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A DOE Ethanol Vision
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Steps in cellulosic ethanol production
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US Biomass inventory = 1.3 billion tons

Whea:r straw

Corn stover 6 1% Sox

19.9%

Cr'og ré%;sidues

Grains
5.2%

Manure
4.1%

Urban waste

Perennial crops 2.9%

35.2% Forest

12.8%

From: Billion ton Vision, DOE & USDA 2005



>17% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues
in Illinois, without irrigation

Courtesy of Steve Long et al
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Plot of Cost/gal = (Y + aX)/X
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Perennials have more photosynthesis
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Annual precipitation

Annual Average Precipitation

United States of America
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Geographic distribution of biomass

ORNL 2000-00566A/abh
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Economics of Perennials are Favorable

CROP Yield Value Cost Profit
per $ $ $
Acre | @$50/t
Corn 160 bu | 500 193* 307
Switchgrass |10 tons | 500 138** | 362
15 tons | 750 193 557

Miscanthus

*USDA economic research service 2004
**50% as much fertilizer, no chemicals




Prospective energy crops have not been
subject to intensive breeding

T,

Miscanthus sp. Switchgrass (Panicum virgatum)

Courtesy of Steve Long & Emily Heaton. USDA-NRCS PLANTS Database / Hitchcock, A.S. (rev. A. Chase).
1950. Manual of the grasses of the United States. USDA Misc. Publ. No. 200. Washington, DC.



Advantages of perennials

* Energy crops are expected to be

more environmentally benign than
production agriculture

- Low fertilizer and chemical inputs

- Late-harvest supports biodiversity

- Mixed cultures possible

- Many species can be used



Challenges in developing energy crops

» Self-incompatibility creates
challenges in breeding

» Difficult to capture adequate value
from seed production

* Large capital costs in building
cellulosic ethanol plants will require
long-term contracts



The challenge is efficient conversion

» Burning switchgrass (10
t/ha) yields 14.6-fold
more energy than input
to produce*

Other

Steam Transport

Biomass

» But, converting Grinding
switchgrass to ethanol
calculated to consume Electricity
45% more energy than
produced Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)



Plants are mostly composed of sugars
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Lignin occludes polysaccharides

Cellulose
Hemicellulose

Lignin



Effect of lignin content on enzymatic
recovery of sugars from Miscanthus
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Lignin biosynthesis
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Cellulose is recalcitrant to hydrolysis

NREL



Possible routes to improved catalysts

« Explore the enzyme systems
used by termites (and
ruminants) for digesting
lignocellulosic material

« Compost heaps and forest
floors are poorly explored

« Invitro protein engineering of
promising enzymes
» Develop synthetic organic

catalysts (for polysaccharides
and lignin)




Fermentation of all sugars is essential
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Conclusions

» Biofuels are expected be an important part
of a carbon neutral energy economy

* There are no insurmountable problems
* Many improvements are possible

* The revolution in mechanistic biology
offers enormous untapped potential to
make fundamental changes in solar
harvesting with plants



The Energy Bioscience Institute

* Partnership between UCB, UI, LBL
+ BP has committed $500M over 10 years

« Goals include elimination of bottlenecks to

biofuels, development of improved
biotechnologies for fuel production, and
education of scientists and engineers
across the relevant disciplines
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Some plants accumulate oil

(B) Triacylglycerol




Billion gallons

Limited potential of biodiesel

CH30 RV VY Ve a Biodiesel

Current biodiesel  Capacity US Diesel US Fuel

65 biodiesel companies in operation, 50 in construction 2006
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