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Summary 
This paper deals with the relationship between international travelling and trade. For this 
purpose we focus on a particular case study: the connection between the Spanish wine 
exports to Germany and the German travellers to Spain. Unlike previous studies we use a 
methodology based on fractional vector autoregressive models, which permits us to 
compute the impulse responses in a similar way as in the standard VAR case. The results 
show that the orders of integration of the two series are constrained between 0 and 1, being 
higher for the arrivals series than for the exports. The impulse reponse analysis reveals that 
an increase in travelling produces a positive initial impact on trade though it tends to 
disappear in the long run.  
 
KEYWORDS: International trade, Multivariate models, Fractional VAR, Tourism. 

1. Introduction  
International trade of good and services has been shown to be influenced by many factors 
of either push or pull character. While no mainstream microeconomic model has yet been 
developed to establish theoretically the link between trade and tourism, a host of empirical 
work has emerged which shows that there may in fact be a connection between the flow of 
goods and people. Many studies attempt to test the hypothesis that movements of people 
can contribute to generate exports, but they may also stimulate imports. Tourism is thought 
to be able to promote cross-border exports by initiating entrepreneurial activities as a result 
of learning about new business opportunities while travelling. At the same time, demand 
for new products to be consumed back home may be created as a consequence of learning 
about them during foreign travel.  
Easton (1998) analysed whether Canadian total exports are complementary or substitutive 
to tourist arrivals, using pooled data regressions. He finds "some evidence of substitution of 
Canadian exports for tourist excursions to Canada" (p. 542) by showing that when the 
relative price of exports goes up, the number of tourists visiting Canada increases. 
Kulendran and Wilson (2000) analysed the direction of causality between different travel 
and (aggregate) trade categories for Australia and its four main trading partners. Their 
results show that travel Granger causes international trade in some cases and vice versa in 
others. Shan and Wilson (2001) replicate this latter approach and also find two-way 
Granger causality using aggregate data for China. Aradhyula and Tronstad (2003) used a 
simultaneous bivariate qualitative choice model to show that cross-border business trips 
have a significant and positive effect on US agribusinesses' propensity to trade. Fischer 
(2004) explored the connection between aggregate imports and imports of individual 
products and bilateral tourist flows, using an error correction model. His results show that 
trade-tourism elasticities are consistently higher for individual products. Fischer and Gil-
Alana (2007) quantified for the first time the length of the effect of tourism on international 
trade, using the case of German imports of Spanish wine. Depending on the wine type, the 
effect was estimated to last between 3 and 11 months, and on average 5.5 months.   
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What emerges from all these studies is that the existence, the direction, the strength 
(magnitude) and the length of the effect which tourism may have on international trade 
seems to depend on the analysed countries and products, and on the estimation technique 
used. Even if a range of results is now available, further empirical evidence is still useful in 
order to obtain a more complete and robust understanding of the actual nature of the 
relationship between international tourism and trade.  
The aim of this study is therefore to expand existing knowledge on the travel-trade 
relationship for food products by generating further empirical evidence, based on recently 
developed fractional VAR regression models. The analysis is more empirical than 
theoretical in the sense that it is attempted to test econometrically the hypothesis of a 
potentially existing relationship between travelling and exports. The used approach is not 
grounded in microeconomic supply or demand theory since no output, income or price data 
are taken into account in the econometric specification of the model. However, VAR 
models are generally accepted as theory-free methods for estimating economic 
relationships, thus being a legitimate alternative to the identification restrictions in 
structural models (Sims, 1980). Thus, we focus exclusively on the relationship betweeen 
the exports of Spanish wines to Germany and the number of German tourists travelling to 
Spain on a monthly basis. This analysis differs from our earlier paper (Fischer and Gil-
Alana, 2007) in so far as a longer period of investigation, export instead of import data and 
a different econometric modelling approach is used. 
The structure of this article is as follows. First, for the two series under consideration, we 
produce univariate results based on fractional integration models. This approach is more 
flexible than others usually employed in the literature since it allows us to consider the 
cases of stationarity I(0) and nonstationarity I(1) as particular cases of our approach. Then, 
an innovative bivariate fractionally integrated model is used, i.e., we estimate jointly the 
orders of integration of the two series, and then analyse the cross impulse response 
functions. In other words, the effect of a shock in one variable over the other across time is 
computed. Here, we implicitly assume that the direction is uni-directional in the sense that 
we believe that travelling has an influence on exports and not the reverse case. The main 
innovation is that we allow fractional values for the orders of integration while standard 
methods suppose that they are either 0 or 1. In the fifth section, the obtained results are 
compared to similar ones from other studies, before some conclusions are drawn. The 
appendices contain the technical details of the paper. Appendix A presents the functional 
form of the test statistic for testing fractional integration in a multivariate context. 
Appendix B refers to the fractional VAR model, specified for the bivariate case, and the 
subsequent sub-sections in that appendix describe the restriction required to the 
identification of the system for the two cases of white noise and autocorrelated 
disturbances. 

