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Abstract 
 
 
This study develops a discrete choice locational equilibrium model to evaluate the benefits of the 
air quality improvements that occurred in the Los Angeles area following the 1990 Clean Air Act 
Amendments (CAAA).   The discrete choice equilibrium approach accounts for the fact that air 
quality improvements brought about by the 1990 CAAA will change housing choices and prices. 
The study provides the first application of the discrete choice equilibrium framework (Anas, 
1980, Bayer et al., 2005) to the valuation of large environmental changes. The study also 
provides new evidence for the distributional welfare impacts of the 1990 CAAA in the Los 
Angeles area. Households’ location choices are modeled according to the random utility 
framework of McFadden (1973) and the differentiated product specification of Berry, Levinsohn 
and Pakes (1995). Findings suggest that the air quality improvements that occurred in the Los 
Angeles area between 1990 and 2000 provided an average equilibrium welfare benefit of $1,800 
to households. In contrast, average benefits are $1,400 when equilibrium price effects are not 
accounted, demonstrating that ignoring equilibrium effects will likely underestimate the benefits 
of large environmental changes. In addition, we find that the equilibrium welfare impacts of the 
1990 CAAA in the Los Angeles area varied significantly across income groups.  
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1 Introduction 

Environmental regulations such as the Clean Air Act can lead to large air quality changes which 

cover wide areas and affect many residential communities. These types of widespread non-

marginal improvements in air quality will have significant equilibrium welfare effects across 

local jurisdictions as households re-evaluate their residential location choices and equilibrium 

housing prices adjust. Traditional approaches to evaluating the impacts of air quality regulation 

have relied on direct welfare measures.2 These welfare measures are recovered directly from the 

estimated preference function of consumers using either the hedonic framework (Rosen, 1974) or 

the discrete choice framework (McFadden, 1973, 1978). However, direct welfare measures do 

not explicitly account for the adjustments in housing prices which will occur when widespread 

non-marginal changes lead households to re-sort in the housing market. As a result, they will 

generally underestimate the full, i.e. equilibrium, welfare gains from regulations that result in 

widespread non-marginal improvements3 in environmental amenities (Bartik, 1988, Palmquist, 

1988).4 

Recent studies by Sieg et al. (2004) and Smith et al. (2004) have shown that incorporating 

equilibrium adjustments can alter the estimates of welfare benefits from large environmental 

improvements. For instance, Sieg et al. (2004) find that the reductions in ozone levels during the 

five years following the implementation of the 1990 Clean Air Act Amendments led to 

equilibrium price increases ranging from 11 percent to 20 percent in the Los Angeles 

                                                 
2 These welfare measures are often referred as partial equilibrium welfare measures. 
3 These are changes that are large enough to alter the stock of environmental quality in the market. As an example, 
consider the cleanup of all toxic waste sites in the Los Angeles metropolitan area. 
4 Equilibrium welfare measures are often referred as general equilibrium welfare measures. 
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metropolitan area. These price changes resulted in equilibrium welfare gains that were 13 percent 

higher than the direct benefits estimates that do not account for equilibrium adjustments. 

This paper develops a discrete choice locational equilibrium model to evaluate the welfare 

benefits of the 1990 Clean Air Act Amendments (CAAA) to Los Angeles area households. The 

study makes two empirical contributions to public economics. First, the study provides the first 

application of the discrete choice equilibrium framework (Anas, 1980, 1982) to the valuation of 

large environmental changes. Households’ location choices are modeled according to the random 

utility framework of McFadden (1978). The equilibrium model is closely related to the model of 

Bayer et al. (2005). This, more recent, discrete choice equilibrium model follows the 

differentiated product specification of Berry, Levinsohn and Pakes (1995) by incorporating 

unobserved attributes of residential locations in the household utility function. The discrete 

choice equilibrium framework provides an alternative to the framework proposed by Sieg et al. 

(2004) for evaluating the general equilibrium benefits of large environmental improvements. It 

allows for a richer and more realistic characterization of households’ substitution patterns as well 

as preference heterogeneity.  

Second, the paper provides new evidence for the distributional benefits of the CAAA in the 

Los Angeles area. Using the changes in ozone levels that occurred in the Los Angeles area 

between 1990 and 2000 we estimate average welfare benefits as well as the distribution of 

welfare benefits across income groups. Recently, Sieg et al. (2004) have provided estimates of 

the benefits of the CAAA based on the changes in ozone levels that took place between 1990 and 

1995. With the availability of air quality monitoring data for the year 2000, we are able to 

evaluate the benefits of the CAAA from 1990 to 2000. 
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Little is known about the distribution of the benefits among households from the 1990 

CAAA regulations. The only attempts at such an analysis have focused on the spatial distribution 

of welfare gains.5 For instance, welfare gains in predominantly high-income neighborhoods are 

compared with those in low-income neighborhoods. This approach, however, fails to capture the 

distribution of welfare gains and losses across household characteristics such as income and race. 

It only provides a comparison of the welfare gains across neighborhoods. 

Household preferences are estimated using a dataset which includes households and housing 

units from the 1990 Census Public Use Microdata Sample (PUMS), annual ozone summaries 

from the California Air Resource Board, school performance data from the California 

Department of Education and crime indices from the California Criminal Justice Statistics 

Center. Households’ residential location choices are characterized by a discrete choice model in 

which equilibrium conditions are enforced. The model captures the heterogeneity of household 

preferences for location amenities by incorporating observed household characteristics in the 

utility function. Observed household characteristics include household income, household size, 

employment location and educational attainment of the household head. 

Estimation of the equilibrium welfare impacts incorporates price adjustments that result from 

the fact that households alter their residential location choice after the changes in air quality 

throughout the Los Angeles area. Computation of the equilibrium adjustments is obtained via 

simulation. Using 1990 as a benchmark we simulate market clearing prices and household 

choices for the counterfactual locational equilibrium that would have resulted in 1990 if air 

quality levels were identical to those observed in 2000, while all other housing attributes 

                                                 
5 See for example Shadbegian et al. (2004). Smith et al. (2004) investigate the distributional impacts of the 1990 
CAAA using the projected air quality changes, in the Los Angeles area for the year 2000, from the EPA’s 1999 
prospective study. However, the actual air quality changes between 1990 and 2000 significantly differ from the EPA 
projections. 
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remained at their 1990 levels. The counterfactual equilibrium only captures the changes in air 

quality that occurred in the Los Angeles area between 1990 and 2000. Other factors 

characterizing the Los Angeles area housing market, such as population, household income and 

housing supply, are assumed fixed in the simulation. 

The empirical analysis focuses on the four counties of the Los Angeles area which makeup 

the South Coast Air Quality Management District. This area experienced significant 

improvements in air quality during the decade that followed the implementation of the 1990 

CAAA. The results suggest that the reductions in ozone concentrations across Los Angeles, 

Orange, Riverside and San Bernardino counties, provided an average equilibrium benefit of 

$1,800 to households. In contrast, average benefits are $1,400 when equilibrium adjustments are 

not accounted, demonstrating that ignoring equilibrium effects will likely underestimate the 

benefits of large environmental changes. We find that the equilibrium welfare impacts of the 

1990 CAAA in the Los Angeles area varied significantly across income groups. Households in 

the highest income quartile experienced equilibrium benefits of approximately $3,600 as 

compared to only $400 for households in the lowest-income quartile. We also find that ignoring 

equilibrium adjustments can significantly alter the distribution of relative welfare gains (i.e. 

welfare gains as a proportion of household income). Indeed, welfare impacts that do not account 

for equilibrium effects suggest that high-income households have larger relative welfare gains 

compared to low-income households. However, when accounting for equilibrium adjustments, 

we find that the distribution of relative welfare gains from the 1990 CAAA is fairly even across 

income groups. 

The remainder of this paper is organized as follows. Section 2 provides some background 

information and reviews the current body of literature on the valuation of housing amenities. 
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Section 3 characterizes the locational equilibrium model. Section 4 describes the various datasets 

used to estimate the household utility function. Section 5 outlines the estimation of the household 

preference parameters. Section 6 discusses the simulation and the welfare results. Section 7 

concludes the analysis. 

2 Background and Literature Review 

2.1 Background 

The 1990 Clean Air Act Amendments 6 

The Clean Air Act Amendments (CAAA) of 1990 addressed three major environmental issues in 

the United States: acid rain, urban air pollution and toxic air emissions. Title I established new 

provisions for the attainment and maintenance of the National Ambient Air Quality Standards 

(NAAQS). It is intended to address the urban air pollution problems arising from ground-level 

ozone, carbon monoxide and particulate matter (PM-10). Areas for which ambient levels of these 

pollutants were above the target levels were designated as non-attainment areas by EPA. Non-

attainment counties for ozone were classified into five categories (marginal, moderate, serious, 

severe and extreme). These areas were then required to implement control measures that vary 

with the severity of their non-attainment status. For carbon monoxide and particulate matter, 

areas that did not meet the federal health standards were classified into either moderate or serious 

non-attainment status. Areas exceeding carbon monoxide standards were required to introduce 

oxygenated fuels programs and/or implement enhanced emission inspections. Depending on the 

severity of their status, particulate matter non-attainment counties were either required to 

                                                 
6 Based on U.S. Environmental Protection Agency (2006a). 
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implement reasonably available control measures (RACM) or best available control measures 

(BACM). 

Air Quality Standards for Ground-level Ozone 7 

Under the Clean Air Act, EPA is required to set National Ambient Air Quality Standards 

(NAAQS) for pollutants that are considered to be harmful to public health and the environment. 

Currently, two standards are used to regulate ozone levels in the U.S. The national 1-hour 

standard for ozone, set at 0.12 parts per million (ppm) by volume, was established in 1979. It is 

achieved when the average number of days per calendar year with maximum hourly 

concentrations above 0.12 ppm does not exceed 1. In 1996, EPA established a new national 8-

hour ozone standard which was set at 0.08 ppm by volume. This standard is attained when the 

three-year average of the fourth highest daily maximum 8-hour ozone concentration measured at 

each ozone monitor within an area is less than 0.08 ppm. In June of 2005, the 1-hour ozone 

standard was revoked in all areas and replaced by the 8-hour standard, except in the fourteen 8-

hour ozone non-attainment areas that were part of EPA’s Early Action Compacts8 program. 

In addition to setting the NAAQS, EPA designates areas as either non-attainment, attainment 

or unclassified. The designation process plays an important part in the implementation of air 

pollution control measures by states and local governments. Currently, an area is designated as 

non-attainment if it violates the national 8-hour ozone standard over a three-year period. An area 

will be designated as attainment if it has air quality monitoring data showing that the area has not 

violated the ozone standard over a period of three years.  Areas are designated as unclassified if 

there are not enough data to determine ozone levels.  

