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Efficiency of water use and its determinants at small-scale irrigation schemes in North-
West Province, South Africa 

Abstract  
 
This paper analyses the efficiency with which water is used in small-scale irrigation schemes 

in North-West Province in South Africa and studies its determinants. In the study area, small-

scale irrigation schemes play an important role in rural development, but the increasing 

pressure on water resources and the approaching introduction of water charges raise the 

concern for more efficient water use. With the Data Envelopment Analysis (DEA) techniques 

used to compute farm-level technical efficiency measures and sub-vector efficiencies for 

water use, it was shown that under Constant Returns to Scale (CRS) and Variable Returns to 

Scale (VRS) specification, substantial technical inefficiencies, of 49% and 16% respectively, 

exist among farmers. The sub-vector efficiencies for water proved to be even lower, 

indicating that if farmers became more efficient using the technology currently available, it 

would be possible to reallocate a fraction of the irrigation water to other water demands 

without threatening the role of small-scale irrigation. In a second step, Tobit regression 

techniques were used to examine the relationship between sub-vector efficiency for water and 

various farm/farmers characteristics. Farm size, landownership, fragmentation, the type of 

irrigation scheme, crop choice and the irrigation methods applied showed a significant impact 

on the sub-vector efficiency for water. Such information is valuable for extension services and 

policy makers since it can help to guide policies towards increased efficiency.  

 
1. Introduction  
Water scarcity is a growing problem in many countries, hence irrigation systems, being a 

main consumptive user, experience pressure to release water for other uses and to find ways 

in which to improve performance (Malano et al., 2004). The North West province in South 

Africa is such a water-stressed region. Moreover, because rainfall is low (<500mm per year) 

and extremely variable in space and time there, irrigation is a key factor indispensable for 

agricultural production (Ashton and Haasbroek, 2002). As in many areas in South Africa, 

economic development among the previously disadvantaged communities is low in Zeerust 

Municipality, and, given the high levels of unemployment (STATSA, 2003), small-scale 

irrigation schemes are of great importance for the livelihood of many families there.  

It is believed that small-scale irrigation schemes could play an important role in rural 

development because of their potential to provide food security, income and employment 

opportunities (Perret and Touchain, 2002). On the other hand, performance and economic 
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success of these schemes have been poor, which raises questions on their level of efficiency 

(Perret, 2002). Moreover, the new water policy regards water as an economic good and thus 

charges will be levied on its use. Currently water use of farmers at small-scale irrigation 

schemes is subsidized. However, these subsidies will gradually decrease and in the future 

farmers will have to pay to ensure cost recovery (DWAF, 2004), hence small-scale irrigators 

will face two new problems in the future: firstly, less water will be allocated to the 

agricultural sector, due to the increasing water scarcity, and secondly, they will have to pay 

for the water they use. In other words, they will have to deal with a reality where water 

becomes a limited input for which they have to pay. The impact of this new reality is unclear, 

but it will definitely have an impact on the production system and stress the importance of 

using water in a more efficient way.  

 This paper analyses the efficiency with which water is used in small-scale irrigation 

schemes and studies its determinants, with data of a sample of 60 farmers in Zeerust 

Municipality being used. Although the sample is relatively small, the case study will provide 

insights that reflect the typical situation of rural areas in South Africa. It is nevertheless 

difficult to ascertain whether the use of water is efficient or not, since irrigated agriculture is a 

multiple input-multiple output process. Furthermore, it is important not to consider water as a 

resource in an isolated manner (Malana and Malano, 2006; Rodríguez Díaz et al., 2004b). 

Studies on efficiency differentials among farms often use simple measures, such as yield per 

ha or output per m³, which are easy to calculate and understand. However, such measures tell 

very little about the reasons for any observed differences among farms. Output per m³, for 

example, does not take into account the differences in non-water inputs among farms (such as 

labour, fertilizers etc…) (Coelli et al., 2002).  

In the first step of the analysis in this paper, a Data Envelopment Analysis (DEA) is 

used to calculate more consistent measures of efficiency (Fraser and Cordina, 1999). This is a 

systems approach widely used in management science and economics, in which the 

relationships between all inputs and outputs are taken into account simultaneously (Raju and 

Kumar, 2006). The method enables the relative efficiency of a farm to be determined and to 

examine its position in relation to the optimal situation. Moreover, this methodology allows 

not only technical, but also subvector efficiencies to be calculated, which can be used to 

specifically monitor the efficiency of water use.  

