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Abstract 

The adoption of organic production has increased dramatically over recent years, especially 

in less developed countries. However, little information is available about who adopts, the 

difficulties they face in converting and how these factors vary over time. Using small-scale 

avocado producers (<15ha) from Michoacán, Mexico as a case study, this paper explores the 

factors affecting the time-to-adoption of organic production and certification, drawing from 

five parametric descriptions of the data. These models are implemented using a Bayesian 

approach and advances in Markov chain Monte Carlo methods. The results indicate that 

additional sources of income, together with membership of producers’ associations, higher 

levels of education and experience of export markets, other than the US, have a positive 

effect on the adoption decision. Labour requirements and administrative capacity appear to be 

unimportant, while information sources and the frequency of contact with these sources have 

a varied, but largely negative effect on the probability of adoption. These findings raise a 

number of questions about the future of organic production in Mexico and the avocado zone, 

not least how to overcome credit and information constraints, but more importantly whether 

aiming for the organic market is a viable production strategy for small-scale producers. 
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1. Introduction 
A growing number of small-scale producers in less developed countries have been converting 

to organic agriculture and entering the global organic market.  While spontaneous adoption 

has occurred, much of it can be attributed to the promotional efforts of environmental NGOs, 

church groups, government bodies and development agencies.  This support is largely in 

response to the growth observed in the international organic food market following increased 

demand in Western countries. It is also seen as an opportunity to obtain premium prices for 

produce.  Furthermore, organic production is commonly considered the epitome of 

sustainable agriculture, and increasingly the movement, is turning its focus to the inequalities 

generated through conventional production.  

 Recently, many studies have appeared in the literature investigating a variety of socio-

economic aspects of organic agriculture. However, research on the motivation behind the 

adoption decision and the barriers to entry, is limited outside the grey literature, although a 

small number of studies do exist, largely focused on Europe and North America. These 

studies largely focus on the importance of input and output prices (e.g. Pietola and Lansink, 

2001); differences in gross margins and the size of transaction costs in seeking out new 

markets and information (e.g. Musshoff and Odening, 2005); the characteristics of the farmer, 

such as education, household size and gender (e.g. Burton et al., 1999, Egri 1999); and, 

increasingly on the role of information sources (e.g. Rigby, et al. 2001; Padel, 2001; Lohr and 

Salomonsson, 2000; Duram, 1999). 

 The literature on the adoption of sustainable agriculture and conservations methods in 

general presents similar results, however, lack of profitability and credit constraints are also 

cited as significant barriers (Cary and Wilkinson, 1997).  In the context of developing 

countries, case study evidence does suggest that credit is an important constraint to 

conversion (for example, IFAD, 2005, 2003). Nevertheless, organic production has 

developed rapidly in some areas in spite of limited formal credit sources. 

 Also absent from the organics literature is any exploration of adoption over time and 

how the waiting times of farmers to adopt organic production differ.  One notable exception 

is Burton et al. (2003).  Using a Weibull form of a duration model and allowing a piecewise 

constant specification, they calculate the hazard ratio for different characteristics of British 

horticultural producers and their impact on the likelihood of adoption.  The duration approach 

has also been used in a small number of similar agricultural technology adoption studies, for 

example, Caviglia and Kahn (2001) and de Sousa Filho et al. (1999) investigating the 

diffusion of sustainable agriculture technologies in Brazil; Carletto et al. (1999) exploring the 
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diffusion of smallholder non-traditional agro-exports in Guatemala; and more recently, Dadi 

et al. (2004) on the analysis of technology adoption in Ethiopian agriculture. This approach 

has many advantages over the more common probit/logit methods as it relaxes the 

assumption of homogeneity within groups; the time to adoption (or the end of a particular 

state) can be captured, as can the effects of factors that change with time.  This is extremely 

significant as technology adoption is a dynamic process that occurs gradually over what may 

be extended periods of time. 

We now present the case of small-scale (<15ha) avocado production in Michoacán, 

Mexico.  Our main interest lies in assessing the time-to-organic adoption among a sample of 

representative avocado producers from four main survey sites in Michoacán.  Using a rich, 

165-observation sample of organic and conventional producers, we investigate how a number 

of demographic and associated production characteristics influence the waiting time of 

farmers before making the decision to convert.  In section two we present background to 

organic production in Mexico and the organic avocado industry in Michoacán.  In section 

three we describe the data and in section four we introduce the econometric procedures for 

processing the data.  The results of the econometric investigation are presented in section five 

and conclusions and extensions are presented in section six.  

 

2. Organic Production in Mexico 

Individual coffee growers and finca owners were the first to convert to organic production 

during the early 1980s.  These were shortly followed by a number of large producers’ 

associations of small-scale, indigenous coffee growers from Oaxaca and Chiapas, central and 

southern Mexico.  The motives behind conversion were many. However, the unstable and 

falling global coffee prices were a key driver, as was the Catholic Church.  The organic sector 

has since seen dramatic growth and Mexico has moved into first place globally in terms of 

the number of organic producers, with over 80 000, farming over 200 000 ha of land (Willer 

and Yussefi, 2007).  Of these latter units, an estimated 98.6 percent are small-scale, farming 

about 84.1 percent of this land.  Nevertheless, organic production remains the smallest sector 

in Mexico's agricultural industry constituting about 0.2 percent of total agricultural land and 

representing about 2 percent of producers (Gómez Cruz et al., 2002).  Despite this small 

scale, organic production was valued at about US$ 280 million in 2002, or 8.5 percent of total 

agricultural income, 68.8 percent of which came from small-scale producers (Gómez Tovar 

and Gómez Cruz, 2004).  
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As with other less developed countries, organic production in Mexico is principally 

for export.  Although estimates vary, anything between 80 to 85 percent (Gómez Cruz et al., 

2002) and 98 percent (OTA, 2004) of total organic produce leaves the country with the key 

markets being the USA and Europe.  According to Gómez Cruz et al. (2002), the remaining 

15 to 20 percent is sold on the conventional market or through the limited internal organic 

market.  Organic production in Mexico is, nevertheless, expected to grow, driven by further 

export and increased demand from overseas markets (Leonard, 2005).   

Organic avocados 

In 2004 there were approximately 100 certified organic avocado producers ranging in 

scale from 1ha to 200ha.  Of these, about 50 were members of an organic avocado producers' 

association, PRAGOR (Organic Avocado Producers).  PRAGOR’s roles include marketing 

fruit, provision of technical advice and bulk purchase of inputs.  The remaining producers 

work individually, selling their fruit the best they can.  Some small-scale producers are 

organised into groups to reduce the cost of certification, however, these groups are generally 

small, ranging from about five to ten members and are not concerned with the marketing of 

fruit. 

