrics—namely, the existence of a sufficient number of degrees
of freedom in order to uniquely and consistently identify the parameters of the pre-
sumed input distance function and a lack of severe multicollinearlity (or alternatively
stated, a well-conditioned problem that is not ill-posed). In many applications, such as
the numerous studies cited here, these may not be significant issues; yet in others they
may be quite constraining, due to a large number of parameters to be estimated (a
consequence of the necessity of a flexible functional form}, a lack of data or the very
nature of the data, or most likely, all of the above. This may be especially true in the
case of replicated experimental data common in agronomic and other agricultural
applications, which are characterized by multiple observations of output resulting from
identical input vectors on different plots, reducing data variability in the explanatory
sariables and severely limiting the power of traditional estimation technigques.

Recently, the technique of Generalized Maximum Entropy ( GME) estimation has been
developed to overcome many of these difficulties. GME assumes a diserete probability
distribution for each of the K parameters to be estimated and each of the / disturbances
in the sample, and then maximizes the sum of the entropies for each of these distribu-
tions, subject to the data, in order to uniquely determine the conditional expectation of
each of the unknowns. As such, it can be used to identify ill-posed and severely ill-
conditioned econometric problems, as well as impose the theoretically consistent
inequality and monotonicity constraints on the parameter vector. In this sense, GME
is the natural stochastic analog to the deterministic approach advocated by Aigner and
Chu (1968). For a more detailed explanation of GME estimation, the reader 1s referred
to the seminal works of Golan, Judge, and Miller (1996), Paris and Howitt (1998), and
Fraser (2000). and for an efficiency application, Lansink, Silva, and Stefanou (2001).

Estimates of the slope cosffivients are unbiazed and ronsistent using L5 estisation, but the intercept term requires
adiustment as the error term Bas & DUNZErs mean Greene, SO



Bond and Farcin Estimasing Agriculmral Pollution Abatement Costs at the Plot Level 279

Data

The data for this paper are taken from the newest phase of the Sustainable Agriculture
Farming Systems (SAFS) project at the Russell Ranch location (lat. 387 32'N, long. 1217
47'W, 18 m elevation) at the University of California, Davis. The SAFS project is a long-
term interdisciplinary study designed to collect data on various traditional and non-
traditional characteristics of agricultural systems, including, but not limited to, environ-
mental quality, food safety, alternative production systems, resource conservation, and
soil quality (SAFS, 2004). The newest phase began during the 2003 growing system, with
research geared toward comparing three alternative production systems (conventional,
low-input, and organic) in a two-year rotation of processing tomatoes followed by field
corn using furrowed irrigation. In addition, each production system was managed using
standard and reduced tillage, for a total of six distinct production systems for each erop
with three replications of each. To date, three years of data are available. Located in the
Sacramento Valley, the climate can be classified as Mediterranean, with 400-500 mm
annual rainfall occurring primarily in the winter months, and mean daytime temper-
atures during the growing seazon of 30-357C (SAFS, 2004),

Plots for each system were managed as follows: conventional systems according to
standard practice in the Sacramento Valley, organie systems according to best manage-
ment organic practices and materials, and low-input using a winter legume cover crop
{vetch and Australian winter pea’ to fertilize and add organic material to the soil (SAFS,
20041.% Tillage regimes were designed to mimic conventional practice for the standard
tillage treatments, while the conservation tillage experiment attempted to minimize the
number of trips across a field without sacrificing yvields (SAFS, 2004), Note that the
behavioral assumption of profit maximization is not maintained with these experi-
mental data. (Additional information about the SAFS project and related activities ean
be found at hitp/sals.vedavis.edu/)

