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ABSTRACT

The specification and estimation of models of consumer and producer demand with kink
points are considered. The presence of kink points divides the demand or production
schedule into different regimes. Our approach utilizes the concept of virtual
prices. The virtual prices transform binding quantities into nonbinding ones and
provide a rigorous justification for structural change in the observed demand func-
tions across regimes. The comparison of virtual prices with market prices deter-
mines regime occurences. An application to energy demand in Indonesian manufacturing
firms based on the translog cost function is provided,
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1. Introduction.

A number of recent studies (Pitt, 1983a; Deaton and Irish (1982); Strauss

(1983)) have used household level data to estimate demand relationships and firm-

level data to estimate the derived demand for inputs (Pitt, 1984). These micro data

sets are often from developing countries where poor infrastructure and market

separation provide price variability in cross-section. Micro data offer a number of

important advantages over aggregated data. For example, household age and sex com-

position are considered major determinants of expenditure patterns but their effects

are not easily measured with aggregated data. Unfortunately, many studies using

micro data suffer from the lack of an unrestrictive and theoretically consistent

approach to dealing with a common attribute of these data, the non- (or otherwise

bounded) consumption or production of goods by households or firms. With the in-

creased availability of micro data it is important that this econometric problem be

resolved so that the interpretation of results is unclouded by econometric incon-

sistency.

Zero corner solutions are the special case of a kink point which occurs on the

boundary of the choice set of a consumer or producer. Kink points may occur for

other reasons, such as block pricing or rationing. Kink points are usually atoms in

probability space and hence, for econometric analysis, imply limited dependent vari-

ables. However, the estimation of theoretically consistent demand or production

structures differs from the well-known limited dependent variable models of Tobin

(1958) and Amemiya (1974) in that these structures involve complex structural inter-
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actions and cross-equation restrictions.

Recently, Wales and Woodland (1983) have considered the problem of estimating

consumer demand systems with binding non-negativity constraints. Their econometric

model was derived directly from a random utility function maximized subject to a

budget constraint. As is well-known, demand equations can also be derived from an

indirect utility function or cost function by application of Roy's identity. Fur-

thermore, any demand system which adds up, is homogeneous of degree zero and has

symmetric, negative definite compensated price response is integrable into a

theoretically consistent preference ordering (Hurwicz and Uzawa, 1971). This dual

approach has proved advantageous in practice. It is easier to specify demand, cost

or indirect utility functions than direct utility functions. Systems of demand

equations are easily derived from popular flexible functional forms, such as the

translog. The dual approach has a particular advantage in the specification and

estimation of multiple input-multiple output production structures (McKay, Lawrence

and Vlastrin, 1983; Weaver, 1983).

In this paper, we propose a unified approach to the estimation of demand sys-

tems with limited dependent variables. Our approach can estimate demand system

derived directly from a utility function or indirectly through duality. Contra-

dicting the claim of Wales and Woodland (p. 273) that the indirect utility approach

is inappropriate for dealing with non-negativity constraints, we show that such an

approach is not only possible but also useful. Our approach is in the tradition of

the theory of consumer demand under rationing set forth in Houthakker (1950-51),

Pollak (1969, 1970), Howard (1977), Neary and Roberts (1980), and Deaton (1981), and

utilizes the concept of virtual prices originated by Rothbarth (1941).



-3-

2. The Consumer's Problem With a Convex Budget Set.

Convex budget sets result naturally from binding non-negativity constraints but

also from quantity rationing and increasing block pricing. All of these sources of

convexity can be analyzed within a common framework. Consider the case of two goods

with non-negativity constraints and increasing block pricing for the first good

(Figure 1). The marginal unit price for quantities of xi less than or equal to

x (1) is P11i and p12' (P12 > Pl )'  for quantities greater than x,(l). With

income M, the extended budget line AB is Pllx 1 + P2X2 = M and the budget line

BC is P1 2x1 + P2 x2 = M + (p12 - p11 )x1(l). The point B is a kink point as are

the non-negative boundary points A and C. Quantity rationing with ration xl(1)

can be regarded as the special case of pl2 = ~.

FIGURE 1.

Two-goods case with increasing block price on x1

A

B

C

0 x 1(l) xi

In the general multicommodity case, every commodity may be subject to increas-

ing block pricing. For commodity j, assume there are I.(I > 1) different block

prices pjl < pj2 < ... < Pj corresponding to knots xj(l),...,x.(Ij-1), x1 (i)

< x1 (i+l) for i = 1,...,Ij - 2. The case I = 1 is the standard single price

situation. We adopt the convenient conventions x.(0) = 0 and xj(Ij) = o0 for

notational simplicity. The budget segmentsare plilx1 + P2i2x 2 + ... + Pmixm =

M if x1 (i -
1 ) < x1 <x(i 1 ) ,...,xm(im-) < x, m xm(im), whereMili 2 .. im

x2
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i .-1
Mi. .. = M + : 3 (P p)x()

j1'2"1 0m =1 1 jZ+1 ji 3

Let U(x1 ,...,x ) be a utility function which is continuously differentiable,

increasing and strictly quasi-concave. The utility maximization problem is

max U(x1 ,9 ... ,xm)

Xl,...,Xm

subject to

j=l Pji i < M i i = 1 I.. ;

(2.1)
xj > 0, j = 1...,m
3-

where

i.-1
(2.2) M. = M + E=1 1 (pj)+1 X -W

This utility maximization problem provides the general framework for the demand

analysis of this paper. It includes as special cases quantity rationing and non-

negativity constraints. The consumer problem with binding non-negativity constraints

and a single price for each commodity is simply

(2.3) Max U(Xl,...,xm)
m

subject to J=1 pjxj = M

x , j = l,...,m.
J -
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3. Regime Criteria and Virtual Prices.