According to Bioagricoop (the main certification body in the area), 10 887 tonnes of 

organic avocados were harvested from 1265 hectares during the 2003-2004 cycle, suggesting 

an average yield of 8.6 tonnes per hectare (compared to approximately 10 tonnes per hectare 

in conventional systems).  Information provided by Mexican Avocados (the second most 

important packer of organic avocados) suggests that only about 30 percent of this was 

actually sold on the organic market.  The remainder were sold on the conventional market as 

a consequence of quality control and supply being greater than demand.  

Organic avocados receive a premium price that fluctuates between 20 and 30 percent 

depending on the location of the market.  The US provides the highest premium and absorbs 

the highest share of organic avocado output, followed by Japan; however, these markets are 

the most demanding in terms of quality and size specifications.  The European market 

receives little organic fruit due to difficulties in shipping, the absence of organic post-harvest 

management and lower prices. 

Time-to-adoption 

In considering different approaches to modelling the time element in this study and 

the associated issue of censoring of the data, it is important to define the time-to-adoption.  

Two logical definitions present themselves:  The first definition can be thought of in terms of 

the time since the first producer gained organic certification, with a calendar year clock 
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having started at this point (i.e. 1993). This approach assumes that the appearance of certified 

organic agriculture in Michoacán would have created a different set of completive options for 

avocado producers in the region which would have affected the time-to-certification.  The 

maximum lifespan of an avocado producer would be 11 years and the minimum one year.  

The most interesting set of covariates might therefore be those observed during the first year 

of appearance of the individual producer in the dataset.  

In the second case, time can be interpreted as the period of time that an individual has 

been producing avocados.  Each individual therefore has his/her own individual calendar 

clock, left censoring is avoided and the situation is considerably simplified.  This approach 

takes into account the individual time-to-adoption, and although it has only been during the 

last 11 years that producers have been converting, they have had the potential to do so before.  

We proceed with this interpretation and use covariates pertaining to observations in the last 

year that a producer is observed as ‘conventional’. 

 

3. Description of the data  

This study uses data gathered principally in four municipalities in Michoacán, Mexico 

between June and August 2004. Fieldwork was executed in two main stages.  First a 

qualitative stage of semi-structured interviews obtained general background information 

about the avocado industry, followed by a quantitative stage which involved an in depth 

household survey of the target population.  As no accurate list of avocado producers was 

available for the study area, sampling proceeded by identifying, where possible, individuals 

from the list of producers registered with the State Committee for Phytosanitation, enquiring 

of these individuals the names of other producers and occasionally enlisting the assistance of 

the village or ejidal1 authorities.  Information, however, was much easier to obtain about 

organic farmers from certification bodies (although it was deemed, at times, to be somewhat 

unreliable).  As the number of small-scale organic producers was relatively small, a census 

approach was taken and for every organic producer interviewed in a village, approximately 

three conventional producers were also interviewed.  To ensure coverage of all small-scale 

organic producers, survey work focused on four municipalities: Uruapan, Periban, Tancítaro 

and Nuevo Parangaricutiro.  Nevertheless, to obtain as many as possible of the organic 

producers, individual journeys were also made to other communities when necessary.  

Finally, 47 of the known 49 small-scale organic producers and 187 conventional producers 

were interviewed.  It is a subset of these responses that is used in this paper.  
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The questionnaire collected socio-demographic data about the producer and his/her 

family; production statistics for the most recent production cycle and, thus, encompassed the 

four main harvests (July 2003 - June 2004); farm assets; access to information and credit 

sources; other income sources; and attitudes and beliefs about organic production.  Not all of 

these data are included in this study.  Table 1 presents the summary statistics of variables 

used in econometric analysis, classified by adoption status. 

 

4. Methodology 

We now turn to a description of the methods employed to analyze these data.  We commence 

by considering the probability of observing a non-organic enterprise at time t.  Following 

standard developments (see, for example, Ibrahim, Chen and Sinha (2001) in Bayesian mode 

and see Lancaster (1992) for a sampling theory treatment) assume that time t, if observed, is a 

realization from a random process ƒ(T|θθθθ), where ƒ(⋅) denotes a probability density function 

for the random variable T and θθθθ ≡ (θθθθ1, θθθθ2, .., θθθθM)′ denotes an M-vector of parameters 

conditioning ƒ(⋅). Note that T is only observed for those individuals who leave the state (i.e. 

adopters); for censored individuals (i.e. non-adopters), T is at least t, but not equal to it.  It 

follows that the probability of observing the realization t is 

(1)    F(t) = � ƒ(s)ds = Prob(T ≤ t). 

As noted by Greene (1997, p. 986), we will usually be more interested in the probability that the spell 

is of length at least as great as t, which is given by the survival function 

(2)    S(t) = 1 – F(t) = Prob(T > t).  

Correspondingly, we are able to compute the instantaneous probability of failure, given that an 

individual has been a conventional producer at least as long as t.  This probability is referred to as the 

hazard rate and gives rise to the hazard function 

(3)    H(t) = lim ∆t→0 Prob(t < T ≤ t+∆ | T > t) ÷ ∆t  =  ƒ(T|θθθθ) ÷ S(t). 

The hazard function is important as an aid for interpreting the results of our econometric 

investigations because the effect on changes in survival are not available directly from the estimated 

covariate coefficients; manipulations of varying complexity are generally required and it is 

commonplace to define the responses in terms of their impacts on (3).   

 Primary interest lies in estimating and comparing the inferences derived from the parametric 

models that appear frequently in the empirical literature (see, Keifer (1988) and Lancaster (1992) for 

comparisons of the main parametric forms in the classical literature and see Ibrahim et al. (2001) for a 

review of recent Bayesian applications).  These forms are five and are the probability models derived 

by assuming that the failure times y ≡ (y1, y2, .., yN)′ are derived, respectively, from an Exponential 
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probability density function (pdf), ƒE(⋅⋅⋅⋅|λ); the Weibull pdf, ƒW(⋅⋅⋅⋅|α,λ); the extreme value pdf, 

ƒV(⋅⋅⋅⋅|α,λ); the log-normal pdf, ƒlN(⋅⋅⋅⋅|λ,τ); and the gamma pdf, ƒG(⋅⋅⋅⋅|α,λ).  Details of the densities 

are reported in the appendix. 

