

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

AJAE Appendix for "Pricing-to-Market: Price Discrimination or Product Differentiation?"

Nathalie Lavoie and Qihong Liu

October 20, 2006

Note: The material contained herein is supplementary to the article named in the title and published in the American Journal of Agricultural Economics (AJAE).

[^0]
Derivations of Equilibrium Prices and Quantities

Scenario 1

In country 1 , the consumer indifferent between buying the low-quality product or buying nothing is defined by the value of θ solving $y+\theta q_{l}-p_{l}=y$, i.e., $\theta_{1 l}=\frac{p_{l}}{q_{l}}$. Similarly, the consumer indifferent between the low- and high-quality products is defined by the value of θ solving equation $y+\theta q_{h}-p_{h}=y+\theta q_{l}-p_{l}$, i.e. $\theta_{1 h}=\frac{p_{h}-p_{l}}{q_{h}-q_{l}}$.

Thus the low-quality product is purchased by consumers with $\theta \in\left[\theta_{11}, \theta_{1 h}\right]$ and the demand for the low-quality product is

$$
\begin{equation*}
d_{1 l}=\frac{\theta_{1 h}-\theta_{1 l}}{\theta_{1}}=\frac{q_{l} p_{h}-p_{l} q_{h}}{\left(q_{h}-q_{l}\right) q_{l} \theta_{1}} . \tag{1}
\end{equation*}
$$

The high-quality product is purchased by consumers with $\theta \in\left(\theta_{1 h}, \theta_{1}\right]$ and the demand for the high-quality product is

$$
\begin{equation*}
d_{1 h}=\frac{\theta_{1}-\theta_{1 h}}{\theta_{1}}=1-\frac{p_{h}-p_{l}}{\left(q_{h}-q_{l}\right) \theta_{1}} \tag{2}
\end{equation*}
$$

The demands for the low- and high-quality products in country 2 can be obtained in a similar manner. Note however that the demands of consumers in country 2 depend on the price of the product expressed in local currency, i.e., $p_{l} \cdot e$ and $p_{h} \cdot e$, where e is the exchange rate expressed in units of country 2's currency per unit of country 1's currency.

The demands in country 2 can be represented as

$$
\begin{gather*}
d_{2 l}=\frac{\theta_{2 h}-\theta_{2 l}}{\theta_{2}}=e \frac{q_{l} p_{h}-p_{l} q_{h}}{\left(q_{h}-q_{l}\right) q_{l} \theta_{2}}, \text { and } \tag{3}\\
d_{2 h}=\frac{\theta_{2}-\theta_{2 h}}{\theta_{2}}=1-e \frac{p_{h}-p_{l}}{\left(q_{h}-q_{l}\right) \theta_{2}} . \tag{4}
\end{gather*}
$$

The firm's profit is

$$
\begin{equation*}
\pi=\left(p_{l}-\frac{1}{2} q_{l}^{2}\right) \frac{q_{l} p_{h}-p_{l} q_{h}}{\left(q_{h}-q_{l}\right) q_{l}}\left(\frac{1}{\theta_{1}}+\frac{e}{\theta_{2}}\right)+\left(p_{h}-\frac{1}{2} q_{h}^{2}\right)\left[2-\frac{p_{h}-p_{l}}{\left(q_{h}-q_{l}\right)}\left(\frac{1}{\theta_{1}}+\frac{e}{\theta_{2}}\right)\right] \tag{5}
\end{equation*}
$$

with first-order conditions:

$$
\begin{gather*}
\frac{\partial \pi}{\partial p_{l}}=\frac{1}{2} \frac{\left(\theta_{2}+e \theta_{1}\right)\left[4\left(p_{h} q_{l}-p_{l} q_{h}\right)+q_{l} q_{h}\left(q_{l}-q_{h}\right)\right]}{\left(q_{h}-q_{l}\right) q_{l} \theta_{1} \theta_{2}}=0, \text { and } \tag{6}\\
\frac{\partial \pi}{\partial p_{h}}=\frac{1}{2} \frac{\left(\theta_{2}+e \theta_{1}\right)\left(4 p_{h}-4 p_{l}+q_{l}^{2}-q_{h}^{2}\right)-4 \theta_{1} \theta_{2}\left(q_{h}-q_{l}\right)}{\left(-q_{h}+q_{l}\right) q_{l} \theta_{1} \theta_{2}}=0 .
\end{gather*}
$$