                                                 
7 Based on U.S. Environmental Protection Agency (2006b). 
8 Early Action Compacts give local communities the flexibility to develop their own approach to meeting the 8-hour 
ozone standard, provided the communities control emissions from local sources earlier than the Clean Air Act would 
otherwise require. 
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Air Quality Improvements in the Los Angeles Area 

The South Coast Air Quality Management District (AQMD) is the main regulatory body for air 

pollution in the Los Angeles area. It encompasses Orange County and the urban areas of Los 

Angeles, Riverside and San Bernardino County. The area is the most densely populated urban 

center of the state of California and is home to over 16 million people. The South Coast Air 

Quality Management District has historically exhibited some of the worst ambient levels of air 

quality in the nation (U.S. EPA, 2006c). Every three years AQMD develops an air quality 

management plan which identifies implementation measures designed to bring the area in 

compliance of state and federal air quality standards.  

Figure 1 provides maps of ozone concentrations in 1990 and 2000 for the four counties 

which makeup the South Coast AQMD. The 1990 map shows a wide variation in ozone levels 

across the area. Specifically, ozone concentrations were lowest in the coastal areas of Los 

Angeles and Orange County. Average 1-hour ground-level ozone concentrations, in those areas, 

were below the federal 1-hour standard (0.12 ppm). On the other hand, the areas east of the San 

Bernardino Mountains and south of the San Gabriel Mountains exhibited the highest ozone 

concentrations in 1990. Average 1-hour ground-level ozone concentrations in these areas ranged 

from 0.185 ppm to as high as 0.225 ppm. 

The South Coast AQMD counties experienced significant reductions in ozone concentrations 

between 1990 and 2000. Table 1 reports average ozone concentrations from monitoring stations 

across the area. The average 1-hour ground-level ozone reading in 2000 was roughly 0.10 ppm, 

compared to 0.14 ppm in 1990. In addition, the number of days exceeding the federal 1-hour 

standard (0.12 ppm) significantly decreased between 1990 and 2000. The average number of 

recorded exceedences across the area was about 3.5 days in 2000, compared to nearly 36 days in 
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1990. Figure 1 shows that the ozone reductions were highest in areas with the worst ground-level 

ozone concentrations in 1990. Average ozone concentrations fell by nearly 62 percent at 

monitoring stations with a recorded 1990 ozone level above the federal 1-hour standard (0.12 

ppm). On the other hand, monitors with a recorded 1990 ozone level below the federal 1-hour 

standard experienced an average reduction of only 28 percent. 

2.2 Approaches to Valuing Amenity Changes 

The type of empirical approach required to value amenity changes ultimately depends upon the 

question of interest. Researchers are generally interested in estimating the marginal value from 

amenity changes. This is obtained by estimating the hedonic price function for the relevant 

housing market and taking the gradient with respect to the amenity of interest. Smith and Huang 

(1995) provide an extensive survey of the applications of this approach to air quality valuation. 

Sometimes a researcher might want to estimate the willingness to pay (WTP) of households for a 

non-marginal amenity change at their residential location. This requires estimating the demand 

or WTP function for the amenity. The welfare estimation can be implemented via Rosen’s 

(1974) two-stage hedonic approach or McFadden’s (1978) discrete choice approach. Palmquist 

(2006) provides a recent review of hedonic and discrete choice demand approaches to valuation. 

The hedonic and discrete choice demand estimations do not, however, allow the researcher to 

evaluate the welfare impact resulting from large amenity changes. In fact, these methods will 

underestimate the welfare gains from large amenity changes because they do not account for the 

fact that households change their locations. Evaluating the welfare impact of large amenity 
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changes is generally a more complex task as one needs a model that explicitly incorporates 

changes in household location choices.9 

In contrast to the hedonic and discrete choice demand estimation, which assume that non-

marginal amenity changes do not affect household location choices, locational equilibrium 

models are able to incorporate price adjustments that result from the re-sorting of households 

across housing locations in response to a policy change. These models use estimated household 

preferences to simulate a counterfactual equilibrium outcome for a policy change. 

Sieg, Smith, Banzhaf and Walsh (2004) provide the first empirical analysis of the 

equilibrium welfare impacts from non-marginal environmental improvements.10 The study 

develops a locational equilibrium model based upon Epple and Sieg’s (1999) equilibrium 

framework. Households, in the Sieg et al. model, select housing locations among a finite set of 

differentiated communities. The set of communities is characterized by 91 school districts. 

Communities differ in their provision of local public goods (including air quality) and housing. 

Conditional on their community choice, households select housing as a continuous, 

homogeneous good. Households’ preferences vary with respect to income and a taste parameter. 

The locational equilibrium is defined in terms of three conditions: boundary indifference, income 

stratification and ascending bundles. These properties are used to estimate parameters of the 

household’s utility function, which are then used to simulate alternative equilibrium outcomes 

for changes in ozone concentrations at the school district level. 

Sieg et al. (2004) apply this framework to investigate the welfare benefits of the 1990 CAAA 

in the Los Angeles area. They find that equilibrium benefits that account for adjustments in 

                                                 
9 There is one instance when evaluating the welfare impact of a large amenity change is a simple task. This occurs 
when the amenity change is localized, i.e., confined to a small geographic area. In this case it can be shown (see 
Bartik, 1988) that the welfare impact will equal the sum of the changes in housing prices within the affected area. 
10 See also Smith et al. (2004) and Walsh (2003) for other applications related to the Sieg et al. (2004) approach. 
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housing prices differ substantially from direct benefit estimates. The average equilibrium welfare 

gain from the reductions in ozone concentrations, which occurred between 1990 and 1995 in the 

Los Angeles area, was estimated at $1,371. This compares with the average direct benefit of 

$1,210. In addition, the study finds a significant amount of heterogeneity in welfare gains across 

counties. Equilibrium benefits were found to be highest in Los Angeles County ($1,556) and 

lowest in San Bernardino County ($367). The study also finds considerable variation in benefits 

across school districts, within each county. For example, the equilibrium benefits in Los Angeles 

County ranged from $486 in the Compton Unified School District to $9,000 in the Beverly Hills 

School District. 

In a subsequent study, Smith et al. (2004) evaluated the benefits of the 1990 CAAA in the 

Los Angeles area for 2000 and 2010. Using the EPA’s projected changes in ozone levels for 

2000 and 2010 together with the estimated household preferences from Sieg et al. (2004), the 

study measures the equilibrium WTP for the policy scenarios developed for EPA’s prospective 

study (EPA, 1999) as they relate to the households of the Los Angeles area. The study also 

investigates the distribution of equilibrium benefits across income groups. They present the 

benefits associated with the 25th, 50th and 75th income percentiles for selected school districts in 

the Los Angeles area. The estimated equilibrium welfare estimates vary significantly across the 

household income distribution. The distribution of the welfare estimates also varies across school 

districts. In the lowest-income community, San Juacinto Unified School District, the welfare 

estimates are -$59 annually for the 25th income percentile as compared to -$28 for the 75th 

percentile. The welfare estimates in Beverly Hills School District, the highest-income 

community, are $3899 for the 25th income percentile as compared to $7406 for the 75th 

percentile. 
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Sieg et al. (2004) provide a major contribution to the valuation of large widespread changes 

in environmental amenities. The study provides the first explicit characterization of the 

equilibrium impact of non-marginal amenity changes on household choices and housing prices. 

In addition, the Sieg et al. model has the advantage of being simple to implement and 

computationally tractable even with a large number of housing locations. However, the 

specification of household preferences, that is needed to ensure that the necessary conditions for 

the equilibrium are met, gives rise to some limitations. 

First, the characterization of preferences for amenities leads to somewhat restrictive patterns 

of substitution across locations. This is because location amenities enter the household’s indirect 

utility function through a single public good index. As a result, households are forced to have the 

same ranking of communities in the amenity space. This vertical differentiation of communities 

simplifies the estimation of preference parameters and the computation of the locational 

equilibrium. However, one would generally expect households to have different relative 

preferences for community-specific amenities such as air quality, education and crime. For 

instance, other things equal, one would expect that households with children enrolled in a 

secondary public school will have higher preferences for communities with good secondary 

public schools.  

A second limitation of the Sieg et al. (2004) model relates to the characterization of the 

heterogeneity in households’ preference for location amenities such as air quality, school quality 

and crime. Heterogeneity in households’ preferences for the public good index is characterized 

by a single taste parameter whose marginal distribution is assumed normal.  Hence a household’s 

marginal valuation for a given community amenity is only a function of the household’s income 

and does not depend on other household characteristics. Households’ preferences for 
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community-specific attributes are, however, likely to vary across other household characteristics 

such as household size, the presence of children and educational attainment. For instance, highly 

educated household are likely to have a higher marginal valuation for school quality. As a result, 

a preference specification which incorporates an interaction between neighborhood school 

quality and household educational attainment would allow the model to better fit the data.  In 

addition, when investigating welfare gains from an amenity change, a researcher is able to 

provide an analysis of the distributional impacts across household characteristics other than 

income. For instance, one may want investigate the differential impact of an improvement in air 

quality on minority households. 

An alternative to the Sieg et al. (2004) equilibrium framework is the discrete choice 

equilibrium framework. This is the equilibrium approach adopted here. Anas (1980, 1982) 

developed a theory of locational housing market equilibrium based on the discrete housing 

choice model of McFadden (1978). In recent years this framework has been extended to 

incorporate advances in urban economics and empirical industrial organization. One such model 

was proposed by Bayer and Timmins (2005). Their model incorporates endogenous social 

interaction effects as well as unobserved location attributes.  

The discrete choice equilibrium approach provides for a richer characterization of preference 

heterogeneity and more general patterns of substitution. The discrete-choice modeling of the 

household location allows community-specific amenities to enter directly the utility function. 

This provides for more general substitution patterns across communities. In addition, the 

researcher can characterize the observed heterogeneity in households’ tastes for location 

amenities by incorporating interactions of household characteristics and location amenities into 

the utility function. This would allow the researcher to evaluate the impact of a policy change on 
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various socio-economic subgroups of the household population. The main limitation of the 

discrete choice equilibrium approach is that its implementation requires significant 

computational work. 

To date, discrete choice equilibrium models have been mostly used to analyze urban and 

transportation policy changes. Anas (1982) evaluates the impact of public transportation projects 

proposed for the Chicago area in the early 1980s. Bayer et al. (2005) use an equilibrium model 

similar to the Bayer and Timmins (2005) model to investigate the impact of an increase in 

income inequality in the San Francisco bay area. Timmins (2007) uses a similar equilibrium 

model to evaluate the welfare costs of rainfall changes in Brazil using labor market data. The 

equilibrium model in this paper is based on the specification of Bayer et al. (2005). 