A second step of the study consists of analysing the determinants of efficiency 

measures (Reig-Martinez and Picazo-Tadeo, 2004). Separate Tobit models are estimated as a 

function of various attributes of the farmers/farms within the sample (Chavas et al., 2005; 
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Binam et al., 2003), allowing a pointing out of which aspects of the farms’ human and 

physical resources might be targeted by public investment to improve efficiency (Wadud and 

White, 2000).  

Although there have been several studies that have analysed the efficiency of 

agricultural production in developing countries (Haji, 2006; Malana and Malano, 2006; 

Chavas et al., 2005; Abay et al., 2004; Binam et al., 2004; Dhungana et al., 2004; Binam et 

al., 2003; Coelli et al., 2002, Wadud and White, 2000), most of them have focused on mono-

cropping of major food crops like rice, maize or wheat or on cash crops like coffee and 

tobacco. However, these studies have not specifically focused on the use of water. The 

novelty of this paper is that it has a clear focus on water of which the sub-vector efficiencies 

are calculated and analysed. This is highly relevant given the growing water scarcity and the 

future introduction of water pricing. It is of significant importance for policy makers, because 

it not only creates awareness concerning inefficiencies in water use, but also provided insight 

into possible improvements by exploring the determinants of these inefficiencies.  

The remainder of the paper is organised as follows. The next section elaborates on the 

efficiency concepts and their measurement and discusses the theoretical background for DEA 

and in section 3, data collection is described. Obtained efficiency scores are presented with 

the determinants of inefficiency in section 4 and discussed in section 5. Section 6 provides 

some conclusions.    
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2. Methodology     

2.1 Efficiency measures 

Efficiency refers to the global relationship between all outputs and inputs in a production 

process (Rodríguez Díaz et al., 2004b). The performance of a farm can be evaluated based on 

different efficiency measures, namely technical, allocative1 and economic efficiency. 

This study is limited to the calculation of technical efficiencies. More specifically, we 

use the measures that originate from the seminal work on technical efficiency by Farell 

(1957), where technical efficiency is defined as the ability of a farm to produce the maximum 

feasible output from a given bundle of inputs, or to use minimum feasible amounts of inputs 

to produce a given level of output. These two definitions of technical efficiency lead to what 

is respectively known as the ‘output-oriented’ and the ‘input-oriented’ efficiency measure 

(Coelli et al., 2002; Dhungana et al., 2004; Rodríguez Diaz et al., 2004a; Rodríguez Díaz et 

al., 2004b). Input-oriented models were chosen in this study to reflect the reality where the 

main aim is not to increase production but to use different resources more efficiently 

(Rodríguez Diaz et al., 2004a).  

Technical efficiency itself can be further decomposed into two components: scale 

efficiency and pure technical efficiency. The former relates to the most efficient scale of 

operation in the sense of maximising average productivity. Pure technical efficiency, 

however, is obtained when separating the scale effect from the technical efficiency.  

For calculating the efficiency of an individual input, sub-vector efficiency measures 

are introduced, in order to generate technical efficiency measures for a subset of inputs rather 

than for the entire vector of inputs. The concept looks at the possible reduction in a subset of 

inputs, holding all other inputs and output constant (Oude Lansink and Silva, 2004; Oude 

Lansink and Silva, 2003; Oude Lansink et al., 2002; Färe et al., 1994).  

                                                 
1 Allocative efficiency is another frequently used measure of efficiency. It is defined as the ability of a farm to 
equate marginal value product and marginal cost (Dhungana et al. 2004). In other words a farm is allocative 
inefficient if it does not utilise the inputs in optimal proportions, given the observed input prices, and hence does 
not produce at minimum possible cost (Coelli et al., 2002; Abay et al., 2003). The product of technical and 
allocative efficiency provides yet another efficiency measure, namely the overall economic efficiency (Coelli, 
1998).�
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2.2 The Use of DEA to measure efficiencies 

Two major approaches to measure efficiency have evolved, namely parametric and non-

parametric approaches, with the stochastic frontier production function approach and the DEA 

methodology respectively as most popular techniques. 

The DEA methodology has some important advantages over the econometric approach 

to efficiency measurement. Firstly, because it is nonparametric there is no need to make 

assumptions concerning the functional form for the frontier technology or the distribution of 

the inefficiency term. Secondly, the approach permits the construction of a surface over the 

data, which allows the comparison of one production method with the others in terms of a 

performance index. In this way DEA provides a straightforward approach to calculating the 

efficiency gap that separates each producer’s behaviour from best productive practices, which 

can be assessed from actual observations of the inputs and outputs of efficient firms (Haji, 

2006; Reig-Martinez and Picazo-Tadeo, 2004, Malano et al., 2004; Wadud and White, 2000). 

