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 A-1 

Appendix:  Estimability and Identifying the Estimability Status of a System of 
Restrictions 
 
 
This appendix contains a necessarily brief review of the concept of estimability and 

presents a method whereby information from the structure of a lagrangian augmented 

(LAUG) system of normal equations can be used to identify the estimability status of a 

set of simultaneous restrictions.  (In the following discussion, we use the terms estimable 

or non-estimable restrictions to refer to restrictions involving estimable or non-estimable 

contrasts).  

 Consider the initially unrestricted normal equations: 

(A-1) ( ' ) 'X X X yβ = . 

If ( )'X X  is of full rank, ( ) 1ˆ ' 'X X X yβ −=  is a unique solution and the classical results 

with respect to hypothesis testing and restricted estimation apply.  Specifically, all 

hypotheses with respect to linear functions of the β̂  parameter are testable as are all sets 

of simultaneous restrictions that are internally consistent. 

 When ( )'X X  is singular, the classical results do not apply as system (A-1) has 

an infinite number of solutions: 

(A-2) ( )' 'X X X yβ −=  

where ( )'X X −  denotes any one of an infinite number of generalized inverses (g-

inverses) of ( )'X X  such that ( )'X X ( )'X X − ( )'X X = ( )'X X .  Searle provides a 

description of all such g-inverses of ( )'X X .  Each g-inverse of ( )'X X  generates a 
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different β  estimate although all such estimates can be shown to generate identical 

predicted values ŷ  and identical Sum of Square Errors (SSE). 

 A problem introduced by the singularity of ( )'X X  is that some hypotheses on β  

are no longer testable.  A well-known example in econometrics is the dummy variable 

problem in which the model is singular if all dummy variables are included in a model 

with an intercept.  Imposing a restriction, i.e., deleting one of the dummy variables, is the 

usual approach to identifying this model.  However, the t-statistic on a given dummy 

variable is no longer a test of individual dummy variable significance but rather a test of 

whether the dummy variable statistically differs from the effect of the deleted variable.  

Identical inferences could have been tested if all dummy variables had been included and 

the system estimated with a generalized inverse. 

 The problem with hypothesis testing in a singular system arises when imposing a 

particular hypothesis testing restriction: 

(A-3) rr β δ′ =  

There are two possibilities when a single restriction is imposed.  If r ′  is in the row space 

of X or equivalently ( )'X X , the function or contrast r β′  is termed “estimable” and the 

SSER of the restricted system may exceed the unrestricted SSE0 for some rδ .  If r ′  is not 

in the row space of X, the contrast r β′  is non-estimable, the restriction rr β δ′ =  is “non-

testable” and SSER = SSE0 for all possible values of rδ .  
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When (A-3) is replaced with a set of consistent restrictions: 

(A-4) RRβ δ=  

the problem becomes more complex.  The additional complexity arises because it is 

possible that:  (1) each restriction in (A-4) is individually testable (the corresponding 

rows are each estimable with respect to X or (X'X)), (2) each row in R is “system non-

estimable” i.e., linearly independent of the rows of ( )'X X  and the remaining rows of R, 

or (3) the contrasts of set of simultaneous restrictions may contain, or be equivalent to, a 

mixture of estimable and non-estimable contrasts.  Situations (1) and (2) are commonly 

addressed in the literature (Rao 1962; Searle 1997).  The problem of mixed estimable and 

non-estimable contrasts and the corresponding restrictions is not commonly discussed.  

Since our model involves mixtures of estimable and non-estimable contrasts, we present 

methods that address the estimable non-estimable restrictions problem. 

 Consider the Lagrangian augmented (LAUG) system for the restricted first order 

conditions: 

(A-5) ( ) '' '
0 R

X yX X R
R

β
λ δ

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

or 

(A-6) L gα =  

where λ  is a vector of lagrangian multipliers. A solution to the above system can be 

written as: 

(A-7) ( ) 11 12

21 22

''' '
0 R R

X yX y G GX X R
G GR

β
δλ δ

−
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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or 

(A-8) L g G gα −= =  

when α  denotes “a” solution to the restricted normal equations and G is a generalized 

inverse of the augmented matrix L. 