For econometric analysis it is necessary to determine the probability that an

optimal solution will occur at any kink point (demand regime), given the values of

the explanatory variables. For two goods, these conditions are readily obtained

diagrammatically. Burtless and Hausman (1978) and Hausman (1979) have considered

the optimal solution to the consumers' problem with two goods and a convex budget

set based on the location of indifference curves. For the general case of m goods,

we derive below regime switching criteria using both Kuhn-Tucker conditions and

virtual prices.

First, consider the consumers' problem with only binding non-negativity con-

straints (2.3). Assume that the first a goods are not consumed, i.e., x* = 0,
1

i = 1,..., and xt > 0, i = +l,...,m where x* = (x*, x*, x*,x,* 0+ x* )

denotes the demanded quantity vector. The Lagrangean function for this problem is

(3.1) L = U(x1,...,x m) + X(M - m= pjxj) + Ez= T j
j=l P Xjj 3=13jxj

where x and p's are Lagrangean multipliers. The Kuhn-Tucker conditions that

characterize this solution x* are

(3.2) Ux - APi +  = 0, > 0, i =axi  ...,

U(x*) 1(3.3) a(x* - p = 0, j= ,...,max 3

(3.4) j=+1 Pjx = M > 0.

Wales and Woodland use the inequalities,

(3.2)" 1U* - p < 0, i = 1,...,£ax. i-
1

and equations (3.3) and (3.4) to determine-the choice of regime. Under some sto-

chastic utility function specifications they derive the likelihood function for their
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model. The inequalities (3.2) do not have much intuitive content. Below, we demon-

strate that the use of virtual prices provides a simple, intuitive interpretation of

regime criteria and a deeper insight into the problem.

Virtual prices are simply those prices which support a vector of demands. Neary

and Roberts have shown that if the preference function is strictly quasi-concave,

continuous and strictly monotonic, any allocation can be supported with virtual

prices. Strict monotonicity also implies that support prices will be strictly

positive. The virtual price for good i, gi, at xt can be defined as

Sau(x*)
i ax /

(3.5)
= 9U(x*) / DU(x*)
= m x i  x ,....

For the remaining goods, the virtual price Sj at x* is the observed price pj

for j = £+l,...,m. Hence, the Kuhn-Tucker conditions (3.2) are equivalent to the

inequalities

(3.2) O <  i = 1,...

which compares the virtual prices of the nonconsumed goods with their corresponding

market prices. The virtual price vector E, ') = (51"'"m) with income M,

supports the quantity vector x*, which is the solution to the unconstrained prob-

lem max {U(x)IE|x = M} without non-negativity constraints. Thus, virtual prices
x

are shadow prices. The goods i, i = 1,...,£, are not consumed because their

market prices exceed their corresponding shadow prices.

Before analyzing the problem (2.1), it is instructive to consider the two-goods

case with a single kink point and without any binding non-negativity constraints.

Consider the regime for which the optimum occurs at the kink point x, x =

(x1(1), x2 ) where x2 = (M - P11x1 (1))/p 2 (see Figure 1). Consider the utility
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maximization problem,

max U(x1 , x2)
xl, x2

subject to

P11 + P2X2 M;
(3.6)

P12Xl + P2X2 I<M1

where M = M + (PI2 - P11)xl(1). The Lagrangean function is

L = U(x1 , x2 ) + x1 (M - P11x1 - P2x2 ) + X2 (M1 - P12 x1  P2x2 ).

The Kuhn-Tucker conditions that characterize the optimum regime at the kink point

x are

(37) ~aU(x)(3.7) ax 1 - 211 12 = 0,

(3.8) ~( - + 2 2 = 0,

(3.9) p11~ 1 + P22 = M, X1 > 0,

(3.10) P2X1 + P2X2 = M1' X2 > 0.

These conditions are not of direct use since these criteria are expressed as

equalities. Define a variable (l as

1 aU(x)
(3.11) 5 + 12 a•1

where x1  and A2 are solutions from (3.7)-(3.10). Equivalently,

(3.11)- l = pa2X /2ax1 ax2
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It follows that equation (3.7) can be rewritten as

(3.7)^ 1 +"--1 - 12 = 0.+l + 2 1 2

Equation (3.7)' implies that

(3.12) l -P11 2 x 1  P + 2  P1 2
and

(3.13) l - P12 
=  + X 11

As p12 > P11 , we have S1 > P11  and Pl2 >-  Thus, if the optimum occurs at

the kink point, it is necessary that pl 2 > El > pi1  That these inequalities are

sufficient conditions can be shown as follows. Define w as

(3.14) / = aP2/
2

Since p2 El > p11, where E = p ax/ = x) / w, there exists a
2 1~ ~ =1 P2 ax axx2  ax1

p [0, 1] such that El = P12 + (1 - l)P11. Define wl and w2 as

(3.15) Ml = u1

and

(3.16) w2 = (1 - v).

Obviously, w1  0, w2 > 0 and w = wl + w2. Thus we have

U(x) - =

x - 1P12 - m2 Pllax1

aUU() _ (wl + W2 )P2 = 0
ax2

P11X ( 1) + P2x 2 = M, )1 >- 0
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P12x1(1) + P2x 2 = M1, W2 > 0

which are the Kuhn-Tucker conditions which characterize x as the solution. Hence,

it can be concluded that the regime criteria which determine this regime are the in-

equalities

(3.17) Pll -1 - <P12*

From the constructions in (3.14) and (3.11), we have essentially that

(3.18) aU() p 03x2  P2

(3.19) U(x) 0.

Define an "income" C as

(3.20) C = M + ( - P11)x(1).

It follows that

(3.21) 1xl(1) + P2 x2 = C.

Thus the plane {(x I , x2 )ýi 1x1 + P2x2 = C} is tangent to the indifferent curve at

the kink point x, which is point B in Figure 1, and supports this kink point as

the solution given the price vector (5E' P2) and income C. The price 1I is the

virtual price for good 1 at the quantity x1 (1), and C is the corresponding

virtual income. The kink point is optimal because its virtual (shadow) price is

greater than the first block price but less than the second.

The comparison of virtual prices with market prices can select among regimes in

the general problem of the consumer with a convex budget set (2.1, 2.2). We state

the following results with detailed proof omitted:
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Theorem 1. Let x* = (x,...,x) be the demanded quantity vector. Consider

the general regime with the form:

*= *= =* =0;
1 2 £-1-

(3.22) x* = x (i ), x = X+l (i 1  ) . = x ( )
S£1 1 1+1 l1+1 1+1 Z'" 22-1 -1 2 2-1I

x (i2-1) < x* < x2(i ),. .. ,x(m - 1) < X* < x (i)£2 2 2 mm m mm

where 0 < < < m and for some i i .... , The necessary and suf-I1 k 2< mZ1' 1+ 1 m
ficient conditions for this regime's occurrence are:

Pj1 >- j(x*), j = 1, 2,...,9 -1;

(3.23) pjio < j(x*) iPjj(iý+) = 19' 1+1,..,2 - 1;
3 3

xj(i -l) < xj < x (i )  j = 2, 2+1,...,m,

where Ej(x*) is the virtual price of good j at the optimum point x*.

In principle, virtual prices can be constructed from either the direct or in-

direct utility functions. Consider the case where z goods are rationed at the

quantities x , i = i,...,z. With a utility function U(x , ... ,x ), a price vec-

tor p and income M, the constrained utility maximization problem is

(3.24) max U(xl,...,xz, x£+l,...,xm)
x

subject to x = x ,  i =,.

and p'x = M.

Implicitly, it is assumed that M > z=1 Pix? so that the problem is well posed.

The Lagrangean function is
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L = U(x) + X(M - p'x) + Z n.(x x. )7:1 1i(X 1

where A and the n's are Lagrangean multipliers. The solution x* of (3.24)

satisfies the first-order conditions:

aU(x*)_(3.25) -) i -n 0 x t =ax - 1 1aU(x*)(3.26) 9x xpj =0, j = R+l,...,m

(3.27) p'x* = M.

The demanded quantities x, j = R+l,...,m, of the unrationed goods can be solved
from (3.26) and (3.27) conditional on the rationed goods at x, i
from (3.26) and (3.27) conditional on the rationed goods at xi , i = l,...,J;

(3.28) x* = Dj(p+ *.Pm .M - z= p xx,...,x:(3.28) x i ZDj 1 m i= PiXilX ' ' ' ' ' x ) j = *+1,...,m

The equations (3.28) are the conditional demand equations for the unrationed goods.

The virtual prices j, j = 1,..., of the rationed goods at xa,...,xt are

(3.29)

-1 aU(x*) °.(x*)=3 A x.

DU(x ,...,x0, x~+1,...
= P /

Ill

° X*U(x ,...,x , x*+ ... ,x )

x m

for j = z+l,...,m. Substituting the conditional demand equations (3.28) into

(3.29), the virtual prices can be written as functions of the observed prices for

the unrationed goods, income and the rationed quantities:

(3.30) (x*) = (pP M; ,.,xo(3.30) j(x*) = j(p+l,.p MR; X,...,x)
m R j = I,...,,

where MR, MR = M - i=1, Pix, is the income remaining for expenditure on unra-

tioned goods. The virtual prices and the conditional demand equations as functions

of p, M and the kink points provide conditions for regime occurrence as in the

conditions (3.23).
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Virtual prices for the rationed goods can also be derived from unconditional

(notional) demand equations. The unconditional (notional) demand functions

Di(p, M), i = l,...,m, are the solutions to the unconstrained utility maximization

problem max {U(x)jp'x = M}. With the goods i rationed at quantities xi,

i = 1, 2,...,9, the virtual prices which support the commodity vector x* =

(x,...,x°, x*+ 1,...,x*) as an unconstrained utility maximum are characterized by

the demand relations:

(3.31) xi = Di(S1 ' 2'" ' p+1".' Pm' c), i = 1...,;

(3.32) x = D( E1' 2' ""' %', p1.' P, c), j = ...

where

(3.33) c = M + zcR (i - i)x7

k m
is the virtual income, and x + m px = c is the corresponding budgetis the virtual income, and ci=l •i + zj=+l p

tangent plane. The virtual prices Si of the rationed goods are solutions to the

equations (3.31) to (3.33). The virtual prices for the unrationed goods are the

market prices (Neary and Roberts). The virtual price approach allows for a wide

choice of functional forms because it does not necessarily require the specifica-

tion of the direct utility function. As we demonstrate below, the use of an in-

direct utility function representation of preference is also attractive.

