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Appendix A
Proof. We �rst demonstrate that when �E > 0 (�E = 0) consumption vectors in the

set C (C 0) are Pareto optimal and then show that consumption vectors outside the set are

not Paretian. Consider consumption vector ((a; a); (y1 � a; y2 � a)) where a 2 [0; y2]: If

((a; a); (y1 � a; y2 � a)) is not Paretian, there must exist
�
(ecE1 ;ecE2 ); (ecR1 ;ecR2 )� 6= ((a; a); (y1 �

a; y2 � a)) satisfying

(1) ecE1 + ecR1 = y1;
(2) ecE2 + ecR2 = y2
and such that either

ecR2 + min
�2PR

�
�
�ecR1 � ecR2 �	 > y2 � a+ min

�2PR
f� (y1 � y2)g ;

ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 � a;

or

ecR2 + min
�2PR

�
�
�ecR1 � ecR2 �	 � y2 � a+ min

�2PR
f� (y1 � y2)g ;

ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 > a;

Adding the relevant inequalities in either case and using (1) and y1 > y2 gives

min
�2PE

�
�
�ecE1 � ecE2 �	+ min

�2PR

�
�
�ecR1 � ecR2 �	 > min

�2PR
f� (y1 � y2)g

= �R (y1 � y2) ;

which cannot be satis�ed when �E < �R < �E:

Now suppose that �E > 0 and consider consumption vector ((b; y2); (y1 � b; 0)) where

y2 < b � y1: If ((b; y2); (y1 � b; 0)) is not Paretian, there must exist
�
(ecE1 ;ecE2 ); (ecR1 ;ecR2 )�

satisfying (1), (2) and such that either

ecR2 + min
�2PR

�
�
�ecR1 � ecR2 �	 > min

�2PR
f�(y1 � b)g ;

ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 � y2 + min

�2PE
f� (b� y2)g ;



or

ecR2 + min
�2PR

�
�
�ecR1 � ecR2 �	 � min

�2PR
f�(y1 � b)g ;

ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 > y2 + min

�2PE
f� (b� y2)g ;

Adding the relevant inequalities in either case and using (1) gives

min
�2PR

�
�
�ecR1 � ecR2 �	+ min

�2PE

�
�
�ecE1 � ecE2 �	 > min

�2PR
f�(y1 � b)g+ min

�2PE
f� (b� y2)g(3)

= �R (y1 � b) + �E (b� y2) :

Because �R
�ecR1 � ecR2 � + �E �ecE1 � ecE2 � � min�2PR

�
�
�ecR1 � ecR2 �	 + min�2PE �� �ecE1 � ecE2 �	 ;

(3) implies that

(4) �R
�ecR1 � ecR2 �+ �E �ecE1 � ecE2 � > �R (y1 � b) + �E (b� y2) :

Using (1) and (2) in (4) implies

(5) (�E � �R)
�ecE1 + ecR2 � b� > 0

For the EU to weakly prefer
�ecE1 ;ecE2 � to (b; y2); ecE1 � b necessarily. This contradicts (5)

because �E��R < 0: Finally, note that when �E = 0; ((b; y2); (y1�b; 0)) is Pareto dominated

by ((y2; y2); (y1 � y2; 0)):

We now demonstrate that when �E > 0 (�E = 0) consumption vectors
�
(ecE1 ;ecE2 ); (ecR1 ;ecR2 )�

outside the set C (C 0) are not Pareto optimal. The Pareto problem is

maxecE1 ;ecE2 ;ecR1 ;ecR2 �0
�ecR2 + min

�2PR

�
�
�ecR1 � ecR2 �	�(6)

subject to ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 � ûE; (1) and (2);

where ûE is a �xed level of the EU�s utility from the interval [0; y2+�E (y1 � y2)]. Using the

material balance conditions, we can rewrite this problem as

maxecE1 ;ecE2
�
y2 � ecE2 + min

�2PR

�
�
�
y1 � ecE1 � y2 + ecE2 �	�(7)

subject to ecE2 + min
�2PE

�
�
�ecE1 � ecE2 �	 � ûE; y1 � ecE1 � 0; y2 � ecE2 � 0:
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The constraint set in (7) is a polyhedral convex set while the objective function is concave.