2. Econometric methodology 
This section is based on econometric grounds and we describe the techniques employed in 
the empirical work in Section 4. A crucial point when modelling univariate (or 
multivariate) time series is to correctly determine the order(s) of integration. In other words, 
in order to make statistical inference, the series are required to be stationary I(0). If they are 
not, a standard approach is to take first differences based on the assumption that the series 
are then nonstationary I(1). However, these two approaches (I(0) and I(1)) may be too 
restrictive in the sense that many series may present a behaviour that is far from these two 
cases. In particular, the series may present a degree of dependence across time that is higher 
than the one described by the I(0) models (e.g., the exponential degree associated to the AR 
specifications) but smaller than the one obtained through the I(1) case. In such cases 
fractional differencing may be a viable approach. 
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For the purpose of the present paper we define an I(0) process as a covariance stationary 
process with spectral density function that is positive and finite. In this context, we say that 
a given raw time series {xt, t =  0, �1, ..} is I(d) if: 

...,2,1,)1( ==− tuxL tt
d

,    (1) 
,0,0 ≤= txt  

where ut is I(0) and where L means the lag operator (Lxt = xt-1).1 Note that the polynomial 
above can be expressed in terms of its Binomial expansion, such that for all real d, 
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The literature has usually stressed the cases of d = 0 and 1, however, d can be any real 
number. If d = 0 in (1), xt = ut, and a ‘weakly autocorrelated’ (e.g. AR) xt is allowed for. 
However, if d > 0, xt is said to be a long memory process, also called ‘strongly 
autocorrelated’, so-named because of the strong association between observations widely 
separated in time, and, as d increases beyond 0.5 and through 1, xt can be viewed as 
becoming “more nonstationary”, in the sense, for example, that the variance of partial sums 
increases in magnitude.2 These processes were introduced by Granger (1980, 1981), 
Granger and Joyeux (1980) and Hosking (1981), (though earlier work by Adenstedt, 1974, 
and Taqqu, 1975 shows an awareness of its representation), and were theoretically justified 
in terms of aggregation of ARMA processes with randomly varying coefficients by 
Robinson (1978),  Granger (1980). If d belongs to the interval (0, 0.5) xt is covariance 
stationary, but both the autocorrelations and the response of a variable to a shock take much 
longer time to disappear than in a standard (d = 0) stationary case. If d ∈ [0.5, 1) the series 
is no longer covariance stationary but is still mean reverting, with the effect of the shocks 
dying away in the long run. Thus, the fractional differencing parameter d plays a crucial 
role for our understanding of the economy and the macro dynamics. Examples of 
applications of fractional integration in economic time series are among others the papers of 
Diebold and Rudebusch (1989), Baillie and Bollerslev (1994) and Gil-Alana and Robinson 
(1997).3 
 In this section we present a novel approach that permits us to consider a structural 
fractional VAR model from its reduced form and then obtain the impulse response 
functions. We derive a simple method in a multivariate fractional integration framework, 
which lets the data determine simultaneously the response of one variable over the other(s). 
This method presents some advantages with respect to previous approaches. First, the 
fractional integration approach allows to discern the order of integration of a given variable 
without the econometrician to choose between zero or one. The order of integration may be 
zero, a fraction of one, one or it could be even above one. Second, this approach is agnostic 
with respect to the order of integration of the variables before including them in a vector 
autoregressive (VAR) framework. As a result, pre-tests of the orders of integration of the 
variables are not required. Third, there is no disagreement between the responses of the 
variables in levels or in first differences as the responses in first differences are exactly the 
same as those implied by the variables in levels by construction. 
The starting point is the following structural model: 

                                                           
1 The condition xt = 0, t ≤ 0 is required for the Type II definition of fractional integration. 
For an alternative definition (Type I) see Marinucci and Robinson (1999).  
2 Models with d ranging between –0.5 and 0 are short memory and have been addressed as 
anti-persistent by Mandelbrot (1977), because the spectral density function is dominated by 
high frequency components. 
3 See aso Baillie (1996) for a complete review of I(d) processes. 
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...,2,1, == tuyDA tt     (2) 
,...,2,1,1 =+= − tvuGu ttt     (3) 

where A is a (nxn) matrix of parameters; D is an (nxn) diagonal matrix of form: 
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where d1, d2, …, dn can be real values; yt is a (nx1) vector of the observable variables; ut 
is a (nx1) vector, which is assumed to be I(0); G is another (nxn) matrix of parameters, and 
vt is a (nx1) structural error vector with zero mean and diagonal variance-covariance matrix 
V. Substituting (2) into (3), we obtain 