3 A Locational Equilibrium Model for the Los Angeles Area 

This section develops the discrete choice equilibrium model used to evaluate the welfare impacts 

of the 1990 Clean Air Act amendments in the Los Angeles area. We model households’ location 

decisions according to the framework of Bayer et al. (2005). The characterization of the 

locational equilibrium follows Anas (1982). 

3.1 Modeling Households’ Location Choice 

Households are assumed to choose their residential location h from a discrete set of housing 

types (H). A housing type is defined as a collection of houses with identical observed 

characteristics and located within the same neighborhood. The utility that a household i derives 

from a residential location h is given by: 
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where yi represents household i’s monthly income and ph is the monthly rental price of house h. 

dih is a dummy variable which equals 1 if the residential location is within the household’s 

employment zone. It is intended to capture the household’s preference for housing locations that 

are closer to its workplace. The kth element of the vector of observed attributes for residential 

location h is given by xhk. These are the housing and neighborhood attributes that are present in 

the researcher’s data. Housing characteristics include bedrooms, age, dwelling type and tenure 

status. Neighborhood characteristics include ozone concentration, 8th grade math score, crime 

index, elevation, proximity to the Pacific coastline, housing density and proportion of Hispanics. 

Other attributes of the residential location that are observed by the household but not observed in 

the data enter the household’s utility via the location-specific error term, ξh. This term will 

capture the household’s average valuation of the unobserved attributes.11 The last term, εih, is a 

mean-zero stochastic error which captures the unobserved taste heterogeneity among households.  

Each household chooses the residential location which provides it with the highest utility. 

The household’s indirect utility derived from this maximization problem is given by: 
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11 As in Bayer et al. (2005) and Berry et al. (1995), the specification of the indirect utility assumes that households 
have the same valuation for the unobserved attributes. Hence, we are not able to identify heterogeneous preferences 
for unobserved location attributes. Athey and Imbens (2007) use Bayesian methods to estimate a random utility 
model which incorporates individual-specific tastes for the unobserved attributes.  
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where α, γ and βi are parameters of the household’s preference function. α characterizes the 

household’s marginal utility of the log of income12 while βik captures the household’s taste for 

location attribute k. The parameter γ characterizes the household’s disutility for commuting to 

work. We explicitly account for the heterogeneity in households’ preferences for location 

characteristics by allowing the taste parameters to vary systematically across households. The 

specification of the heterogeneous taste parameters uses interactions between location 

characteristics and observed characteristics of households. These observed household 

characteristics include household income, household size, the presence of children under the age 

of 18 and whether the household head is college educated. The functional form of the 

household’s taste for an attribute k is given by: 

 

∑+=
r

krirkik z 10 βββ , (3.2) 

 

where zir represents the r th characteristic of household i. The first term captures the component of 

the household’s taste for the attribute k which is common across all households.13 The second 

term is intended to capture systematic differences in tastes which can be attributed to the 

household’s observed characteristics.  

The final form of the indirect utility function is obtained by substituting equation (3.2) into 

equation (3.1a) for the chosen location. It is given by: 

 

                                                 
12 So that the marginal utility of income is given by α / (yi - ph). 
13 When the household characteristics (zir) are demeaned, this term will equal the mean taste parameter across 
households. 
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where, 

 

h
k

khkh x ξβδ +=∑ 0 . (3.4) 

 

Equation (3.3) outlines the two main components of the household’s valuation of its chosen 

location. The first component, represented by the constant term (δh), captures households’ 

common valuation of location attributes. This valuation is shared by households regardless of 

their characteristics. For instance, all else equal, households would prefer a house with more 

bedrooms, less pollution, better schools, less crime, etc. This common valuation represents the 

base utility that households derive from the residential location h.14 The second component 

captures households’ individual valuation of the location attributes. These individual valuations 

are assumed to arise from differences in the observed characteristics of households. For instance, 

all other things equal, households of larger size are likely to choose houses with more bedrooms. 

Bayer et al. (2005) suggest a two-stage approach to estimate the parameters of the household 

location choice model in equation (3.3). In the first stage, one would recover the household-

specific taste parameters (α, γ, β1) and the location-specific constants (δh). This stage can be 

implemented by maximum likelihood estimation. Because of the large number of housing types 

the alternative constants are estimated using the contraction mapping proposed by Berry et al. 

(1995). The details of the estimation are provided in Section 5. The second stage then estimates 

                                                 
14 When the household characteristics (zir) in equation (3.2) are demeaned, this base utility will also represent the 
mean utility provided by the residential location h. 
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the mean taste parameters (β0k) from the regression specification provided by equation (3.4) 

using the location constants estimated in the first stage. 

The household utility in equation (3.3) closely resembles the utility specification in Bayer et 

al. (2005). However, there are two differences between our specification and that of Bayer et al. 

(2005). One difference arises from the characterization of the non-housing good. We characterize 

the household’s consumption of the composite non-housing good using the term log(yi - ph). This 

allows the model to capture income effects that are present in the household’s choice problem. It 

also allows us to derive Hicksian welfare measures that are consistent with the household’s 

utility maximization problem. In the Bayer et al. model the indirect utility does not incorporate 

the composite non-housing good. The household income enters the utility as a linear interaction 

with location attributes, and the housing price enters the utility linearly as an attribute of the 

residential location.  

The second difference between our model and the model used by Bayer et al. (2005) is that 

we do not incorporate endogenous social interaction effects. Social interaction effects emerge 

from the fact that households may care about the average socioeconomic characteristics of their 

neighborhoods. These social interaction effects are likely to be endogenously determined in the 

sorting equilibrium when households have heterogeneous preferences. This is because the 

average socioeconomic makeup of neighborhoods changes each time households resort. In our 

utility function the social interaction effect arises from households’ homogeneous tastes for the 

proportion of Hispanics in their neighborhood. As a result the social interaction effect is 

exogenous. 

Our specification of the household’s indirect utility differs fundamentally from Sieg et al. 

(2004). Sieg et al. specify the indirect utility of a household residing in a community j as: 
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ρρρα /1]),([ jijij pyhgV += , (3.5) 

 

where gj is the public good index for community j and h(•) is a non-linear function characterizing 

the household’s expenditures on housing. yi represents the household’s income while αi is a 

parameter characterizing the heterogeneity of the household’s valuation for the public good 

index. pj represents the housing price index for community j.  

Two main distinctions arise between our equilibrium model and the model used by Sieg et al. 

(2004). First, according to the Sieg et al. specification, households value community amenities 

through the single public good index g. As a result, households will have the same preference 

ordering of communities in the amenity space. This type of preference structure generates 

substitution patterns that can be restrictive since households are forced to have the same ranking 

of communities in the amenity space. In our specification, substitution patterns are determined 

by the interaction of household characteristics and location attributes. Hence, households will 

have different relative preferences for community-specific amenities such as air quality, 

education and crime. 

Second, the interaction of household characteristics and location attributes also provide a 

richer characterization of the heterogeneity in household preferences for location amenities. The 

taste heterogeneity with respect to the community air quality level is captured by interaction with 

household income. Heterogeneity in preferences for school quality is captured via interaction 

with the household’s educational attainment. This approach differs from the Sieg et al. model 

where heterogeneity in preferences for amenities is characterized by the single unobserved taste 

parameter, α. 
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3.2 Characterizing the Locational Equilibrium 

We now turn to the characterization of the locational equilibrium for the housing market. We 

first derive the predicted demand for each housing type. The demand side of the market is made 

of N heterogeneous households. The supply side of the housing market comprises N occupied 

housing units classified into H housing types. The supply of each housing type h is defined as the 

measure of housing units of type h in the study area and is assumed fixed. The locational 

equilibrium defines a set of market clearing prices {ph} and household choice probabilities {Pih}. 

Characterizing the Housing Demand 

We will assume that the idiosyncratic error component εih is identically and independently 

distributed and has a Type I Extreme Value (EV) distribution. Given this assumption, the 

probability that a household chooses a residential location h is defined by: 
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The predicted aggregate demand for housing type h is obtained by summing the choice 

probabilities (Pih) over the household population. 
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i
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where p is a vector of housing prices, zi is a vector of housing characteristics and x is a matrix of 

location attributes whose columns are xh.  
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Equation (3.6) characterizes a multinomial logit (MNL) choice structure. An implication of 

the MNL choice structure is the independence from irrelevant alternatives (IIA) property, which 

has been the subject of much criticism in the discrete choice literature. A direct consequence of 

the IIA property is that, for a given household, the ratio of the choice probabilities for any two 

alternatives is independent of the household’s systematic valuation of the remaining other 

alternatives in the household’s choice set. It should be noted that while IIA is a property of the 

individual household choice probabilities in our model, it is not a property of the housing 

demands. This can be easily seen by looking at the ratio of the predicted demands for housing 

alternatives k and l: 
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It is clear that the ratio in equation (3.8) is not independent of the remaining housing alternatives 

in the choice set. The only instance when this ratio can be independent of the remaining 

alternatives is when households have identical characteristics. In this case the ratio equals one. 

Hence, the inclusion of household characteristics in the indirect utility function ensures that the 

housing demands derived from the model will exhibit realistic substitution patterns.  

Defining the Locational Equilibrium 

The supply of housing units of type h, sh, is assumed fixed and is given by the number of housing 

units of type h in the data. The locational equilibrium is such that the demand for each housing 

type equals its supply. It is characterized by a vector of H housing prices p and a set of NH 
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household location choice probabilities {Pih}. More specifically, the vector of market-clearing 

prices p is defined by: 

 

hh spd =)(  h = 1,..., H. (3.9) 

 

Equation (3.9) defines a system of H equations in H variables. Anas (1982) shows that a unique 

vector of market-clearing prices exists when the household location choice probabilities Pih are 

strictly decreasing in the housing price ph. This occurs when the estimate for the parameter α is 

positive. 

4 Data Sources 

The focus of this study is on the four counties that make up the South Coast Air Quality 

Management District (AQMD): Los Angeles County, Orange County, Riverside County and San 

Bernardino County. We estimate the parameters of the household preference function defined by 

equations (3.3) and (3.4) using a cross-section of 1990 microdata which includes household 

characteristics, housing characteristics, neighborhood air quality, neighborhood school quality, 

neighborhood crime rate, neighborhood racial composition, neighborhood housing density, 

neighborhood elevation and proximity of the neighborhood to the Pacific coastline. The 

remainder of this section describes the housing and air quality data. A description of the 

remaining data is provided in the appendix. 
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4.1 Household and Housing Characteristics 

Households and housing characteristics are obtained from the 1990 Census 5 percent Public Use 

Microdata Sample (PUMS).15 These are records containing a 5 percent sample of all housing 

units in the United States. The PUMS records provide an extensive description of the housing 

stock and the households in the occupied dwelling units. The PUMS are extracts from the actual 

decennial Census long-form questionnaire, which are taken in a way that protects the 

confidentiality of households. However, unlike the confidential long-form files, which identify 

each household’s Census block (an area of approximately 100 people), the 5 percent PUMS 

sample only identifies the location of households in a Public Use Microdata Area (PUMA), 

which is a Census geographic area containing approximately 100,000 people. The PUMS also 

identify the employment location of household members by their workplace PUMA.  