 To build regression-type models employing one of the five data-generating pdfs, we allow 

covariates to enter via the vector λλλλ ≡ (λ1, λ2, .., λN)′ and then parameterizing each of the individual-

specific elements of λλλλ.  Defining covariates through  X ≡ (x1′, x2′, …, xN′)′, x1 ≡ (x11, x12, …, x1K)′, x2 

≡ (x21, x22, …, x2K)′, .., and xN ≡ (xN1, xN2, …, xNK)′, we use ββββ ≡ (β1, β2, .., βK)′ to denote the vector of 

‘regression’ coefficients.  For example, to implement the Exponential regression model we 

parameterize λλλλ ≡ (exp(x1′ββββ), exp(x2′ββββ), .., exp(xN′ββββ))′; and across the remaining specifications 

(Weibull, Extreme-value, log-Normal and Gamma specifications)  we parameterize λλλλ ≡ (x1′ββββ, x2′ββββ, .., 

xN′ββββ)′.  To implement these models, we form a prior pdf over the parameters π(θθθθ); form the likelihood 

ƒ(y|θθθθ) for the observed duration data y ≡(y1, y2, .., yN)′; and study the posterior distribution for the 

parameters 

(4)    π(θθθθ|y)  ∝  ƒ(y|θθθθ) π(θθθθ),          

where ‘∝’ denotes ‘is proportional to.’  In the case of the exponential model, θθθθ ≡ (β1, β2, .., βK)′; in the 

case of the log-normal model θθθθ ≡ (τ, β1, β2, .., βK)′; and in the remaining cases θθθθ ≡ (α, β1, β2, .., βK)′, 

where τ and α function as scale parameters affecting the patterns of time dependence.  An important 

feature of duration studies is that some of the duration observations y ≡ (y1, y2, .., yN)′ will be 

censored.  Specifically, if t ≡ (t1, t2, .., tN)′ denote the survival times of the individual producers in 

question and T denotes the endpoint of the study, then we observe y ≡ (min(t1,T), min(t2,T),  .., 

min(tN,T))′.  To allow for censoring, we make use of the vector of binary indicators νννν ≡ (ν1, ν2, .., νN)′, 

where, for i = 1, 2, .., N, νi = 1 if ti ≤ T, otherwise νi = 0.  Accordingly, the likelihood corresponding to 

a set of observed durations is 

(5)    ƒ(y|θθθθ) ≡ ∏i ƒ(yi|θθθθ)νi S(yi|θθθθ)(1-νi).       

Details of the specific forms of ƒ(y|θθθθ) that emerge from the Exponential, Weibull, Extreme-

value and log-Normal specifications are presented in the appendix. Complexities encountered 

in the Gamma formulation make it easier to augment the model with latent data z ≡ (z1, z2, .., 

zN)′, where, for i = 1, 2, .., N, zi = yi if yi is a failure time, otherwise zi > yi.  In this instance 

we work with the complete-data likelihood 

(6)    ƒ(y|θθθθ,z) ≡ ∏i ƒ(yi|θθθθ,z)νi S(yi|θθθθ,z)(1-νi).  

Details of ƒ(y|θθθθ,z) for the Gamma assumption are presented in the appendix.  

 As each specification has an unknown integrating constant, we employ Markov Chain 

Monte Carlo (MCMC) methods. Ibrahim et al. suggest exploiting the log-concavity of 

posterior pdfs and employing the adaptive-rejection sampling algorithm of Gilks and Wild 
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(1992).  Alternatively, we find that simple, random-walk, Metropolis-Hastings algorithms 

work very well.  This approach has the advantage of permitting straightforward model 

comparison.  

 Detailed expressions of the five algorithms can be found in the appendix, each of them 

differing in terms of the likelihoods, but also by the number of unknowns in question and the 

corresponding numbers of draws required.  The algorithm for the Exponential model is the 

simplest.  It can be explained, with reference to the prior information over the regression 

coefficients, π(ββββ); the likelihood, ƒE(y|ββββ), which is defined in the appendix; and a proposal 

density for the coefficients in question that is conditioned by the current or ‘state’ value of 

their values which is the multivariate-Normal density, ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ).  In this expression δδδδ ≡ 

(δ1, δ2, .., δK)′ denotes a multi-variate draw of the same length as ββββ; and ΩΩΩΩ and ξ denote 

‘tuning parameters’ designed to adjust the covariance for δδδδ during the search for ββββ.  With 

these inputs at hand, the algorithm for simulating draws from the posterior derived from the 

Exponential model consists of iterating the following steps: 

A1: Exponential Algorithm: Simulate a draw from ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ2) and accept the draw 

with probability ℘ ≡ min{[ƒE(y|δδδδ) π(δδδδ)] ÷ [ƒE(y|ββββ) π(ββββ)],1}. 

Thus the algorithm for the exponential model is surprisingly simple.  A starting value is 

chosen for ββββ; the covariance terms ΩΩΩΩ and ξ are adjusted according to a convergence criterion; 

and a period of burn-in is executed before the {ββββ(g), s = 1, 2, .., G} obtained from the 

iterations can be considered draws from a stable target distribution.  In theory the choice of 

start vector for ββββ is immaterial because the algorithm should be iterated for G sufficiently 

large that inferences are independent of any start value; however, in practice, we set ββββ(0) = 0K.  

Second, we set ΩΩΩΩ = (X′X)-1 and permit ξ (>0) to adjust so that the ‘acceptance rate’ of draws 

for ββββ is ℘ = .25.  This choice is quite arbitrary; however, we find that this choice works well 

in all simulations. Finally, we set G = 100,000 and collect this sample following an initial 

‘burn-in’ of S = 100,000. 

 The second algorithm we employ pertains to the Weibull model.  Unlike the 

Exponential model, which consists of a single parametric ‘block,’ the Weibull model contains 

an additional parameter, namely α.  The Exponential model is nested as a special case of the 

Weibull model in which α = 1.  Consequently, some interest centres on assessing the location 

of the posterior relative to the value one.  With an additional parametric block in place, the 
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Weibull algorithm consists of an additional step and can be summarized, relegating details to 

the appendix, as follows: 

A2: Weibull Algorithm: Simulate a draw from ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ2) and accept the draw with 

probability ℘ββββ ≡ min{[ƒW(y|α,δδδδ) π(δδδδ)] ÷ [ƒW(y|α,ββββ) π(ββββ)],1}.  Simulate a draw from 

ƒtN(γ|α,η2,0) and accept the draw with probability ℘α ≡ min{[ƒW(y|γ,ββββ) π(γ) ÷ 

ƒtN(γ|α,η2,0)] ÷ [ƒW(y|α,ββββ) π(ββββ) ÷ ƒtN(α|γ,η2,0)],1}. 

As with the Exponential distribution, we employ ββββ(0) = 0K; permit ξ to vary in order to target 

℘ββββ = .25; and set S = 100,000 for both the ‘burn-in’ and the ‘sample’ phases of the iterations.  