...,2,1,1 =+= − tvyDAGyDA ttt    (4) 
implying that 

...,2,1,1
1

1 =+= −
−

− tvAyDAGAyD ttt  .  (5) 
Using now the lag-operator (i.e. Lyt = yt-1): 

[ ] ...,,2,1,11 ==− −− tvAyDLAGAI tt  
we get 

[ ] ...,,2,1,1111 =−= −−−− tvALAGAIDy tt    (6) 
which is the structural MA(∞ ) representation of yt. 
 In a multivariate system the number of procedures for fractional integration is very 
limited. Gil-Alana (2003a,b) proposed an extension of the univariate tests of Robinson 
(1994) in the frequency domain, while Nielsen (2005) developed time domain versions of 
Gil-Alana’s tests. These methods allow us to estimate a reduced-form model of form: 

...,2,1, == tyD tt ε      (7) 
...,2,1,1 =+= − twF ttt εε ,    (8) 

where εt is a (nx1) vector of the d-differenced variables; F is a (nxn) matrix of parameters, 
and wt is an I(0) vector with variance-covariance matrix W. Substituting now (7) into (8), 

...,,2,1,1 =+= − twyDFyD ttt   (9) 
implying that 
[ ] ,...,2,1, ==− twyDLFI tt  
and then 

[ ] ,...,2,1,11 =−= −− twLFIDy tt    (10) 
which is the reduced-form MA(∞ ) representation of yt. 
Note that the structural model in (6) has 2n2+2n parameters to estimate: n corresponding to 
the fractional differencing parameters in D; 2n2 of the two matrices A and G; and the n 
variances in V. On the other hand, the reduced-form MA(∞ ) representation in (10) contains 
n+n2+n(n+1)/2 parameters: the n d-parameters in D; n2 in F, and n(n+1)/2 parameters of 
the variance-covariance matrix W. Therefore, in order to identify the system we need to 
impose (n/2)(n+1) restrictions in the structural model. N restrictions can be obtained by 
imposing a 1-unit variance in the variance-covariance matrix of vt in (3), V. However, (n2-
n)/2 restrictions will still be required. Here, there are two possibilities: one is to impose 
triangularity in the A matrix in (2) – this would imply that the contemporaneous and the 
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future effects of some of the variables on the others will be zero, which may be a relatively 
strong assumption in some cases. The second approach uses the Blanchard and Quah 
(1989) decomposition, which implies that in the long run some variables have no effect on 
the others. 

3. The data 
We look at the relationship between trade and tourism by focussing on the inter-
dependencies between the exports of Spanish wines to Germany and the number of German 
travellers to Spain. 
The raw data were obtained from two different Eurostat databases.  First, exports of 
Spanish wine (without sparkling wine) and of sparkling wine to Germany are taken from 
COMEXT "EU trade since 1995 by CN6" database.  The arrivals of Germans in Spanish 
collective accommodation establishments are obtained from the "TOUR_OCC _NINRMW 
= Nights spent by non-residents – world geographical breakdown – monthly data" database.   

4. The empirical work 
The first thing we do in this section is to model individually the two series, which are the 
total number of arrivals of Germany in Spanish collective accommodation establishments, 
and the total Spanish wine exports (including sparkling wine) to Germany, monthly, from 
1995M1 to 2006M7.   
 

INSERT FIGURE 1 ABOUT HERE 
 
A visual inspection at the series (in Figure 1) clearly shows that the two series present a 
seasonal component, which is changing over time. Dealing with seasonality is a matter that 
is still controversial. Deterministic approaches based on seasonal dummy variables are 
discouraged in this case in view of the changing seasonal patterns. A standard approach 
here is to perform a test of seasonal unit roots against the alternative of stochastic stationary 
behaviour. The most commonly-used method when dealing with monthly data is the one 
proposed by Beaulieu and Miron (1993), which is basically an extension of the Hylleberg, 
Engle, Granger and Yoo (HEGY, 1990) method to the monthly case. A drawback of this 
approach is that it is restricted to the case of I(1) and I(0) specifications and thus, it does not 
take into account fractional alternatives. Therefore, we also perform an alternative method 
(Robinson, 1994) that is nested in the fractional seasonal model of the form: 

...,2,1,)1( 12 ==− tuyL tt
d

 , 
where the (seasonal) unit root corresponds to the case of d = 1.4 Though we do not report 
the results in the paper, we perform both Beaulieu and Miron (1993) and Robinson (1994) 
approaches, and we found in both cases strong evidence of unit roots with respect to the 
two series. Thus, since the two series are based on logarithm transformations, in what 
follows we work with the monthly growth rate series, which is just the monthly first 
differences of the log-transformed data. 
 