Furthermore, when using DEA, efficiency measures are not significantly affected by a small 

sample size, as long as the number of inputs is not too high in comparison to the sample size. 

(Thiam et al 2001; Chambers, 1998). Oude Lansink et al. (2002) finally argue that calculating 

sub-vector technical efficiencies using a stochastic frontier approach would be highly 

problematic. The disadvantages of DEA, however, are that it is deterministic and sensitive to 

measurement errors and other noise in the data, although several studies comparing both 

methodologies have shown that results from both methods are highly correlated (Alene and 

Zeller, 2005; Thiam et al., 2001; Wadud and White, 2000). In this study DEA approach is 

preferred because of its flexibility and the possibilities of calculating sub-vector efficiencies  

DEA is based on the notion that a production unit employing less input than another to 

produce the same amount of output can be considered as more efficient, with a production 

frontier constructed and an efficiency measure obtained simultaneously. The frontier surface 

is assembled piecewise by solving a sequence of linear programming problems, one for each 

farm, with each farm related to this frontier. The frontier created envelops the observed input 

and output data of each farm.  

The model is presented here for a case where there is data on K inputs and M outputs 

for each of the N farms. For the i-th farm, input and output data are represented by the column 

vectors xi and yi, respectively. The KxN input matrix, X, and the MxN output matrix, Y, 

represent the data for all N farms in the sample.  

The DEA model to calculate the technical efficiency (TE) is in this case (equation 1): 
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,θθλMin
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Where θ is a scalar, N1 is a Nx1 vector of ones, and λ is an Nx1 vector of constants. This is 

solved once for each farm, where the value of θ  obtained is the technical efficiency score for 

the i-th farm, a score which will always lie between zero and one, one indicating that the farm 

lies on the frontier and is efficient. It should also be noted that equation 1 has a variable 

returns to scale (VRS) specification which includes a convexity constraint (N1’λ=1). Without 

that constraint, equation (1), would have constant returns to scale specification (CRS). Using 

that specification, it is assumed that farms are operating at their optimal scale (Fraser and 

Cordina, 1999). In the case of agriculture, increased amounts of inputs do not proportionally 

increase the amount of outputs. For instance, when the amount of water to crops is increased, 

a linearly proportional increase in crop volume is not necessarily obtained, one reason why 

the variable return to scale option might be more suitable for our problem (Rodriguez-Diaz et 

al., 2004b). Coelli et al. (2002) and Haji (2006) on the other hand found that for small farms 

like the ones considered in this study, little scale economies could be realised, hence both 

specifications will be modelled. In addition, a comparison of both scores is interesting 

because it provides information on scale efficiency (SE). Coelli et al. (2002) showed that the 

relation is as follows: 

  

SE= TEcrs/TEvrs 

 

Using the notion of sub-vector efficiency proposed by Färe et al. (1994), the technical 

sub-vector efficiency for the variable input k is determined for each farm i by solving 

following programming problem (equation 2): 
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Where θk is the input k sub-vector technical efficiency score for farm i. The terms xi
n-k and Xn-k  

in the third constraint refer to xi and X with the kth input (column) excluded, whereas, in the 

second constraint, the terms xi
k and Xk include only the kth input. All other variables are 

defined identically as in equation 1.     

A graphical representation of the measurement of technical efficiency and sub-vector 

efficiency using DEA shows the intuitive interpretation of the method (figure 1). The problem 

takes the i-th farm A and then seeks to radially contract the input vector, xi, as much as 

possible, while remaining within the feasible input set. The inner-boundary of this set is a 

piecewise linear isoquant determined by the frontier data points (the efficient farms in the 

sample: F1 and F2). The radial contraction of the input vector xi produces a projected point on 

the frontier surface (A0). This projected point is a linear combination of the observed data 

points, with the constraints in equation 1 ensuring that the projected point cannot lie outside 

the feasible set. The overall technical efficiency measure of farm A relative to the frontier is 

given by the ratio θ= 0A0/0A. The sub-vector efficiency for input X1 is also presented in 

figure 1, in which X1 is reduced while holding X2 and output constant. In the graph, A is 

projected to A’ and sub-vector efficiency is given by the ratio θ1= 0’A’/0’A. 