Estimation of the directional output distance functions requires information on inputs
and outputs (both desirable and undesirable). In order to conserve degrees of freedom
in the estimation process, multilateral Fisher quantity indices (also known as EKS
indices) for desirable outputs and inputs were constructed over the entire 36-observation
sample, using the observation for conventional standard-tillage corn as the baseline.
Similar index approaches have been used in the literature for time-series data (see, e.g.,
Shaik, Helmers, and Langemeier, 2002). A multilateral Fisher quantity index of observa-
tion k relative to baseline observation [ is defined as a function of the ratios of bilateral
Fisher quantity indices, or

g S Ly HaE
a6 A B & i & :
ML oy | F LYY
) FMT pLpLad)

i1 ggréii,ips\q p;: qi‘? q‘} )

where p' is the price vector for the ith observation (in 2005 dollars), ¢ is the corres-
ponding quantity vector, and Fy, is the bilateral Fisher quantity index between two
observations (Fox, 20031 Specifically, taking the numerator in (4) as representative,

¥ The argarde system utilized the same cover erop as the low-dnput systers for both core and processing tomatass,
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with the index j representing the elements of the price and quantity vectors.

In the application here, desirable outputs are simply vields of the crop per acre, with
prices reflecting market conditions at the time of harvest and, in the case of organic
crops, any price premium. Inputs are measured as total expenditures on 11 operating
cost categories: ground preparation, cover crop expenditures, weed control, planting,
irrigation, fertilizer, insect control, disease control, harvest, residue management, and
interest on capital. Unfortunately, collected soil quality data were incomplete and not
comparable between years, so there are no nonmarketable input data available. Data
were generated by U.C. Davis Cooperative Extension by taking the operational schedule
from each experimental plot and running a budget plan for an assumed representative
farm.

Ideally, direct measures of undesirable outputs would be included in the analvsis,
though such data are notoriously difficult and expensive to obtain. For example, a
component of the SAFS project is to measure the quantity and quality of runoff for each
system during the winter season; unfortunately, the selected measurement svstem was
relatively unsuceessful during the first two years of the experiment, resulting in data
of questionable quality. As such, it is not included in the analysis here. Rather, we
choose to utilize proxy measures that are likely to be correlated with polhation and are
of particular interest to the SAFS project.”

Thus, two proxy variables are chosen: (@) the total number of trips across a fleld,
which affects, among other things, air pollution; and (b) the total quantity, in pints, of
pesticides (herbicides and fungicides) applied, which can affect food safety and water
quality (SAFS, 2004). While there are obvious conceptual difficulties with each of these
variables representing pollution per se, recall that the shadow price calculations
represent the marginal cost, in terms of desirable output foregune, of reducing whatever
measure of undesirable output is used. Thus, for policy purposes, this information can
be used in analyses of the costs of changing management practices associated with pollu-
tion, although valuation of the costs and/or benefits of reducing pollution itself may, in
fact, differ. One interpretation might be that the undesirable output produced is directly
proportional to the proxy measure used to represent it. A summary of the data can be
found in table 1.

FEL(pi p* o ) -

Funectional Forms and Assumptions

A quadratic functional form is used in the analysis, with g, = land g, = 1. As noted in
Fiire et al. (2005), this choice of directional vector allows for increases in good outputs
and decreases in bad outputs along a 45° vector from the origin, and allows for aggre-
gation to the industry level if such data were available. Furthermore, the quadratic

¢ Por example, Shaik, Helmers, and Langemeier (2002 use caleulated nitrogen surplus from o mass-balance approuch as
their pollution sutput variable in the absence of observing actusl nitrate cont anination statewitde over te. This proxy was
validated through regression of 2 set of rdtrate contamination data (nol appropriate for use i the shadow price calenlations?
an similar excess nitrogen caloulations, with positive and significant correlatus werified,
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Table 1. Description of Variables and Summary Statistics

Standard
Variable Diescription Mean Deviation Minimum Maximum
% Input Index 2.07 1 .66 5.2
¥ Cutput Index 1.5% 1.08 .15 158
ES Numiber of Trips 2222 §.94 G.00 3700
EN Pints of Pesticide 3.95 161 0.00 10.687
Dy Dummy 2004 433 .48 .00 1.00
) 3, Drummnyy 2005 .33 {148 §.00 1.00
D, Dummy Corn (.50 0.51 0.00 1.00
P, Output Index Price” 65,34 12082 AB7.50 942,08

* Prives are in 20058,

functional form is easily restricted to satisfy the translation property, despite being ¢
flexible second-order approximation to an unknown function.