INSERT FIGURE 2 ABOUT HERE 
 
 Figure 2 displays the two monthly differenced log-transformed series with their 
corresponding correlograms and periodograms. It is observed that the two series may now 
present a stationary behaviour. 

                                                           
4 See Gil-Alana and Robinson (2001) and Gil-Alana (2002, 2005) for descriptions of 
seasonal fractional models. 
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4.1 Univariate results 
First we examine individually each series to check if they are truly stationary I(0). Here we 
employ a simple version of Robinson’s (1994) univariate tests, which is based on the 
model, 

...,2,1,)1( ==− tuyL tt
d

    (11)  
with I(0) ut. This method consists of testing the null hypothesis of 

oo ddH =: ,     (12) 
in (11) for any real value do. Thus, the unit root null hypothesis corresponds to  

1: =dHo ,      (13) 
while d = 0 corresponds to the stationary I(0) case. This method has some advantages 
compared with other more classic approaches of testing unit roots (Dickey and Fuller, 
1979; Phillips and Perron, 1988; or any of its recent developments, Elliot et al., 1996; Ng 
and Perron, 2001, etc.). The most obvious one is clearly the fact that the latter approaches 
are too restrictive in relation with the order of integration since only I(0) and I(1) 
specifications are taken into account. Moreover, these methods are based on autoregressive 
(AR) alternatives, which in the simplest form, can be expressed as: 

,)1( tt uyL =− ρ      (14) 
testing the null of: 

,1: =ρoH      (15) 
in (14), and leading to a non-standard limit distribution, unlike what happens in Robinson, 
(1994) where the limit distribution is standard normal. Fractional and AR departures from 
(13) and (15) have very different long run implications. In (11), yt is nonstationary but non-
explosive for all d ≥  0.5. As d increases beyond 0.5 and through 1, yt can be viewed as 
becoming “more nonstationary”, but it does so gradually, unlike in case of (15) around 
(14). The dramatic long-run change in (14) around ρ = 1 has the attractive implication that 
rejection of (15) can be interpreted as evidence of either stationarity or explosivity. 
However, rejection of the null does not necessarily warrant acceptance of any particular 
alternative and they can be consistent against many of the numerous other types of 
departure (Robinson, 1993). On the other hand, the approach employed here applies equally 
to any real null hypothesized value of d and the same standard, null and local limit 
distribution theory obtains. This is also in sharp contrast to asymptotic theory for statistics 
directed against AR alternatives, where, for example, different null theory obtains for I(2) 
than for I(1) processes. 
 We use Robinson’s (1994) approach, testing Ho (12) in model (11) for do-values 
from -1 to 2 with 0.01 increments. Table 1 presents the values of do where Ho (12) cannot 
be rejected at the 5% level, for the two series assuming that ut in (11) is first white noise, 
and then allowing for some type of weak dependence structure, in particular, AR(1) and 
Bloomfield-type disturbances.5 Moreover, we also permit the inclusion of an intercept 
and/or a linear time trend, and thus, we report the results for the three cases of no 
regressors, an intercept and an intercept with a linear trend. 
 

INSERT TABLE 1 ABOUT HERE 
 

                                                           
5 The Bloomfield (1973) model is a non-parametric approach of modelling the I(0) 
disturbances that produces autocorrelations decaying exponential as in the AR(MA) case. 
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 Starting with the arrivals, the first thing we observe in Table 1 is that the two null 
hypotheses of d = 0 and d = 1 are both rejected in practically all cases, and the non-
rejection values of d are constrained between these two values. We also display in the table 
the value of d producing the lowest statistic (in absolute value). That value should be an 
approximation to the maximum likelihood estimate of d since Robinson’s (1994) method is 
based on the Whittle function, which is an approximation to the likelihood function. We 
observe that d is equal to 0.54 in case of white noise disturbances, and it is slightly higher 
for autocorrelated ut. However, a very different picture is obtained for the export series. 
Thus, if ut is white noise, d seems to be slightly above 0, and if autocorrelation is permitted, 
the null of I(0) stationarity cannot be rejected. Thus, it seems clear that the arrivals present 
a stronger degree of association across time and thus, a higher degree of persistency than 
the corresponding export series. 
 The results presented so far may be biased because of the presence of a structural 
break in the data. (See, again Figure 2). Granger and Hyung (1999), Gourieroux and Jasiak 
(2001), Diebold and Inoue (2001) and others showed that I(d) models and structural change 
are issues which are highly connected. Thus, we also perform another recent procedure 
(Gil-Alana, 2007) that permits us to estimate the fractional differencing parameters and the 
coefficients associated to the linear trend, along with the time of the structural break in a 
model given by: 

btt
d

t11t T,...,1t,ux)L1(;xty 1 ==−+β+α=   (16) 

