

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

 1

A Primer on Implementing Compressed Simulated Annealing
for the Optimisation of a Constrained Simulation Model in

Microsoft Excel®

Graeme J. Doole

28 June 2007
Working Paper 0701

School of Agricultural and Resource Economics
http://www.are.uwa.edu.au/

Doole, G.J. (2007). A primer on implementing compressed simulated annealing for the optimisation of a

constrained simulation model in Microsoft Excel®, Agricultural and Resource Economics Working Paper 0701,

School of Agricultural and Resource Economics, University of Western Australia, Crawley, Australia.

 2

Abstract. This short paper provides a simple introduction on how a simulation model implemented

in Microsoft Excel® can be optimised using Visual Basic for Applications (VBA) programming

and the compressed simulated annealing algorithm (Ohlmann et al., 2004; Ohlmann and Thomas,

2007). The standard simulated annealing procedure enters as a special case. Practical advice for

determining the parameters that guide the stochastic search process in an annealing algorithm is also

given.

Keywords. Compressed annealing, Microsoft Excel®, simulated annealing, simulation.

Readers are encouraged to make use of the material in this document, but must acknowledge this

paper as the source of this information.

 3

1. Introduction

This document describes how compressed simulated annealing (CSA) (Ohlmann et al., 2004;

Ohlmann and Thomas, 2007) may be implemented in Microsoft Excel® and Visual Basic for

Applications (VBA). Good introductions to programming in VBA are available in the Microsoft

Excel® help section, Cottingham (1999), and Walkenbach (2004). The programming necessary to

implement the following algorithm is very general and straightforward to implement, which aids the

use of CSA for applied economic analysis. The description that follows uses an application to a

complex weed management model, the RIM model (Pannell et al., 2004), for demonstration

purposes. It follows the description of CSA in the paper “Optimisation of a large, constrained

simulation model using compressed annealing: the value of French serradella (Ornithopus sativus

Brot. cv. Cadiz) to Western Australian grain farming systems”.

This code should act as a good template for analyses that wish to use compressed simulated

annealing in an Excel® environment. The complete code without detailed documentation is

presented in Appendix 1. This gives an overview of the structure of the CSA procedure without

interruption by the numerous lines of comment provided in Sections 3 and 4.

2. Initial construction

This presentation assumes that a spreadsheet model is constructed that possesses: (1) an array of

discrete decision parameters presented in an array, (2) a mechanism to calculate an associated level

of profit, and (3) a mechanism to calculate an associated number of infeasibilities. Factors (2) and

(3) can usually be generated easily given a change in (1) as a spreadsheet can automatically

recalculate these cells following one of the cells containing the decision parameters being updated.

First of all, insert a sheet called “SA” in the workbook containing the simulation model. (“SA”

simply denotes “simulated annealing”.) Construct the nine status boxes in yellow and their

associated label cells as depicted in Figure 1. These labels denote the augmented functional, the net

present value (NPV) calculated for each iteration, the temperature, the number of trials performed in

this iteration, the number of acceptances in this iteration, the iteration number, the number of total

errors associated with the existing configuration, the value of the penalty factor (i.e., lambda), and

the run number. All of these numbers, except the NPV and the total number of errors, are computed

in the algorithm and printed onto the worksheet during the solution of the model. They denote

progress in the algorithm. This information is valuable when performing standard runs and to

 4

improve understanding of the behaviour of a given model when annealing parameters are being

“tuned”.

Construct the annealing matrix containing the array of binary weed treatments (i.e., decision

parameters) (Figure 1). In the RIM model, this matrix has 20 columns and 24 rows. The twenty

columns represent the planning horizon incorporated in the model, and the number of rows is the

maximum number of treatments available in each year. This yields 20*24=480 cells denoting

binary weed treatments. These interact with the simulation model (described on the other sheets in

the model) that calculates the NPV (Cell B3, labelled the Iterate NPV on the “SA” sheet) and

number of errors (Cell D3, labelled the Total Errors on the “SA” sheet) associated with each

configuration. The error matrix (see bottom of Figure 1) calculates the source of infeasibilities in

each year to aid diagnostic work, particularly during sensitivity analysis when different

configurations of the model parameters may markedly alter the nature of the optimal solution.