The 1990 PUMS sample for the four counties in the study area comprises 224,565 occupied 

housing units. The original household sample consists of the 224,565 households that occupy 

those housing units. Our analysis focuses on the households occupying single and multi-family 

dwelling units.  Mobile homes and group quarters are excluded from the sample. In addition, we 

restrict our sample to households that have a monthly income of at least five hundred 1990 

dollars. Finally, we dropped the observations where the household’s reported monthly income 

was less than the monthly rental price of the housing unit. The final sample, which is used to 

represent the population of households and housing units in this study, consists of approximately 

171,000 observations. 

Sieg et al. (2004) estimate household preference parameters using housing transactions from 

1989 to 1991 in Los Angeles, Riverside, Orange and Ventura County. These data identify the 

                                                 
15 These data are publicly available from the U.S. Census Bureau (www.Census.gov), or at 
www.ipums.umn.edu/usa/vars.html. 
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Census tract in which a housing unit is located. Sieg et al. characterize residential communities 

using 1990 school district boundaries. Housing transactions data provide a more comprehensive 

set of housing characteristics than the Census long form. However, these data do not provide 

information on the households occupying the houses. As a result they do not allow one to 

estimate richer preference specifications, such as those used Bayer et al. (2005), where 

preferences for location amenities vary across household characteristics.  

Table 2 provides descriptive statistics of the household and housing characteristics in our 

1990 PUMS sample. The microdata sample comprises 171,000 observations describing 

households and their occupied housing units. The vast majority (nearly 70 percent) of the 

households in the study area reside in Los Angeles County. Orange County has the second most 

household population (17 percent), followed by San Bernardino County (10 percent) and 

Riverside County (3 percent).  

The average number of bedrooms for the houses in the study area is 2.25. We follow the 

approach of Bayer et al. (2005) to compute an imputed monthly rental housing price across 

owner-occupied and rental units. A detailed description of the method is provided in the 

appendix.16 The mean monthly rental housing price is $749. Monthly housing prices are highest 

in Orange County ($956) and lowest in San Bernardino County ($707). Half of the housing units 

in the study area are owner-occupied. Riverside and San Bernardino County have the largest 

owner-occupied housing shares (0.63). Overall, the housing stock is quite young. Nineteen 

percent of the houses were built after 1980; 37 percent were built in the 1960s and 70s. 

                                                 
16 We construct a single price vector for owned and rental housing units by estimating a hedonic price regression for 
each of the three metropolitan statistical areas in the PUMS sample (Los Angeles-Long Beach, Orange County and 
Riverside-San Bernardino). The regressions provide an estimate of the average ratio of housing values to monthly 
rents in each metropolitan statistical area. The average ratio for the study area is 316.1. The average ratios are then 
used to convert housing values to their corresponding rental rates. 
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A household’s preference for housing locations that are closer to its workplace is captured by 

a dummy variable which equals 1 if a residential location is within the household’s employment 

zone. The household’s employment zone is defined as the PUMA of the household head’s 

workplace. Other studies (see e.g., Bayer et al., 2005 and Takeuchi et al., 2005) have instead 

used the distance to the householder’s employment location. However, in the PUMS data, the 

householder’s employment location is given by the workplace PUMA. Hence the distance to the 

household’s employment location cannot be calculated. Because the workplace PUMA is a 

relatively large geographic area we prefer using a dummy variable for whether the residential 

location is within the workplace PUMA, instead of the distance from the residential location to 

the workplace PUMA. The latter turns out to be a noisier measure. Roughly half of the 

households in the study area choose housing units which are located within their employment 

zone. 

The lower half of Table 2 provides a summary of means for the household characteristics that 

enter the model. The average monthly household income in the sample is $4,098. Orange County 

has the highest average monthly income ($4,945), whereas Riverside County has the lowest 

average ($3,860). The racial profile of the household is given by the race of the household head. 

The study area comprises 8 percent non-Hispanic Asian and 9 percent non-Hispanic Black 

households. Fifty-eight percent of the households in the study area are non-Hispanic Whites. 

Households of Hispanic origin make up 23 percent of the population. The share of Hispanic 

households is highest in Los Angeles County (26 percent) and lowest in Orange County (15 

percent). The educational attainment of the householder is captured by a binary variable 

indicating whether the household is college educated. Thirty-five percent of households in the 

study area are headed by a college graduate. 



 27 

4.2 Neighborhood Variables 

Defining Neighborhoods 

Table 3 reports average values for the neighborhood attributes used in the model. We use the 

1990 Census PUMA boundaries to characterize neighborhood geography. This is because the 

PUMS identifies the geographic location of a dwelling unit as the Census PUMA. A Census 

PUMA is a geographic area containing approximately 100,000 individuals. Sieg et al. (2004) 

characterize residential communities using 1990 school district boundaries. They were able to do 

so because housing transactions identify the Census tract as well as the school district for each 

housing unit. Because they had access to the 1990 Census long-form files, Bayer et al. (2005) 

were able to use Census block boundaries to characterize neighborhoods. The Census block is a 

geographic area of approximately 100 individuals. 

The study area comprised a total 87 PUMAs in 1990. This compares with approximately 150 

school districts and 2,400 Census tracts. The average PUMA in 1990 had approximately 3,000 

housing units. To reduce measurement errors in characterizing neighborhood attributes, the 

estimation only uses PUMAs whose boundaries are mutually exclusive. PUMAs that are 

enveloped by other PUMAs are excluded from the sample. This reduces the number of PUMAs 

to 79.   

PUMAs are relatively large geographic units compared to Census tracts or school districts.   

However, for the main attributes used in the estimation, the variation within PUMAs is small 

compared to the variation across PUMAs. Table 4 shows within and between PUMA standard 

deviations for selected characteristics. For math score, ozone and PM-10 values, the variation 

across PUMAs is nearly five times larger than the within PUMA variation. The difference is 

smaller for the crime measure. The standard deviation of crime values across PUMAs is 20 
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percent higher the mean standard deviation within PUMAs. We therefore conclude that the 

PUMA boundaries provide a good characterization of neighborhood school quality, crime and air 

quality. 

Air Quality Data 

The air quality data used in this study were obtained from the California Air Resources Board 

(CARB). CARB provides California ambient air quality data for criteria and toxic pollutants 

from 1980 through 2002. The data include hourly and daily values as well as annual summaries 

collected from a large network of monitors dispersed throughout the state of California. Annual 

averages for 1990, 1995 and 2000, are obtained for two major primary criteria pollutants: ozone 

and particulate matter (PM-10). These pollutants have been shown to have a significant impact 

on housing prices (Sieg et al., 2004). Ozone is measured as the average of the top-30 daily 

maximum readings at a monitor, while particulate matter (PM-10) is measured by the annual 

geometric mean.  

Table 1 provides descriptive statistics of the monitor air quality data in the study area. 

Average ozone concentrations in 1990 were highest in Los Angeles County and lowest in Orange 

County. Ozone concentrations fell by nearly 40 percent between 1990 and 2000, with the largest 

reductions recorded in the worst areas. Monitor readings tend to be strongly correlated across 

pollutants. Table 5 shows the correlation between ozone, PM-10, nitrogen oxide (NOx) and 

sulfur dioxide (SO2). The correlation coefficient for ozone and PM-10 at monitor locations 

measuring both pollutants is 0.44. Ozone and PM-10 levels are also strongly correlated with 

secondary pollutants such as nitrogen oxide and sulfur dioxide. The correlation coefficient 

between ozone and NOx is 0.47; for ozone and SO2 it is -0.56. 
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The study area had a total of 50 active monitors measuring ozone between 1989 and 1991. 

This compared with 18 monitors measuring PM-10 concentrations. Interpolation techniques are 

used to determine neighborhood air pollution levels. We use two approaches to determine 

neighborhood air pollution levels. The first approach assigns to each PUMA the centered three-

year average of readings from the closest monitor. If more than one monitor falls within a 

PUMA, the PUMA is assigned the average from these monitors. Sieg et al. (2004) used a similar 

approach to assign air quality levels to each house in their sample. They then approximate the 

neighborhood air quality level using the averages for the houses sold in each school district. One 

potential issue with this approach is that it may assign the same monitor readings to a collection 

of neighborhoods, regardless of how far they are located from the monitor. Hence, it does not 

account for the fact that pollution concentrations are likely to dissipate with distance. 

The second interpolation approach addresses this issue by using a distance-weighted method. 

We generate a pollution surface for the entire study area using 100-meter-by-100-meter grid 

cells. We then assign to each grid cell a distance-weighted average of the readings from the three 

closest monitors. The neighborhood air quality measure is then computed by averaging the grid 

values within each PUMA. The two interpolation approaches lead to similar neighborhood ozone 

and PM-10 concentrations. We follow Sieg et al. (2004) and use the pollution levels from the 

closest monitor interpolation approach in the estimation of household preferences and the 

computation of welfare benefits. 

4.3 Characterizing the Residential Location 

We characterize the household’s residential location choice alternatives in terms of 4037 discrete 

housing types.  These are also referred as housing products. Each housing type is a collection of 

housing units that are located within the same neighborhood and have identical observed 
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characteristics. Housing types are defined in terms of six variables: ownership status, number of 

bedrooms, dwelling type, built after 1980, built during 1960s or 70s and PUMA. The first five 

variables represent the housing characteristics for each housing type. We characterize the rental 

price of a given housing type h as the average of the rental prices for all units of type h. This is 

similar to the approach used by Berry et al. (1995) to obtain average prices of car products. The 

neighborhood characteristics for each housing type are given by the characteristics of the PUMA. 

The ownership status is defined as either renter-occupied or owner-occupied. The number of 

bedrooms ranges from 0 to 5. The dwelling type is defined as either single-family or multi-

family. The variables “built after 1980” and “built during 1960s or 70s” are binary variables that 

equal one if true and zero otherwise. Lastly, the study area contains 79 neighborhoods. These six 

categories provide a total of 7,584 (2 * 6 * 2 * 2 * 2 * 79) possible housing types. The actual 

number of combinations that exist in the study area is much smaller. We obtain a total of 4037 

distinct housing products. This is because some of the 7,584 possible housing types do not exist 

in the data. For example, in a given neighborhood there are eight possible types of four-bedroom 

multi-family units. However, some neighborhoods contain no multi-family four-bedroom units. 