The demanded quantities x, j = t+l,...,m for the unrationed goods satisfy

the conditional demand equations (3.28). With the introduction of virtual prices

i', i = 1,...,i for the rationed goods, x* satisfies the unconditional demand

equations,

(3.34) x = D ( "" * P+ ' m MR +  =1 x , j = +1,...,m
j Djl5 5'· , kl" P M i=l ii~
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where MR = M - =l pix?. By substituting the virtual price equations (3.30) into
S1 1i

(3.34), one obtains the conditional demand equations (3.28), Thus the conditional

demand equations can be derived from the unconditional demand equations via the

5/
virtual prices and vice-versa. As a function of prices p+,...,pm remaining

income MR and the rationed quantities x?, i = 1,.., , the demand equations

(3.34) can be interpreted as conditional demand equations conditional on x i ,

i = 1,..., .



-14-

4. Econometric Model Specification: Binding Non-NegativeConstraints Case.

Estimation of the notional demand equations requires the specification of a

functional form with a finite number of unknown parameters plus stochastic compo-

nents. These components reflect random preferences or other unexplained factors.

Let e be the vector of unknown parameters and cthe vector of random com-

ponents. The stochastic notional demand equations are

(4.1) qi = Di(v; e, e)

where v = p/M is a vector of normalized prices. These demand equations can be

derived either by maximizing the direct utility function subject to the budget con-

straint as in (2.3) or from an indirect utility function through Roy's Identity.

Let H(v; e, c) be an indirect utility function defined as

(4.2) H(v; e, e) = max {U(q; e, E)Ivq = 1}.
q

Applying Roy's Identity, the notional demand equations are

(4.3) qi= H(v; e, E) K v 3H(v; es E) i ,K
(4.3) q j=l jv i l

In the analysis of quantity rationing, Deaton (1981) has noted that it may be

difficult to analytically derive virtual price functions from most flexible func-

tion forms for the indirect utility function. For the case of binding non-negativ-

ity constraints, all of the restricted demands are zero rather than positive as in

the rationing literature. With zero restricted demands, the derivation of virtual

prices is considerably simplified as the denominator in Roy's Identity (4.3) drops

out of the virtual price functions. If demands for the first L goods are zero,

the virtual prices i are solved from the equations

0 = H(S'".. , v; , e)/av i i = 1,...,L(4.4)
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and the remaining (positive) demands are

(H(91""' 6 L, v9 ; e, e) /K aH( "" ' , v; e, e)(4.5) x. = / vSav j1 j av

i = L+1,...,K.

As an illustration of the notional demand approach, consider the translog in-

direct utility function of Christensen, Jorgenson and Lau (1975),

K 1K K K
(4.6) H(v; e, E) = z Invi + I-Z . E B Inv Inv + e. Invi=l 1 i= j i i =1 il i

where e is a K-dimensional vector of normal variables N(O, ).6/ A convenient

K K 7/normalization is = -1 and i . =i 0.- The notional share equations

derived from Roy's Identity are

a + .. Inv. + E.
(4.7) vq = -i+j=1 Dij i =1,..

K K
where D = -1 + E. z ..= Inv. Consider the regime for which the quantityi=1 j=1 1 j
demanded for one of the goods is zero and positive for all others, i.e., x1 = 0,

x2 > 0,..., xK > 0. The virtual price 1 as a function of v2,...,vK, is

in :K +Inv. + E)/1n~1  -(al + 2 1j Inv + E)/11

The remaining positive share equations are

Bil Kil.- a i+ K SBil)lnv + -ii 811 i j2 ( ij - BIj II 1 nv  -
(4.8) v.x. = .

1 i- 1 B • 01
rK.2 (1j) 1. l )lnv - (1 + 1 - 1ej=2 j 1 pj11 j 1 811 1

i = 2,...,K

where B.. = zK e... Note from the above-equations that E can be expressed as

functions of xi and El. The switching conditions for this demand regime are
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E 1 -(al +j=1 j Invj)

and x > O, i = 2,...,K.

Let f(E1) be the density function of c1 and g(E2,..., EK-lI' ) be the

conditional density function, conditional on "1. The Jacobian transformation

Jl(x, El ) from (e2'... EK-_1) to (x2 ,..., XK-1) which can be derived from

(4.8), is a function of x and cI . The likelihood function for this demand regime

for one observation is

+ K 1x Envj) 21) ""' K-1 l)f(l)d1-(aI +  j=1 Ij n)

where i i = 2 ,...,K-1 are functions of x and Fe from (4.8). Now consider

the demand regime in which the demands for the first two commodities are zero and all

remaining demands are positive. The virtual prices El and E2 as functions of

V3 ,...,v K are

where B

(4.9)

The ei ,

E2. The

-BK1n 1  [1 + 1. 3 Invj E
= -B - B

1n 2  2 + j=3 52j nVy

f= B 21 2 The remaining positive shares are
$21 ý22J

K
ai + Bi InS + B2 Ing + E B Inv. + E.

vix = X il 1 12 2 jK=3 'j J-1 + .1 ln51 + B2 ln 2 + z =3 .j lnvj

i = 3,...,K, can be expressed (from (4.9)), as functions

regime switching conditions are

i = 3,...,K.

of x, E, and

{E+ K
B1 I I nv -1 +  =3 j nvj iB > -Kl . "

E2 0 nv 2 + j=3 B2j 1nvj

Let n1 ] = B- 1 [1. Furthermore, let g(c 3",.', K-1lnl' n2) be the conditional

n2n 22
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density function of (e3'".. K-1 )  conditional on n1 and n2 , and f(n 1, n2)

be the marginal density of n, and n2 . The Jacobian transformation J2(x, nl' n2 )

from (3",..., K-1) to (x3 ,.., XK-1) can be derived from (4.9) and is a func-

tion of x and n1, n2 . The likelihood function for this regime for one observa-

tion is

2 s1 2( x  nl' n2) (3""' K- ll l' n2)f(nl' n2)dnldn2

s 1 I Inv , 1 -1 1 =3 + invi
where = - lnv - B j and E's are functions of x

22j=3 2j 2 nv
and nl' n2  derived from (4.9). The likelihood function for other regimes can

similarly be derived.