Figure 1. Screenshot of the SA sheet in the RIM model.

3. Programming in VBA

This section describes the VBA programming required to implement the CSA algorithm.

 5

Click on Tools/Macro/Visual Basic Editor. Click Insert/UserForm. Add label to the form by

clicking the A button on the Toolbox bar and sizing it appropriately on the UserForm (Figure 2).

Click on Caption in the Properties box in the bottom left hand side (LHS) of the screen and type in

Initial temperature (Figure 2). Repeat this exercise of creating a text label and changing its caption

for length of Markov chain, decompression rate, decrement in temperature, maximum compression

parameter, acceptance rate, and number of runs (see alignment in Figure 3).

Add Textbox by clicking the ab button on the Toolbox bar and sizing it appropriately on the

UserForm. Change textbox name to txtIT by changing top box (i.e., (Name)) in Properties box in

bottom left hand corner of the screen (Figure 2). Repeat this process for the parameters: length of

Markov chain (name box txtLMC) (this is the maximum number of trials that may be performed in

each inner loop), decompression rate (name box txtDR), decrement in temperature (name box

txtDT), maximum penalty factor (name box txtML), acceptance rate (name box txtAR), and number

of runs (name box txtNR). These names, e.g. txtML, will be used to pass values from the UserForm

into the algorithm.

Figure 2. Adding a label to a UserForm.

Highlight the UserForm name on the Project screen by clicking on it. Replace name of the

UserForm in the Properties box with AnnealingForm1. Add caption in Properties box as

Compressed Simulated Annealing Module (Figure 3). Add command button by clicking the

 6

appropriate tool in the Toolbox bar (it resembles a shaded rectangle) and locating it on the bottom

LHS of the UserForm (Figure 3). Add (Name) in the Properties section. Call this cmdOptimisation.

Change caption in Properties to be Run optimisation. Add a second command button by clicking the

appropriate tool in the Toolbox bar and locating it on the bottom RHS of the UserForm (Figure 3).

Add (Name) in Properties. Call it cmdExit. Add caption in Properties as Exit. The completed

interface of the UserForm is shown in Figure 3.

Figure 3. Completed interface of the UserForm.

Double click on empty space on UserForm. The existing code should read:

Private Sub cmdExit_Click()
End
End Sub
Private Sub Optimisation_Click()
Close

Delete any other text in the code (including the End Sub command that normally follows Close on

the fifth line) window that may have been generated accidentally while doing the activities above.

(This End Sub command is required at the end of the completed code, but the complete code is of a

 7

decent length, so it is easier to delete this command and type it in later when instructed.) The first

three lines listed above stop the algorithm when the Exit button in the UserForm is pressed. The

next two begin optimisation using the simulated annealing algorithm once the Run optimisation

button on the UserForm is depressed.

(In the VBA language, the symbol ‘ denotes a text instruction and is not compiled as an instruction

to the computer. These are therefore used extensively in the following to document the code in

greater detail.)

Next, type the following underneath the Close command on the fifth line of the existing code:

‘Enter data from UserForm
Dim IT As Double, LMC, DR, DT, ML, AR, NR
IT = txtIT.Text
LMC = txtLMC.Text
DR = txtDR.Text
DT = txtDT.Text
ML = txtML.Text
AR = txtAR.Text
NR = txtNR.Text

This enters data from the UserForm and gives each parameter a name for the computer to call in the

code. Also, initiate other variables by typing:

Dim R as Double, POWER, Pacc, Temp

State that the number of completed CSA runs is to be less than a maximum number in case of

typing error and to reduce computational demand. (However, this upper limit may be removed

depending on the application and the computational resources available.) Also, a loop is initiated so

multiple annealing runs may be performed given the large size of some problems and the stochastic

nature of the search algorithm. These features are introduced by typing:

'Maximum number of annealing runs is 50
If NR > 50 Then
NR = 50
End If
R = 1
While R < NR + 1
Sheets("SA").Cells(6, 4) = R ‘print run number to worksheet

 8

The loop initiated in the last two lines is completed at the bottom of the documented code (see

below) given that each run contains a complete implementation of the CSA algorithm.