As a result these neighborhoods will have zero, instead of eight, types of four-bedroom multi-

family units.   

Using housing types rather than housing units to characterize residential locations 

significantly reduces the number of alternatives in the housing market while still providing a 

complete span of the product space. This has a direct implication for the identification of 

preference parameters in the first stage of the estimation. Indeed, a necessary requirement for the 

identification17 of the first stage is that the number of observations be larger than the number of 

alternative-specific constants plus the number of interaction parameters. This requirement is not 
                                                 
17 A discussion of identification issues is provided in the appendix. 
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met when housing units are used to characterize residential locations, as the number of 

observations (i.e., households) will equal the number of housing alternatives. 

5 Estimation Strategy 

We estimate the parameters of the household’s indirect utility in equations (3.3) and (3.4). In 

section 5.1 we characterize the sampling framework used to generate the household sample and 

the choice set of sampled households. Section 5.2 discusses the details of the estimation strategy. 

Section 5.3 presents the results of the estimation. 

5.1 Sampling Framework 

Two issues arise in the empirical estimation of the household location choice model. The first 

issue regards how to draw the sample of households to be used in the estimation of the model. 

The sampling of households is necessary because it is not computationally feasible to estimate 

the model from the population of 171,000 households in the study area. The second issue 

pertains to the characterization of the relevant choice set for the sampled households. This is a 

classical issue in the estimation of discrete choice models (See, for example, McFadden, 1978 

and Quigley, 1985). 

5.1.1 Drawing the Household Sample 

We devise a sampling scheme that allows using a smaller, yet representative sample of the 

households in the data. The sampling framework uses a stratified, choice-based sampling 

design.18 In particular, we draw a 10 percent random sample of the households who choose each 

                                                 
18 Ben-Akiva and Lerman (1985) provide a review of sampling theory and applications to the estimation of discrete 
choice models. 
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housing type. This produces the final sample of 17,894 households used to estimate the location 

choice model. 

The choice-based sampling design does not produce a fully random sample of the household 

population. Indeed, it is easy to show that the average household characteristics from this sample 

will be biased estimates of the mean household characteristics in the population. An alternative 

to the choice-based sampling design would be to use a simple random sampling scheme. While a 

simple random sampling design produces independent observations, it does not guarantee that 

every housing type will be represented in the sample. This will likely be the case for housing 

alternatives that are chosen by very few households. In other words, the random sample may not 

produce households from those residential locations. In an attempt to provide a full 

characterization of the housing market, we opted to preserve the product space at the expense of 

the independence of household observations. We correct for the bias in the first-stage estimation, 

resulting from the choice-based sampling design, using the approach of Manski and McFadden 

(1981). This correction is explained below in the details of the estimation.  

5.1.2 Determining the Choice Set of Sampled Households 

The household’s relevant choice set or feasible set of alternatives is an essential component of 

the estimation. A sampling approach is also used to construct the choice set. Potentially, one 

could set the household’s choice set as the 4037 housing types in the sample. However, this 

would render the estimation computationally intractable. The reason is that the computational 

burden of the estimation grows linearly with the size of the household’s choice set. An 

alternative is to construct the choice set by sampling a few alternatives from the full set of 

available alternatives. In particular, the household’s choice set includes (i) the household’s 

chosen residential location and (ii) a random sample of 20 residential locations from the 
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remaining non-chosen alternatives. McFadden (1978) has shown that such a scheme will yield 

consistent parameter estimates for the multinomial logit model. 

5.2 Estimation of Household Preference Parameters 

The parameters (α, γ, β0, β1) of the household indirect utility function defined by equations (3.3) 

and (3.4) are estimated from a multinomial logit model. The estimation follows the two-stage 

approach proposed by Bayer et al. (2005). In the first stage we estimate (H-1) alternative-specific 

constants19 (δh) and the household-specific taste parameters (α, γ, β1) in equation (3.3). The 

second stage estimates the vector of mean taste parameters (β0) using the estimated vector of 

alternative constants as the dependent variable in the regression specification given by equation 

(3.4). 

5.2.1 Recovering the Household-Specific Taste Parameters (First Stage) 

The alternative-specific constants (δh) and the household-specific taste parameters (α, γ, β1) are 

obtained via maximum likelihood estimation (MLE). The indirect utility in equation (3.3) defines 

the household-specific multinomial choice probabilities given by: 
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where Ci represents the choice set of household i. Given the household choice probabilities, the 

log-likelihood for the household choices observed in the data is defined as: 

                                                 
19 Note: The Hth alternative constant is set to zero. 
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where I ih is a dummy that equals 1 whenever household i chooses location h in the data. The 

estimates for the preference parameters (α, γ, β1) and the choice-specific constants (δ) are then 

obtained via maximization of the log-likelihood L (δ, α, γ, β1). 

The closing conditions of the equilibrium model are implicitly enforced via maximization of 

the log-likelihood. As pointed out by Bayer et al. (2005), this can be observed from the first-

order condition of the maximization problem. Differentiating the log-likelihood in (5.2) with 

respect to hδ̂  yields: 
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where ihP̂  is the estimated choice probability, sh represents the sample housing supply for 

alternative h, and hi ∈  indicates that household i chooses housing type h. Notice that equation 

(5.3) closely resembles the equilibrium condition in equation (3.9). It is indeed the sample 

equivalent of equation (3.9). Hence, the vector of alternative-specific constants which maximizes 

the log-likelihood also insures that the equilibrium condition in equation (3.9) holds for the 

sample. 

The maximization of the log-likelihood in equation (5.2) with respect to the full set of 

parameters (δ, α, γ, β1) is computationally demanding. This is because the dimension of δ (the 
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vector of location-specific constants) is generally large. In this study, the housing market 

comprises a total of 4037 housing alternatives. This requires estimating 4036 alternative-specific 

constants in the first stage. As a result, maximizing the log-likelihood using standard search 

algorithms (i.e., Newton-Raphson, quasi-Newton or direct search) can be extremely slow and 

inefficient. A contraction mapping proposed by Berry et al. (1995) allows one to circumvent this 

computational burden by solving for the alternative-specific constants separately using the first-

order condition in equation (5.3).  

Equation (5.3) implicitly defines the vector of alternative-specific constants (δ) as a function 

of the household-specific taste parameters (α, γ, β1) and the vector of housing-type supplies (s). 

This allows one to derive a concentrated version of log-likelihood as a function of (α, γ, β1). The 

concentrated log-likelihood is given by: 
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For given values of (α, γ, β1) that maximize the concentrated log-likelihood Lc, we can obtain 

estimates of the alternative constants by solving the system in equation (5.3). The contraction 

mapping of Berry et al. (1995) provides a quick numerical solution to this system. It suggests 

solving iteratively for the location constants using the following recursive algorithm: 
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Berry et al. (1995) prove that the algorithm in equation (5.5) is a contraction mapping, which 

means that it is guaranteed to converge for any starting value of δ. Convergence generally occurs 

quickly. In our estimation, convergence of the contraction mapping usually occurs after 20 to 30 

iterations. The computing time is between 5 and 10 seconds on Pentium 4 2Ghz PC stations. 

 

The first stage estimation can be summarized as follows: 

i. Set an initial guess for δ. 

ii. Given δ, maximize the constrained log-likelihood in (6.4) with respect to (α, γ, β1). 

iii. Given the estimates of (α, γ, β1), solve for δ using the contraction mapping in (6.5). 

iv. Repeat (ii) and (iii) until the estimates converge. 

 

It is easy to see that the above steps solve the system of first-order conditions for the 

unconstrained log-likelihood in equation (5.2). This implies that the estimates produced by this 

sequential estimation are indeed the MLE estimates of (δ, α, γ, β1), which are unique given the 

global concavity of the multinomial logit log-likelihood. 

5.2.2 Correcting for the Sampling Design 

As discussed in the previous section, the choice-based sampling approach does not produce a 

random sample from the household population. As a result, additional steps need to be taken to 

ensure that the first-stage MLE estimates are consistent. It turns out that the log-likelihood in 

equation (5.2) represents a special case which requires only a minor correction to achieve 

consistency. In fact, it has been shown (McFadden and Manski, 1981) that the MLE estimates for 

(α, β1) are consistent as long as (i) the choice model is a multinomial logit and (ii) the model 

contains a full set of alternative-specific constants (Ben-Akiva and Lerman, 1985). Both of these 
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conditions are satisfied by the log-likelihood in equation (5.2). In addition, a minor correction 

will ensure the consistency of the alternative constants when the sampling design is such that 

each choice alternative is a stratum and the population share of each stratum is known. The 

consistent estimate of δh is obtained as: 
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Where wh is the fraction of the sample drawn from stratum h, and Wh represents the population 

share of stratum h. For the sampling design described in the previous section, each housing type 

represents a stratum. Therefore wh is the ratio of the number of households drawn from housing 

type h to the total number of households in the sample. Wh is the proportion of the household 

population choosing each housing type h.  

5.2.3 Estimating the Mean Taste Parameters (Second Stage) 

In the second stage, the mean taste parameters (β0) are estimated via ordinary least-squares 

(OLS). We regress the vector of alternative-specific constants estimated in the first stage on the 

housing and neighborhood attributes. The regression specification is given by: 
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The underlying assumption of the second-stage regression is that the housing and 

neighborhood attributes in xh are uncorrelated with the unobserved attributes of the residential 

location. That is, they must be exogenous or at least determined prior to the revelation of the 
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household’s valuation for the unobserved attribute (Nevo, 2000). A potential endogeneity 

problem may be due to unobservable neighborhood attributes that may be correlated with 

neighborhood air quality. Bayer, Keohane and Timmins (2005) address this issue by constructing 

an instrument for neighborhood PM-10 air pollution that uses panel data. In particular, they 

compute the PM-10 measure, for a location j, using changes in PM-10 levels originating from 

sources outside location j. Though we recognize the potential endogeneity of the neighborhood 

ozone measure, the fact that we have a small number of neighborhoods (79) limits our ability to 

construct reliable instruments. However, robustness checks suggest that the endogeneity of the 

PUMA-level ozone measure is not a severe problem. We return to this issue below in the 

estimation results. 

Differentiated product models (see e.g., Berry et al., 1995 and Bayer et al., 2005) have used 

an instrumental variable (IV) approach to deal with the potential endogeneity problem that arises 

when the housing price enters the second stage. This endogeneity is caused by the fact that 

housing prices are likely to be correlated with unobserved characteristics of residential locations. 