Solving these two equations simultaneously for p_{l}, p_{h}, we obtain the equilibrium prices

$$
\begin{gather*}
p_{h}^{*}=\frac{1}{4} \frac{\left[4 \theta_{1} \theta_{2}+q_{h}\left(\theta_{2}+e \theta_{1}\right)\right] q_{h}}{\theta_{2}+e \theta_{1}}, \text { and } \tag{8}\\
p_{l}^{*}=\frac{1}{4} \frac{q_{l}\left[4 \theta_{1} \theta_{2}+q_{l}\left(\theta_{2}+e \theta_{1}\right)\right]}{\theta_{2}+e \theta_{1}} . \tag{9}
\end{gather*}
$$

The equilibrium quantities are $d_{1 l}^{*}=\frac{q_{h}}{4 \theta_{1}}, d_{2 l}^{*}=\frac{q_{h} e}{4 \theta_{2}}$, and

$$
\begin{gather*}
d_{1 h}^{*}=\frac{4 e \theta_{1}^{2}-\left(q_{l}+q_{h}\right)\left(\theta_{2}+e \theta_{1}\right)}{4 \theta_{1}\left(\theta_{2}+e \theta_{1}\right)}, \text { and } \tag{10}\\
d_{2 h}^{*}=\frac{4 \theta_{2}^{2}-e\left(q_{l}+q_{h}\right)\left(\theta_{2}+e \theta_{1}\right)}{4 \theta_{2}\left(\theta_{2}+e \theta_{1}\right)} .
\end{gather*}
$$

For $d_{1 h}^{*}>0$ and $d_{2 h}^{*}>0, q_{h}+q_{l}<\min \left[\frac{4 e \theta_{1}^{2}}{\theta_{2}+e \theta_{1}}, \frac{4 \theta_{2}^{2}}{e\left(\theta_{2}+e \theta_{1}\right)}\right]$ must hold. We assume that this is the case throughout the article.

Scenario 2

The monopolist treats each market independently due to market segmentation and constant marginal cost. The firm's problem in country 1 is

$$
\begin{equation*}
\max _{p_{1 l}, p_{1 h}}\left(p_{1 l}-\frac{1}{2} q_{l}^{2}\right) d_{1 l}+\left(p_{1 h}-\frac{1}{2} q_{h}^{2}\right) d_{1 h} . \tag{12}
\end{equation*}
$$

Similarly, the firm's problem in country 2 is

$$
\begin{equation*}
\max _{p_{2 l}, p_{2 h}}\left(p_{2 l}-\frac{1}{2} q_{l}^{2}\right) d_{2 l}+\left(p_{2 h}-\frac{1}{2} q_{h}^{2}\right) d_{2 h} . \tag{13}
\end{equation*}
$$

We solve the firm's problem in the market 1 first. The marginal consumers are, $\theta_{1 l}=\frac{p_{1 l}}{q_{l}}, \theta_{1 h}=\frac{p_{1 h}-p_{1 l}}{q_{h}-q_{l}}$. Thus the demands can be represented by

$$
\begin{gather*}
d_{1 l}=\frac{\theta_{1 h}-\theta_{1 l}}{\theta_{1}}=\frac{q_{l} p_{1 h}-p_{1 l} q_{h}}{\left(q_{h}-q_{l}\right) q_{l} \theta_{1}}, \text { and } \tag{14}\\
d_{1 h}=\frac{\theta_{1}-\theta_{1 h}}{\theta_{1}}=1-\frac{p_{1 h}-p_{1 l}}{\left(q_{h}-q_{l}\right) \theta_{1}} . \tag{15}
\end{gather*}
$$

Firm's profit is,

$$
\begin{equation*}
\pi_{1}=\left(p_{1 l}-\frac{1}{2} q_{l}^{2}\right) \frac{q_{l} p_{1 h}-p_{1 l} q_{h}}{\left(q_{h}-q_{l}\right) q_{l} \theta_{1}}+\left(p_{1 h}-\frac{1}{2} q_{h}^{2}\right)\left(1-\frac{p_{1 h}-p_{1 l}}{\left(q_{h}-q_{l}\right) \theta_{1}}\right) . \tag{16}
\end{equation*}
$$

The first order conditions are

$$
\begin{equation*}
\frac{\partial \pi_{1}}{\partial p_{1 l}}=\frac{4\left(p_{1 h} q_{l}-p_{1 l} q_{h}\right)+q_{l} q_{h}\left(q_{l}-q_{h}\right)}{2\left(q_{h}-q_{l}\right) q_{l} \theta_{1}}, \text { and } \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \pi_{1}}{\partial p_{1 h}}=\frac{4\left(p_{1 h}-p_{1 l}\right)-\left(q_{h}-q_{l}\right)\left(q_{l}+q_{h}+2 \theta_{1}\right)}{2\left(-q_{h}+q_{l}\right) \theta_{1}} . \tag{18}
\end{equation*}
$$

Solving these two equations simultaneously for $p_{1 l}$ and $p_{1 h}$, we have, $p_{1 h}^{*}=\frac{1}{4} q_{h}\left(2 \theta_{1}+\right.$ $\left.q_{h}\right)$ and $p_{1 l}^{*}=\frac{1}{4} q_{l}\left(2 \theta_{1}+q_{l}\right)$. Thus the equilibrium quantities are $d_{1 l}^{*}=\frac{q_{h}}{4 \theta_{1}}$ and $d_{1 h}^{*}=$ $\frac{2 \theta_{1}-q_{l}-q_{h}}{4 \theta_{1}}$.

Similarly, by solving the maximization problem of the monopolist in country 2, we can obtain the following equilibrium prices and quantities,

$$
\begin{gather*}
p_{2 l}^{*}=\frac{1}{4} q_{l}\left(2 \theta_{2}+e q_{l}\right) / e, \tag{19}\\
p_{2 h}^{*}=\frac{1}{4} q_{h}\left(2 \theta_{2}+e q_{h}\right) / e, \tag{20}\\
d_{2 l}^{*}=\frac{e q_{h}}{4 \theta_{2}}, \text { and } \tag{21}
\end{gather*}
$$

$$
\begin{equation*}
d_{2 h}^{*}=\frac{2 \theta_{2}-e\left(q_{l}+q_{h}\right)}{4 \theta_{2}} \tag{22}
\end{equation*}
$$

For $d_{1 h}^{*}>0$ and $d_{2 h}^{*}>0, q_{h}+q_{l}<\min \left[2 \theta_{1}, 2 \theta_{2} / e\right]$ must hold. Note that this condition is less restrictive than $q_{h}+q_{l}<\min \left[\frac{4 e \theta_{1}^{2}}{\theta_{2}+e \theta_{1}}, \frac{4 \theta_{2}^{2}}{e\left(\theta_{2}+e \theta_{1}\right)}\right]$ established in scenario 1 for the quantities in market 2 to be positive. Thus, $d_{1 h}^{*}>0$ and $d_{2 h}^{*}>0$ in scenario 2 holds.

Derivations of Equations Associated with Corollary 3

and 4

Corollary 3
First, we determine the sign of $X-1$. Using the equation for the domestic-export price ratio with unit values, i.e., $X=\frac{p_{p}^{*} \sigma_{1}+p_{k}^{*}\left(1-\sigma_{1}\right)}{p_{l}^{*} \sigma_{2}+p_{h}^{*}\left(1-\sigma_{2}\right)}$, the sign of $X-1$ corresponds to the sign of $\left(p_{l}^{*}-p_{h}^{*}\right)\left(\sigma_{1}-\sigma_{2}\right)$. It can be easily shown that $\left(p_{l}^{*}-p_{h}^{*}\right)<0$ because $q_{l}<q_{h}$. Moreover,

$$
\begin{equation*}
\sigma_{1}-\sigma_{2}=\frac{4 q_{h}\left(\theta_{2}+e \theta_{1}\right)^{2}\left(\theta_{2}-e \theta_{1}\right)}{\left[4 e \theta_{1}^{2}-q_{l}\left(\theta_{2}+e \theta_{1}\right)\right]\left[4 \theta_{2}^{2}-e q_{l}\left(\theta_{2}+e \theta_{1}\right)\right]} \tag{23}
\end{equation*}
$$