Add additional text:

Dim NPVb(500) As Integer 'define matrix that measures if solution has converged
Temp = IT ‘define initial temperature
Sheets("SA").Cells(4, 2) = Temp ‘print temperature to worksheet

The annealing matrix containing binary numbers for each treatment in every year is next

constructed in memory. There are 480 elements in this array as described in Section 2 above. The

array is constructed through the commands:

Sheets("SA").Activate ‘activate the sheet
Dim SAM(480) As Integer ‘construct string representing matrix
For J = 1 To 480 ‘fill SAM matrix with random binary numbers
Randomize ‘this command initialises the random number generator by giving it a new seed value
SAM(J) = Int(2 * Rnd)
Next
'Print matrix to worksheet
For J = 1 To 480
ColM = 1 + (J Mod 20) ‘this command allows the string to be printed as a matrix to the worksheet
‘it is Mod 20 as there are twenty columns (i.e., years) in the annealing matrix (see Figure 1)
If ColM = 1 Then
ColM = 21 'this loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((J - 1) \ 20), ColM) = SAM(J)
Next

Define parameters for annealing process:

Dim NPVo As Single, NPVn, TError, NA, NT, L
L=0 ‘initial lambda for penalty function is zero
Sheets("SA").Cells(4, 4) = L ‘print lambda to sheet
I = 0 ‘iteration number
Sheets("SA").Cells(2, 4) = I ‘print iteration number to sheet

Obtain NPV associated with the initial configuration:

NPVo = Sheets("SA").Cells(3, 2) 'get NPV value from worksheet
TError = Sheets("SA").Cells(3, 4) 'get number of errors from worksheet
AFo = NPVo - TError * L 'calculate augmented functional

Next, construct the loops for annealing:

 9

Do Until Temp < 0.0001 ‘run outer loop until temperature is less than epsilon
NA = 0 ‘initialise number of acceptances
NT = 0 ‘initialise number of trials
Do
Sheets("SA").Cells(5, 2) = NT ‘print to worksheet
Randomize 'these lines of code randomly select a cell for updating
CurCell = Int((480 * Rnd) + 1)
‘Swap its binary value
If SAM(CurCell) = 0 Then
SAM(CurCell) = 1
Else
SAM(CurCell) = 0
End If
ColM = 1 + (CurCell Mod 20) 'print updated cell to worksheet
If ColM = 1 Then
ColM = 21 'this loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((CurCell - 1) \ 20), ColM) = SAM(CurCell)
NPVn = Sheets("SA").Cells(3, 2) 'get profit associated with new configuration from worksheet
TError = Sheets("SA").Cells(3, 4) 'also get number of errors associated with new solution from
worksheet
AFn = NPVn - TError * L ‘calculate new augmented functional
If AFn >= AFo Then 'always accept higher augmented profit
AFo = AFn
Sheets("SA").Cells(2, 2) = AFo
NA = NA + 1 ‘number of acceptances is increased by one
Sheets("SA").Cells(6, 2) = NA ‘print number of acceptances to worksheet
Else
POWER = (AFn - AFo) / Temp ‘if augmented profit is not higher, construct Boltzmann acceptance
criterion
Pacc = Exp(POWER)
End If
Randomize
If Pacc > Rnd Then ‘test solutions using stochastic acceptance function of annealing theory
AFo = AFn 'update iterates
Sheets("SA").Cells(2, 2) = AFo
NA = NA + 1
Sheets("SA").Cells(6, 2) = NA
Else 'undo change
If SAM(CurCell) = 1 Then
SAM(CurCell) = 0
Else
SAM(CurCell) = 1
End If
‘Print updated cell to worksheet
ColM = 1 + (CurCell Mod 20)
If ColM = 1 Then
ColM = 21 'This loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((CurCell - 1) \ 20), ColM) = SAM(CurCell)
End If
End If

 10

If NA = Int(LMC * AR) Then Exit Do ‘break inner loop if number of acceptances reaches upper
bound
If NT = LMC Then Exit Do ‘break inner loop if number of trials reaches upper bound
NT = NT + 1 ‘otherwise increase number of trials by one and begin inner loop again
Loop

(Note: Depending on the magnitude of the objective function, scaling may be required in the model

to prevent overflow when Pacc is calculated.)

The following text is useful to include in the inner loop to allow the Exit button on the UserForm to

stop the annealing algorithm quickly.

A = Timer
While Timer < A + 0.005
 DoEvents
Wend

The end of the outer loop is continued:

NPVb(I) = AFo ‘enter profit term into convergence matrix
If I > 10 Then 'break loop if augmented profit has converged
If NPVb(I - 8) = NPVb(I - 9) Then
If NPVb(I - 7) = NPVb(I - 8) Then
If NPVb(I - 6) = NPVb(I - 7) Then
If NPVb(I - 5) = NPVb(I - 6) Then
If NPVb(I - 4) = NPVb(I - 5) Then
If NPVb(I - 3) = NPVb(I - 4) Then
If NPVb(I - 2) = NPVb(I - 3) Then
If NPVb(I - 1) = NPVb(I - 2) Then
If NPVb(I) = NPVb(I - 1) Then Exit Do
End If
End If
End If
End If
End If
End If
End If
End If
End If
I = I + 1 ‘increase iteration count by one
L = ML * (1 - Exp(-DL * I)) ‘update penalty factor
Temp = Temp * DT ‘reduce temperature via cooling schedule
Sheets("SA").Cells(2, 4) = I ‘print updated values to worksheet
Sheets("SA").Cells(4, 2) = Temp
Sheets("SA").Cells(6, 2) = 0
Sheets("SA").Cells(4, 4) = L
Loop

 11

Solution and iteration results for each converged annealing run are printed to an “NPV” sheet for

post-run analysis.

Sheets("NPV").Activate
Sheets("NPV").Cells(R + 1, 2) = AFo
Sheets("NPV").Cells(R + 1, 3) = TError
Sheets("NPV").Cells(R + 1, 4) = L
Sheets("NPV").Cells(R + 1, 5) = I

Also, the optimal configuration of treatments for each converged annealing run is printed to an

“Output” sheet for post-run analysis.

Sheets("Output").Activate
'Print matrix to worksheet
For J = 1 To 480
ColM = 1 + (J Mod 20)
If ColM = 1 Then
ColM = 21 'this loop corrects an error associated with use of Mod function
End If
Sheets("Output").Cells((25 * (R - 1) + 2) + ((J - 1) \ 20), ColM) = SAM(J)
Next
R = R + 1 ‘this updates the run counter, the algorithm subsequently starts the next run at the top of
the programme
Wend
Close
End Sub

It is useful to type the following at the end of the code. This defines starting values for the text

boxes on the UserForm that users may change as desired.

Private Sub UserForm_Activate()
txtIT.Text = 903
txtLMC.Text = 480
txtDR.Text = 0.04
txtDT.Text = 0.925
txtML.Text = 413
txtAR.Text = 0.5
txtNR.Text = 1
End Sub

4. Creating a command button to open UserForm

Move back into the Excel spreadsheet, activate SA sheet, and click View/Toolbars/Control

Toolbox. Draw a command button on a cell using the appropriate button on this toolbox (the button

resembles a shaded rectangle) and defining its position on the form. Right click the command

button and edit its name to “Optimisation”. Click off the command button, then double click on it.

 12

This will open the VBA editor. Enter the middle line from the following, so the code reads on

completion:

Private Sub CommandButton1_Click()
AnnealingForm1.Show
End Sub

This ensures that pressing this command button opens the annealing form.

5. Formulation of the parameters for the CSA procedure

This section describes in detail how the annealing parameters were estimated for the application of

CSA described in the associated application.

5.1 Neighbourhood generation mechanism

The optimisation process treats each admissible weed treatment as a member of a string of length

max20 j⋅=µ , where maxj is the number of weed treatments available in each year over the planning

horizon. (There are 4802420 =⋅=µ members of the string in this application.) Here, { }1,0=ιu

where],...,2,1[µι = , with 1=ιu representing the use of a treatment and 0=ιu representing no use.

Each trial consists of:

1. generating a random number µηβ = (where η is a uniformly-distributed random variable

on [0,1]) denoting the index of the decision parameter to change; and

2. performing the update oldnew uu ιι −= 1 , where βι = and the superscripts old and new denote

the value of the binary decision variable before and after the update respectively.

5.2 Initial temperature

The initial value of the temperature is selected so that almost all transitions are accepted. A random

walk over 5000 configurations was used to compute the mean absolute change in the objective

function (mJ∆). The initial level of the temperature was then selected through the rule,

)ln(10 −Ξ
∆

= mJ
K , (1)

 13

where Ξ is an appropriate acceptance ratio (the ratio of the number of acceptances to the number of

trials). A ratio (Ξ) of 0.99 is selected to ensure that an adequate search is undertaken at the initial

temperature. An initial temperature of 9030 =K was identified using this process. This method of

determining the initial temperature is standard practice in annealing theory (van Laarhoven, 1988;

Aarts and Korst, 1989). The following code may aid in the construction of a programme to identify

mJ∆ for an Excel® model. This code is based heavily upon the above description of programming

annealing models in VBA, representing the efficiency with which such a programme may be

formulated once the initial code is written for a given problem. To construct the UserForm for this

programme, simply adapt the instructions above in Section 2 accordingly.

Private Sub cmdExit_Click()
End
End Sub
Private Sub cmdOptimisation_Click()
Close
'Enter the parameter from the UserForm
Dim LRW As Double ‘the UserForm now only has one cell denoting the length of the random walk
LRW = txtLRW.Text
'Construct random binary annealing matrix in memory
Sheets("SA").Activate
Dim SAM(480) As Integer
For J = 1 To 480
Randomize
SAM(J) = Int(2 * Rnd)
Next
'Print matrix to worksheet
For J = 1 To 480
ColM = 1 + (J Mod 20)
If ColM = 1 Then
ColM = 21 'this loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((J - 1) \ 20), ColM) = SAM(J)
Next
Workbooks("Randomwalk.xls").Activate
'Get NPV from sheet
Dim C0 As Single, C1, CA
C1 = Sheets("SA").Cells(3, 2) 'get NPV from sheet
For J = 1 To LRW
C0 = C1
'Select cell for updating
Randomize
CurCell = Int((480 * Rnd) + 1)
'Swap its binary value
If SAM(CurCell) = 0 Then
SAM(CurCell) = 1
Else
SAM(CurCell) = 0

 14

End If
'Print updated cell to worksheet
ColM = 1 + (CurCell Mod 20)
If ColM = 1 Then
ColM = 21 'This loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((CurCell - 1) \ 20), ColM) = SAM(CurCell)
'Get current profit from worksheet
C1 = Sheets("SA").Cells(3, 2)
A = Timer
While Timer < A + 0.005
DoEvents
Wend
CA = abs(C0 - C1)
Sheets("SA").Cells(55 + J, 1) = CA ‘absolute difference in objective function values are printed to
the sheet, the mean can then be determined on the spreadsheet
J = J + 1
Sheets("SA").Cells(2, 2) = J
Next
Close
End Sub

5.3 Temperature-decrement rule

The temperature is decreased according to the rule tt KK σ=+1 , where 925.0=σ . This value is

determined through extensive experimentation with the model since it is strongly related to the

other components of the cooling and compression schedules. Common values are between 88.0=σ

and 99.0=σ , so experimentation with values between these bounds usually identifies a suitable

candidate (Aarts and Korst, 1989).