However, we do not instrument for housing prices as they do not enter the second-stage 

regression. Our model does not treat housing prices as attributes of residential locations. Rather, 

housing prices enter the first-stage estimation as part of the household’s budget constraint. The 

first-stage maximum likelihood estimation does, however, assume that the household’s 

expenditure on non-housing goods, i.e., the term (y-p), is uncorrelated with the household-

specific random error term (εih). 

5.3 Estimation Results 

We estimate the specification of the household’s indirect utility function in equations (4.3) and 

(4.4). As explained in the data section, we use ozone concentrations to characterize air pollution 
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in 1990. Due to the high correlation between the household characteristics we only estimate a 

limited set of interaction parameters in the first stage.  

5.3.1 Parameter Estimates 

Table 6 summarizes the results of the estimation.20 Model 1 estimates the benchmark 

specification which is used in the welfare estimation. The other models provide robustness 

checks which are described below. The household-specific taste parameters estimated in the first 

stage are all significant. The interaction parameters also have the expected signs except for the 

interaction parameter between crime and household income. We find that households with higher 

income levels have a higher WTP for air quality, which is in accordance with the hypothesis that 

air quality is a normal good. We also find that larger households are willing to pay more for 

additional bedrooms. Households with college-educated heads tend to have a stronger preference 

for school quality. This is in accordance with the idea that more educated people place a higher 

value on the quality of their children’s education. Households prefer residential locations that are 

within their employment zone, which is consistent with the notion that households dislike 

commuting. 

The positive and significant interaction between the log of crime and household income is 

contrary to our intuition. We would tend to expect that public safety is a normal good. This 

means that households with a higher income would want to have more public safety and hence 

be willing to pay more. This would imply a negative sign for the interaction of crime with 

income. As described in section 4, the crime variable is quite noisy as crime rates are only 

available at the city level. Also, as Table 4 shows, there is not enough variation in the crime 

                                                 
20 Except for the term Log(y-p), all the household-level interaction variables have been demeaned. 
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variable across neighborhoods. These factors may contribute to the counterintuitive interaction 

effect between crime and income.  

The second-stage taste parameters also generally have the expected signs. On average, 

households are found to prefer more bedrooms, owner-occupied dwellings, single-family 

dwellings, better school quality and coastal communities. The second-stage ozone coefficient is 

not statistically different from zero at the 10 percent level. The mean taste for ozone can be 

obtained by multiplying the ozone-income interaction coefficient, -0.02, by the mean of Log(y-p) 

in our sample, 8. 

The estimated ozone coefficient implies a mean marginal willingness to pay (MWTP) of $62 

for a 1 percent reduction in the 1990 average ozone concentration. We follow Sieg et al. (2004) 

by reporting the MWTP for a 1 percent reduction in the 1990 ozone levels. This allows 

comparing the MWTP estimates with estimates from previous studies. Sieg et al. (2004) report a 

MWTP of $61 for a 1 percent reduction in the 1990 average ozone concentration.21 We also find 

a significant variation in MWTP across households. For example, the MWTP for a 1 percent 

reduction in ozone for households in the highest income quartile (top 25 percent) is $130 

compared to only $8 for households in the lowest-income quartile. 

5.3.2 Robustness Checks22 

Endogeneity of Neighborhood Air Pollution 

As discussed in the previous section, the estimate of ozone pollution in the second-stage 

regression is likely to be endogenous as a neighborhood’s ozone level may be correlated with 

unobserved neighborhood socioeconomic variables that enter the error term (ξh). As a result, the 

estimated mean taste parameter for air pollution may be biased and inconsistent. The direction of 
                                                 
21 A detailed comparison of the MWTP estimates with the literature is provided in the appendix. 
22 Additional robustness checks are provided in the appendix. 
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this bias is to make the coefficient less negative, as air pollution will generally be positively 

correlated with neighborhood characteristics, such as share of low-income households and share 

of ethnic minorities, which are often disliked by high-income households. This could explain the 

positive estimate of ozone pollution in the second-stage regression. 

As explained previously, the small number of neighborhoods in the data limits the 

construction of reliable instruments. However, we perform a simple robustness check for the 

endogeneity problem that would result from the correlation between neighborhood ozone level 

and unobserved neighborhood characteristics. This involves estimating the second-stage OLS 

regression without the proportion of Hispanics. The assumption is that the unobserved 

neighborhood socioeconomic variables are correlated with the proportion of Hispanics in the 

neighborhood. Hence, if the ozone level is correlated with unobserved socioeconomic 

characteristics, removing the neighborhood proportion of Hispanics from the second-stage 

regression should significantly lessen the bias in the estimated ozone mean taste parameter. 

Model 1a of Table 6 reports the results from the alternate regression specification. We find that 

the estimated ozone coefficient remains positive and insignificant. The magnitude of the 

coefficient is also roughly the same in Model 1 and Model 1a. We should again note that the 

mean taste for ozone remains negative, as the ozone-income interaction coefficient is the same 

across models 1 and 1a. 

Robustness Checks with Respect to the Crime and Employment Variables 

We mentioned previously that the crime variable is quite noisy as crime rates are only available 

at the city level. One may wonder whether the noisiness in the crime variable may significantly 

affect the estimates of the taste parameters for the other neighborhood variables. Model 2 of 
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Table 6 runs the estimation without the crime variable in both the first and second stages. The 

estimated parameters from this model are very similar to the estimates in Model 1. 

The estimated taste parameter for the household’s preference for locations that are within its 

employment zone is significantly large in absolute value compared to the other taste parameters.  

It is possible that the employment dummy may also be capturing households’ preferences for 

other unobserved neighborhood characteristics. To the extent that this is the case, one may 

wonder if the presence of the employment dummy significantly distorts the estimated coefficient 

for ozone in both the first and second stages. As a robustness check, we run the estimation 

without the employment dummy in the first stage. The results are reported in Model 3 of Table 6. 

Except for the coefficients involving the crime variable, the remaining estimated parameters are 

similar to those in Model 1. 

Alternative Characterization of Residential Locations 

We explained in section 4.3 that the residential locations are characterized in terms of housing 

types, rather individual housing units. This not only considerably reduces the computational 

burden of the estimation, but also plays a key role in the identification and asymptotic properties 

of the estimates (see appendix). When residential locations are characterized in terms of 

individual housing units, the alternative constants may not be identified since N < H + k – 1.23 

One would essentially be trying to recover more parameters than the number of observations in 

the first-stage estimation.  

Model 4 of Table 6 estimates the household preference parameters by characterizing 

residential locations using housing units. This is the approach used by Bayer et al. (2005). The 

sample of housing alternatives is formed by taking a random subsample of H (= 17,894) housing 

                                                 
23 Here H is the number of housing alternatives and k represents the number of interaction parameters to be 
estimated in the first stage. 
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units from the 171,000 houses in the 1990 PUMS data for the study area. The household sample 

is given by the households choosing the H sampled housing units (i.e., N = H). This means that 

the first stage will involve estimating N-1 alternative-specific constants plus k interaction 

parameters from the location choices of N households. Hence, there are not enough observations 

to explain all the parameters in the first stage estimation. This is reflected by the likelihood ratio 

test result for the first stage estimation. The joint null hypothesis that the estimated alternative 

constants are all zero cannot be rejected. 

6 The Benefits of the 1990 Clean Air Act Amendments 

6.1 Simulation of the Counterfactual Locational Equilibrium 

Induced price changes that result from the re-sorting of households are obtained by simulating 

the counterfactual equilibrium which would have emerged in 1990 if air quality levels were 

identical to those observed in 2000 while all other housing attributes and household 

characteristics remained at their 1990 levels. The counterfactual equilibrium is given by the new 

set of housing prices and the resulting household location choice probabilities which solve the 

market equilibrium condition in equation (3.9). Residential location demands are calibrated using 

the estimates of the preference parameters entering the household indirect utility function. The 

counterfactual equilibrium captures the changes in the air quality that occurred in the Los 

Angeles area between 1990 and 2000. Other factors characterizing the Los Angeles area housing 

market, such as population, household income and housing supply, are not allowed to change in 

this simulation. A detailed description of the simulation model is provided in the appendix at the 

end of the paper. 
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Figure 8 shows the PUMA-level average housing price changes in the counterfactual 2000 

equilibrium. There are substantial housing-price changes across the study area, which suggests 

that the air quality changes that occurred between 1990 and 2000 led many households to change 

their location choices. We find that housing prices are lower in the counterfactual equilibrium in 

the areas with below average air quality improvements. These were also areas with the highest 

air quality levels in 1990 (see Figure 1). Average housing prices fell by as much as 13 percent in 

those areas. On the other hand housing prices in the counterfactual equilibrium are higher in the 

areas that experienced above average air quality improvements in 2000. These were areas with 

the highest ozone levels in 1990. Housing prices rose by as much 8 percent in those areas.  

6.2 Welfare Measurements 

We characterize and estimate Hicksian welfare measures which are derived from a random 

utility function with non-linear income effects. The household-level Hicksian welfare measure 

for the changes in air quality is obtained using the principle of compensating variation (CV). The 

compensating variation for an air quality change is defined as the reduction in the household’s 

income which is such that the household’s maximum utility after the change equals the 

maximum utility before the change. Hence, by definition, the compensating variation will be 

negative for an air quality improvement and positive for a reduction in air quality.  

For the utility function (vih) defined by equation (3.1), the household compensating variation 

for the air quality improvements that occurred in the Los Angeles area is implicitly defined by 
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where { }ih
h

ih vMaxV = . The superscript zero indicates the 1990 market conditions, and the 

superscript one indicates the market conditions after the air quality changes. For ease of 

exposition, the attribute vector is broken into two components. x1h represents the air quality level 

at location h, and x2h is a vector capturing all other attributes of the residential location. 

The household level CV measure defined by equation (6.1) is a random variable as it is a 

function of the unobserved taste error ε. Hence the welfare measure that is of interest to policy 

analysis is the expected value of the household level compensating variation over the distribution 

of the unobserved taste error ε. We define this expectation as: 
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The expectation ECV will characterize households’ average WTP for the air quality changes 

across the Los Angeles area.  