,,...,1,)1(; 222 TTtuxLxty btt
d

tt +==−++= βα  (17) 
where the α's and the β's are the coefficients corresponding to the intercept and the linear 
trend; d1 and d2 may be real values, ut is again I(0) and Tb is the time of the break that is 
supposed to be unknown. Note that the model in (16) and (17) can also be written as: 

,T,...,1t,u)d(t~)d(1~y)L1( bt1t11t1t
d1 =+β+α=−  (18) 

,T,...,1Tt,u)d(t~)d(1~y)L1( bt2t22t2t
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where ,1)L1()d(1~ id
it −=  and ,t)L1()d(t~ id

it −=  i = 1, 2. 
 The procedure employed here is based on the least square principle and is similar to 
the one proposed by Bai and Perron (1998) for the case of stationary I(0) processes. First 
we choose a grid for the values of the fractionally differencing parameters d1 and d2, for 
example, dio = 0, 0.01, 0.02, …, 1, i = 1, 2. Then, for a given partition {Tb} and given initial 
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function, we have RSS(Tb; 
)1(

o1d , 
)1(
o2d ), and minimizing this expression across all values of 

d1o and d2o in the grid we obtain 
).d,d;T(RSSminarg)T(RSS )j(

o2
)i(

o1b}j,i{b =
 Then, 

the estimated break date, kT̂ , is such that 
)T(RSSminargT̂ im...,,1ik ==

, where the 
minimization is taken over all partitions T1, T2, …, Tm, such that Ti – Ti-1 ≥ |εT|. Then, the 
regression parameter estimates are the associated least-squares estimates of the estimated k-

partition, i.e., }),T̂({ˆˆ kii α=α  }),T̂({ˆˆ
kii β=β  and their corresponding differencing 

parameters are }),T̂({d̂d̂ kii =  for i = 1 and 2. Several Monte Carlo experiments 
conducted in Gil-Alana (2007) show that this procedure performs relatively well even with 
small samples. This procedure can be easily extended to the case of multiple breaks. 
However, for the validity of the type of long-memory (fractional integration) model we use 
in this application it is necessary that the data span a sufficiently long period of time to 
detect the dependence across time of the observations; given the sample size of the series 
employed here, the inclusion of two or more breaks would result in relatively short sub-
samples, therefore invalidating the analysis based on fractional integration. 
 

INSERT TABLE 2 ABOUT HERE 
 
The results based on the above approach are displayed in Table 2. Starting with the arrivals, 
we observe that the break date takes place at 2001M1, which is surprisingly a few months 
earlier than the September 11th attack in the U.S., and this happens for the two cases of 
white noise and AR(1) disturbances. If ut is white noise, the orders of integration are 0.58 
and 0.21 respectively for the first and second sub-samples. If ut is AR(1) the orders of 
integration are slightly higher in the two sub-samples though again decreasing after the 
time break. If we concentrate now on the exports we observe that the break date occurs two 
months later than in the previous case (2001M3) and the orders of integration are 0.26 and -
0.04 with uncorrelated errors and 0.31 and 0.02 with AR(1) disturbances. 
The finding of the break in the arrivals at 2001M1 may be explained by the fact that during 
2000 the German economy slowed down significantly after the bursting of the technology 
bubble at the end of 1999.  Thus, from the beginning of 2001 there was a significant 
decrease in German international travel activities, in particular to Spain, the most important 
travel destination of Germans (Provincial Tourist Board of the Costa del Sol, 2003).  
In sum, the results presented so far indicate that the two series display different orders of 
integration, independently of the inclusion or not of a structural break. In what follows we 
consider a bivariate set-up that solves the potential problems of unbalanced orders of 
integration in standard time series regression frameworks as is the case in the present work.  