 

<INTRODUCE FIG 1 ABOUT HERE> 

 

2.3 Identifying determinants of efficiency using Tobit analysis 

After calculating the efficiency measures, the next step is to identify the determinants of 
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2005; Binam et al., 2003; Iráizoz et al., 2003). Since the efficiency parameters vary between 

0-1, they are censored variables and thus a Tobit model needs to be used (equation 3): 

 

θk*= β0 + β1z1+β2z2+...βjzj + e   

    =Zβ +e  

 

θk=θk* if 0<θk*<1 

  =0 if θk*< 0 

  =1 if θk*>1 

 

Where θk is the DEA sub-vector efficiency index for water used as a dependent variable and Z 

is a vector of independent variables related to attributes of the farmers/farms within the 

sample. The variables included in the Tobit model are discussed in the following section. The 

estimation of the Tobit model is based on maximum likelihood procedures (Verbeek, 2000). 

For Tobit estimates to be consistent it is necessary that residuals are normally distributed 

(Holden, 2004). Therefore, a normality test is necessary. In this case the conditional moment 

test for normality in censored data will be used.  

 

2.4 Data collection 

Data was collected from small-scale irrigation schemes situated in Zeerust Municipality 

(North-West Province, South Africa) from July to September 2005. The municipality is 

located in the Central District Council of North West Province and shares a border with 

Botswana. The surface area of the municipality is 7192 km² with a population of 136 000 

(AGIS, 2005; Zeerust Local Municipality, 2004).  

Most Zeerust residents are engaged in economic activities like agriculture, hunting, 

forestry, fishing and wholesale or retail of goods and services. The rest of the population is 

either unemployed or spread in various small businesses (Zeerust Local Municipality, 2004).  

Questionnaires were used to collect data, with a total of 60 farmers interviewed, 

spread over 13 small-scale irrigation schemes. Extension staff of the North West Province 

Agricultural Department acted as interpreters. Random sampling was applied in selecting 

schemes and individual farmers, but representativeness was maintained by adapting the 

number of respondents at each scheme to the number of farmers operational within them.   
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During the interviews information was gathered on the irrigation schemes, household 

characteristics, farm activities, quantities and costs of inputs used in production (capital, 

variable and overhead), quantities and value of output, the quantity of water consumed and 

irrigation practices. In general this type of farmers does not keep records concerning their 

farming activities, so data gathered during interviews was based on recollections of farmers. 

The expert knowledge of the extension staff was used as a supplement to the recollections of 

the farmers, something that was particularly helpful for the estimation of the water use and the 

prices of their produce. 

For the different outputs both quantities and corresponding prices were obtained. Total 

output was then converted into monetary terms, the inputs considered in the efficiency 

analysis including land (hectares), irrigation (m³), labour (man days), fertilizers (expenses) 

and pesticides (expenses). Table 1 reports the sample description of the data.  

 

<INTRODUCE TABLE 1 ABOUT HERE> 

 

In the Tobit analyses various farmer/farm specific factors were regressed on the sub-vector 

efficiencies for water, factors including those of a demographic nature, such as age of the 

farmer (in years), gender (dummy variable taking 1 if farmer was female and 0 otherwise) and 

household size (number of members in the household), as well as socio-economic 

characteristics like education (dummy variable taking 1 if farmer minimally attended primary 

education and 0 otherwise), cultivated area (total area in ha), landownership (dummy taking 1 

if land is privately owned and 0 if it consisted communal land), crop choice (farmers profit 

per m³ of water used)2 and a land fragmentation index (Simpson index, defined as the sum of 

the squares of the plot sizes, divided by the square of the farm size, with higher values of this 

index indicating more fragmentation). Since three irrigation techniques were identified within 

the sample (sprinkler, hose, and bucket irrigation), two dummies for irrigation methods were 

also included. Furthermore three types of institutional contexts for irrigation schemes were 

recognised (food gardens3, typical small-scale schemes and individual farmers irrigating), 

therefore 2 dummies for these arrangements were also included. The descriptive statistics for 

the variables included in the Tobit model are presented in table 2.  