Let li(c) be a dichotomous indicator such that li(c) = 1 if the observed

consumption pattern for individual i is the demand regime c, zero otherwise.

Let zc(xi; e) denote the likelihood function for regime c for sample i. The

likelihood function for an independent sample with N observations is

N lI(c)
L = n•i= I [Zc(xi; e)]

i c 1
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5. The Likelihood Function of the General Demand System.

Consider a general (notional) demand system with m goods

(5.1) xi = Di(p 1 ' P2 " ' , Pm, M; e) + i, i = 1,...,m

where e is a vector of unknown parameters and ei  is the disturbance with zero

mean. The budget constraint implies that m.=i pici = 0. The disturbances ei ,

i = 1,...,m are correlated and are heteroscedastic. Let x* = (x*,...,x*) be the

observed demand quantity vector. Without loss of generality, consider the general

regime in Theorem 1. The criteria for the determination of this regime are the

conditions (3.23). The virtual prices 1' 2'"*' . 2-1 are determined by the

following equations:

£2-1
0 = Dj( 2""' 2z -1' P2 ... Pm MR + sk= l kk(k); e) + ,

j = 2,..., l- ;

(5.2) 2-1
xj(ij) = Dj(1 .2""' 2-1' P,....' ,m' MR + k 1  kxk(k); e) + sj.

j = £,""' 2-1

a2-1
where MR = M1 0...l l 2-  o l2' " k= Pk(i). The remaining demandedR 10001 0 -l 1 im k=£1 kXk(iK k)

quantities are

£2-1
x = Dj(, 2' ' £ 2 - ' ", ' . Pm' MR + k=1 kx ); e) + '.,

(5.3) 
2

j = £2' 12+1,...,m.

These equations provide an implicit function from the disturbance vector

(cl""' m-l ) to the vector (51' E2""' 2£2-1, 2 x* 2' 2+ l  x m- 1 )  As

mi=l Pii = 0, the equation x* is functionally dependent on the other equations
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and is redundant. A specified joint density function for (El'.., Eml) implies a

joint density function for (5 , •21' x*, x*2+..,m-), which can be

derived straightforwardly since the Jacobian matrix is easily derived from (5.2) and

(5.3). Let f(~ 1 " ' 2- ' x* , x* 2+1,.,Xm- 1 ) denote the implied joint density

function. It follows that the contribution of this regime to the likelihood func-

tion for an observation is

2-(i2 + 1) P(i 1 +1) P 1- 1,1 P1

S00 f- -00 2 2
P2 , Pn i0

C2 92 k 1 1 x*2+1 90''  xm-

dgd• 2 . . -2 m- 1

The evaluation of the likelihood function may be cumbersome and expensive if

there are integrals with dimensions more than two. It is an open question whether

computationally simple estimation methods can be derived.
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6. The Firm's Problems.

Our analyses, which have focused on consumer demand models, can be extended to

the analyses of kink points in production economics. The firm's problem differs

from that of the consumer in the constraints of the primal problem and the observ-

ability of profit but not utility. Kink points may occur because of binding non-

negativity constraints or inputs or outputs in a multiple input or output technology

or as a result of rationing or block pricing.

Consider the profit maximization problem subject to quantities constraints:

max p'q - r'x
(6.1) x, q

subject to F(q, x) = 0, q q > 0, >x >0O

where x and q are k x 1 and M x 1 vectors of inputs and outputs respectively,

and x and q are the upper quantity limits. The production function F is an

increasing function of q's and a decreasing function of x's. Other standard

regularity conditions on F such as differentiability and strict quasi-concavity

are assumed. To illustrate the construction of virtual prices from the production

technology F, let us consider a rather simple regime with x* = (0, x2,..., x*)'

and q* = (ql' q ",., qM)' where the first input is not utilized and the first

output is produced at the quota level. The Lagrangean function is

L = p'q - r'x + x(0 - F(q, x)) + d'q + p'x + 6'(q - q) + w'(R - x)

where p, p, a and w are vectors of Lagrangean multipliers. This regime is

characterized by the following Kuhn-Tucker conditions:

-r - aF( + h = 0, 0 ;

-r - F(q*, x*) = O, i = 2,... .K;
ri BX



aF(q*, x*)

p- ~aF(q * , x*) =,

PI-^-^-^

F(q*, x*) = 0,
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0, 6s > 0;

j = 2,...,M.

q* > 0, x* > 0.

Define the virtual price Edl for

at (x1 = 0, q1) as

input 1 and virtual price Ssl for output 1

S = aF(q*, x*)dl 3x 1
and

S•a3F(q*, x*)
^sl aq

Since F(q* x*) a F(q*, x* ) >
axl aql

It follows that 1 = rl - dl and 61 = P

characterized by

1 0 < xt < xpl >dl s 0 < q < ,

Pl s l 9'  0 < qt <qj
*1

.dl and E5s are strictly positive.