 If R contains a sufficient number of system non-estimable restrictions, L is 

nonsingular and G = L-1.  If L is singular, there are an infinite number of G and α  in   

(A-7) and (A-8) that minimize the SSER and generate identical predicted values y  and 

SSER.  Results available from authors prove that if R is of full row rank, G22 is symmetric 

and invariant for all G-Inverses of L1.  It can also be shown that: 

(A-9) ( )22 0RGλ δ δ= −  

and 

(A-10) ( ) ( )0 0 22 0R RRSSE SSE Gδ δ δ δ′− = − − −  

where 0 0Rδ β=  and 0β  is any solution to the original unrestricted system.  Using (A-

10), a number of results can be derived including:  (i) the rank of G22 is equivalent to the 

dimension of a basis set for the estimable restriction space implied by R, (ii) the 

eigenvectors of G22 can be used to derive an equivalent2 set of restrictions R* in which the 

first (rank of (G22 )) restrictions are system estimable and the remaining restrictions are 

non-system-estimable, and (iii) the *
22G  associated with R* is diagonal with the first (rank 

of (G22)) elements of *
22G  equal to the non-zero eigen-values of the 22G .  These results 

imply that if any rows (and corresponding columns) in G22 are zero, the corresponding 
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contrasts in R are system non-estimable and the lagrangians will remain zero for all Rδ  

associated with the corresponding rows.  It is also important to note that the converse is 

not true, i.e. 0λ ≠  does not imply that the entire set of corresponding rows in R are 

system estimable.  This result is demonstrated in the following example. 

 In the following, we apply the above results and demonstrate that:  (a) 

simultaneously imposing the T with-in year (and individually non-testable) restrictions 

, 0u u t
u

a∑ ∆ =  results in one implicitly non-testable and T-1 implicitly testable restrictions 

and (b) simultaneously adding U-1 of the across year restrictions , 0u t
t
∑∆ =  enables the 

identification of the system but does not affect the SSE as the across-year restrictions are 

jointly non-testable. The latter result implies that the right-hand-sides of the across-year 

summing restrictions are arbitrary with u t u
u

δ∑∆ =  generating the same SSE for all uδ . 

 Tables A1 and A2 presents the yield vectors and the 
1 1

, ( ),X X X X y
− −

′ ′∑ ∑ , and 

R matrices from the main text’s example wheat farm.  In the main body’s table 2, farm 

yields for HONEST and SWITCH are the reported yields for the main text's example 

(table 1) of returns to yield switching for a wheat farm3.  The reported yields for HAIL 

are a construct with all yields (except 1,10y = 0) set equal to these from HONEST.  Below 

we refer to HONEST, SWITCH, AND HAIL as if the data came from three different 

"farms" that were being subjected to yield switching tests.  Since each "farm’s" reported 

yields are from the same county and years, each "farm" has an identical design and Σ  

matrix.  For this example, we assume that each "farm" has equal acreage in each unit 
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resulting in an identical R matrix (table A1) for each farm.  The first four rows in R are 

the within year , 0u u t
u

a∑ ∆ =  restrictions.  The fifth row of R is the across year  

1, 0t
t
∑∆ =  restriction. 

 The augmented lagrangian matrix for the system is singular when only the within 

year restrictions are imposed but becomes invertible with the addition of the fifth or 

across-year restriction.  Table A2 presents the partitioned inverse of the augmented 

lagrangian matrix L and the 1 , ,X y β−′Σ and λ vectors for each of the three "farms."  The 

lower right section of table A2 also presents the eigenvalues of the G22 matrix that will be 

used in discussing the estimability status of the restriction set R.4 

 The L-1 in table A2 has been partitioned in a manner corresponding to the 

following partition of the lagrangian augmented matrix: 

(A-11) 

1 ' '
1 2

1

2

'
0 0
0 0

X X R R
R
R

−⎛ ⎞∑⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

when R1 denotes the farm within-year restrictions and R2 denotes the fifth or across-year 

restriction. With this particular structure, the partition of L-1 associated with: 

(A-12) 
1

2

1

'
0

X X R
R

−⎛ ⎞∑⎜ ⎟⎜ ⎟
⎝ ⎠

 

is equivalent to the Moore-Penrose G-Inverse of L1, our original system without the 

across-year summing restrictions. 
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 An advantage of this example is that the results presented in table A2 can be used 

to demonstrate properties of both the singular L1 system and the larger (and invertible) L 

system.  With both systems there are (2T+U) or 10 parameters and only (2T) or 8 

observations.  The rank of the 10 x 10 (
1

'X X
−

∑ ) matrix is eight (2T) indicating that 

(
1

'X X
−

∑ ) is rank deficient of order 2 (U).  Searle and Rao demonstrate that obtaining an 

invertible augmented system requires the identification of a set of system non-estimable 

restrictions equal in number to the rank deficiency.  In our example, we need two such 

restrictions. 