                                                 
2 As a quantitative proxy for the compilation of crops selected by the farmers the overall profit per m³ of water 
was used. 
3 Parallel to typical small-scale irrigation schemes founded by government, a second type of schemes originating 
from civil society (communities, NGO’s) has evolved. The plots at these schemes are usually very small and the 
main objective is to provide some additional food or income to the persons working there.    
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<INTRODUCE TABLE 2 ABOUT HERE> 

 

3. Results 

Both the CRS and the VRS DEA models for overall technical efficiency (equation 1) are 

estimated using the program DEAP (Coelli, 1996). Sub-vector efficiencies were modelled in 

GAMS using the methodology proposed by Färe et al. (1994) and the modelling suggestions 

of Kalvelagen (2004).   

Table 3 gives the frequency distribution of the efficiency estimates obtained by the 

DEA methods. The average overall technical efficiencies for the CRS and the VRS DEA 

approaches are 0.51 and 0.84 respectively, indicating that substantial inefficiencies occurred 

in farming operations of the sample farm households. Under the observed conditions, about 

14% and 39% of farms were identified as fully technical efficient under the CRS and VRS 

specification respectively. The large differences between the CRS and VRS measures further 

indicated that many farmers did not operate at an efficient scale and that adjusting the scale of 

operation could improve the efficiency. 

 

 <INTRODUCE TABLE 3 ABOUT HERE> 

 

The sub-vector efficiencies for water demonstrated even larger inefficiencies. Average water 

efficiency was only 0.43 under CRS and 0.67 under VRS. Figure 2 gives a graphical 

representation of the cumulative efficiency distributions for the different measures. Again it is 

clear that under both returns to scale specifications more farms were highly inefficient in the 

use of water compared to overall technical efficiency.  

 

<INTRODUCE FIG 2 ABOUT HERE> 

 

Table 4 gives the correlation statistics between sub-vector efficiency for water and the overall 

technical efficiency, which help us to determine the relationship between the two efficiency 

measures. Under CRS, technical efficiency and sub-vector efficiency were highly positively 

correlated. Under VRS, however, correlation was still positive but only moderate. A paired 

sample t-test to analyse the equality between sub-vector efficiencies and overall efficiencies 

was statistically significant. Furthermore, sub-vector efficiencies for water were significantly 
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lower then overall technical efficiency measures, both under CRS and VRS specification, 

(table 5).  

 

<INTRODUCE TABLE 4 AND 5 ABOUT HERE > 

 

The second part of the analysis consists of identifying the characteristics that 

determine the sub-vector efficiencies for water of these smallholder farms. Two separate 

Tobit regressions for CRS and VRS specifications were estimated using LIMDEP version 8, 

the results of which are presented in table 6.  

 

<INTRODUCE TABLE 6 ABOUT HERE> 

 

The conditional moment test for normality in censored data indicated that the normality 

hypothesis could not be rejected. Furthermore, two fit measures are reported for the 

regressions: an ANOVA based fit measure R²ANOVA and a decomposition based fit measure 

R²DECOMP 4. For both regressions, the fit was more than satisfactory. 

The joint significance of all variables within the model was assessed using three test 

statistics, namely the Lagrange multiplier statistic (LMstat), the likelihood ratio statistic (LR) 

and the Wald statistic. All three statistics confirmed that both Tobit models were significant. 

Concerning the individual variables, the results of the models with CRS and VRS 

specification showed consistency. Personal farmer’s characteristics like gender, age5, 

education, household size were not significant, whereas cultivated area, landownership, the 

scheme type dummy for food gardens and the crop choice were significant in both models. 

The cultivated area negatively influenced water efficiency, while the other significant 

variables had a positive effect on the efficiency measures. Under the VRS specification 

fragmentation was also highly significant and had a negative effect on the sub-vector 

efficiency for water. The dummies for the irrigation methods, on the other hand, had a 

negative effect under both specifications, but were only significant under the CRS 

specification.         

 
                                                 
4  In the case of Tobit models these fit measures are best suited to be used as a substitute for the Ordinary Least 
Squares R², because both mimic R² and converge to it as censoring probability goes to zero. They are composed 
as follows: The�R²ANOVA takes the variance of the estimated conditional mean divided by the variance of the 
observed variable. The R²DECOMP takes the variance of the conditional mean function around the overall mean of 
the data in the numerator (Greene, 2002). 
5 A non-linear relationship was also checked without significant result. 
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4. Discussion 

The results of the DEA show that substantial inefficiencies occur among smallholder 

irrigators within the study area, which is consistent with a recent meta-analysis by Bravo 

Ureta et al. (2007). They showed that in less developed countries, mean values of technical 

efficiency per study averaged at about 0.74. Moreover, given the poor performance of the type 

of irrigation schemes in the area mentioned in several studies (IPTRID, 2000; Shah et al., 

2002, Perret, 2002), substantial efficiencies were expected.  