4.2 Multivariate results 
In this section we look at the multivariate model. This is important if we want to determine 
the effect of structural shocks on the dynamic path of travelling and export trade variables. 
The bivariate model is estimated following the procedure in Gil-Alana (2003a). This 
method is briefly described in Appendix A and present two main advantages. First, it is an 
extension of the univariate tests of Robinson (1994) to the multivariate case and thus, 
similarly to the univariate case, we do not need to impose a priori any assumption about the 
order of integration of the series as is the case with standard VAR models. Second, with 
respect to the univariate case the orders of integration are estimated more efficiently since it 
makes use of additional information from the cross dependencies between the variables. 
 We estimate the orders of integration from the reduced form model (7), which, in 
this bivariate case, becomes: 
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  (20) 
where y1,t refers to the arrivals monthly growth series and y2,t is the monthly growth rate of 
exports, and test the null hypothesis: 

,d)d,d()d,d(d:H o
T

o2o1
T

21o ≡=≡    (21) 
in (20) for (d1o, d2o)-values from -1 to 2, with 0.01 increments, with εt = (ε1,t, ε2,t)T assumed 
to be first a white noise vector process, and later a VAR(1) specification. In order to avoid 
the inclusion of deterministic terms in (20) both series are mean-substracted before the 
implementation of the procedure. 
 

INSERT FIGURES 3 AND 4 ABOUT HERE 
 
Figures 3 and 4 display the region of (d1o, d2o)-values where the null hypothesis (21) 
cannot be rejected at the 5% level, letting the residuals to follow first (in Figure 3) a white 
noise vector process, and, in Figure 4, a stationary VAR(1) specification. Starting with the 
white noise model, we observe that the results are completely in line with the univariate 
ones. Thus, d1, the order of integration of the number of arrivals is constrained between 0.5 
and 0.7, while d2, the order of integration of the export series is strictly above 0, widely 
ranging between 0.05 and 0.45. If we permit a VAR specification on the differenced series, 
the values of d1 range between 0.5 and 1.2, while those of d2 are constrained between -0.1 
and 0.3. 
 Table 4 identifies the estimates of the orders of integration of the two series, which 
are the values of d1 and d2 producing the lowest statistics in the multivariate procedure. We 
observe that if ut is white noise, the values are 0.54 and 0.18 respectively for the arrivals 
and exports. Imposing a VAR(1) specification, the values become 0.70 and 0.04. 
 

INSERT TABLE 4 ABOUT HERE 
 
 The next step in our analysis is to report the associated impulse response function 
of exports to a shock in the travelling series. For this purpose we employ the identification 
strategy described in Section 2, which, for the bivariate case is fully presented in Appendix 
B. 
 

INSERT TABLE 5 ABOUT HERE 
 
 Table 5 displays the cross impulse responses of the effect of 1-unit shock in the 
growth rate of travelling on the growth rate of exports according to the two specifications 
described above, that is, the one based on white noise and the VAR(1) model. We observe 
that according to the white noise specification, an increase in travelling produces a negative 
initial impact though it becomes positive for the following period and then, start decreasing 
fast. On the other hand, if we employ the VAR(1) specification, which seems to be a much 
more realistic assumption, the initial impact is positive and then decreases at a lower rate 
than in the previous case of white noise disturbances. One drawback of our study is that we 
do not derive the confidence bands associated with the impulse response functions. 
Confidence intervals are typically derived through bootstrapping or Monte Carlo 
simulations from the error terms given the distribution of the parameters in the model. 
However, though we do not provide any evidence based on confidence intervals, the fact 
that the coefficients associated to the fractional VAR model were all statistically significant 
suggests that the latter parameterization should provide a more realistic picture of the 
relationship between the two variables, implying that travelling produces a positive effect 
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on exports at least for the case of the Spanish wine exports to Germany with respect to the 
German travellers to Spain. 

5. Comparision of results to other studies 
Our results imply that, for the more realistic case of the VAR(1), in the event of a shock in 
travelling almost 10% of its effect on exports remains in the following period, though then 
decreases to 2.76%, 0.79%, 0.33% etc. (see Table 5). Overall, the total effect sums up to 
14.7% over the tracked 20 months. However, 90% of this total effect is already realised 
after four months, and 95% of it after 9 months. These results seem to be in line with those 
obtained by Fischer and Gil-Alana (2007) who find (using long memory regressions and 
very similar monthly growth rate data) that the tourism-trade effect lasts two months (in the 
case of white noise disturbances) and 9 months in the case of Bloomfield (p = 1) 
disturbances.  