- sl. Therefore this regime is

i = 2,...,K

j = 2,...,M.

Input 1 is not used because the market price is too high and output 1 is prod-

uced up to the quota limit because the virtual price is not. This technique can be

easily generalized to other regimes.

The case of increasing block prices in inputs can be reformulated into the

framework (6.1). Consider the simple case of a single output x with production

function q = f(x). Assume the price of input x is rl if the purchased amount

is not greater than x((1) but a higher price r 2 for amounts in excess of x1(1).

Hence the cost c(x) is

and
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c(x) = rjX, , if xx < (1);

= r1x1 (1) + r 2 (x - x1 (1)), if x > x1 (1).

The problem max {pq - c(x)lq = f(x), x > 0} can be rewritten into an identical
x

problem with two perfectly substitutable inputs:

max pq - r1x1 - r2 x2
xl, x2

subject to q = f(x 1 + x2 ), 0 <x i <x 1 (1), x2 >0.

As the price of x1  is less than x2 , x1  will always be purchased first. x2  will

be purchased only if xl has been purchased up to its upper limit x1 (1). x1 (1) is

a kink point in this model.

Similarly, the decreasing block prices in outputs can also be formulated in

the framework (6.1). Consider a single output case that the output quantity q can

be sold at price pl if the quantity is not greater than the quota amount q(1);

however, quantities in excess of q(1) can only be sold at a lower price p2. The

revenue function will be

R(q) = p q  , if q <q(1);

= P1q(1) + p2 (q - q(1)), if q > q(l).

The profit maximization problem max {R(q) - rxlq = f(x)} can be rewritten indent-
x, q

ically as a model with two perfectly substitutable outputs:

max p1ql + P2q2 - rx

ql' q2, x

subject to q + q2 = f(x), 0 < ql < q(1), q2 > 0.

The quantity q(1) is a kink point in this model.
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Instead of the direct approach of profit maximization with a specified pro-

duction technology, one can also consider dual approaches through the specification

of profit or cost functions. Application of Shephard's lemma or the Hotelling-

McFadden lemma (see, e.g., McFadden [1978]) provides (notional) input demand and

output supply functions. Virtual prices for the kink points can be solved directly

from these functions. In the next two sections, the specification and estimation of

a translog profit and cost functions is described in order to clearly illustrate

this approach.
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7. Econometric Models With Translog Profit and Cost Functions: Corner Solution
Cases.

The variable translog profit function with fixed factors z = (Z1,...,ZL)' is

K+M 1 K+M K+M L1nn = E00 +K+M Invi + M IE+ M ijnv . nvj + L E 1n z
In = 00 i=l iO 1 2 i=l j=l ij 1 j Z=l O kInz

(7.1)
1 L L K+M L

+ L=l j=1 Y nj I nz. I + ZK  1 M l Inv. Inz .23k=1 =1 t j9i=l = 1lit 1

where v = r. i = 1,...,K and vi = i-K for i = K+1,..., M+K. For computa-1 1 1 1-K

tional tractability, random elements are introduced in the linear terms, as follows

K+M 1 K+M K+MK+M (". + Ei)lnv + E Z j= Inv InvjInn = a00 + Z i=l (aiO i i=l j=l a nvi nL 1 L L K+M L(7.2) + LC l nz + - L K n + + L + ' Inv. Inz=l YtO 22 j=l j=1 Yj Inz j i1 =1 1i2 i P

+ 0

where e = (Eo , E9l..., 'K+M) is assumed to be multivariate normal N(O, n). The

Hotelling-McFadden lemma implies that the notional cost shares of profit are

(7.3) - rx + M a Inv + E Inz + e i =,...,K
i j(7.3) 1 3 3l :I 2i

and the notional revenue shares of profit are

Piqi K+M L(7.4) = + n. + i nz + iK = 1  . M
(7 i+KO + j=l i+K,j j3 =1 i+K,t + Ei+K =

Virtual prices corresponding to zero inputs and outputs can be solved from the share

equations. Without loss of generality, consider the regime where the first two in-

puts are zero. The corresponding virtual prices are v* and v2, defined by the

following equations:

K+M L lnz +0 = l + all Inv* + 12 Inv* + j=3 Clj nv + =l 1.nz l+ E
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K+M Lnz
0 = "20 + "21 1nv* + a22 In2 v3 a2j nij + =1 B2 z + • 2

The solutions are linear in c1 and e2:

1 VL/ I

+ EK+M lnv + L= lnz + E:
all a2 "10 + j=3 alj n +  =1 1 )Iz

K+M L
2 22a a20 + Cj=3 a2j 1nvj + 2=1 2 1nz + .