Since �E < �R < �E; none of the exposed faces of the constraint set is parallel to any portion

of the objective�s level surfaces. Hence, Pareto problem (7) has a unique solution. Note also

that when �E > 0 (�E = 0); there is a one-to-one correspondence between utility levels

ûE 2 [0; y2 + �E (y1 � y2)] and points in the set C (C 0): Combining these two facts with the

observation that set [0; y2 + �E (y1 � y2)] coincides with the set of feasible utility levels for

the EU representative agent, we obtain that when �E > 0 (�E = 0) consumption vectors

outside C (C 0) are not Pareto optimal.

Appendix B
Proof. First, note that, given the relationship in (??), the three cases considered in

the theorem cover all possible rankings of zE1 + z
R
1 ; z

E
1 + z

R
1 ; t

�
zE1 ;x

E
�
+ t

�
zR1 ;x

R
�
and

t
�
zE1 ;x

E
�
+ t

�
zR1 ;x

R
�
. The Pareto problem can be written as:

max
(zij ;c

i
j)
i=E;R
j=1;2 �0

�
min
�2PR

�
�cR1 + (1� �) cR2

	
+ min
�2PE

�
�cE1 + (1� �) cE2

	�
subject to cR1 + c

E
1 = z

R
1 + z

E
1 and c

R
2 + c

E
2 = t

�
zR1 ;x

R
�
+ t

�
zE1 ;x

E
�
:

From Theorem ??, when PR � interior(PE) , Pareto optimality requires that

ĉE1 = ĉ
E
2

for any given strictly positive aggregate production level.

Using this condition, the Pareto problem can be written as

max
(zR1 ;z

E
1 )�0

�
min
�2PR

�
�
�
zR1 + z

E
1

�
+ (1� �)

�
t
�
zR1 ;x

R
�
+ t

�
zE1 ;x

E
��	�

:

Let

f
�
zR1 ; z

E
1

�
� min

�2PR

�
�
�
zR1 + z

E
1

�
+ (1� �)

�
t
�
zR1 ;x

R
�
+ t

�
zE1 ;x

E
��	

:

Since f (�; �) is concave, it has a well-de�ned Gateaux directional derivative of f (�; �) at�
zR1 ; z

E
1

�
in the direction

�
vR; vE

�
given by

fG
��
zR1 ; z

E
1

�
;
�
vR; vE

��
= lim

�!0+

f
�
zR1 + �v

R; zE1 + �v
E
�
� f

�
zR1 ; z

E
1

�
�

:
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Using the de�nition of f (�; �) ; we obtain

fG
��
zR1 ; z

E
1

�
;
�
vR; vE

��
(8)

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

24 �R
�
vR + vE

�
+
�
1� �R

� �
t0
�
zR1 ;x

R
�
vR + t0

�
zE1 ;x

E
�
vE
�
35 ; if zR1 + zE1 > t �zR1 ;xR�+ t �zE1 ;xE�24 �R

�
vR + vE

�
+
�
1� �R

� �
t0
�
zR1 ;x

R
�
vR + t0

�
zE1 ;x

E
�
vE
�
35 ; if zR1 + zE1 < t �zR1 ;xR�+ t �zE1 ;xE�

min
�2PR

8<: �
�
vR + vE

�
+(1� �)

�
t0
�
zR1 ;x

R
�
vR + t0

�
zE1 ;x

E
�
vE
�
9=; ; if zR1 + zE1 = t �zR1 ;xR�+ t �zE1 ;xE�

:

Since f (�; �) is concave in
�
zR1 ; z

E
1

�
;
�
ẑR1 ; ẑ

E
1

�
2 argmax
(zR1 ;zE1 )�0

f
�
zR1 ; z

E
1

�
if and only if

(9) fG
��
ẑR1 ; ẑ

E
1

�
;
�
vR; vE

��
� 0 for all

�
vR; vE

�
:

We consider each of the three cases in turn:

i) From (8),

fG
��
zR1 ; z

E
1

�
;
�
vR; vE

��
= 0 for all

�
vR; vE

�
;

and, hence,
�
zR1 ; z

E
1

�
= argmax
(zR1 ;zE1 )�0

f
�
zR1 ; z

E
1

�
: The second part follows directly from t0

�
zE1 ;x

E
�
=

� �R

1��R and the de�nition of z
E:

ii) From (8),

fG
��
zR1 ; z

E
1

�
;
�
vR; vE

��
= 0 for all

�
vR; vE

�
;

and, hence,
�
zR1 ; z

E
1

�
= argmax
(zR1 ;zE1 )�0

f
�
zR1 ; z

E
1

�
: The second part follows directly from t0

�
zE1 ;x

E
�
=

� �R

1��R and the de�nition of z
E:

iii) First, we demonstrate that ẑR1 + ẑ
E
1 = t

�
ẑR1 ;x

R
�
+ t

�
ẑE1 ;x

E
�
: Suppose not and

consider the case

(10) ẑR1 + ẑ
E
1 > t

�
ẑR1 ;x

R
�
+ t

�
ẑE1 ;x

E
�
:

But then

fG
��
ẑR1 ; ẑ

E
1

�
;
�
vR; vE

��
= �R

�
vR + vE

�
+
�
1� �R

� �
t0
�
ẑR1 ;x

R
�
vR + t0

�
ẑE1 ;x

E
�
vE
�
:



Under (10), we have that

fG
��
ẑR1 ; ẑ

E
1

�
;
�
vR; vE

��
� 0 for all

�
vR; vE

�
if and only if ẑR1 = z

R
1 and ẑ

E
1 = z

E
1 ;

which contradicts (10). Similarly, one can demonstrate that ẑR1 + ẑ
E
1 < t

�
ẑR1 ;x

R
�
+ t
�
ẑE1 ;x

E
�

leads to a contradiction.

Now it is left to verify that (9) holds when ẑR1 + ẑ
E
1 = t

�
ẑR1 ;x

R
�
+ t

�
ẑE1 ;x

E
�
and

t0
�
ẑR1 ;x

R
�
= t0

�
ẑE1 ;x

E
�
: We have that in this case

fG
��
ẑR1 ; ẑ

E
1

�
;
�
vR; vE

��
= min

�2PR

�
�
�
vR + vE

�
+ (1� �)

�
t0
�
ẑR1 ;x

R
�
vR + t0

�
ẑE1 ;x

E
�
vE
�	

=

8>>>>>><>>>>>>:

24 �R
�
vR + vE

�
+
�
1� �R

� �
t0
�
ẑR1 ;x

R
�
vR + t0

�
ẑE1 ;x

E
�
vE
�
35 ; if vR + vE � t0 �ẑR1 ;xR� vR + t0 �ẑE1 ;xE� vE24 �R

�
vR + vE

�
+
�
1� �R

� �
t0
�
ẑR1 ;x

R
�
vR + t0

�
ẑE1 ;x

E
�
vE
�
35 ; if vR + vE � t0 �ẑR1 ;xR� vR + t0 �ẑE1 ;xE� vE

:

Using this expression and (iii) it is straightforward to verify that (9) holds. If in addition

t0
�
zE;xE

�
= t0

�
zR;xR

�
; then ẑE1 = ẑ

E
2 = z

E and ẑR1 = ẑ
R
2 = z

R is the unique production

vector that satis�es (9). Finally, note that

�R

1� �R � �t
0 �ẑR1 ;xR� = �t0 �ẑE1 ;xE� � �R

1� �R
:


