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Complement Material to
�Regulating nitrogen pollution with risk-averse farmers

under hidden information and moral hazard�

March 14, 2005

This paper presents some complement materials to the article entitled �Regulating nitrogen pol-
lution with risk-averse farmers under hidden information and moral hazard�.

1 Comparison between �LR(�) and �BM(�)

Recall that we have

�LR(�)� �BM (�) =

Z ��

�

�
U 0(�(u))

U 0(CE(�))
� 1
�
g(u)du

=

Z ��

�

�
U 0(�(u))

U 0(CE(�))

�
g(u)du� (1�G(�)):

Let us denote �(�) =
R ��
�
U 0(�(u))g(u)du� (1�G(�))U 0(CE(�)). We have �(��) = 0 and

�0(�) = [U 0(CE(�))� U 0(�(�))] g(�):

As U 0(�(�)) is decreasing in �, �0(�) is �rst negative and then positive. Hence if �(�) � 0, then
�LR(�) � �BM (�) � 0 for any �. Note that �(�) � 0 is equivalent to

R ��
�
U 0(�(u))g(u)du �

U 0(CE(�)) < 0 which in turn is equivalent to saying that the function U 0(U�1(:)) is concave, ac-
cording to the Jensen inequality. Moreover d

d�

�
U 0(U�1(�))

�
= ��(�) where �(:) = �U 00(:)

U 0(:) is the
Arrow-Pratt measure of local risk aversion. Hence we have that �(�) � 0 is �nally equivalent to U(:)
being CARA or IARA. Similarly, �(�) > 0 is equivalent to U(:) being DARA. Consequently, in the
DARA case, there exists a threshold type ~� such that for any � � ~� we have �LR(�) � �BM (�) and
for any type � � ~� we have �LR(�) � �BM (�).

2 Reduction of the agency�s program to an optimal control
problem

First, we reduce the complexity of incentive constraints. As it is usual in adverse selection models
(see Guesnerie and La¤ont), (IC) can be reduced to the following set of conditions

:

� = pf�(�;X;Z(�)); (1)

f�Z
:

Z � 0: (2)

Recall that f is increasing in � and that f�Z = @2f=@�@Z is strictly negative. The latter property
of f corresponds to the usual single crossing condition that simpli�es greatly the analysis of optimal
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contracts (Guesnerie and La¤ont). Given that
:

� is strictly positive as indicated by (??), individual
rationality constraints (IR) reduce to:

�(�) � 0: (3)

Hence it su¢ ces to check for the participation constraint of the less e¢ cient farmer. Moreover, as
f�Z < 0, (??) reduces to

:

Z � 0. The optimal quota is thus non-increasing in �:
We now de�ne

:

Z = � , where  is a control variable and we rede�ne Z as a state variable.
Then, constraint (??) reads as  � 0. Moreover, we rede�ne X as a state variable with the equation
_X = 0 and X(�) � 0; X(�) = X; X(��) free. Second, we use a �rst order approach for the moral
hazard constraint on X.We will have to verify that local second order conditions are satis�ed, i.e.R �
�

h
@2U(�(�))

@X2

i
dG(�) � 0 Actually, this condition is checked under our assumption @2f

@X2 � 0: Hence,
the �rst order condition corresponding to the moral hazard constraint isZ �

�

�
@U(�(�))

@X

�
dG(�) =

Z �

�

M(�;X(�); Z(�);�(�))dG(�) = 0; (4)

where M = U 0(�(�))pfX(�;X(�); Z(�)). To deal with this integral constraint, we de�ne a new state
variable :

K =M(X(�); Z(�);�(�); �)g(�) with K(�) = K(�) = 0;

and let W(�;X(�); Z(�);�(�)) denote the term equal to:

W(�;X(�); Z(�);�(�)) = S(�;X(�); Z(�)) + (1 + �)pf(�;X(�); Z(�))

�(1 + �)(�(�) + wZ(�)):

We then transform the agency�s program (P1) into an optimal control problem:

max
 

CE(�) +

Z �

�

W(�;X(�); Z(�);�(�))dG(�); (5)

subject to

_X = 0; _� = pf�(�;X(�); Z(�)); _Z = � ; _K =M(�;X(�); Z(�);�(�))g(�);
Z(�)�X(�) � 0;  (�) � 0; X(�) � 0;
X(�) = X; �(�) � 0; K(�) = K(�) = 0;

with one control variable ( ) and four state variables (�; X, Z, K).

3 Proof of proposition 1

The program to be solved is

max
 

CE(�) +

Z �

�

W(�;X(�); Z(�);�(�))dG(�);

subject to
_X = 0; (�)
_� = pf�(�;X(�); Z(�)); (�)
_Z = � ; (�)
_K =M(�;X(�); Z(�);�(�))g(�); (�)
Z(�)�X(�) � 0; (�1)
 (�) � 0; (�2)
X(�) � 0; (�3)
X(�) = X;
�(�) � 0;
K(�) = K(�) = 0:
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The Lagrangian of this program reads:

L = CE(�) +

Z �

�

f [S(�;X(�); Z(�))) + (1 + �)pf(�;X(�); Z(�))

�(1 + �)(�(�) + wZ(�))]g(�)� �(�) _X + �(�)(pf
�
(�;X(�); Z(�))� _�(�))

��(�)( + _Z(�)) + �(�)(M(�;X(�); Z(�);�(�))g(�)�
:

K)

+�1(�)(Z(�)�X(�)) + �2(�) (�) + �3(�)X(�)g d�:
Integrating by parts and using initial and terminal conditions gives:Z �

�

�(�) _X(�)d� = �
Z �

�

_�(�)X(�)d�;Z �

�

�(�) _K(�)d� = �
Z �

�

_�(�)K(�)d�;Z �

�

�(�) _Z(�)d� = �
Z �

�

_�(�)Z(�)d�;

because �(�) = �(�) = 0 (Z(�) and Z(�) are free) and �(�) = �(�) = 0 (X(�) = X and X(�) are
free).
Thus, plugging these expressions into the Lagrangian and dropping � for the sake of clarity, L

becomes

L = CE(�) +

Z �

�

H(�;X;Z; _�;�;  ;K)d�;

where

H(�;X;Z; _�;�;  ;K) = W(�;X;Z;�)g + �(pf�(�;X;Z)� _�)

+ _�X � � + _�Z + �M(�;X;Z;�)g + _�K

+�1(Z �X) + �2 + �3X:

Pointwise maximizations give us the following necessary conditions:

� First,
@H
@ 

= �� + �2 � 0 everywhere

and �� + �2 < 0)  = 0: Moreover, we also have the complementary slackness condition:

�2 � 0;  � 0 and �2 = 0:

Thus, whenever  (�) > 0; we have �(�) = �2(�) = 0.

� Moreover, we have

@H
@X

=WXg + �pf�X + _�+ �MXg � �1 + �3 = 0; (6)

@H
@K

= _� = 0) �(�) = � everywhere; (7)

@H
@Z

=WZg + �pf�Z + _� + �MZg + �1 = 0; (8)

with the following slackness conditions:

�1 � 0; Z �X � 0 and �1(Z �X) = 0;
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�3 � 0; X � 0 and �3X = 0;

and the transversality conditions:

�(�) = �(�) = 0; (9)

�(�) = �(�) = 0:

With regard to �, we have to compute the derivative of L with respect to � in the direction of an
arbitrary di¤erentiable function h(�) satisfying h(�) = 0:

@L
@�

h = lim
t!0

L(� + th)� L(�)
t

=
E(U 0(�)h)

U 0(CE(�))
�
Z �

�

f(1 + �)hg + �h0 � �pfXU 00(�)hgg d�

or Z �

�

�
U 0(�)

U 0(CE(�))
� [1 + �� �pfXU 00(�)]