Secondly, results show that scale inefficiencies are significant (0.6 on average) with 

nearly all farms operating at increasing returns to scale, which implies that most farms should 

be larger than they presently are to produce efficiently under the present factor mix. Large 

scale inefficiencies were also reported by Binam et al. (2003) for coffee farmers in Ivory 

Coast, by Abay et al. (2004) for tobacco farmers in Turkey and by Shafiq and Rehman (2000) 

for cotton farmers in Pakistan. Haji (2006) on the other hand found that in more traditional 

farming systems like the ones of smallholder farmers in Eastern Ethiopia, scale inefficiencies 

were nearly absent and similar conclusions were drawn by Alene et al. (2006) for 

intercropping in Southern Ethiopia.  

Thirdly, the results indicate that farms have a poor performance in terms of water use 

efficiency. As indicated by Nsanzugwanko et al. (1996), this might be explained by the 

absence of pricing mechanisms for water. Farmers at this moment have no financial incentive 

to limit their water use or to invest in water saving technologies. The gradual introduction of a 

water pricing scheme for this type of farmers, which is planned for the coming years, can 

probably be a trigger for more efficient use. Another interesting implication of these results is 

that there appears to be a considerable scope for reducing the water use, even with the 

technology currently available. This means that if efficiency improves, it should be possible to 

reallocate a fraction of the water to other water demands without really endangering 

production or the role small-scale irrigation might play for rural development. Besides, 

correlation tests showed that poor performance regarding water use efficiency and overall 

technical efficiency are strongly linked. This can be explained by the vital role irrigation 

water plays in the production systems under study. However, this finding also implies that the 

introduction of water prices can be a threat to the viability of the poorer performers, because 

they will be most affected by this additional cost. If those farmers fail to improve their water 

use efficiency, their farming activities might become financially unviable.    

Fourthly, the results of the Tobit models show that cultivated area, landownership, the 

scheme type dummy for food gardens and the proxy for crop choice have a significant impact 
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on the sub-vector efficiency for water, under both specifications. Owner-operators seem to be 

more efficient in their water use, but one has to be careful with this conclusion, given their 

small number in the sample. Nevertheless, if this finding could be confirmed, it indicates the 

importance of land rights and can be an additional argument for land reforms, which make 

people owner of the land they work on. The cultivated area had a negative impact on the sub-

vector efficiency for water. Haji (2006) also reported such a negative impact on overall 

technical efficiency, attributing it to the labour intensive character of the type of vegetable 

production he studied. In our study, however, this finding seems inconsistent with the 

increasing returns to scale for overall technical efficiency found in the DEA outcomes, but it 

should be reminded that the Tobit model only considers the sub-vector efficiency. Apparently, 

the relationship between cultivated area and the totality of farming activities is different from 

that between cultivated area and the use of one input. This was also confirmed in a Tobit 

model, where cultivated area had a significant positive impact on overall technical efficiency 

(result not presented in this paper). Further investigation on this matter is needed. 

Finally, the institutional context of the schemes seems to be of relevance. Efficiency of 

water use is higher for farms in food garden schemes, which is in accordance with a study in 

South Africa by IPTRID (2000) that discussed the large potential of such food garden 

schemes in vegetable production. The highly significant and positive effect of crop choice on 

sub-vector efficiency for water supports the call for selecting crops with high higher profits 

per m³ of water used or for water saving irrigation technology. Iráizoz et al. (2003) found a 

similar result for the relationship between technical efficiency and partial productivity indices 

like output per unit of land and output per unit of labour. Fragmentation has a negative effect 

under the variable returns to scale specification, indicating that, for a certain size of operation, 

the sub-vector inefficiency effects for water are lower if the farm is less fragmented, 

something due to the fact that irrigation can be managed more efficiently on larger plots 

(Wadud and White, 2000). However, under constant returns to scale specification, where 

farms operating at different scales are compared, the effect of fragmentation is not significant. 

This can partly be explained by the efficiency differences between the different types of 

schemes occurring in the area, which apparently neutralizes the effect of fragmentation. 

Earlier it was shown that the food garden schemes were more efficient compared to the other 

two types and typically these smaller schemes have a higher degree of fragmentation.  