and the two elements of the denominator are positive given the assumption we made for all quantities to be positive in equilibrium (see scenario 1 above). Thus, the sign of $\sigma_{1}-\sigma_{2}$ depends on the sign of $\theta_{2}-e \theta_{1}$. When $\theta_{2}<e \theta_{1}, \sigma_{1}-\sigma_{2}<0$, and $X-1>0$. When $\theta_{2}>e \theta_{1}, \sigma_{1}-\sigma_{2}>0$, and $X-1<0$.

Second, we determine the sign of $\frac{\partial X}{\partial q_{h}}$. Because $X=\frac{P_{1}}{P_{2}}, \frac{\partial X}{\partial q_{h}}=\frac{\frac{\partial P_{1}}{\partial q_{h}} P_{2}-P_{1} \frac{\partial P_{2}}{\partial q_{h}}}{P_{2}^{2}}$. Note that $P_{1}=\sigma_{1}\left(p_{l}^{*}-p_{h}^{*}\right)+p_{h}^{*}, P_{2}=\sigma_{2}\left(p_{l}^{*}-p_{h}^{*}\right)+p_{h}^{*}$, and q_{h} does not enter p_{l}^{*}. Thus,

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{\left[\frac{\partial \sigma_{1}}{\partial q_{h}}\left(p_{l}^{*}-p_{h}^{*}\right)+\frac{\partial p_{h}^{*}}{\partial q_{h}}\left(1-\sigma_{1}\right)\right] P_{2}-P_{1}\left[\frac{\partial \sigma_{2}}{\partial q_{h}}\left(p_{l}^{*}-p_{h}^{*}\right)+\frac{\partial p_{h}^{*}}{\partial q_{h}}\left(1-\sigma_{2}\right)\right]}{P_{2}^{2}} . \tag{24}
\end{equation*}
$$

Rearranging we obtain:

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{\left(p_{l}^{*}-p_{h}^{*}\right)\left(\frac{\partial \sigma_{1}}{\partial q_{h}} P_{2}-\frac{\partial \sigma_{2}}{\partial q_{h}} P_{1}\right)-\frac{\partial p_{h}^{*}}{\partial q_{h}}\left(P_{2} \sigma_{1}-P_{1} \sigma_{2}-P_{2}+P_{1}\right)}{P_{2}^{2}} \tag{25}
\end{equation*}
$$

where $\sigma_{1}=\frac{q_{h}\left(\theta_{2}+e \theta_{1}\right)}{4 e \theta_{1}^{2}-q_{l}\left(\theta_{2}+e \theta_{1}\right)}$, and $\sigma_{2}=\frac{q_{h} e\left(\theta_{2}+e \theta_{1}\right)}{4 \theta_{2}^{2}-q_{l} e\left(\theta_{2}+e \theta_{1}\right)}$.
Given the expressions for σ_{1} and $\sigma_{2}, \frac{\partial \sigma_{1}}{\partial q_{h}}=\frac{\sigma_{1}}{q_{h}}, \frac{\partial \sigma_{2}}{\partial q_{h}}=\frac{\sigma_{2}}{q_{h}}$. Substituting for $\frac{\partial \sigma_{1}}{\partial q_{h}}, \frac{\partial \sigma_{2}}{\partial q_{h}}$, P_{1}, and P_{2}, equation (25) can be re-written as

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{\left(\sigma_{1}-\sigma_{2}\right)\left[\left(p_{l}^{*}-p_{h}^{*}\right) \frac{p_{h}^{*}}{q_{h}}-\frac{\partial p_{h}^{*}}{\partial q_{h}} p_{l}^{*}\right]}{P_{2}^{2}} \tag{26}
\end{equation*}
$$

where $\left(p_{l}^{*}-p_{h}^{*}\right) \frac{p_{h}^{*}}{q_{h}}-\frac{\partial p_{h}^{*}}{\partial q_{h}} p_{l}^{*}<0$ because $\left(p_{l}^{*}-p_{h}^{*}\right)<0$ and $\frac{\partial p_{h}^{*}}{\partial q_{h}}=\frac{4 \theta_{1} \theta_{2}+2 q_{h}\left(\theta_{2}+e \theta 1\right)}{4\left(\theta_{2}+e \theta 1\right)}>0$.
The above shows that the sign of $\frac{\partial X}{\partial q_{h}}$ also depends on the sign of $\sigma_{1}-\sigma_{2}$, which we have already determined depends on the sign of $\theta_{2}-e \theta_{1}$.