The remaining non-zero share equations are:

(7.5)

where s

- - 1  K+M Invj + ZL Inz + L
visi (all c2 010 +  j=3 clxj Inv~ + = Bl nzt + E

- (ail i2 K+M L nz
"21 222 20 +  j=3 a2j 1n + z=1 2 nz +  2

K+M L+ cEij I nv + =1l i Inz + e i = 3,...,K+M
j=3 and are linear in . The conditional profit function for

(-"', q')' and are linear in E. The conditional profit function for

this regime is

VKLI

InT = a00o + (al0 + El)lnv + (a20 + E2 )1nv2 + 'i=

1 2 2 n n 1 nv 2  K+M
+ - E. .. 1nvte v1ny4 z + E. 0 .,2 i=l j=l 1 j 1 j 2 i=l j=3 ij

(7.6)
1 K+M 2 1 K+M K+M+ 2 i=3 j=1 aij Invi 1 i=3 =3 ij

+ E Inz + I +L l nz Inz. ++ =l >O 9. 2 R91 j=1 j P I

+ E K+ML Inv. Inz +
i=3 Z=l Bi 1 9 0

which is nonlinear in el and E2 but linear in co , e i ,

first two regime switching conditions are

-1 - K+M LInv -c1 + iEK IXj Invj +
1nv ll c1 2  20 + j=3 j n +  =1

K+M L
nv2 21 a2212 20 + j=3 a2j Invy :+IE

3 (caO + i)lnvi

Invw Invj

Inv i lnvj

12 L_1 = 1 9.s 1 9.

i = 3,..,,K+M. The

*- -l
Bl Inzt .  all 12 E

2 1Inz "21 " 2 2 j



To guarantee that the estimated variable profit function is linear homogeneous in

prices, or equivalently that the estimated share equations are homogeneous of degree

zero, the following restrictions on parameters and disturbances must hold:

K+M K+M K+MK= l• 1 , ij 0, aij ji for all i, j; zr + 0i=l iO = j=l 3 iijij i = 0

K+Mfor all z; zi= = 0.

The latter equality implies that the stochastic components are statistically

linearly dependent. Therefore, one of the non-zero share equations can be deleted

in the formulation of the likelihood. Define the random variables wl and w2 as

Wl1 all a12 E1

,w2 "21 22j

Let f(E O ', 3 "..., SK+M-lll' w2) be the conditional density function, conditional

on wl and w2' and g(wl, w2) be the marginal bivariate density function. As
S3 3

the Jacobian of the transformation (cO' C3"", K+M-1) to (In, =,..,

vK+M-1 K+M-1 ) is unity, the likelihood function for this regime with one observa-

tion is

(7.7 0  3 S3 VK+M-1 SK+M-l 1(7.7) f(lnT *, -= ,..., - , 2)g(w, w2)d 1dw2
STr 2 1 2

clw Inv13where =
c2 Inv2

I I ,K+ML -r L
-1a + E,"0 j a.1 nv + Etj=3 13 j R=1

+K+M L
20 -+ i=3 a2i Inv i += 1

Likelihood functions for other regimes can similarly be derived, as well as the

likelihoods for cost functions.

The likelihood (7.7) utilizes both the share equations and the profit function

to derive the full information estimator. If only the share equations are used, the

k -ý -f %) %W M% % O
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estimation procedure is less efficient but the corresponding likelihood function is

simpler because share equations are linear in the disturbances. Nevertheless, the

likelihood function will still involve multivariate normal probabilities,
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8. An Application: Estimation of an Energy Cost Function.

In this section, we apply the econometric model set out above to the estimation

of a translog energy cost function. The production structure used in deriving energy

demand relationships parallels that of Fuss (1977) and Pindyck (1979). First, it is

assumed that the production function is weakly separable in energy inputs. Thus, the

cost-minimizing mix of energy inputs is independent of the mix of other factors.

Second, the energy aggregate is assumed homothetic in its components so that cost

minimization becomes a two-stage procedure: optimize the mix of fuels which make up

the energy aggregate and then choose the cost minimizing mix of the energy aggregate,

capital, labor, materials, and other factors. Here we will only estimate the energy

aggregator function from which interfuel substitution elasticities can be derived.

The data used in the estimation came from the raw data tapes of the annual

industrial surveys (Survey Perusahaan Industri) of Indonesia. The sample consists of

establishments manufacturing fabricated metal products, machinery and equipment

(ISIC classification 38). There are 1410 observations. Three fuels are identified:

(purchased) electricity, fuel oils and other fuels.8/

Local market price data for energy inputs were available for all firms. The

substantial spatial variation of prices characteristic of island Indonesia, as well

as the large sample size, make it possible to estimate price response from cross-

section data with reasonable precision.

All three fuels went unconsumed by a substantial number of firms (Table 1) and

many firms consumed only one of the three. Many firms in Indonesia use prime movers

or generate all or some of their electricity in-plant, which is why only 60% of

firms purchased electricity. We expect that fuel oils and other petroleum fuels,

which are used to power electric generators and prime movers, are close substitutes

for purchased electricity.

The (unobserved) price index for a unit of energy is the unit translog cost
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function

(8.1) In P = o0 + Z. a Inpi + I j a npi npE 00 i 0 1 2ij i j
where i, j = 1 (electricity), 2 (fuel oil) and 3 (other petroleum fuels), and

Pi is the price of the i t h- fuel. Randomness as well as firm specific character-

istics are allowed to influence demands by writing the parameters aiO as

(8.2) iO = iO + jij Cj + i i = 1, 2, 3

where Cj is the jth firm characteristic and e is a three-dimensional vector of

normal variables N(O, z). The firm characteristics C include dichotomous vari-

ables for Java/outside Java and urban/rural location and the year the establishment

began operation. The share equations corresponding to the cost function (8.1, 8.2)

are

(8.3) si = Yi + Ej Yj Cj + Ej .i Inpj + Ei  i 1, 2, 3

from which virtual prices for zero demands are readily solved for.

The maximum likelihood estimates of the parameters of the cost function, ob-

tained using the quadratic hill-climbing methods in GQOPT package of Goldfeld and

Quandt, are presented in Table 2. The asymptotic t-ratios reported in the table

suggest that all three firm characteristics are significant determinants of energy

demand. A likelihood ratio that supports this contention (x2 (6) = 354.13).