In addition we permit η to vary in order to target ℘α = .25.   

 The algorithms for the Extreme-value and log-Normal models are essentially the same.  

For the Extreme-value model we use: 

 A3: Extreme-Value Algorithm: Simulate a draw from ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ2) and accept the 

draw with probability ℘ββββ ≡ min{[ƒV(y|α,δδδδ) π(δδδδ)] ÷ [ƒV(y|α,ββββ) π(ββββ)],1}.  Simulate a 

draw from ƒtN(γ|α,η2,0) and accept the draw with probability ℘α ≡ min{[ƒV(y|γ,ββββ) π(γ) 

÷ ƒtN(γ|α,η2,0)] ÷ [ƒV(y|α,ββββ) π(ββββ) ÷ ƒtN(α|γ,η2,0)],1}. 

And for the log-Normal model we employ: 

A4: Log-Normal Algorithm: Simulate a draw from ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ2) and accept the draw 

with probability ℘ββββ ≡ min{[ƒlN(y|τ,δδδδ) π(δδδδ)] ÷ [ƒlN(y|τ,ββββ) π(ββββ)],1}.  Simulate a draw 

from ƒtN(ρ|τ,η2,0) and accept the draw with probability ℘τ ≡ min{[ƒlN(y|ρ,ββββ) π(ρ) ÷ 

ƒtN(ρ|τ,η2,0)] ÷ [ƒlN(y|τ,ββββ) π(ββββ) ÷ ƒtN(τ|ρ,η2,0)],1}. 

Finally, the algorithm for the Gamma model is only slightly more complicated due to the 

presence of an additional step to draw the latent data.  Recalling that z ≡ (z1, z2, .., zN)′ 

denotes both observed and latent data, such that, zi = yi if νi = 1 and zi > yi if νi = 0, the 

algorithm consists of the three steps: 

 A5: Gamma Algorithm: Simulate a draw from ƒmN(δδδδ|ββββ,ΩΩΩΩ×ξ2) and accept the draw with 

probability ℘ββββ ≡ min{[ƒG(y|α,δδδδ) π(δδδδ)] ÷ [ƒG(y|α,ββββ) π(ββββ)],1}.  Simulate a draw from 

ƒtN(γ|α,η2,0) and accept the draw with probability ℘α ≡ min{[ƒG(y|γ,ββββ) π(γ) ÷ 

ƒtN(γ|α,η2,0)] ÷ [ƒG(y|α,ββββ) π(ββββ) ÷ ƒtN(α|γ,η2,0)],1}.  For each i ∈ c, simulate a draw 
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from ƒtG(zi|α,ββββ,yi) and accept the draw with probability ℘zi ≡ 1. 

The reader will note that we accept the draws for the last step with probability one.  This case 

differs from the other situations in which we adjust a covariance term to target a particular 

acceptance rate.  Indeed, the fully conditional distribution for the censored observations of 

the Gamma model are available in closed form and are known to be truncated-Gamma in 

form.  

Prior Information  

In considering prior information, non-data information about the locations and scales of the 

distributions for the regression coefficients is decidedly weak.  There are two reasons.  First, 

we are unable to locate previous studies of the organic avocado industry in which duration 

models have been employed; second, prior elicitation of regression coefficients in economic 

duration studies is complicated by the facts that, except for one case (the Exponential model) 

their relationship to readily intuitive notions such as the ‘hazard rate’ is indirect.  For this 

reason the prior that we use with respect to the regression coefficients is weakly informative 

but proper.  In particular, inferences are made with respect to the assumption ƒmN(ββββ|ββββo,Co), ββββo 

= 0K and Co = IK × 100.  Experiments with this formulation suggest that it is sufficiently 

weak to allow the data to dominate posterior inference but, by virtue of the fact that it is 

proper, is sufficient to enable formal model comparisons.  In the context of the exponential 

model this prior is all that is required in order to implement the estimation algorithm;  in the 

remaining cases we also require priors on the ‘scale’ parameters α and τ.  We employ the 

gamma priors ƒG(α|αo,κo),  αo = 1, κo = 1; and ƒG(τ|αo,λo),  αo = 1, λo = 1.  

Model Comparison 

In cases where alternative specifications generate distinctive inferences it is useful to have 

available a method for discriminating between them.  A simple modification to the structure 

of the MCMC algorithm makes it possible to obtain accurate estimates of model marginal 

likelihoods, which are the essential inputs in Bayesian model comparison (Chib, 1995; Chib 

and Jeliazkov, 2001).  In this section we briefly outline the modifications that are necessary 

to perform model selection.   

 Given an arbitrary model specification, m, the essential observation stems from 

rewriting the basic marginal likelihood identity  

(7)  m(y|m)   =   ƒ(y|θθθθ*,m) × π(θθθθ*) ÷ π(θθθθ*|y,m), 

and placing it on the computationally convenient logarithmic scale,  

(8)  log m(y|m)   =   log ƒ(y|θθθθ*,m) + log π(θθθθ*) - log π(θθθθ*|y,m). 
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Here θθθθ* denotes an arbitrary point in the parameter space.  Because this identity holds at any 

point in that space the choice of θθθθ* is indeed arbitrary although, in practice, we usually pick a 

high-density value, such as the posterior mean or the maximum likelihood point.  It follows 

naturally that estimating the marginal likelihood reduces to a problem of estimating the three 

quantities on the right side of (8).   

 The case where the parameters θθθθ consist of a single block as, for example, in the 

exponential model, is given by Chib and Jeliazkov (pp. 271-272).  The first quantity on the 

right-hand side of (8) is available directly.  Similarly, the second quantity is available once 

the prior is completely specified.  The third quantity, the posterior pdf evaluated at the point 

θθθθ*, is estimated by first decomposing the quantity of interest into the ratio of two expectations 

(Chib and Jeliazkov, p. 271).  The expectation in the numerator of this ratio is obtained as 

part of the usual Gibbs run.  To obtain an estimate of the expectation in the denominator we 

hold constant θθθθ* and simulate values of θθθθ conditional on this fixed value θθθθ*.  At the end of 

this reduced run an estimate of this third quantity is available and model comparison is 

possible.  Estimates of the posterior quantities corresponding to the remaining models are 

available from extending the algorithm in similar fashion.  Details are presented in Chib and 

Jeliazkov (pp. 272-273).  Finally, it is possible to place a (numerical) standard error on the 

calculation so obtained using results for heteroscedastic covariance estimation (Newey and 

West, 1987).   