5.4 Maximum number of trials at each temperature

A certain number of acceptances should occur at each level of the temperature to establish stability

of the solution. (Such quasi-equilibrium is necessary to theoretically obtain the global optimum

through simulated annealing (Hajek, 1988; Ohlmann et al., 2004).) However, ∞→NT as 0→K

if a given number of acceptances is required, so a maximum number of trials is defined

(480=NTMAX) for a given K (Aarts and Korst, 1989). This value of NTMAX is the largest string

length encountered over the evaluated rotations and thus ensures, at least theoretically, that each

treatment is visited at each level of the temperature (Kirkpatrick et al., 1983; Johnson et al., 1989,

1991). An inner loop is terminated if this upper bound is met or if the number of acceptances

reaches 50 percent of NTMAX . The acceptance threshold helps to minimise computational effort at

high temperatures, while providing for the establishment of quasi-equilibrium (van Laarhoven and

Aarts, 1987). This parameter value is determined through experimentation with the model.

 15

5.5 Maximum penalty value

The maximum penalty rate is determined by a process based on that of Ohlmann and Thomas

(2007). This technique is implemented here through conducting a random walk over 5000

configurations and evaluating,

��

�
�
�

��

�
�
�

−
=

)1()(

)(
maxˆ

,

,

κ
κ

ξ
π

λ
tj

tj

u

u
, (2)

where)(,tjuπ is net present value as a function of the configuration of the decision parameters,

)(,tjuξ is the number of infeasibilities present in the model as a function of the configuration of the

decision parameters, and κ is a pre-defined proportion of the objective function composed of the

penalty term at λλ ˆ= . A value of 95.0=κ is selected since a penalty schedule should evolve

towards a large maximum value to significantly penalise infeasible transitions as the annealing

algorithm converges. The corresponding value is 413ˆ =λ . This process is implemented using a

variant of the code given in Section 5.2, the primary difference being that the total errors must also

enter the code from the worksheet to compute (2).

5.6 Penalty rate

The penalty rate (04.0=γ) is selected through extensive experimentation with the model.

5.7 Termination condition

The algorithm is stopped at 0001.0=K or when the terminal configuration has not changed for ten

consecutive bands of the temperature (i.e., ten repetitions of the outer loop). This stability of the

solution is taken to signify convergence and is achieved as 0→K , except where incorrect

parameterisation of the penalty function severely limits the breadth of the search, which occurred

occasionally during the tuning of the parameters for the cooling and compression schedules.

References

Aarts, E.H.L. and Korst, J. (1989), Simulated annealing and Boltzmann machines: a stochastic approach to

combinatorial optimization and neural computing, Wiley, New York.

Cottingham, M. (1999), Excel 2000 Developer's Handbook, Sybex, San Francisco.

 16

Hajek, B. (1988), 'Cooling schedules for optimal annealing', Mathematics of Operations Research 13, pp.

311-29.

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1989), 'Optimization by simulated annealing:

an experimental evaluation. Part I: graph partitioning', Operations Research 37, pp. 865-592.

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1991), 'Optimization by simulated annealing:

an experimental evaluation; part II, graph colouring and number partitioning', Operations Research

39(3), pp. 378-406.

Kirkpatrick, S., Gelatt, G.C. and Vecchi, M.P. (1983), 'Optimization by simulated annealing', Science

220(4598), pp. 671-80.