6. Concluding comments 
In this article we have examined the relationship between international trade and travelling. 
For this purpose we have focussed on a particular case study, analyzing the connections 
between the exports of Spanish wines to Germany with the total number of German 
travellers to Spain. We have employed a methodology based on fractional vector 
autoregressive models, which is more general than the standard VAR approach in the sense 
that we do not restrict the series to be I(0) or I(1) but I(d) for any real value d. Starting from 
a structural model we have derived the conditions to identify the parameters from the 
reduced form model, which is basically a generalization of the standard I(0)/I(1) VAR case. 
The impulse response functions are then immediately obtained. 
 The series under analysis were the exports of Spanish wine to Germany and the 
total number of arrivals of Germans to Spain, monthly, from 1995M1 to 2006M7, both in 
logarithm form. Due to the nonstationary seasonal nature observed in the two series, first 
seasonal differences were adopted, working then with the monthly growth rates. The 
univariate work showed that the two series display different orders of integration. Thus, the 
arrivals present an order of integration which is constrained between 0.5 and 1, while the 
degree of integration of exports is slightly above 0. The multivariate work confirms that 
result and the impulse response analysis suggests that a positive shock in the arrivals tends 
to increase the exports to a certain level, decreasing then slowly the effect in the long run.  
 The obtained results are in line with earlier studies and thus add to the literature 
dealing with the tourism-trade relationship. While econometric findings in themselves 
cannot incontestably prove that a positive relationship between international travel 
activities and resulting trade flows exists in reality, the increasing empirical results clearly 
suggest that the existence of such a link may not be unlikely, at least for some products and 
in some countries. Further work in this field now needs to aim at establishing a theoretical 
economic framework, which can contribute to explain the existence of the tourism-trade 
phenomenon.  
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Appendix A 
A simple version of the procedure proposed in Gil-Alana (2003a,b) consists of testing the 
null hypothesis: 

,),...,,(),...,,(: 2121 o
T

nooo
T

no ddddddddH ≡=≡  (A1) 
for any real vector do, in the model given by (7) where εt is supposed to be an I(0) vector 
process with spectral density function F(λ) that is positive definite. Thus εt may be white 
noise but it also allows us to include VAR structures. To allow for some degree of 
generality, let us suppose that εt in (7) is generated by a parametric model of form: 
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where wt is white noise and W is the unknown variance-covariance matrix of wt. The 
spectral density matrix of εt is then 
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 and w* means the complex-conjugate transpose of 
w. A number of conditions are required on A and fε when deriving the test statistic; their 
practical implications being that though εt is capable of exhibiting a much stronger degree 
of autocorrelation than multiple ARMA processes, its spectral density matrix must be finite, 
with eigenvalues bounded and bounded away from zero. In Gil-Alana (2003a) it is shown 
that a Lagrange Multiplier (LM) test of Ho (A1) in (7) takes the form: 
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where the line over W denotes complex conjugate, and f~  is the spectral density matrix of 
ε~ : 
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where T* is a compact subset of q-dimensional Euclidean space. Extending the conditions 
in Robinson (1994), Gil-Alana (2003a) shows that: 

.~ 2 ∞→→ TasS nd χ    (A5) 

Appendix B 
We consider the following structural bivariate model: 
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 (B1) 
where, initially, u1,t and u2,t are assumed to be serially uncorrelated, mutually orthogonal 
structural disturbances, whose variances are normalized to unity. Note that this model can 
be expressed as: 
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Considering now the transformed disturbances: 
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and using the Binomial expansions in the fractional differencing polynomials in the left-
hand-side of (B1), we obtain  
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 and Г(x) stands for the Gamma function 
and di, i = 1, 2 are the orders of integration of the two series. Substituting (B3) into (B4):  
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where the impulse response coefficients are: 
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Appendix B.1: Identification in a pure vector fractional 
model 
From the reduced-form system: 
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  (B7) 
we can obtain the estimates of d1 and d2 under the assumption that εt is a white noise vector 
process. Using now (B2) and (B7): 
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implying that 
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Note that in this context we have three equations (B8-B10) for seven unknowns (a, b, c, d, 
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The new system of equations is still not identified, as there are only three equations 

for four unknowns. One possibility is to assume that one of the coefficients (a, b, c or d) is 
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equal to 0. For example, b = 0 implies, according to (B6), that a structural shock to y2t (u2t) 
has no effect on y1t neither contemporaneously nor in the long run. Similarly, if c = 0, a 
shock to y1t will have no effect on y2t. This is a plausible assumption in some cases. 
Alternatively, (Blanchard and Quah, 1989) we can impose the restriction: 

∑ =
∞

=0

)2,1( 0
j

jφ
,  or    

.0
0

)1,2(∑ =
∞

=j
jφ

   (B11) 
Combining the previous expression with (B11) the system is now completely 

identified and the impulse response functions can easily be obtained. 