 

5. Empirical Results 

The results from the five different specifications of the duration model estimation are 

presented in table 2.  The first row reports the scale parameter (absent for the exponential  

model) and illustrates a positive time dependence for all models.  For each covariate the 

posterior mean is reported and, in parenthesis, the 95 percent highest posterior density 

interval. Intervals that do not cross zero indicate a significant covariate.  Model diagnostics 

can be found at the bottom of the table. 

 Comparison of the five formulations of the duration model and examination of the log 

marginal likelihood clearly indicates the Weibull model as the preferred specification, 

followed by the Extreme Value model.  The low numerical standard error for the Weibull 

model also suggests a high degree of reliability in this specification.  The log normal 

specification appears to be the poorest formulation for modelling this data.  However, if we 

compare the logarithm of the predicted and observed duration times of the Weibull model 
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(see figure 1) we find that it generally overestimates the duration, suggesting a poor fit to the 

data.  The implication of this for the hazard rate can be seen in figure 2, where there is a 

particularly poor fit at high and low values of the hazard, the reason for which is unclear.  

Nevertheless, in view of the present case study, the following discussion will focus on the 

findings from the Weibull model alone. 

 As table 2 illustrates, 20 of the covariates in the Weibull model have a significant 

effect on the time-to-organic production, seven of which have a positive impact, thereby 

increasing the conditional probability of conversion.  These include talking with other 

organic producers about the management of avocado orchards; having other income sources 

including producing another crop, having other off-farm employment and having received 

credit at some point in the past.  Membership of a producers’ association, having a higher 

level of education and having export experience of markets other than the US are also 

positive influences. 

 Other factors which might have been expected to have a positive influence, such as 

different sources of orchard management information (from agronomists, other producers, the 

State Phytosanitary Committee and publications) and the frequency of contact with these 

information sources actually have a negative impact on the hazard, reducing the probability 

of conversion.  Other covariates that also reduce the probability of conversion include 

location variables for Uruapan, Periban, Tancítaro and ‘other locations’, being an owner of 

the orchard and the size (in hectares) of the orchard, receiving remittances and age.  A 

number of covariates, including being located in Nuevo Parangaricutiro, the total farm size, 

having heard of organic and knowing organic farmers, exporting to the US, the labour 

requirement for an orchard and keeping a management plan do not have a significant effect 

on the probability of conversion. 

 It is clear from these results that producers who enter the organic market are distinct 

from other producers, but that they do not confirm all the findings from earlier studies, a 

particular difference being the role of a diversity of information sources.  Throughout the 

avocado zone, access to reliable sources of information about organic production of avocados 

is limited.  Only a small number of agronomists are trained in organic production and much 

has been discovered about organic methods through informal experimentation by farmers 

themselves.  In addition, the local university and INIFAP (a government sponsored research 

body) did not provide training or carry out research into organic avocado production at the 

time.  In the absence of widespread information about organic production, it is not entirely 

surprising that the information sources currently available have a negative impact on the 
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probability of adoption. Farmers are unable to gather sufficient information to reduce the 

uncertainty surrounding the new techniques and consequently do not wish to risk the 

conversion process.  However, figure 3 plots the effect of one extra unit of information from 

‘other’ sources on the hazard rate and suggests that this change would positively influence the 

conversion rate.  Nevertheless, some producers are able to gather sufficient information, 

perhaps by talking to other organic producers; they also appear more dependent on diverse 

income sources, such as off-farm employment and other crops. This suggests that they have 

an increased ability to invest in the face of risk and uncertainty, from both financial and 

production sources.  The fact that they have received credit suggests that their ability to cope 

with risk through a strong asset base, one allowing them to comply with borrowing 

requirements, is important.  For organic producers coping with risk will be especially 

important during the initial stages of conversion to organic methods.  Producers not only have 

to learn new management techniques (which may or may not function successfully), but they 

also face potentially declining yields and are unable to sell their fruit under the organic label.  

For an individual relying on avocado production as a sole income for his/her family, such 

risks may be too great to bear.  

 The paucity of information and the financial risks are not the only uncertainties facing 

potential organic producers.  The producer also faces high transaction costs in the 

identification of new buyers and markets.  Many organic producers have overcome this 

problem through the membership of a producers’ association, a factor which has a positive 

impact on the probability of conversion.  Such associations remove the market identification 

transaction costs by taking responsibility for the identification of buyers and, equally as 

importantly, securing the volume of fruit required by the purchaser.  Furthermore, in the 

absence of formal contracts, selling through a producers’ association also removes the effort 

necessary for building individual trust relationships between buyer and seller.  Evidence of 

the role of producers’ associations is further supported by other examples from organic 

production in Mexico, such as organic vegetables (Marsh and Runsten, 2002) and coffee 

(Barton Bray et al., 2002). 

The fact that non-household labour requirements have no significant impact on the 

probability of adoption is interesting.  Organic production, like other conservation 

technologies, is commonly assumed more labour intensive, for example, Barton Bray et al. 

(2002) find for organic coffee growers in Chiapas, that more labour is demanded.  However, 

this is largely met by household sources and offsets the need to search for off-farm 

employment.  The case may be similar for avocado production, whereby additional labour 
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requirements are met by family members, rather than other sources, especially given the 

relatively expensive nature of non-family labour (approximately US$10.7 per day). 

The other results are generally as expected with younger, more educated individuals 

being the most likely to adopt first.  Older farmers are often shown less likely to adopt new 

technologies and education is routinely shown to be a key variable in the adoption of new 

technologies (Feder et al., 1985).  Furthermore, as organic production necessitates greater 

administrative transparency, higher levels of literacy are expected to be beneficial.  This is 

also consistent with the literature on the adoption of organic management in developed 

countries (e.g. Burton et al., 2003; Padel, 2001). 

There is some contention, however in the organics literature about the impact of farm 

size on adoption.   Padel (2001) and Burton et al. (1999) state that organic holdings tend to be 

smaller than their conventional counterparts, but evidence from Mexican organic coffee 

growers shows that within the category of small-scale, it is the larger producers who adopt 

(Barton Bray et al., 2002).  This study however, suggests that smaller-scale producers are 

more likely to adopt before producers with a larger avocado area decide to adopt.  This may 

be significant for future strategies in the avocado zone given the very large number of small-

scale producers. 

A present strategy within the avocado zone is to encourage producers to meet the 

phytosanitary and quality conditions necessary for the entry into the US market.  This 

provides an explanation of why exporting to the US market is not significant to the adoption 

of organic production.  However, exporting to other countries does have a positive influence, 

suggesting the experience gained of alternative markets is essential and illustrates how 

organic farmers are required to search more widely for markets.  Interestingly though, 

physical location of the orchard has a negative effect on the hazard.  It is unlikely that 

location bears much influence on market penetrations as moving fruit from orchards is often 

the responsibility of the packer, rather than the producer.  The negative affect of location 

might be more related to flows of information and lack of knowledge about organic 

production throughout the avocado zone. 