A general closed form expression for ECV does not exist for the indirect utility function in 

equation (3.3). This is because in certain cases the CV measure may be a nonlinear function of 

the stochastic error term ε. As a result its expectation, which requires integrating out the 

nonlinear error term, cannot be characterized explicitly. McFadden (1999) suggested a general 

simulation approach for recovering the exact ECV. In this study, we adopt the simulation 

approach of McFadden to obtain the average and income distributional welfare impacts of the 

1990 CAAA.  

Direct vs. Equilibrium Welfare Measures 

For the purpose of evaluating the benefits of the changes in air quality across the Los Angeles 

area two welfare measures are of interest. The first measure asks what households are willing to 
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pay for the change in air quality at their residence, holding housing prices and all other attributes 

fixed. We will refer to this welfare measure as the direct WTP measure (CVd) since it can be 

recovered directly from the indirect utility function. This measure is sometimes referred as the 

partial equilibrium welfare measure. For our random utility model, CVd is implicitly defined by: 

 

),,,(),,,( 0
2

1
1

00
2

0
1

0
ihhh

d
ihiihihhhhiih xxCVpyVxxpyV εε −−=− ,  (6.3) 

 

where the notation is similar to that used in equation (6.1). 

The direct WTP measure does not, however, provide a complete picture of the welfare 

impact of the changes in air quality across the Los Angeles area. Bartik (1988) shows that CVd 

provides a lower bound to the full, i.e. equilibrium, welfare impact of the air quality changes. We 

define the equilibrium welfare measure (CVe) as the WTP measure which takes into account the 

induced changes in housing prices that occur as households change their residential location 

choice. It is given by: 
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The household’s residential location choice j in the ex-post equilibrium differs from the location 

h in the benchmark equilibrium. This indicates that the household might change its residential 

location choice as a result of the change in air quality. CVe is sometimes referred as the general 

equilibrium welfare measure. 
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6.3 Welfare Impacts of the 1990 CAAA 

Our analysis of the benefits of the 1990 CAAA focuses on the changes in neighborhood ozone 

levels between 1990 and 2000. The neighborhoods of the Los Angeles area experienced 

significant reductions in ozone levels during the years that followed the 1990 CAAA. Table 7 

summarizes the changes in ozone levels for the neighborhoods in our sample. The neighborhood 

average ozone concentration fell by nearly 21 percent between 1990 and 1995. By the year 2000, 

the average reduction in ozone levels was close to 40 percent. The changes in ozone levels also 

varied across the area. The neighborhoods of Los Angeles and San Bernardino counties 

experienced the greatest ozone reductions between 1990 and 2000, while Orange and Riverside 

counties had the smallest average fall in ozone levels. 

The neighborhood ozone changes for our sample differ slightly from the changes in ozone 

levels used by Sieg et al. (2004). In Orange County, for instance, our neighborhood ozone 

reductions between 1990 and 1995 were 4 percent lower than the reductions observed by Sieg et 

al. The slight divergence in ozone changes can be attributed to the differences in neighborhood 

geography. This study characterizes neighborhoods with PUMA boundaries while Sieg et al. use 

school district boundaries to characterize neighborhoods. 

6.3.1 Results 

Mean Welfare Impacts 

Table 8 presents the mean welfare impacts of the CAAA from 1990 to 2000. These are the exact 

welfare measures obtained via McFadden’s simulation approach. The first row provides the 

overall results for the study area. The second group of rows provides the county-level results. 

The last two groups of rows provide results for selected neighborhoods. In the third set of rows 

neighborhoods are ranked by their average 1990 income level and the mean welfare results are 
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presented for the 1st, 50th and 99th percentiles. In the last set of rows we rank neighborhoods by 

their 1990 ozone level and present the mean welfare results for the 1st, 50th and 99th percentiles. 

The welfare results suggest that, on average, the 1990 CAAA provided significant benefits to 

the households of the Los Angeles metropolitan area. We estimate that the reductions in ozone 

levels between 1990 and 2000 provided an average equilibrium welfare benefit of $1,829 to the 

households of the Los Angeles area. This benefit represents 4 percent of the annual average 

household income in 1990. As conceptually predicted by Bartik (1988) and demonstrated by 

Sieg et al. (2004), direct welfare benefits, which do not account for induced changes in housing 

prices, underestimate the benefits of the air quality improvements. On average, equilibrium 

benefits were 32 percent higher than the direct benefit estimates. 

The estimated mean welfare benefits vary somewhat across the counties in the sample. 

Average benefits are highest in Orange County and lowest in Los Angeles County. The mean 

equilibrium WTP for the ozone changes between 1990 and 2000 was $2,134 in Orange County. 

This compares with an average equilibrium benefit of $1,757 in Los Angeles County. The 

distribution of welfare benefits across counties tends to reflect equilibrium price effects across 

the counties. Orange County, which experienced a fall in housing prices, has a significantly 

larger average equilibrium WTP. 

We find a significant variation in welfare gains across neighborhoods. The mean equilibrium 

benefit in the neighborhoods with the highest average income is nearly four times the mean 

equilibrium benefit in the poorest neighborhoods. This variation can be attributed to richer 

households that have a significantly higher MWTP for air quality compared to low-income 

households in our model. However, relative equilibrium gains are higher in the lower-income 

neighborhoods as evidenced by the ratio of equilibrium to direct benefits. Indeed, equilibrium 
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benefits are 84 percent higher than direct benefits in the poorest neighborhoods, as compared to 

only 19 percent in the richest neighborhoods. 

 We also find that households originally located in the most polluted neighborhoods have, on 

average, lower equilibrium benefits than households originally located in the least-polluted 

neighborhoods. This variation can be attributed to the fact that the most polluted neighborhoods, 

which had above average ozone reductions, experienced an increase in housing prices. On the 

other hand, housing prices decreased in the least polluted neighborhoods as they generally had 

below average ozone reductions (an ozone increase in the case of the cleanest neighborhood). 

Income Distributional Welfare Impacts 

Table 9 presents the distribution of equilibrium welfare estimates across household income 

quartiles. The lowest income quartile is comprised of households with annual 1990 income 

below $20,000 dollars, whereas the highest income quartile includes households with annual 

income above $60,000. Income distributional benefits are provided for the study area as well as 

counties and neighborhoods. 

Equilibrium benefits vary significantly across household income groups. Specifically we find 

that richer households generally have significantly higher benefits compare to households in the 

lower-income groups. This is true for the overall study area as well as within counties and 

neighborhoods. The variation in welfare gains across income groups is to be expected as the 

higher-income households have a significantly higher MWTP for air quality in our model.  

We also find a somewhat significant variation in welfare gains across neighborhoods within 

each income group. For instance, high-income households who were located in neighborhoods 

with low and median air quality levels in 1990 have significantly higher benefits than the 

average high-income households. On the other hand, high-income households who resided in the 
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dirtiest neighborhoods experience significantly lower benefits than the average high-income 

household in the study area. This disparity can be attributed to the fact that housing prices 

increased in the neighborhoods with the highest ozone levels in 1990 as a result of the above 

average air quality improvements in those neighborhoods.  

Comparing Relative Welfare Gains across Income Groups 

Figure 3 shows the mean WTP as a proportion of the household’s income in 1990. The bar 

graphs characterize the distribution of relative welfare gains across income groups. The WTP 

estimates are obtained using McFadden’s simulation approach. The distributional findings seem 

to differ between the direct and equilibrium welfare measures. While the direct welfare measure 

suggests that the richer households experienced higher relative welfare gains, the equilibrium 

welfare measure suggests that the distribution of relative benefits is fairly even across income 

groups. Hence ignoring equilibrium adjustments can also significantly alter the distribution of 

relative welfare gains.  

The divergence of the distributional welfare picture in the direct and equilibrium approach 

can be explained from the relative difference between the two welfare measures which is also 

shown in Figure 3. This difference can be interpreted as the household’s relative welfare gain 

from adjusting to a new location after the air quality changes. Figure 3 shows that the welfare 

gains from the equilibrium adjustments represent a larger share of income for low-income 

households. On the other hand, the direct welfare gains are larger for high-income households as 

they are willing to pay more for a marginal improvement in air quality. Hence the direct benefit 

measure will tend to misrepresent the distributional welfare impacts from large air quality 

changes. 
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6.3.2 Comparing with Previous Studies 

To provide a comparison of our results with those of Sieg et al. (2004) we simulate the 

counterfactual equilibrium that would have resulted from the changes in ozone levels between 

1990 and 1995. This is because, in their empirical analysis, Sieg et al. use the changes in ozone 

levels that occurred between 1990 and 1995. Table 10 reports the welfare results for the changes 

in ozone levels between 1990 and 1995. The results suggest that the reductions in ozone 

pollution between 1990 and 1995 provided an average equilibrium benefit of $896 to the 

households of the Los Angeles area. Similar to the welfare benefits from 1990 to 2000, there is a 

significant variation in the equilibrium benefits for 1995 across counties.  

The last three columns of Table 10 report the overall and county-level mean benefit estimates 

from Sieg et al. (2004). The overall direct and equilibrium benefit estimates are substantially 

lower than the Sieg et al. estimates. The county-level benefit estimates also differ significantly. 

The county-level direct WTP estimates are consistently lower than the Sieg et al. estimates. The 

relationship between the equilibrium benefit estimates is, however, more complex. The 

equilibrium welfare estimates from this study are higher than the Sieg et al. benefit measures in 

Los Angeles and Orange counties. The relationship between the welfare measures is reversed in 

Riverside and San Bernardino counties. Sieg et al. also find that equilibrium adjustments in the 

1995 counterfactual equilibrium resulted in average welfare losses for households in Riverside 

and San Bernardino counties. Our results, on the other hand, suggest that, on average, the 

equilibrium adjustments resulted in welfare gains for households in all four counties. 

The disparity between our welfare estimates and those found by Sieg et al. can be due to a 

number of factors. First, the differences could emerge as a result of differences in the data. The 

fact that the two studies use a different characterization of neighborhoods (PUMA vs. school 
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district) is likely to affect the welfare results. In addition, Sieg et al.’s average welfare benefit for 

the Los Angeles area includes Ventura County. We excluded Ventura County from our sample 

because the 1990 PUMA boundaries for that county were not mutually exclusive and hence did 

not meet the selection criteria (see section 4.2). 

Second, the welfare results are likely to diverge from the Sieg et al. results because of the 

differences in the specification of households’ location choices. The discrete choice 

characterization of households’ location choices allows estimating household preferences that 

vary across income groups and educational levels. The preference estimates suggest that high-

income households have stronger preferences for air quality relative to the average population. 

We also find that the average household population has a lower preference for school quality 

compared to college educated households. This contrasts with the Sieg et al. framework in which 

households are restricted to have the same preference ordering of neighborhoods with respect to 

neighborhood amenities. This is due to the fact that the marginal rate of substitution between 

community amenities is independent of the household’s income and taste. In addition, the 

preference specification in this study naturally captures the geography of the housing market by 

allowing household preferences for locations to depend on the proximity to their employment 

location. We find that households have stronger preferences for housing alternatives that are 

located within their employment zone.  