Ohlmann, J.W., Bean, J.C. and Henderson, S.G. (2004), 'Convergence in probability of compressed

annealing', Mathematics of Operations Research 29, pp. 837-60.

Ohlmann, J.W. and Thomas, B. (2007), 'A compressed annealing approach to the travelling salesman

problem with time windows', INFORMS Journal on Computing 19, pp. 80-90.

Pannell, D.J., Stewart, V., Bennett, A., Monjardino, M., Schmidt, C. and Powles, S.B. (2004), 'RIM:

a bioeconomic model for integrated weed management of Lolium rigidum in Western

Australia', Agricultural Systems 79, pp. 305-25.

van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated annealing, Reidel, Dordrecht.

van Laarhoven, P.J.M. (1988), Theoretical and computational aspects of simulated annealing, Centrum voor

Wiskunde en Informatica, Amsterdam.

Walkenbach, J. (2004), Excel 2003 power programming with VBA, Wiley, New York.

Appendix 1. Completed compressed simulated annealing in VBA code.

The final code for the CSA algorithm should read:

Private Sub cmdExit_Click()
End
End Sub
Private Sub Optimisation_Click()
Close
‘Enter data from UserForm
Dim IT As Double, LMC, DR, DT, ML, AR, NR
IT = txtIT.Text
LMC = txtLMC.Text

 17

DR = txtDR.Text
DT = txtDT.Text
ML = txtML.Text
AR = txtAR.Text
NR = txtNR.Text
Dim R as Double, POWER, Pacc, Temp
'Maximum number of annealing runs is 50
If NR > 50 Then
NR = 50
End If
R = 1
While R < NR + 1
Sheets("SA").Cells(6, 4) = R
Dim NPVb(500) As Integer 'define matrix that measures if solution has converged
Temp = IT ‘define initial temperature
Sheets("SA").Cells(4, 2) = Temp ‘print temperature to worksheet
Sheets("SA").Activate ‘activate the sheet
Dim SAM(480) As Integer ‘construct string representing matrix
For J = 1 To 480 ‘fill SAM matrix with random binary numbers
Randomize ‘this command initialises the random number generator by giving it a new seed value
SAM(J) = Int(2 * Rnd)
Next
'Print matrix to worksheet
For J = 1 To 480
ColM = 1 + (J Mod 20) ‘this command allows the string to be printed as a matrix to the worksheet
If ColM = 1 Then
ColM = 21 'this loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((J - 1) \ 20), ColM) = SAM(J)
Next
Dim NPVo As Single, NPVn, TError, NA, NT, L
L=0 ‘initial lambda for penalty function is zero
Sheets("SA").Cells(4, 4) = L ‘print lambda to sheet
I = 0 ‘iteration number
Sheets("SA").Cells(2, 4) = I ‘print iteration number to sheet
NPVo = Sheets("SA").Cells(3, 2) 'get NPV value from worksheet
TError = Sheets("SA").Cells(3, 4) 'get number of errors from worksheet
AFo = NPVo - TError * L 'calculate augmented functional
Do Until Temp < 0.0001 ‘run outer loop until temperature is less than epsilon
NA = 0 ‘initialise number of acceptances
NT = 0 ‘initialise number of trials
Do
Sheets("SA").Cells(5, 2) = NT ‘print to worksheet
Randomize 'these lines of code randomly select a cell for updating
CurCell = Int((480 * Rnd) + 1)
‘Swap its binary value
If SAM(CurCell) = 0 Then
SAM(CurCell) = 1
Else
SAM(CurCell) = 0
End If
ColM = 1 + (CurCell Mod 20) 'print updated cell to worksheet