Thus, when $\theta_{2}<e \theta_{1}, \sigma_{1}-\sigma_{2}<0, X-1>0$, and $\frac{\partial X}{\partial q_{h}}>0$. When $\theta_{2}>e \theta_{1}, \sigma_{1}-\sigma_{2}>0$, $X-1<0$, and $\frac{\partial X}{\partial q_{h}}<0$.

Corollary 4

Because

$$
\begin{gather*}
X_{l}=\frac{p_{1 l}^{*}}{p_{2 l}^{*}}=\frac{\left(2 \theta_{1}+q_{l}\right) e}{2 \theta_{2}+e q_{l}}, \tag{27}\\
X_{h}=\frac{p_{1 h}^{*}}{p_{2 h}^{*}}=\frac{\left(2 \theta_{1}+q_{h}\right) e}{2 \theta_{2}+e q_{h}}, \text { and } \tag{28}\\
X=\frac{p_{1 l}^{*} \sigma_{1}+p_{1 h}^{*}\left(1-\sigma_{1}\right)}{p_{2 l}^{*} \sigma_{2}+p_{2 h}^{*}\left(1-\sigma_{2}\right)}=\frac{e\left(q_{l}^{2}+4 \theta_{1}^{2}-q_{h} q_{l}-q_{h}^{2}\right)\left(2 \theta_{2}-e q_{l}\right)}{\left(e^{2} q_{l}^{2}+4 \theta_{2}^{2}-e^{2} q_{h} q_{l}-e^{2} q_{h}^{2}\right)\left(2 \theta_{1}-q_{l}\right)}, \tag{29}
\end{gather*}
$$

then, when $q_{l}=q_{h}=q, X_{l}=X_{h}=X=\frac{\left(2 \theta_{1}+q\right) e}{2 \theta_{2}+e q}$.
In what follows, the equations allowing us to $\operatorname{sign} \frac{\partial X}{\partial q_{h}}$ are derived. Rewrite X as $X=\frac{p_{1 l}^{*}}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{A}{B}$ where $A=1+\frac{p_{1 h}^{*}}{p_{1 l}^{*}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)$ and $B=1+\frac{p_{2 h}^{*}}{p_{2 l}^{*}}\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)$. Therefore,
$\frac{\partial X}{\partial q_{h}}=\frac{p_{1 l}^{*}}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}}\left[B\left(\frac{\partial\left(\frac{p_{1 h}^{*}}{p_{1 l}^{*}}\right)}{\partial q_{h}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)+\frac{p_{1 h}^{*}}{p_{1 l}^{*}} \frac{\partial\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)}{\partial q_{h}}\right)-A\left(\frac{\partial\left(\frac{p_{2 h}^{*}}{p_{2 l}^{*}}\right)}{\partial q_{h}}\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)+\frac{p_{2 h}^{*}}{p_{2 l}^{*}} \frac{\partial\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)}{\partial q_{h}}\right)\right]$
where $\frac{p_{1 h}^{*}}{p_{1 l}^{*}}=\frac{q_{h}\left(2 \theta_{1}+q_{h}\right)}{q_{l}\left(2 \theta_{1}+q_{l}\right)}, \frac{1-\sigma_{1}}{\sigma_{1}}=\frac{2 \theta_{1}-q_{l}-q_{h}}{q_{h}}, \frac{p_{2 h}^{*}}{p_{2 l}^{*}}=\frac{q_{h}\left(2 \theta_{2}+e q_{h}\right)}{q_{l}\left(2 \theta_{2}+e q_{l}\right)}$, and $\frac{1-\sigma_{2}}{\sigma_{2}}=\frac{2 \theta_{2}-e\left(q_{l}+q_{h}\right)}{e q_{h}}$. The derivative of these expressions with respect to q_{h} can be written as: $\frac{\partial\left(\frac{p_{1 h}^{*}}{p_{1 l}^{*}}\right)}{\partial q_{h}}=\frac{p_{1 h}^{*}}{p_{1 l}^{*} q_{h}}+\frac{q_{h}}{4 p_{l l}^{*}}$, $\frac{\partial\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)}{\partial q_{h}}=\frac{-1}{\sigma_{1} q_{h}}, \frac{\partial\left(\frac{p_{2 h}^{*}}{p_{2 l}^{*}}\right)}{\partial q_{h}}=\frac{p_{2 h}^{*}}{p_{2 l}^{*} q_{h}}+\frac{q_{h}}{4 p_{2 l}^{*}}$, and $\frac{\partial\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)}{\partial q_{h}}=\frac{-1}{\sigma_{2} q_{h}}$.