Specifically, in the context here with one desirable output and one input (n index
form), and two undesirable outputs, the directional distance function is specified as
follows:

s

. O, ; L2 o 2
(5 D7tx, v,z 1, -1 = o sy« Bix e >3 Y2, Vatyy, Yoy,

-
s
79D RIS V Y2

2Pz, B, D,

g
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where v, 2, and x, are the desirable output index, the jth undesirable output, and the
input g;uanizm index for the ith observation, respectively; D are dummy variables for
2004 and 2005 growing seasons; and D, is a dummy variable equal to one if the crop
grown is corn. In addition, the following restrictions are placed on the parameters to
satisfy the translation property and symmetry restrictions:

&, xf Lo g”’i; 0, Yy * Yo M =0 Yoy ¥ar M= 0,
FE it

Equation (5)is estimated using both traditional econometric methods (OLS and GME
by appending a compound error term and setting 0, equal to the desirable output
index as in (3), then estimating this function at the transformed output variables, For
GME estimation, each parameter is parameterized with five discrete support points:
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[-50, - 25, 0, 25, 50] for the intercept term o, and (-5, ~2.5, 0, 2.5, 5] for each of the slope
and dummy parameters. Each error term is assumed to have support [-4, -2, 0, 2, 41,1

Note, however, that as written, the composed error term in (3) has a nonzero mean
given the strictly nonnegative support for u,, but the support for the composed errvor
term as a whole extends into the negative region. As in OLS estimation, this causes
little problem, sinee conceptually the data can be transformed to renormalize around
zero {see, e.g., Greene, 20001 ' As such, the model retains the zero mean errvor assump-
tion of the classical linear regression model, and slope parameters are unbiased and
consistent as in Golan, Judge, and Miller (1996). Because the intercept term does not
enter the calculation of shadow prices, the inconsistency of this parameter is of little
consequence for these calculations.

To check for theoretical consistency associated with the monotonicity conditions with
respect to each output, OLS estimation proceeds without any additional restrictions on
the parameter values. In the GME maximization problem, however, we directly impose,
through inequality constraints on the proper functions, the monotonicity conditions with
respect to desirable outputs (the output quantity index) and undesirable outputs ( number
of trips and quantity of pesticides),

One final concern is the inability to identify the value of the distance function, as 1t
enters additively with the statistical noise term. In previous practice, particular distri-
butions are assumed for each of the error terms, and the sufficient statistics for these
distributions can be used to estimate expected values of the observation-specific
inefficiency terms conditional on the value of the estimated composed error (Jondrow
et al., 1982), Because such distributions are not assumed under the GME framework,
this approach is not possible here. We therefore rely on the previously discussed resulis
of Ondrich and Ruggiero (20011 and Ruggiero (1999), and use corrected OLS by adding
the maximum error term, as defined in (2), to the estimated intercept in (5%

i

o © Oy v maxie )

The reader is reminded that the resulting distance function measure is relative to the
most efficient observation in the sample. OLS estimation was performed using Inter-
cooled STATA 7.0, while GME estimation was conducted in the GAMS programming
language with the MINOS2 solver.”

Results and Discussion
Technical Efficiency Excluding Environmental Considerations

Before estimating the shadow prices of the undesirable outputs, we first examine the
estimated values of a total factor productivity (TFP) index, which compares the technical
efficiency of each production system/tillage treatment by year, arbitrarily using one of

® Sep table 1 for sample standard devintions of the dependent variable. The supparts for the error encompass the three
sigia rule, while the sther parameter supports were hased an o priort expectation and testing for robustness. The wider
suppert an the intercept toem s fimposed based on the results of Fraser (20001, wha found that the indercept was sensilive
to the suppert interval This seems especinlly relevant given the expected nongere mean oo the error terme

Y oPeansforming the data such that the vector of ones assoriaterd with the constant tere is squal to one plus the mean of
the eomposed erenrs results i s model with no ervor teem with expected mean zero.