 18

If ColM = 1 Then
ColM = 21 'This loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((CurCell - 1) \ 20), ColM) = SAM(CurCell)
NPVn = Sheets("SA").Cells(3, 2) 'get profit associated with new configuration from worksheet
TError = Sheets("SA").Cells(3, 4) 'also get number of errors associated with new solution from
worksheet
AFn = NPVn - TError * L ‘calculate new augmented functional
If AFn >= AFo Then 'always accept higher augmented profit
AFo = AFn
Sheets("SA").Cells(2, 2) = AFo
NA = NA + 1 ‘number of acceptances is increased by one
Sheets("SA").Cells(6, 2) = NA ‘print number of acceptances to worksheet
Else
POWER = (AFn - AFo) / Temp ‘if augmented profit is not higher, construct Boltzmann acceptance
criterion
Pacc = Exp(POWER)
End If
Randomize
If Pacc > Rnd Then ‘test solutions using stochastic acceptance function of annealing theory
AFo = AFn 'Update iterates
Sheets("SA").Cells(2, 2) = AFo
NA = NA + 1
Sheets("SA").Cells(6, 2) = NA
Else 'undo change
If SAM(CurCell) = 1 Then
SAM(CurCell) = 0
Else
SAM(CurCell) = 1
End If
‘Print updated cell to worksheet
ColM = 1 + (CurCell Mod 20)
If ColM = 1 Then
ColM = 21 'This loop corrects an error associated with use of Mod function
End If
Sheets("SA").Cells(8 + ((CurCell - 1) \ 20), ColM) = SAM(CurCell)
End If
End If
If NA = Int(LMC * AR) Then Exit Do ‘break inner loop if number of acceptances reaches upper
bound
If NT = 480 Then Exit Do ‘break inner loop if number of trials reaches upper bound
NT = NT + 1 ‘otherwise increase number of trials by one and begin inner loop again
A = Timer
While Timer < A + 0.005
 DoEvents
Wend
Loop
NPVb(I) = AFo ‘enter profit term into convergence matrix
If I > 10 Then 'break loop if augmented profit has converged
If NPVb(I - 8) = NPVb(I - 9) Then
If NPVb(I - 7) = NPVb(I - 8) Then
If NPVb(I - 6) = NPVb(I - 7) Then

 19

If NPVb(I - 5) = NPVb(I - 6) Then
If NPVb(I - 4) = NPVb(I - 5) Then
If NPVb(I - 3) = NPVb(I - 4) Then
If NPVb(I - 2) = NPVb(I - 3) Then
If NPVb(I - 1) = NPVb(I - 2) Then
If NPVb(I) = NPVb(I - 1) Then Exit Do
End If
End If
End If
End If
End If
End If
End If
End If
End If
I = I + 1 ‘increase iteration count by one
L = ML * (1 - Exp(-DL * I)) ‘update penalty factor
Temp = Temp * DT
Sheets("SA").Cells(2, 4) = I ‘print updated values to worksheet
Sheets("SA").Cells(4, 2) = Temp
Sheets("SA").Cells(6, 2) = 0
Sheets("SA").Cells(4, 4) = L
Loop
Sheets("NPV").Activate
Sheets("NPV").Cells(R + 1, 2) = AFo
Sheets("NPV").Cells(R + 1, 3) = TError
Sheets("NPV").Cells(R + 1, 4) = L
Sheets("NPV").Cells(R + 1, 5) = I
Sheets("Output").Activate
'Print matrix to worksheet
For J = 1 To 480
ColM = 1 + (J Mod 20)
If ColM = 1 Then
ColM = 21 'This loop corrects an error associated with use of Mod function
End If
Sheets("Output").Cells((25 * (R - 1) + 2) + ((J - 1) \ 20), ColM) = SAM(J)
Next
R = R + 1 ‘this updates the run counter, the algorithm subsequently starts at the next run at top of
sheet
Wend
Close
End Sub

Private Sub UserForm_Activate()
txtIT.Text = 903
txtLMC.Text = 480
txtDR.Text = 0.04
txtDT.Text = 0.925
txtML.Text = 413
txtAR.Text = 0.5
txtNR.Text = 1
End Sub