 

6. Conclusions 

This study explores the factors affecting the probability of adoption of organic production by 

small-scale avocado producers in Michoacán, Mexico.  The duration approach has been 

shown useful to the exercise; however, it is constrained by the assumption that, as some point 
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in time, all producers will adopt organic production.  This assumption is clearly unlikely; 

technology adoption is rarely a complete process.  We therefore propose a straight-forward 

extension in which we incorporate an additional equation representing a hurdle that nets out 

all of those producers who would never become organic.  

 Duration analysis can also capture the effects of time-varying covariates; however, we 

are unaware of any examples in the literature using a Bayesian approach.  This again limits 

the present study, but the future addition of a piecewise continuous function may facilitate 

their inclusion.  This would allow a better understanding of how the developing organic 

market may be influencing the adoption decision of avocado producers. 

 Nevertheless, the results from the present study have been enlightening and raise a 

number of questions about the future of organic farming in the avocado zone, but also in 

Mexico in general.  First, how to overcome the credit constraints facing many small-scale 

producers?  Second, how best to fill the information void and where to target the information 

flow?  Third, how can organisation of small-scale growers be encouraged to facilitate entry 

into the organic market?  Fourth, and perhaps most importantly, should organic production be 

promoted at all to small-scale producers?   

 Organic avocado production is still considered in its incipient stages and faces a 

number of challenges if wide-spread adoption is to occur. Some producers would require a 

great deal of assistance in reaching the organic market, but greater benefit might be achieved 

through the promotion of improved management techniques and enlightened agrochemical 

use.  Any program aimed at helping small-scale avocado producers should focus on basic 

agronomy and pest control, whether organic or not.   

 This is not to say that organic production should not be promoted at all.  The 

spontaneous adoption and growth in the sector without external support should be 

encouraged, as such support could greatly enhance the welfare of those individuals closer to 

the ‘threshold of conversion’.  However, a greater appreciation of who benefits from the 

adoption of organic production is needed, as is a better understanding of what organic 

production can achieve in terms of rural development and improved incomes for small-scale 

producers. 

Notes 

1. The ejido refers to a system of land tenure governed by Article 27 of the 1917 

Constitution. This Article led to redistribution of land to the peasantry, the emphasis of which 

being subsistence and social justice. The ejidal authorities are elected representatives who 
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take decisions regarding ejidal matters.  

 

Appendix 

Pdfs 

The nine pdfs that we reference are: 

1) the exponential pdf, ƒE(v|λ) ≡ λexp{-λv}, 0 < v < +∞, 0 < λ < +∞;  

2) the Weibull pdf, ƒW(v|α,λ) ≡ αvα-1exp{λ-exp{λ}vα-1}, 0 < v < +∞, 0 < α < +∞, 0 < λ < 

+∞;   

3) the extreme value pdf, ƒV(v|α,λ) ≡ αexp{αv}exp{λ-exp{λ+αv}, 0 < v < +∞, 0 < α < +∞, 

0 < λ < +∞;   

4) the log-normal pdf, ƒlN(v|λ,τ) ≡ 2π-.5 yi
-1 τ.5 exp{-.5τ(log(v)-µ)2}, 0 < v < +∞, 0 < τ < +∞, 

0 < λ < +∞;   

5) the gamma pdf, ƒG(v|α,λ) ≡ Γ(α)-1 vα-1 exp{αλ-vexp{λ}}, 0 < v < +∞, 0 < α < +∞, 0 < λ 

< +∞;   

6) the truncated-gamma pdf, ƒtG(v|α,λ,h) ≡ Γ(α)-1 (1-IG(α,h×exp(λ)))-1 vα-1 exp{αλ-v 

exp{λ}}, h < v < +∞, 0 < α < +∞, 0 < λ < +∞, where IG(α,h×exp(λ)) ≡ Γ(α)-1 � (from 0 

to h×exp(λ)) uα-1 exp{-u} du denotes the incomplete Gamma function;  

7) the univariate-Normal pdf, ƒN(v|µ, σ) ≡ (2π)-½ σ-1 exp{ -½ σ-2 (v-µ)′ (v-µ) }, -∞ < v < +∞, 

-∞ < µ < +∞, 0 < σ < +∞;   

8) the truncated-Normal pdf, ƒtN(v|µ, σ, h) ≡ (2π)-½ σ-1 exp{ -½ σ-2 (v-µ)′ (v-µ) }[1-Φ((h-

µ)/σ)]-1, h < v < +∞, -∞ < µ < +∞, 0 < σ < +∞, where Φ(⋅) denotes the cdf corresponding 

to the standard normal pdf;  and  

9) the multivariate-Normal pdf ƒmN(v|µµµµ, ΣΣΣΣ) ≡ (2π)-m/2 |����|-1/2 exp{ -½ (v-µµµµ)′ ����-1 (v-µµµµ) }, v ≡≡≡≡ 

(v1, v2, .., vm)′, µµµµ ≡≡≡≡ (µ1, µ2, .., µm)′,  -∞ < vi < +∞, -∞ < µi < +∞, i = 1, 2, m where ΣΣΣΣ is an 

m×m positive definite symmetric (pds) matrix.   

 

 

 

Likelihoods: 

The observed-data likelihoods corresponding to text equation (5) are for the Exponential, 

Weibull, Extreme-value and log-Normal regression models are: 

Exponential: ƒE(y|ββββ) ∝ exp{Σiνixi′ββββ} exp{-Σiyiexp{xi′ββββ}};  
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Weibull: ƒW(y|α,ββββ) ∝ αd exp{Σi(νixi′ββββ + νi(α-1)log(yi) - yi
α exp{xi′ββββ})}; 

Extreme-value: ƒV(y|α,ββββ) ∝ αd exp{Σiνi(xi′ββββ + αyi) - exp{xi′ββββ + αyi}}; 

Log-Normal ƒlN(y|τ,ββββ) ∝ τd/2 exp{-.5τΣiνi(log(yi) - µ)2} × ∏i yi
-νi (1-Φ(τ.5 (log(yi)-xi′ββββ)))1-νi;  

 

The complete-data likelihood corresponding to the Gamma model is ƒG(y|α,ββββ,z) ∝ Γ(α)-d 

exp{Σiνiαxi′ββββ + Σi((α-1)log(zi) – zi exp{xi′ββββ})}.    