 Each of the four within-year summing restrictions in system L1 can be shown to 

be individually non-estimable (i.e., not in the row space of (
1

'X X
−

∑ )).  However, when 

the four restrictions are imposed simultaneously, any three rows in R1 can be expressed 

as a linear combination of the rows of (
1

'X X
−

∑ ) and the remaining row in R1.  Hence, 

when the four R1 restrictions are imposed simultaneously, the resulting L1 system 

involves only one implicitly non-estimable and three implicitly estimable restrictions.  

Since the system contains only one implicitly non-estimable restriction, the rank 

deficiency of the L1 system is only decreased from U to U-1 (or one in our example). 

 The estimability status of L1 is readily identified by examining the eigenvalues of 

its 1
22G  matrix (the upper left portion of the G22 matrix in table A2).  Table A2 indicates 

that the 4x4 1
22G  matrix’s eigenvalues are (-.0083, -.0070, -.0052, 0) implying that 1

22G  

has rank three. These results imply that restriction set R1 is equivalent to a restriction set 
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with three system estimable and one system non-estimable restriction. Details for 

recovering an equivalent restriction set are available from the authors. 

 We wish to make a final comment with respect to system L1. For this example, all 

solutions to the L1 system are unchanged from those associated with L found in the 

corresponding partitions of the larger system solution.  For system L1, the four resulting 

lagrangians multipliers are non-zero.  The four non-zero lagrangians imply that 

individually changing any of the restriction right-hand-side values from zero will 

influence the SSE. However, four non-zero lagrangian multipliers do not imply that the 

system has four implicitly estimable restrictions.  A non-zero lagrangian only implies that 

the corresponding restriction can be written as a linear combination of at least one 

estimable restriction and other possibly non-estimable restrictions.  It is possible that 

linear combinations of one system estimable and three system non-estimable restrictions 

can generate four non-zero lagrangians.  The key point here is that the G22 matrix can be 

used to identify the estimability status of the system.  While the lagrangian multipliers are 

closely related to the G22 matrix (see expression (A-9) above) the G22 matrix is the more 

fundamental of the two. 

 The results from the full system with the added across-year summing restriction 

are also presented in table A2.  The G22 matrix is in the lower right corner of the L-1 

matrix.  For this representation of the restrictions, we note that the fifth row and column 

of G22 are zero vectors and the fifth lagrangian multiplier is zero.  Since 

( ) ( )00 0 22 RR RSSE SSE Gδ δ δ δ′− = − − −  and ( )022 RGλ δ δ= − , it is immediately obvious 

that the fifth element of Rδ  can be set to any value without affecting the SSER – SSE0 or 
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5λ .  This is demonstrated in the third section in the bottom half of the table where we set 

10

1, 5
7

5t
t

δ
=

∆ = =∑  for the first farm.  The numerical example demonstrates that changing 5δ  

in 
10

1, 5
7

t
t

δ
=

∆ =∑  does not affect the SSE of the switching model as farm HONEST's SSE-

SW equals 3.49 for both 5 0δ =  and 5 5δ = .  

Changing the 5δ value from 0 to 5 changes the individual parameter estimates but 

it does not change the estimability status of the system or that of the parameters.  Only 

those hypotheses that were testable under system L1 are testable within system L.  

However, there is one additional complication that must be considered when selecting 

identification restrictions such as 5 5r β δ′ = .  If additional hypotheses testing restrictions 

are to be imposed upon the identified system L, the additional restrictions must be 

consistent with any previously imposed restrictions.  Since we wish to test additional 

restrictions that ,u t∆  are all simultaneously equal to zero, we choose identifiability 

restrictions of the form 5 0r β′ = . 
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Endnotes

 
1 If R is of less than full row rank, G22 is no longer unique. However, the following 

results remain applicable for the Moore-Penrose generalized inverse of L. 

2 Equivalent in the sense that the solutions β  and λ  remain unchanged by the change in 

restriction representation. 

3 We have shortened the number of years to four for the example. 

4 All solutions, inverses, Moore Penrose generalized inverses, and eigenvalues reported in 

table A2 and discussed in this appendix were generated in Microsoft Excel© using the 

Simetar addin. 

 
 
 



                       TABLE A1:  DATA AND DESIGN  MATRICES FOR THE EXAMPLE WHEAT FARM

DESIGN MATRIX FARM YIELDS

UNIT-YR         HONEST SWITCH HAIL
1-7 29.0 0 1 0 0 0 0 0 0 0 44.0 11.0 44.0
1-8 22.0 0 0 1 0 0 0 0 0 0 15.0 30.0 15.0
1-9 19.0 0 0 0 1 0 0 0 0 0 26.0 46.0 26.0
1-10 40.0 0 0 0 0 1 0 0 0 0 68.0 17.0 0.0
2-7 0 29.0 0 0 0 0 1 0 0 0 32.0 65.0 32.0
2-8 0 22.0 0 0 0 0 0 1 0 0 25.0 5.0 25.0
2-9 0 19.0 0 0 0 0 0 0 1 0 27.0 7.0 27.0
2-10 0 40.0 0 0 0 0 0 0 0 1 47.0 98.0 47.0

 
X' SIGMA-INV  X X' SIGMA-INV Y

         HONEST SWITCH HAIL
47.6786 0.0000 0.3867 0.3729 0.1919 0.6154 0.0000 0.0000 0.0000 0.0000 69.4426 34.7296 27.5965
0.0000 47.6786 0.0000 0.0000 0.0000 0.0000 0.3867 0.3729 0.1919 0.6154 55.8003 88.6489 55.8003
0.3867 0.0000 0.0133 0 0 0 0.0000 0 0 0 0.5867 0.1467 0.5867
0.3729 0.0000 0 0.0169 0 0 0 0.0000 0 0 0.2542 0.5085 0.2542
0.1919 0.0000 0 0 0.0101 0 0 0 0.0000 0 0.2626 0.4646 0.2626
0.6154 0.0000 0 0 0 0.0154 0 0 0 0.0000 1.0462 0.2615 0.0000
0.0000 0.3867 0.0000 0 0 0 0.0133 0 0 0 0.4267 0.8667 0.4267
0.0000 0.3729 0 0.0000 0 0 0 0.0169 0 0 0.4237 0.0847 0.4237
0.0000 0.1919 0 0 0.0000 0 0 0 0.0101 0 0.2727 0.0707 0.2727
0.0000 0.6154 0 0 0 0.0000 0 0 0 0.0154 0.7231 1.5077 0.7231

R MATRIX

RESTRICTIONS         
0 0 1 0 0 0 1 0 0 0

WITHIN-YR 0 0 0 1 0 0 0 1 0 0
 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1
ACROSS-YR 0 0 1 1 1 1 0 0 0 0

1γ
2γ 1,7∆ 1,8∆ 1,9∆ 1, 10∆ 2,7∆ 2,8∆ 2,9∆ 2, 10∆

1γ 2γ 1,7∆ 1,8∆ 1,9∆ 1, 10∆ 2,7∆ 2,8∆ 2,9∆ 2, 10∆

1γ 2γ 1,7∆ 1,8∆ 1,9∆ 1, 10∆ 2,7∆
2,8∆ 2,9∆ 2, 10∆



                   TABLE A2: LAUG-INVERSE MATRIX AND SOLUTIONS FOR THE EXAMPLE WHEAT FARM
LAUG-INVERSE MATRIX

G11 G12

            
0.0228 -0.0018 -0.0162 -0.0027 0.2160 -0.1971 0.0162 0.0027 -0.2160 0.1971 0.0005 0.0006 0.0025 -0.0019 -0.0091

-0.0018 0.0228 0.0162 0.0027 -0.2160 0.1971 -0.0162 -0.0027 0.2160 -0.1971 -0.0086 -0.0085 -0.0066 -0.0110 0.0091
-0.0162 0.0162 28.0834 -7.4209 -12.7422 -7.9202 -28.0834 7.4209 12.7422 7.9202 0.3682 -0.1318 -0.1318 -0.1318 0.2636
-0.0027 0.0027 -7.4209 23.6600 -9.8482 -6.3909 7.4209 -23.6600 9.8482 6.3909 -0.1000 0.4000 -0.1000 -0.1000 0.2000
0.2160 -0.2160 -12.7422 -9.8482 36.8454 -14.2550 12.7422 9.8482 -36.8454 14.2550 -0.0864 -0.0864 0.4136 -0.0864 0.1727