¥ Code 1w avaibable from the suthors upon reguest.
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Table 2. Economic Total Factor Productivity (TFP) Relative to Conventional
Standard Tillage Corn, 2003, by Production System (baseline = 1)

Deseription Total Corn Tomatees
All 4.776 G674 [ER
{0,387 {04633 {0997
Standard Tillage (81 3.958 0.5687 £.8944
(861 (0361 (0,255
Conservation Tillage (O 03,597 {781 0814
{4400 SERE o)) {aad
Conventional (Conv} 1.138 1.248 RO
(33820 (L2581 (360
Orvganic g 0850 (1.318 983
(308 LT {3228
Winter Legume Cover Crop (WL {.841 0457 0,826
(L2893 SUNE S (028

Note: Values in parentheses are standard ervors,

the observations as the baseline. The TFP index is defined as the ratio between the out-
put and input quantity indices for each observation, with the baseline normalized to a
value of one. As such, those observations with a TFP index greater (Jess) than one are
more (less) efficient than the baseline. The TFP index does not take into account environ-
mental performance, but rather the ratio of aggregate desirable output to aggregate
input, and can be considered representative of the interests of the producer, rather than
society as a whole.

Table 2 summarizes the results by production system, assuming that the standard-
tillage corn observation for 2003 is the baseline, with a TFP index of one. Any TFP index
greater than one indicates the possibility of producing more output for the same level
of inputs; i.e., the system is more technically efficient. Taking into account both erops
and both tillage regimes, the “Total” column in table 2 shows that conventional systems
{Conv) are most efficient, and organic systems (Org) are slightly less efficient than
winter-legume cover cropped systems (WLCC). This general pattern remains consistent
when individual crops are analyzed (columns 3 and 4), although the loss in efficiency
when moving away from a conventional system in corn is greater than that for tomatoes.
In contrast, there is little difference between standard tillage (ST) and reduced, or
conservation, tillage (CT) overall. By crop, however, conservation tillage is most efficient
for corn, but standard tillage is most efficient for tomatoes. These results highlight the
potential heterogeneous impacts of alternative production systems on various crops,
suggesting that generalizations about the relative efficiencies of various technologies
should be made with caution.

The TFP analysis does not take into account any potential environmental external-
ities generated through agricultural production that may be negatively valued by society
as a whole, and thus provides no guidance as to the social desirability of these
alternative production practices. The value of the directional distance function described
in (5) takes environmental considerations into account, as it provides a measure of
efficiency that incorporates maximum possible expansion of the desirable output and
maximum possible contraction of the undesirable outputs (proxied here by trips and
pints of herbicides) in the (g, -g.) = (1, - 1) vector direction, so that both greater yields
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Table 3. Ordinary Least Squares (OLS) and Generalized Maximum Entropy
(GME) Coefficient Estimates, Quadratic Functional Form

Variable Copflicient LS GME Variable  Coefficient OLS ME

Constant Eh RS 0 {1,848 (2,8 P 0.005% 0.001
{uncorrected: {1,294 (0,003

¥ €, 1.054% (RA8 Yx 3 BOTR IRENS]
08T RIRECRE

X 8, 0.847 3.927 Vi, 1, 0.018 0.004
(1718 (1012

z Y, 5.038 0.157 vz, e 0.005% 0001
LT {0,000

s 0.021 0.008 2, B, 0.028 0.019
{1058 (01

¥ ., Q.541% B.005 Xz, s HO51% 6.002
G210 (018

e B, 05417 -0.042 Do 5, 0.110 0.218
[Ny (0. 1543

(2 Vi 0.016 0.002 Do 5, 0.102 0.406
[LIRE RS IRV

£z, ¢y D000 0.002 B &y 4.083% 1407
(3,00 {0,690

Notes: Ringle and double ssterisks (%) denste statistival significancs at the 10% and 3% levels, reapeetively, Values
in parentheses are standard ervors.

and fewer trips and herbicides are taken into account (Fére et al., 2005}, Consequently,
it provides a convenient summary measure of economic/environmental efficiency in a
compact, univariate form. Furthermore, the use of GME estimation allows for simaple
imposition of the theoretically consistent monotonicity conditions on positively and
negatively valued outputs. Coefficient estimates from the GME estimation procedurs
are reported in table 8, along with the OLS analog for comparison purposes. In what
follows, we restrict attention to the theoretically consistent GME results.

Table 4 reports the directional distance function values obtained from GME estima-
tion with all relevant theoretical constraints imposed. Recall that the distance function
salue must be nonnegative and bound from below at zero, so that a lower distance
function value implies greater efficiency, with a value of zero indicating production
along the frontier. As can be seen in the “Total” column of table 4, conventional produe-
tion is still most efficient across all crops and tillage regimes, but the lack of pesticide
application in the organic system s taken into account, thus moving it shead of cover-
cropped systems in the ordinal efficiency rankings. This pattern is again maintained for
individual crops, although the very small differences between conventional and organic
production measures for tomatoes s worth noting as reductions in pesticide use do not
appear to significantly affect the combined economicenvironmental efficiency measure.
Credit for reducing trips across the field with this combined measure results in conser-
vation tillage svstems ranked more efficient than standard tillage regimes in aggregate
and for each crop individually.

A clearer picture of the differences between the TFP measures and the distance
function measures of efficiency can be found in table 5, which ranks the combined
production/tillage systems by crop from the most to least efficient. For corn, the top two
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Table 4. GME Distance Funetion Estimates Relative to Most Efficient Observation,
by Production System (most efficient = 0)

Deseription Tatal Corn Tomatoes
All 078 .84 (738
{1,385 ({Labe G415
Standard Tillage (83T (.823 {3847 0.7449
{0370 {0,306 {430
Canservation Tillage (OT 0959 (37786 0.927
(0. 4051 (LIRS (422
Corpventional (Cenvi (1572 {.568 (.878
{0.315) (0,148 {0444
Organic (Orgd G682 0804 {1582
(0,328 {1,388 [
Winter Legume Cover Crop (WLCO) 1.1 1165 1053
{1,308 ((.20%) (0,440

MNaote: Values in parentheses sre stundand errors,

Table 5. Economic (Total Factor Productivity) and Combined (Distance Function)
Efficiency Ordinal Rankings by Production System, Most to Least Efficient

Total Factor Productivity Efficiency Measure Dstance Function Efficiency Measure
Phstange
Cropd TEP Crop/ Funetion
Rank  Production System Seore Rank Production System Beore
Corn: Corn:
i Conventional CT 148 1 Conventienal OT (.48
2 Conventional 8T 1o 2 Conventional 87 R
3 Winter Legume Cover Crop 0T 051 3 Organie CF 0.67
4 Winter Legume Cover Crop 8T 040 4 Organie 8T .44
5 Crganie 07T .35 5 Winter Legume Cover Crop 58T (Y
& Organie 8T 0.28 & Winter Legume Cover Crop CT 121
Tomaloes: Tomatoes:
i Conventional 5T 107 1 Urganie 5T .52
k4 Conventional CF 0.0% 2 Conventional CT .54
3 Orvgarde BT a8 3 Corventional 8T R
4 Winter Legume Cover Crop 8T 083 4 Organie OT .65
5 Winter Legume Cover Crop OT - 082 & Winter Lagume Cover Crop CT 100
8 Organie CT 0.63 6 Winter Legume Cover Crop 5T 111

Note: OT = Conservation Tillage, 3T = Standard Tillage.

most efficient production systems remain unchanged with the inclusion of the pollutant
proxies (Conv CT and Conv ST), but the organic systems move into third and fourth
place once the undesirable outputs are included. These findings suggest that the vield
component in the efficiency computation dominates the environmental considerations
for corn. For tomatoes, the reordering is even more dramatic, as the TFP-leading Conv
ST system switches places with the third place Org ST structure once undesirable inputs
are included, the Org CT technology increases from last to fourth place, and the WLCC
systems once again drop to the fifth and sixth positions.
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Clearly, then, incorporation of environmental considerations into the efficiency
analysis has the potential to change both the qualitative and quantitative clagsifications
of each of the production regimes by crediting the “production” of environmental quality
rather than simply erop yields (Hailu and Veeman, 2000). From a policy standpoint, the
results reported in table 5 provide information about “hest practice” production systems
that offer simultaneously the most output with the least environmental impact. In the
case of corn, there is little compelling evidence to suggest that nonconventional produc-
tion systems should be promoted (say, through policy instruments) on environmental
grounds. In contrast, for tomatoes it appears that organic production systems have the
potential to increase environmental quality while simultaneously increasing our
measure of output. Cover cropping appears to fare the worst in terms of technical
efficiency; however, we have not included a proxy for pollution resultant from fertilizer,
which could change the results. Of course, profitability concerns of individual growers
{including the costs of potentially switching to a new system) are likely to dominate
production choice decisions.

Shadow Prices of Undesirable Output Proxy Variables

We next use the model results to estimate the shadow prices, or marginal abatement
costs, of each of the proxies of nondesirable inputs using the formula in (1). As the
desirable output for both corn and tomatoes is measured in terms of the multilateral
Fisher output quantity index defined in (4), we use the implicit price defined by

where TR is total revenue for observation 7 and Fi?‘ is the output quantity index, rela-
tive to the Corn Conv ST observation in 2003, to normalize the shadow prices i 2005
dollars. The shadow price represents the marginal cost, in terms of the desirable input
foregone, of reducing the proxy measure by one unit (pint in the case of herbicides, trip
in the case of the tillage measure); alternatively, it can be interpreted as the value of
desirable output the producer would gain if the proxy variable increased by one unit,
This latter interpretation is helpful for those observations that have zero pesticide
applications,

Summary statistics of the estimated shadow prices for both number of trips across the
field and pints of pesticides for each observation measure are presented in table 6.
Recall these prices are caleulated at the projected efficient point in the direction of
(g, ~g.) = (1, - 1) (Fire et al., 2005). As in other studies (e.g., Fire et al., 1993; Hailu
and Veeman, 2000), the prices are quite variable across production technologies and
crops, representing the differences in output mix at each point. Furthermore, imposition
of the monotonicity assumptions affects the results. Under OLS estimation, 21 of 36
shadow prices for number of trips are nonnegative (in accordance with the theory), while
18 of 36 observations are nonnegative for the herbicide proxy. For the GME estimation
which imposes this constraint, 34 of 36 of the shadow prices for trips and herbicides are
strictly positive,

As can be seen in table 6, the average GME shadow price estimates overall are $37
per pint of herbicide and $8 per trip across the field, although they range from $0 to %91
for the former and $0 to $26 for the latter. In other words, on average for these data, the
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Table 6. Estimated Shadow Prices of Undesirable Outputs by Crop, 2005 %

Totad Corn Tomatoes

Deseripting Herbicide Trip Horhicids Trip Herbivide Trip
All .40 G874 1013 1583 8567

iRty (B X3 £7.123 (1163 (5,401
Standard Tillage (8T 10,80 13.84 1874 .27

{748 [FREY (961 715y
Conservation Tilage (CT1 600 1742 BAYY

(5013 (1338 (4.1
Conventionsd {Conv 4061 1473 245

(BN Ve 3,88 {8 Th {2,486}
Organig {Org 1875 1818 2111 13381

{5433 {508 (12 {4 0
Winter Legume Cover Urop tWLOCH AL RN 6.39 1164

(21.67)

(42480 (126

Mite: Values in parentheses are standard ervors,

opportunity cost of abating one pint of herbicides, once all nefficiency is taken into
account, 18 just under $40, while the opportunity cost of foregoing one trip across the
field iz just under $10, Alternatively, a producer operating at a zero herbicide level could
increase output by approximately $37 if an additional pint of herbicide was applied.
Prices for each proxy are generally higher for corn ($59 and $10) than for tomatoes ($16
and $7), and the organic system tends fo admit shadow prices higher than the overall
average. Standard tillage shadow prices are lower than average for herbicides, but
higher than average for number of trips across a field.