 

Posterior forms 

It follows that, given the prior pdfs ƒmN(ββββ|ββββo,Co), ββββo = 0K and Co = IK × 100; ƒG(α|αo,κo),  αo 

= 1, κo = 1; and ƒG(τ|αo,λo),  αo = 1, λo = 1; the posterior forms corresponding to algorithms 

A1, A2, A3, A4 and A5 are, respectively,  

Exponential: π(θθθθ) ∝ ƒE(y|ββββ) × ƒmN(ββββ|ββββo,Co);   

Weibull: π(θθθθ) ∝ ƒW(y|α,ββββ) × ƒmN(ββββ|ββββo,Co) × ƒG(α|αo,κo);   

Extreme-value: π(θθθθ) ∝ ƒV(y|α,ββββ) × ƒmN(ββββ|ββββo,Co) × ƒG(α|αo,κo);   

Log-Normal: π(θθθθ) ∝ ƒlN(y|τ,ββββ) × ƒmN(ββββ|ββββo,Co) × ƒG(τ|αo,λo);  and  

Gamma: π(θθθθ) ∝ ƒG(y|α,ββββ,z) × ƒmN(ββββ|ββββo,Co) × ƒG(α|αo,κo).   

 

Hazard functions 

The hazard functions corresponding to each model are, respectively:  

Exponential: HE(yi|θθθθ) ≡ exp(xi′ββββ);  

Weibull: HW(yi|θθθθ) ≡ α yi
α-1 exp(exp(xi′ββββ) - exp(xi′ββββ) yα);   

Extreme-Value: HV(yi|θθθθ) ≡ α exp(αyi) exp(xi′ββββ);   

Log-Normal: HlN(yi|θθθθ) ≡ (2π)-1/2 yi
-1 τ1/2 exp{-.5τ (log(yi)-xi′ββββ)2};  and 

Gamma: HG(yi|θθθθ) ≡ (2π)-1/2 yi
-1 τ1/2 exp{-.5τ (log(yi)-xi′ββββ)2}.   

 

 

 

 

Comparative statics 

It follows that, across each of the five models, the comparative-static responses of changes in 

the hazard rate with respect to a change in a covariate, symbolically δij ≡ ∂H(yi|θθθθ)/∂xij,  are, 

respectively,  
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Exponential: δE
ij ≡ ββββj exp(xi′ββββ);   

Weibull: δW
ij ≡ ββββj exp(xi′ββββ) αyi

α-1;   

Extreme-Value: δV
ij ≡ ββββj exp(xi′ββββ) α exp(αyi);   

Log-Normal: δlN
ij ≡ [[ƒlN(y|τ,ββββ) + SlN(y|τ,ββββ)] ÷ SlN(y|τ,ββββ)2] × ƒlN(y|τ,ββββ)  × τ × (xi′ββββ - log(yi)) 

βj;   

Gamma: δG
ij ≡ [[ƒG(y|τ,ββββ) + SG(y|τ,ββββ)] ÷ SG(y|τ,ββββ)2] × ƒG(y|τ,ββββ)  × Γ(α)-1 × yi

α-1 × exp(αxi′ββββ - 

yi exp(xi′ββββ)) × (αβj - yi exp(xi′ββββ) βj ). 
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Table 1: Summary statistics 

 Conventional Organic 
Description mean std mean std 

Time to organic certification (years) 38.09 15.99 26.27 15.23 
Location 1 0.37 0.48 0.32 0.47 
Location 2 0.30 0.46 0.16 0.37 
Location 3 0.20 0.40 0.24 0.43 
Location 4 0.11 0.31 0.14 0.35 
Location 5 0.02 0.12 0.14 0.35 
Ownership 0.92 0.27 0.86 0.35 

Total farm size 7.43 10.44 8.56 7.09 
Avocado ha 4.35 2.90 6.35 3.79 

Heard of organic 0.83 0.38 1.00 0.00 
Know organic 0.58 0.50 0.92 0.28 

Talk with organic 0.32 0.47 0.84 0.37 
Labour 0.40 0.88 0.84 1.17 

Plan 0.40 0.49 0.59 0.50 
Other crop 0.29 0.46 0.49 0.51 

Animals 0.19 0.39 0.22 0.42 
Other job 0.26 0.44 0.46 0.51 

Remittances 0.12 0.32 0.00 0.00 
Received credit 0.25 0.43 0.38 0.49 

Information source: None 0.14 0.35 0.11 0.31 
Agronomist 0.63 0.49 0.43 0.50 

Associations 0.02 0.15 0.08 0.28 
University 0.00 0.00 0.03 0.16 

Sanidad Vegetal 0.05 0.23 0.03 0.16 
Other producers 0.11 0.31 0.14 0.35 

Publications 0.02 0.15 0.11 0.31 
Membership 0.20 0.40 0.70 0.46 

Age 54.35 14.22 51.46 12.86 
Education 1.19 1.06 1.89 1.45 

Family education 2.13 1.17 2.65 1.16 
Export: US 0.19 0.43 0.41 0.55 

Export: other 0.20 0.46 0.57 0.55 
Frequency of info access: Credit 0.41 1.02 0.68 1.25 

Management 1.95 1.06 1.84 0.96 
Price 1.77 1.31 1.86 1.23 

Number of censored observations 128.00 0.00 0.00 0.00 
Number of failure times 37.00 0.00 0.00 0.00 
Number of observations 165.00 0.00 0.00 0.00 
Condition number of design matrix 1437.56 0.00 0.00 0.00 

Condition number of normalized design matrix 60.17 0.00 0.00 0.00 

 

 



Parameter Definition
Scale 2.38 (1.99 2.84) 0.11 (0.09 0.13) 2.28 (1.10 4.04) 3.88 (2.48 5.68)

Location 1 -2.71 (-5.07 -0.33) -3.91 (-6.16 -1.8) -2.24 (-4.45 -0.46) 2.44 (0.51 4.25) -2.34 (-3.99 -0.78)

Location 2 -3.96 (-6.12 -1.59) -5.86 (-8.26 -3.66) -4.16 (-6.31 -2.12) 3.23 (1.26 5.12) -3.22 (-4.64 -1.70)

Location 3 -2.06 (-4.15 -0.18) -3.60 (-6.45 -1.75) -2.13 (-4.37 -0.26) 1.92 (0.16 3.75) -1.98 (-3.31 -0.52)

Location 4 -0.15 (-2.79 1.93) -0.66 (-3.19 1.96) 0.16 (-2.19 2.32) 0.78 (-1.09 2.60) -0.50 (-2.05 1.10)

Location 5 -2.17 (-4.88 0.38) -3.31 (-5.36 -0.46) -1.97 (-4.01 0.09) 2.37 (0.35 4.36) -2.34 (-3.66 -0.77)