Appendix B.2: A (2x1) vector fractionally autoregressive 
model 
Here, we extend the structural model (B1) to the case of weak parametric autocorrelation in 
ut. In particular, we consider the case of a VAR(1) system for ut. Thus, the structural model 
is now (B1) with 
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where v1,t and v2,t are serially uncorrelated and mutually orthogonal with unit variance (i.e., 

12211 == vv σσ  and 
v
12σ  = 0) and with all the roots lying outside the unit circle. First, 

we describe the impulse response functions. Assuming that ut is stationary, (B12) can be 
written as: 
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where Cij(L), i, j = 1, 2 are polynomials of infinite order in L. From (B2) and (B13): 
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Hence, the model becomes: 
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Substituting now wt from (B14) into (B15) we obtain 
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where the impulse response functions are: 
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Appendix B.3: Identification in a VAR fractional model 
The reduced-form model is now (B7) with 
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and using again any of the parametric procedures for vector fractional integration we can 
obtain estimates of d1 and d2, ξ11, ξ12, ξ21 and ξ22, along with the coefficients of the 

variance-covariance matrix of wt, i.e., ,11
wσ  

w
12σ  and .22
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 Identification follows here the same lines as in the previous case, noting that 
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implying three equations of the same form as in the white noise case, and that 
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Thus, we add four equations with four unknowns, so the same restrictions as in the previous 
case apply here. 
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Tables and Figures 
FIGURE 1 

Log-transformed series with their corresponding correlograms and periodograms 
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.08 for the series used in 
this application. The periodograms are computed based on the discrete frequencies λj = 2πj/T. 
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FIGURE 2 

Monthly growth rate series with their corresponding correlograms and periodograms 
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The large sample standard error under the null hypothesis of no autocorrelation is 1/√T or roughly 0.08 for the series used in 
this application. The periodograms are computed based on the discrete frequencies λj = 2πj/T. 
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TABLE 1 

Testing the order of integration in the univariate time series 

ARRIVALS No regressors An intercept A linear time trend 

White noise [0.47 (0.54) 0.63] [0.47 (0.54) 0.63] [0.47 (0.54) 0.64] 

AR (1) [0.62 (0.73) 0.87] [0.61 (0.72) 0.87] [0.61 (0.72) 0.87] 

Bloomfield (1) [0.65 (0.80) 1.03] [0.64 (0.80) 1.02] [0.64 (0.80) 1.02] 

EXPORTS No regressors An intercept A linear time trend 

White noise [0.09 (0.19) 0.33] [0.09 (0.18) 0.31] [-0.07 (0.08) 0.27] 

AR (1) [-0.14 (0.06) 0.30] [-0.14 (0.06) 0.27] [-0.12 (0.02) 0.12] 

Bloomfield (1) [-0.06 (0.10) 0.33] [-0.04 (0.08) 0.27] [-0.09 (0.03) 0.13] 

 
TABLE 2 

Estimates of the fractional differencing parameters with a single structural break 

First sub-sample Second sub-sample 
ARRIVALS Tb 

d1 α1 β1 d2 α2 Β2 

White noise 2001M1 0.58 0.0150 
(0.168) 

0.00016 
(0.051) 

0.21 -0.3972 
(-5.319) 

0.00408 
(5.213) 

AR (1) 2001M1 0.65 -0.0168 
(-0.127) 

0.0042 
(1.198) 

0.43 -0.5371 
(-5.279) 

0.00534 
(4.947) 

First sub-sample Second sub-sample 
EXPORTS Tb 

d1 α1 β1 d2 α2 Β2 

White noise 2001M3 0.26 0.2720 
(2.132) 

-0.0074 
(-2.189) 

-0.04  0.2017 
(2.066)  

-0.0021 
(-2.116) 

AR (1) 2001M3 0.31 0.2428 
(1.918) 

-0.0049 
(-1.920) 

0.02 0.2276 
(2.028) 

-0.0074 
(-1.943) 

t-values in parenthesis. 
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FIGURE 3 

(d1,d2)-values where Ho cannot be rejected at the 5% level for white noise ut. 
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FIGURE 4 

(d1,d2)-values where Ho cannot be rejected at the 5% level for VAR(1) ut 
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TABLE 4 

Estimates of the orders of integration in a multivariate framework 

Disturbances / Order of Int. d1 (Arrivals) d2 (Exports) 

White noise 0.54 0.18 

VAR (1) 0.70 0.04 
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TABLE 5 

Cross impulse responses of travelling on exports 

Time periods White noise VAR (1) 

1      -0.0248 0.0979 

2 0.0204 0.0276 

3 0.0018 0.0079 

4 0.0007 0.0033 

5 0.0004 0.0018 

6 0.0002 0.0013 

7 0.0002 0.0010 

8 0.0001 0.0009 

9 0.0001 0.0007 

10 0.0001 0.0007 

11 0.0001 0.0006 

12 0.0001 0.0005 

13 0.0000 0.0005 

14 0.0000 0.0005 

15 0.0000 0.0004 

16 0.0000 0.0004 

17 0.0000 0.0004 

18 0.0000 0.0004 

19 0.0000 0.0003 

20 0.0000 0.0003 
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