�
hgd��

Z �

�

�h0d� = 0: (10)

Let us denote

B(�) =

Z ��

�

�
U 0(�(u))

U 0(CE(�))
� [1 + �� �pfX(u;X(u); Z(u))U 00(�(u))]

�
g(u)du;

then (??) can be rewritten as

�
Z �

�

B0(�)h(�)d��
Z �

�

�(�)h0(�)d� = 0:

Integrating by parts the �rst integral and rearranging terms, we then obtain:

� [B(�)h(�)]�� +
Z �

�

(B(�)� �(�))h0(�)d� = 0: (11)

Recall that h is arbitrary. And, we can choose h so that h(�) = 0: Moreover B(��) = 0: Finally, (??)
implies that

�(�) = B(�);

or

�(�) =

Z ��

�

�
U 0(�(u))

U 0(CE(�))
� (1 + �)

�
g(u)du

+�

Z ��

�

fpfX(u;X(u); Z(u))U 00(�(u))g g(u)du: (12)

Plugging (??) into (??) and assuming an interior solution for X and Z (�1 = �3 = 0) gives:

_� = �WXg �
�Z ��

�

�
U 0(�)

U 0(CE(�))
� (1 + �)

�
gdu

+ �

Z ��

�

fpfXU 00(�)g gdu
�
pf�X � �MXg:

Integrating and using (??), we obtain:Z �

�

_�d� = 0 =

Z �

�

�
WXg +

�Z ��

�

�
U 0(�)

U 0(CE(�))
� (1 + �)

�
gdu

�
pf�X

�
d�

+�

Z �

�

��Z ��

�

fpfXU 00(�)g gdu
�
pf�X +MXg

�
d�:
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Thus, the co-state variable � is equal to:

� =

R �
�

n
WXg +

�R ��
�

n
U 0(�)

U 0(CE(�)) � (1 + �)
o
gdu

�
pf�X

o
d�

�
R �
�

n�R ��
�
fpfXU 00(�)g gdu

�
pf�X +MXg

o
d�

and the co-state variable �(�) is given by (??). Note that WX = SX + (1 + �)pfX and WZ =
SZ + (1 + �)pfZ � (1 + �)w and recall that SZ = 0. Plugging these values in (??) and recalling that
in the no bunching case �(�) = 0) _�(�) = 0 gives (i) for an interior solution. First order condition
of farmer�s program w.r.t. X gives (ii). Finally, integrating the �rst order condition of IC gives (iii).
To obtain (iv), it su¢ ces to maximize the Lagrangian with respect to �(�) given (iii):

@L
@�(�)

=

R �
�
U 0
�
�(�) +

R �
�
pf�(u;X;Z(u))du

�
dG(�)

U 0
�
U�1

hR �
�
U
�
�(�) +

R �
�
pf�(u;X;Z(u))du

�
dG(�)

i�
� 1� �+ �

Z �

�

�
pfX(u;X;Z(u))U

00
�
�(�) +

Z �

�

pf�(u;X;Z(u))du

��
dG(�) = �(�):

If �(�) = 0 at the optimum, then a necessary condition is @L
@�(�)

��
�(�)=0

� 0 or equivalently �(�) � 0.
When U is CARA with � being the absolute degree of risk aversion, then from (??), we obtain that:

�(�) =

Z �

�

�
U 0(�(u))

U 0(CE(�))
� (1 + �)

�
f(u)du = �1� �+

Z �

�

U 0(�(u))

U 0(CE(�))
f(u)du;

because �rst U 00 = ��U 0 and second the moral hazard constraint together imply that the second term
of �(�) is zero. Furthermore, we also have U 0(CE(�)) = E�(U

0(�(�)) and consequently, �(�) = �� <
0. The conclusion follows.
Otherwise, if �(�) > 0 then it is de�ned by the solution of @L

@�(�) = 0, but note that the Lagrangian
is not necessarily concave in �(�) due to the presence of the certainty equivalent, CE(�) in the ob-
jective.
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