Ownership -1.98 (-3.43 -0.77) -2.24 (-3.21 -1.21) -2.27 (-3.43 -1.04) 1.45 (0.23 2.71) -1.10 (-1.84 -0.54)

Total farm size -1.50 (-4.32 1.54) -1.59 (-4.34 1.77) -2.57 (-6.92 0.77) -0.08 (-2.93 2.81) -0.74 (-2.22 0.57)

Avocado ha -2.80 (-5.64 -0.57) -3.83 (-7.06 -1.26) -4.17 (-6.64 -1.7) 3.17 (1.14 5.48) -2.83 (-3.82 -1.93)

Heard of organic 1.59 (-0.68 3.18) 1.08 (-0.85 3.24) 2.53 (0.47 4.54) -0.65 (-2.3 1.17) 1.40 (0.43 1.98)

Know organic 0.07 (-1.76 1.73) -0.05 (-1.56 1.49) -0.02 (-1.23 1.03) -0.37 (-1.54 0.61) 0.09 (-0.56 0.70)

Talk with organic 1.63 (0.44 2.63) 2.16 (0.90 3.20) 2.03 (0.91 3.22) -1.06 (-1.72 -0.42) 0.98 (0.59 1.39)

Labour 0.49 (-0.94 1.91) 0.76 (-1.00 2.46) 1.14 (-0.51 2.87) -0.64 (-1.89 0.71) 1.07 (0.39 1.73)

Plan -0.31 (-1.18 0.90) -0.30 (-1.20 0.54) -0.11 (-1.02 0.78) -0.03 (-0.67 0.59) -0.14 (-0.51 0.28)

Other crop 0.63 (-0.24 1.64) 0.94 (0.15 1.86) 1.32 (0.32 2.32) -0.14 (-0.75 0.41) 0.16 (-0.17 0.60)

Animals -0.19 (-1.54 0.87) -0.54 (-2.05 0.57) -0.37 (-1.83 0.92) 0.01 (-0.66 0.67) 0.00 (-0.54 0.52)

Other job 0.62 (0.02 1.24) 0.75 (0.04 1.52) 0.79 (0.10 1.47) -0.41 (-0.86 0.02) 0.33 (-0.09 0.66)

Remittances -4.62 (-7.40 -2.55) -4.69 (-7.16 -2.48) -5.03 (-8.53 -2.3) 2.85 (0.04 6.57) -1.98 (-2.74 -1.09)

Exponential
Model

HPDI (95%)
Weibull Extreme Value Log Normal Gamma

HPDI (95%)HPDI (95%) HPDI (95%) HPDI (95%)β ββ β β
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Received credit 1.26 (0.06 2.24) 1.50 (0.43 2.63) 1.65 (0.48 2.81) -0.73 (-1.51 -0.01) 0.89 (0.35 1.34)

Information source: None -1.25 (-3.44 0.79) -2.05 (-4.01 -0.19) -1.19 (-2.90 0.51) 0.40 (-1.30 2.33) 0.28 (-0.63 1.31)

Agronomist -1.95 (-3.25 -0.53) -2.84 (-4.13 -1.62) -2.71 (-3.95 -1.27) 1.17 (0.14 2.27) -1.27 (-1.92 -0.57)

Producers' Associations 0.43 (-1.45 2.26) 0.85 (-0.82 2.61) 0.81 (-1.38 2.74) -0.47 (-1.77 0.84) 0.15 (-0.68 1.26)

University 0.46 (-2.08 2.90) 0.91 (-1.68 3.39) -0.48 (-3.10 2.02) -0.30 (-2.08 1.55) 0.39 (-1.16 1.70)

Sanidad Vegetal -2.53 (-4.39 -0.34) -3.15 (-5.57 -0.91) -2.34 (-4.74 -0.46) 1.22 (-0.48 3.05) -1.54 (-2.55 -0.48)

Other producers -1.93 (-3.93 -0.40) -2.77 (-4.29 -1.15) -1.71 (-3.15 -0.07) 0.98 (-0.21 2.29) -0.87 (-1.84 -0.06)

Publications -2.31 (-3.84 -0.65) -3.43 (-5.22 -1.91) -2.88 (-4.44 -1.45) 1.56 (0.34 2.72) -1.61 (-2.33 -0.83)

Membership 2.46 (1.39 3.32) 3.02 (2.05 4.08) 3.26 (1.98 4.40) -1.49 (-2.17 -0.89) 1.90 (1.56 2.27)

Age -3.20 (-5.51 -1.07) -6.54 (-9.09 -3.84) -7.04 (-9.71 -4.24) 2.07 (0.37 3.74) -2.34 (-3.17 -1.03)

Education 0.89 (-0.73 2.45) 1.61 (0.02 2.97) 2.35 (1.13 3.89) -0.84 (-1.87 0.21) 1.06 (0.44 1.70)

Family education -0.21 (-1.95 1.59) -0.52 (-2.23 1.30) -0.46 (-2.19 1.40) -0.13 (-1.29 0.78) -0.14 (-0.97 0.55)

Export: US -0.03 (-1.38 1.13) -0.50 (-1.75 0.96) 0.09 (-1.50 1.40) 0.23 (-0.80 1.25) -0.40 (-1.00 0.38)

Export: other 1.88 (0.66 3.30) 2.43 (1.23 3.58) 2.11 (0.59 3.67) -1.89 (-3.02 -0.75) 1.49 (0.92 2.11)

Frequency of info access: Credit -0.29 (-1.73 1.27) -0.93 (-2.52 0.92) -1.32 (-2.71 0.00) -0.12 (-1.21 1.06) -0.54 (-1.41 0.32)

Management -3.82 (-5.85 -2.08) -4.98 (-6.86 -3.15) -4.16 (-6.43 -2.30) 2.56 (0.67 4.69) -1.49 (-2.32 -0.76)

Price 0.30 (-0.48 1.32) 0.42 (-0.62 1.37) 0.91 (-0.04 1.92) -0.41 (-1.17 0.30) 0.34 (-0.28 0.73)

100k Log Maximum Likelihood
Log Likelihood
Log Marginal Likelihood
Numerical Standard Error

-156.92

-215.69
0.30

-153.54
0.33

-176.17
-173.49

-111.77
-112.64

1.01

-155.83
-174.51

1.70

-160.83
-228.87

0.52

-154.06
-151.62
-199.15

-162.47
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Figure 1. Predicted and observed duration times (log scale)  
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Figure 2. Predicted and actual hazards rates (log scale)  
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Figure 3. Predicted changes in hazard rates per unit change in information  

 