Other variables are not significant, education, for example, having no significant 

impact on the sub-vector efficiency for water. This is consistent with studies such as those of 

Haji (2006), Coelli et al. (2002) and Wadud and White (2000). The explanation that this could 
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be due to the low average education level in the sample given by Coelli et al. (2006) is also 

acceptable for this study. Dhungana et al. (2004) and Binam et al. (2004) in contrast reported 

a significant positive effect of education on efficiency for some of the regressions they 

performed, possibly due to a slightly higher average education level in their samples. 

Farmer’s age does not contribute significantly to a higher level of efficiency either. A 

possible explanation is that two effects neutralize each other: older more experienced farmers 

have more knowledge on their land and traditional practices, but are less willing to adopt new 

ideas. Sometimes one of the two effects dominates, accounting for the mixed results in 

literature for the effect of age: negative in the study of Wadud and White (2000) and Binam et 

al. (2003), but positive in the study of Dhungana et al. (2004). In this study experience was 

not measured, so an age-experience interaction term could not be included to test the 

hypothesis above.  

Consistent with Haji (2006) and Dhungana et al. (2004) the effect of family size is 

negative, but, as in Coelli et al. (2002), this effect is not significant. Finally, looking at gender 

no significant effect can be shown. This is in line with Chavas et al. (2005) and Dhungana et 

al. (2004). 

 

5. Conclusions  

 

The study used a DEA approach to measure the technical and sub-vector efficiency for water 

of vegetable producing small-scale irrigators in North West Province in South Africa. 

Detailed survey data collected in 2005 on 60 sampled farmers spread over 13 small-scale 

irrigation schemes were used to compute the efficiency measures. The results indicate that the 

mean technical efficiency under the CRS and VRS is 51% and 84%, respectively; the large 

difference between the two being a sign of substantial scale inefficiencies. The majority of the 

farmers were operating at increasing returns to scale, implying that larger farm sizes would be 

more efficient.  

The sub-vector efficiencies for water are with 43% (CRS) and 67% (VRS), even lower 

than overall technical efficiencies. This might be an indication that farmers have little 

incentives to use water in an efficient manner, in the absence of a water price. The gradual 

introduction of a water pricing scheme for this type of farmers, which was planned for the 

coming years, could be a trigger for more efficient use. Because of the large correlation 

between sub-vector efficiencies for water and the overall technical efficiency, the effect of 
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introducing water prices can however also be negative, endangering the viability of the poor 

performers. Study of the economic efficiency of the farmers can shed some light on this.  

On the other hand, these low efficiencies suggest that substantial decreases in water 

use can be attained given existing technology, without compromising the key role in rural 

development played by small-scale irrigation. In this way there is room for lifting part of the 

increasing pressure on water resources by reallocating a fraction of the irrigation water 

elsewhere.  

In a second step, the relationship between the sub-vector efficiency for water and 

various attributes of the farm and farmer was examined. The results of the Tobit models can 

help policy makers or extension services to better aim efforts to improve water use efficiency. 

If the significant positive effect of landownership on the sub-vector efficiency could be 

confirmed for a larger sample, this would, for instance, emphasize the importance of land 

rights, supporting land reforms where people are made owner of the land they work. Another 

practical example is the positive and significant effect of crop choice on the sub-vector 

efficiency, which should incite extension services to encourage farmers to select crops with 

higher profit per m³ of water or water saving irrigation techniques to improve water use 

efficiency. 

Finally, it should be noted that this article focused on technical efficiency measures. 

Additional research on allocative and economic efficiency can further determine the scope for 

production improvements and can add to our understanding of the effect on efficiency of the 

introduction of a water price.  

More research would also be needed to generalise the results. This paper builds on 

information of 60 farmers, spread over a significant number of irrigation schemes, but a 

similar approach in other irrigation schemes in rural areas could provide an interesting 

comparison.  
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Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of the measurement of technical efficiency and sub-vector 

efficiency using DEA for an example with two inputs and one output (adapted from Oude 

Lansink et al., 2002)  
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Figure 2: Cumulative efficiency distribution for technical and subvector efficiency for water 

under VRS and CRS specification  
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Table 1 Descriptive statistics on outputs and inputs used in efficiency analysis. 