Substituting these last four expressions into (30), we obtain

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{p_{1 l}^{*}}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}}\left\{B\left[-\frac{p_{1 h}^{*}}{p_{1 l}^{*} q_{h}}+\frac{q_{h}}{4 p_{1 l}^{*}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)\right]-A\left[-\frac{p_{2 h}^{*}}{p_{2 l}^{*} q_{h}}+\frac{q_{h}}{4 p_{2 l}^{*}}\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)\right]\right\} \tag{31}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{p_{1 l}^{*}}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}}\left\{\frac{1}{q_{h}}\left(\frac{p_{2 h}^{*}}{p_{2 l}^{*}} A-\frac{p_{1 h}^{*}}{p_{1 l}^{*}} B\right)+\frac{q_{h}}{4}\left[\frac{B}{p_{1 l}^{*}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)-\frac{A}{p_{2 l}^{*}}\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right)\right]\right\} \tag{32}
\end{equation*}
$$

After substituting for A and B within the curly brackets and rearranging we obtain:

$$
\begin{gather*}
\frac{\partial X}{\partial q_{h}}=\frac{p_{1 l}^{*}}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}}\left(\frac{C}{q_{h}}+\frac{q_{h}}{4} D\right), \text { where } \tag{33}\\
C=\left(\frac{p_{2 h}^{*}}{p_{2 l}^{*}}-\frac{p_{1 h}^{*}}{p_{1 l}^{*}}\right)+\frac{p_{1 h}^{*} p_{2 h}^{*}}{p_{1 l}^{*} p_{2 l}^{*}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}-\frac{1-\sigma_{2}}{\sigma_{2}}\right) \text { and } \tag{34}\\
D=\left(\frac{1-\sigma_{1}}{\sigma_{1} p_{1 l}^{*}}-\frac{1-\sigma_{2}}{\sigma_{2} p_{2 l}^{*}}\right)+\frac{p_{2 h}^{*}-p_{1 h}^{*}}{p_{1 l}^{*} p_{2 l}^{*}}\left(\frac{1-\sigma_{1}}{\sigma_{1}}\right)\left(\frac{1-\sigma_{2}}{\sigma_{2}}\right) . \tag{35}
\end{gather*}
$$

Then, we substitute for the equilibrium prices and market shares and simplify to obtain:

$$
\begin{equation*}
\frac{\partial X}{\partial q_{h}}=\frac{1}{p_{2 l}^{*}} \frac{\sigma_{1}}{\sigma_{2}} \frac{1}{B^{2}} \frac{\left(e \theta_{1}-\theta_{2}\right)\left(e \theta_{1}+\theta_{2}\right)\left(2 q_{h}+q_{l}\right)}{e q_{l}\left(2 \theta_{2}+e q_{l}\right)} \tag{36}
\end{equation*}
$$

The sign of $\frac{\partial X}{\partial q_{h}}$ is the sign of $e \theta_{1}-\theta_{2}$.

[^0]: Nathalie Lavoie is assistant professor, Department of Resource Economics, University of Massachusetts, Amherst. Qihong Liu is assistant professor, Department of Economics, University of Oklahoma. No senior authorship is assigned.