Overall shadow prices for abatement of herbicides and trips are generally higher than
the comparable input costs for herbicides and labor, which range between $3 and $20
per pint for herbicides, and $1.75 to $4 for the 0.13 to 0.30 hours of machine labor used
per trip. This evidence of a lack of allocative efficiency is hikely explained by the nature
of the data, as the behavioral assumption of profit maximization is not maintained in
the agronomic experiments. One advantage of the methodology, however, is that it
allows for calculation of shadow prices in the absence of that assumption, using data
generated through plot-level field trials. Furthermore, the estimates illustrate that use
of prices of inputs correlated with pollution may underestimate the costs of abatement
i1 the presence of allocative inefficiencies.

From a policy perspective, estimation of shadow values at the plot level across produe-
tion systems can serve several purposes. First, in the presence of existing or potential
environmental legislation, these prices can inform individual growers as to the oppor-
tunity costs of either reducing polluting inputs or switching production systems, thus
potentially resulting in a more optimal mix of production technologies from the social
perspective, Second, this application highlights the potential heterogeneity of abatement
costs across crops and production systems, suggesting the need for targeted, rather than
blanket, environmental policy. Finally, these prices can be used as theoretically consist-
ent prices in relevant environmental/sustainability indices and benefit/eost analyses to
guide public policy with respect to optimal environmental policy as it applies to agrieul-
tural issues.
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Conclusions

This paper has estimated the production technology used to produce corn and processing
tomatoes at an experimental plot level using data from the Sustainable Agriculture
Farming Systems study at the University of California, Davis. In addition to simple
measures of technical efficiency generated by the ratio of multilateral desirable output
to input index ratios, a directional output distance function was estimated in order to
incorporate proxies for environmental pollution as nondesirable inputs, and the result-
ant efficiency rankings were analyzed. This approach allows for simultaneous crediting
of increases in desirable output and decreases in undesirable outputs in the efficiency
calculations, thereby allowing for a univariate measure of a multivariate concept and
facilitating comparisons between production systems along both environmental and
economic dimensions. Additionally, as the directional distance function is a complete
representation of the technology, the marginal rate of transformation between “goods”
and “bads” along the frontier can be utilized to estimate the shadow price of pollution
abatement, so long as one assumes that at least one market price equals the corres-
ponding shadow price,

Results showed that conventional production technologies were most efficient when
environmental considerations were not taken into account for both corn and tomatoes,
and that an organic system ranked last for this eriterion for each of the crops. Once the
environmental proxies were included, however, organic systems increased in efficiency
relative to the other systems, while the winter legume cover erop systems were deemed
less efficient. Average shadow price estimates for pints of herbicides ranged from
$23-$37, while shadow prices for trips across the field averaged $8-$21. Like similar
studies, there was considerable variation in shadow prices between observations.

The major conclusions to be drawn from this study are: (a) productivity rankings by
production system are sensitive to the inclusion of undesirable outputs; and (b) in the
agricultural production setting, there are tradeofls between environmentally-friendly
farming practices that reduce externalities and desirable output, and these tradeoffs can
be quantified in terms of shadow prices. These shadow prices can be used in cost-benefit
analyses and other economic analyses in order to inform policy makers and other inter-
ested parties about the tradeoffs involved in pollution abatement.

While this paper contributes to the understanding of these tradeoffs, future research
is needed to both verify and extend these findings. Ideally, actual environmental
pollution data could be used in place of the proxies used here, or barring that, data
generated from an agronomic simulation model. In addition, due to data limitations, the
analysis presented here treats the observations as a cross-section, rather than a true
panel with a time dimension. Future research could exploit this additional dimension
to examine trends in both efficiency measurements and shadow prices, especially as
environmental regulations tighten for the agricultural sector. Finally, further research
is necessary to compare and contrast these results across sites, years, crops, and
production technologies.

[Received Janmuary 2006; final vevision veceived February 2007
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