 Unit Average St. dev. Minimum Maximum 

Output rand6 2816 11348 150 87200 

Inputs       

Land ha 0.16 0.40 0.01 2.8 

Water m³ 1287 3299 82.9 2215 

Labour man days 29 76 5.6 599 

Expenditure on pesticides rand 72 82 0 360 

Expenditure on fertilizers rand 64 91 0 487 

 

                                                 
6 At the time of the data collection the exchange rate was 1 Rand = 0.1504 US$ 
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Table 2. Summary statistics for variables included in the Tobit regressions  

 Mean St dev Min max  

Quantitative variables     

Farmers’ age 58 13 27 86 

Household size   6 3 1 19 

Cultivated area (ha)  1.018 1.210 0.011 6.6 

Simpson fragmentation 

index 

0.700 0.260 0.000 0.889 

Crop choice (R/m³) 1.236 1.352 0.000 7.405 

     

Qualitative variables (number of respondents in each category)  

Gender Male Female   

 32 27   

Education   No education  Primary or more    

 29 30   

Landownership Private  Communal    

 3 56   

Irrigation technique Hosepipes Buckets Sprinkler  

 35 21 3  

Type of irrigation 

institution  

Food garden  Small scale scheme  Private small farm   

 37 18 3  
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Table 3: Overall technical and water-subvector efficiencies under constant and variable 

returns to scale specifications    

 

 Tech CRS Tech VRS Water subvec 

CRS 

Water subvec 

VRS 

Efficiency 

score 

N° 

farms 

% of 

farms 

N° 

farms 

% of 

farms 

N° 

farms 

% of 

farms 

N° 

farms 

% of 

farms 

0-10 1 2 0 0 11 19 7 12 

10-20 3 5 0 0 5 8 7 12 

20-30 2 4 0 0 4 7 0 0 

30-40 17 29 1 2 6 10 0 0 

40-50 16 27 3 5 12 20 1 2 

50-60 6 10 4 7 7 12 5 9 

60-70 3 5 3 5 3 5 7 12 

70-80 3 5 11 19 4 7 6 10 

80-90 0 0 10 17 1 2 2 3 

90-100 0 0 4 7 1 2 2 3 

100 8 14 23 39 5 9 22 37 

Average 

score 

0.51 0.84 0.43 0.67 
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Table 4. Pearson correlations between efficiency measures  

 Tech CRS Tech VRS Sub-vector CRS Sub-vector VRS 

Tech CRS 1    

Tech VRS 0.506 *** 1   

Sub-vector CRS 0.703*** 0.140 1  

Sub-vector VRS 0.448*** 0.349*** 0.731*** 1 

Note: *** indicates a 99% significance level 
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Table 5. Paired samples t-tests demonstrating the difference between overall technical 

efficiency and sub-vector efficiency 

 Mean 

difference  

Std dev. t-statistic 

CRS: sub-vector- overall technical 

efficiency 

-0.08 0.21 -2.849*** 

VRS: sub-vector- overall technical 

efficiency 

-0.17 0.34 -3.912*** 

Note: *** indicates a 99% significance level 
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Table 6. Tobit estimates on determinants of sub-vector CRS and VRS efficiency 

Dependent variable Sub-vector CRS efficiency Subvector VRS efficiency 

 coefficient St dev coefficient St dev 

Constant 0.0778 0.1529 0.4898* 0.2589 

Gender (1=female) -0.0204 0.0379 0.0655 0.0708 

Age of farmer (years) -0.0006 0.0014 0.0033 0.0027 

Education dummy (1=primary or more) -0.0240 0.0414 0.0492 0.0780 

Household size (number) -0.0072 0.0061 -0.0125 0.0113 

Cultivated area (ha)  -0.0577*** 0.0173 -0.1066*** 0.0325 

Landownership (1= owner of land)  0.6614*** 0.1845 0.6605*** 0.2114 

Dummy irrigation method (1= hoses) -0.2688*** 0.0798 -0.0705 0.1444 

Dummy irrigation method (1= buckets) -0.3267*** 0.0859 -0.2259 0.1557 

Fragmentation index (index) 0.1147 0.0862 -0.5907*** 0.1629 

Dummy scheme (1=typical small-scale) 0.4208*** 0.1477 0.2923 0.2150 

Dummy scheme (1= food garden) 0.4981*** 0.1504 0.5668*** 0.2060 

Crop choice (R/m³) 0.1679*** 0.0137 0.1333*** 0.0261 

R²ANOVA 0.789  0.512  

R²DECOMP 0.816  0.575  

LMstat  80.12  53.28  

LR (p-value) 99.51 (0.000)  57.43 (0.000)  

Wald (p-value) 269.62 (0.000)  97.17 (0.000)  

Test value CM Normality test (p value) 1.665 (0.435)  0.491 (0.782)  

Note: *** indicates a 99% significance level and * indicates a 90% significance level  

 

 

 