-0.1971 0.1971 -7.9202 -6.3909 -14.2550 28.5661 7.9202 6.3909 14.2550 -28.5661 -0.1818 -0.1818 -0.1818 0.3182 0.3636
0.0162 -0.0162 -28.0834 7.4209 12.7422 7.9202 28.0834 -7.4209 -12.7422 -7.9202 0.6318 0.1318 0.1318 0.1318 -0.2636
0.0027 -0.0027 7.4209 -23.6600 9.8482 6.3909 -7.4209 23.6600 -9.8482 -6.3909 0.1000 0.6000 0.1000 0.1000 -0.2000

-0.2160 0.2160 12.7422 9.8482 -36.8454 14.2550 -12.7422 -9.8482 36.8454 -14.2550 0.0864 0.0864 0.5864 0.0864 -0.1727
0.1971 -0.1971 7.9202 6.3909 14.2550 -28.5661 -7.9202 -6.3909 -14.2550 28.5661 0.1818 0.1818 0.1818 0.6818 -0.3636
0.0005 -0.0086 0.3682 -0.1000 -0.0864 -0.1818 0.6318 0.1000 0.0864 0.1818 -0.0051 0.0015 0.0008 0.0025 0.0000
0.0006 -0.0085 -0.1318 0.4000 -0.0864 -0.1818 0.1318 0.6000 0.0864 0.1818 0.0015 -0.0070 0.0008 0.0024 0.0000
0.0025 -0.0066 -0.1318 -0.1000 0.4136 -0.1818 0.1318 0.1000 0.5864 0.1818 0.0008 0.0008 -0.0047 0.0012 0.0000

-0.0019 -0.0110 -0.1318 -0.1000 -0.0864 0.3182 0.1318 0.1000 0.0864 0.6818 0.0025 0.0024 0.0012 -0.0037 0.0000
-0.0091 0.0091 0.2636 0.2000 0.1727 0.3636 -0.2636 -0.2000 -0.1727 -0.3636 0.0000 0.0000 0.0000 0.0000 0.0000

G21 G22

GLS NORMAL EQUATION RHS VALUES AND RESULTS WITH RESTRICTIONS EFFECT OF CHANGING RHS RESTRCTION 5 G22 RANK TEST

X' SIGMA-INV  Y BETAHAT VECTORS X' SIGMA-INV  Y BETAHAT G22
HONEST SWITCH HAIL HONEST SWITCH HAIL HONEST HONEST EIGVALS
69.4426 34.7296 27.5965  1.4134 0.9711 0.6655 69.443 GAM1 1.3680 -0.0083

55.8003 88.6489 55.8003  1.2134 1.6166 1.0837 55.800 GAM2 1.2589 -0.0070

0.5867 0.1467 0.5867  3.1000 -17.6409 12.0636 0.587 D1-7 4.4182 -0.0052

0.2542 0.5085 0.2542  -7.2000 19.6000 -0.4000 0.254 D1-8 -6.2000 0.0000

0.2626 0.4646 0.2626  -2.4000 25.6318 3.4727 0.263 D1-9 -1.5364 0.0000

1.0462 0.2615 0.0000  6.5000 -27.5909 -15.1364 1.046 D1-10 8.3182

0.4267 0.8667 0.4267  -3.1000 17.6409 -12.0636 0.427 D2-7 -4.4182

0.4237 0.0847 0.4237  7.2000 -19.6000 0.4000 0.424 D2-8 6.2000

0.2727 0.0707 0.2727  2.4000 -25.6318 -3.4727 0.273 D2-9 1.5364

0.7231 1.5077 0.7231  -6.5000 27.5909 15.1364 0.723 D2-10 -8.3182

0.0000 0.0000 0.0000  -0.0012 0.0064 0.1685 0.000 LAMDA1 -0.0012

0.0000 0.0000 0.0000  -0.1508 -0.1858 0.0129 0.000 LAMDA2 -0.1508

0.0000 0.0000 0.0000  0.0156 0.0194 0.0998 0.000 LAMDA3 0.0156

0.0000 0.0000 0.0000  0.0764 0.0884 -0.1767 0.000 LAMDA4 0.0764

0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 5.000 LAMDA5 0.0000

SSE0 3.49 5.17 10.31 SSE0 3.49

1γ
2γ 1,7∆ 1,8∆ 1,9∆ 1, 10∆ 2, 7∆ 2,8∆ 2,9∆ 2, 10∆ 1λ 2λ 3λ 4λ 5λ

1γ
2γ

1,7∆

1,8∆

1,9∆

1, 10∆

2, 7∆

2,8∆

2,9∆

2, 10∆

1λ

2λ

3λ

4λ

5λ