Table 3 provides estimates of interfuel (partial) fuel price elasticities. Own

and cross-price elasticities are fairly large in magnitude. Electricity is a sub-

stitute with both fuel oil and other fuels. Its large cross-price elasticities sug-

gest how close electricity is for alternative fuels. On the other hand, fuel oil

and other fuels are complements.
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TABLE 1

Sample Characteristics

Fuels used

Electricity only

Fuel oil only

Other fuel only

Electricity and fuel oil

Electricity and other

Fuel oil and other

Electricity, fuel oil and other

TOTAL

shares:

electricity

fuel oil

other fuels

mean

.381

.379

.240

Number of firms

97

167

14

108

196

386

442

1410

S.D.

.397

.379

.269

log prices:

electricity

fuel oil

other fuels

firm characteristics:

Java = 1

Urban = 1

Start-up year

.873

70.7

2.48

.207

5.62

.061

.867

.784

65.5

.339

.411

11.1
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TABLE 2

Parameter Estimates of the Translog

Energy Cost Functionab

Y10

Y11

Y12

Y1 3

Y20

Y21

Y22

Y23

"12

a22

22

012

log likelihood

Maximum likelihood
estimates

-1.3532

0.2613

0.2886

-0.0521

-4.7240

-0.1554

-0.1691

0.0236

-1.1361

0.6071

-0.2486

0.1940

1.0324

-0.1371

Asymptotic t-
ratios

14.68

6.37

8.52

-12.86

-1.86

-1.69

-1.59

4.88

-19.02

19.28

-14.97

11.35

133.29

-8.25

-2251.77

For parameters yij: i = 1 (electricity), i = 2 (fuel oil), j = 0 (intercept),

j = 1 (Java), j = 2 (urban), j = 3 (start-up year). For parameters aij:

i, j = 1 (electricity), i, j = 2 (fuel oil), i, j = 3 (other fuels).

b Other parameters are easily derived from the homogeneity and symmetry conditions.

a
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TABLE 3

Partial Fuel Price Elasticities

Prices:

Fuels:

electricity

fuel oil

other fuels

electricity

-3.60

1.98

2.59

fuel oil

1.97

-1.28

-1.12

other fuels

1.63

-0.70

-1.47

r
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9. Conclusions.

In this paper, we have considered the specification and estimation of models of

consumers and producer demand with kink points. These kink points can arise from

binding non-negativity constraints, quantity rationing, block prices or production

quotas. The models specified recognize that observed demands are the result of

optimal choice. The basic structures can be either a specific utility function or

indirect utility function for consumer demand analysis, and a production function or

profit function for production analysis.

Our analysis unifies the direct and dual approaches in consumption and produc-

tion economics with kink points. The presence of kink points divides the demand

schedule or production schedule into different regimes. Switching conditions, which

determine the occurrence probabilities of different demand regimes, are provided.

Our approach utilizes the concept of virtual prices originated in the quantity

rationing literature. The virtual prices transform binding quantities into non-

binding quantities and provide a rigorous justification for structural change in the

observed demand functions across regimes. The comparison of virtual prices with

market prices is sufficient to determine regime occurrences. Such comparisons are

intuitively appealing as the virtual prices are actually reservation or shadow

prices.

As an application of our approach, we have estimated a three input translog

energy cost function. As some of these three fuels are close substitutes, non-

negativity constraints are often binding. The empirical results are appealing and

computation was inexpensive. Elsewhere, we estimate a demand system for five ag-

gregated commodities using a sample of 767 households from a budget survey for

Indonesia (Pitt and Lee, 1983), The computational cost for estimating that system

with more than 50 parameters in which there were at most two non-consumed goods for

each household was still quite moderate. However, because the econometric model is
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highly non-linear and multivariate in nature, computational difficulty and cost may

increase rapidly with the number of non-consumed commodities.
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(1) On the other hand, commodities such as electricity often have decreasing

block pricing which creates a concave budget set. Concave budget sets create

special problems and will be considered elsewhere.

(2) Survey sampling errors, such as reporting errors, may alone be sufficient

to introduce zero quantities in observed samples. Pure measurement error prob-

lems will not be considered in this paper. Deaton and Irish (1982) suggest a

relatively simple model of demand with reporting errors.

(3) Two textbook examples on increasing block input prices in production can be

found in Henderson and Quandt (1980). One of the examples is on discontinuous

labor contract for which the firm has to pay higher wage rates for overtime

labor.

(4) Our analysis can be generalized in a straightforward manner to incorporate

quantity rationing with a fixed amount of quantity. This case is the main con-

cern of the studies of Deaton (1981) and Blundell and Walker (1982).

(5) Browning (1983) has shown that the unconditional cost function can

theoretically be recovered from a conditional cost function. The necessary

conditions for the conditional cost function are also sufficient for the recovery

of the unconditional cost function when the rationed quantities are positive.

Our approach starts with the unconditional functions. Identification in this

paper refers to parameter identification given functional forms for the uncondi-
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tional functions.

(6) One can also specify other distributions if they are of interest. Normal-

ity is attractive because of its additive property.
(7) K

(7) It is necessary to specify i=l ci = 0, since, for the homogenous case

zK  . = 0 so that D = -1 in the share equations (4.11) and the sum of thei=l 1i

shares is unity,

(8) The category "other fuel" includes diesel oils, gas oils and kerosene. The

three categories of fuels delimited in this study comprised 86% of the value of

energy used by firms in 1978.
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