6.3.3 Limitations 

We now discuss some limitations of the equilibrium welfare measures developed. The 

equilibrium welfare estimates in this study are based on the simulation of a counterfactual 

equilibrium which only accounts for air quality changes and induced housing price changes that 

result from the resorting of households. The actual welfare impacts of the 1990 CAAA should 
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also account for changes in the housing supply, household income, household population and 

other salient changes which occurred between 1990 and 2000. These changes will likely affect 

the welfare benefits of the 1990 CAAA.  

Using the higher household income levels in 2000 would likely lead to higher benefit 

estimates as high-income households have a higher marginal WTP for air quality. If the supply 

of housing is elastic with respect to price, accounting for housing supply adjustments would 

likely increase equilibrium benefits as the influx of new housing units would provide more 

choices to households. An increase in population is not likely to affect equilibrium welfare gains 

to the extent that the increased demand for housing result in higher prices everywhere. 

The estimated equilibrium welfare measures could also be sensitive to the geographic 

definition of the housing market. We assume in this work that the Los Angeles area housing 

market comprises four counties: Los Angeles County, Orange County, Riverside County and San 

Bernardino County. One could argue, as in Sieg et al. (2004), that the Los Angeles area housing 

market also includes Ventura County. All else equal, a larger geographic area is likely to lead to 

higher welfare benefits as it would provide more choices to households. 

The equilibrium welfare measures could also be sensitive to the geographic characterization 

of neighborhoods. This study uses the 1990 Census Public Use Microdata Areas (PUMA) to 

characterize neighborhoods. On the other hand, Sieg et al. (2004) use the 1990 school district 

boundaries to define neighborhoods. One could also characterize neighborhoods using smaller 

geographic units such Census tracts, Census blocks groups or Census blocks. Altering the 

geographic definition of neighborhoods is less likely to significantly affect the air quality 

measures as they generally do not vary much across small areas. As a result, welfare impacts of 

air quality changes are likely to be less sensitive to the characterization of neighborhoods. 
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The random utility specification in equation (3.3) also assumes away endogenous social 

interaction effects. Our utility function incorporates an exogenous social interaction effect. The 

social interaction effect is a result of households’ homogeneous tastes for the proportion of 

Hispanics in the neighborhood. Incorporating endogenous social interactions in the household’s 

utility could affect the equilibrium welfare estimates. For example, low-income renters could 

suffer welfare losses as increases in housing prices in their original neighborhoods force them to 

relocate to neighborhoods with less desirable attributes. An avenue for future research would be 

to explore empirically the extent to which the overall and distributional impacts of the 1990 

CAAA are affected when endogenous social interactions are incorporated in the household’s 

random utility function. 

7 Conclusions 

This study has developed a discrete choice equilibrium model to evaluate the benefits of the air 

quality improvements that occurred in the Los Angeles area between 1990 and 2000 as a result 

of the implementation of the 1990 Clean Air Act Amendments. The study has two main 

objectives. The first is to apply the discrete choice equilibrium framework (Anas, 1980, 1982) to 

the valuation of large environmental changes. The second objective is to evaluate the 

distributional welfare impacts of the 1990 CAAA in the Los Angeles area. 

The empirical analysis suggests that the reductions in ozone concentrations across Los 

Angeles, Orange, Riverside and San Bernardino counties, provided an average equilibrium 

benefit of $1,800 to households. In contrast, average benefits are $1,400 when equilibrium price 

effects are not accounted, demonstrating that ignoring equilibrium effects will likely 

underestimate the benefits of large environmental changes. We find that the equilibrium welfare 

impacts of the 1990 CAAA in the Los Angeles area varied significantly across income groups. 
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Households in the highest income quartile experienced equilibrium benefits of approximately 

$3,600 as compared to only $400 for households in the lowest income quartile. The study also 

finds that ignoring equilibrium adjustments in housing prices can significantly alter the 

distribution of relative welfare gains (i.e., welfare gains as a proportion of household income). 

Indeed, welfare impacts that do not account for equilibrium effects suggest that high-income 

households have larger relative welfare gains compared to low-income households. However, 

when accounting for equilibrium adjustments, the distribution of relative welfare gains from the 

1990 CAAA is fairly even across income groups. 
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Table 1: Average† Monitor Readings for Ozone and PM-10 24 

  Study Area 
Los Angeles 

County 
Orange 
County 

Riverside 
County 

San Bernardino 
County 

1990 0.144 0.150 0.116 0.137 0.154 Ozone* 

2000 0.097 0.089 0.078 0.111 0.109 
1990 36 37 11 33 47 Ozone 

Exceedances** 2000 3 2 0 5 6 
1990 55.4 51.5 42.3 61.1 59.5 PM-10 *** 

2000 44.1 41.6 34.5 44.8 52.2 
* Average top 30 1-hour daily maximum readings at a monitor during a year (parts per million). 
**  Number of days with a recorded violation the one-hour national standard for ozone. 
***  Annual geometric mean (ug/m3). 
† The yearly reading for each monitor is obtained by computing a three-year centered average. For instance, the 1990 reading for monitor x 
is computed by averaging the readings for 1989, 1990 and 1991 at monitor x. 

 
 
 
 

Table 2: Mean Household and Housing Characteristics in the 1990 PUMS 

 
Study 
Area 

Los Angeles 
County 

Orange 
County 

Riverside 
County 

San Bernardino 
County 

      
Number of observations 170,955 119,726 28,209 5,642 17,378 
Housing characteristics      

Monthly housing price ($) 749 709 956 725 707 
1 if unit owned 0.51 0.47 0.58 0.63 0.63 
Bedrooms 2.25 2.09 2.58 2.71 2.66 
1 if built in 80s or 90s 0.19 0.15 0.24 0.43 0.32 
1 if built in 60s or 70s 0.37 0.33 0.56 0.33 0.39 
1 if single-family dwelling 0.62 0.58 0.66 0.77 0.76 
1 if unit is within householder’s 

employment zone 
0.505 0.529 0.444 0.447 0.466 

Household characteristics      
Monthly income ($) 4,098 3,943 4,945 3,860 3,926 
1 if Asian and non-Hispanic 0.082 0.089 0.075 0.041 0.055 
1 if Black and non-Hispanic 0.091 0.111 0.015 0.072 0.080 
1 if Hispanic 0.237 0.262 0.147 0.189 0.224 
1 if White and non-Hispanic 0.585 0.533 0.758 0.689 0.633 
1 if children under 18 0.417 0.405 0.396 0.505 0.502 
1 if married and has children under 18 0.015 0.014 0.015 0.014 0.017 
1 if householder is 65 or older 0.16 0.17 0.13 0.12 0.13 
1 if householder has college degree 0.35 0.33 0.44 0.29 0.32 
Household size 2.99 2.97 2.95 3.14 3.16 

 
 
 
 
 
 
 
 
 
 

                                                 
24 Source: California Ambient Air Quality Data. 2004 Data CD 
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Table 3: Mean Neighborhood (PUMA) Characteristics in 1990 

 Study Area 
Los Angeles 

County 
Orange 
County 

Riverside 
County 

San Bernardino 
County 

      
Number of observations 79 55 11 3 10 
      
8th grade math score† 34.0 31.6 45.1 34.3 34.8 
Crime (FBI index) 786.5 843.3 604.2 831.6 661.2 

      
Elevation (meters) 200.7 172.9 63.2 345.6 461.8 
PUMA is on Pacific coastline 0.114 0.091 0.364 - - 
Housing density (sq. km) 1,061.7 1,116.2 1,056.9 2,022.2 479.4 

      
Ozone‡ (ppm) 0.146 0.143 0.109 0.177 0.198 
Ozone Exceedances  32.94 29.58 12.11 51.46 68.80 
PM-10 annual average (µg/m3) 55.51 51.87 60.45 68.72 66.12 

† School district average for 1994 CLAS. Math test scores have been normalized so they fall between 0 and 100. 
‡ Annual average of top 30 daily 1hr maximum readings. PUMA is assigned the three-year centered average from the closest monitor. 

 

Table 4: Within and between variation for Selected PUMA Characteristics in 1990 

 
Mean of PUMA 

Values 
Std. of PUMA 

Means 
Mean of within PUMA 

Std. 
    

8th grade math score 34.0 35.5 5.7 
Crime (FBI index) 786.5 770.1 631.9 
Ozone† 0.146 0.040 - 
Ozone‡ 0.148 0.031 0.006 
PM-10† 55.5 11.0 - 
PM-10‡ 53.2 7.4 1.4 

† Interpolation method: PUMA is assigned closest monitor reading. 
‡ Interpolation method: PUMA is assigned distance-weighted average of readings from three closest monitors. 

 

 

Table 5: Correlation between Primary and Secondary Pollutants in 1990 

 Ozone PM-10 Nitrogen Oxide 
(NOx) 

Sulfur Dioxide 
(SO2) 

Ozone - 0.44 0.47* -0.56** 

PM-10 0.44 - 0.52* -0.54 
Note: * Significant at 5 percent level. **  Significant at 1 percent level. 
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Table 6: Estimation Results 

 Model 1‡ Model 1a Model 2 Model 3 Model 4 

      

First Stage      

Log(y-p) 1.475**  - 1.499**  1.649**  2.052**  

Ozone * Log(y-p) -0.019**  - -0.020**  -0.028**  0.01**  

Bedrooms * Household size 0.066**  - 0.066**  0.066**  0.064**  

Single family * Children under 18 0.227**  - 0.227**  0.227**  0.165**  

Math * College educated head 0.309**  - 0.31**  0.244**  0.337**  

Log crime * Log(y-p) 0.004**  - - -0.013**  0.026**  

Within household’s  employment zone 1.989**  - 1.989**  - 2.194**  

      
Log-Likelihood -37,072 - -37,072 -40,719 -47,733 
Likelihood Ratio  statistic (H0: δ =0) 25,996 - 26,009 26,857 5,541 
Likelihood Ratio p-value  (H0: δ =0) 0.000 - 0.000 0.000 0.999 
      
McFadden pseudo-R2 0.319 - 0.319 0.252 0.124 

Observations 17,894 - 17,894 17,894 17,894 

      

Second Stage OLS †      

Bedrooms 0.04* 0.041* 0.04* 0.044* 0.155**  

Built after 1980 -0.594**  -0.594**  -0.594**  -0.596**  0.267**  

Built in 60s or 70s -0.172* -0.171* -0.173**  -0.169**  0.131**  

Single-family dwelling 0.352**  0.346**  0.353**  0.349**  0.185**  

Owned 0.054 0.057 0.053 0.04 0.044**  

Math test score 0.139**  0.172**  0.153**  0.086* 0.092**  

Log FBI crime index 0.0005 -0.0005 - 0.003**  -0.044**  

Log elevation 0.016 0.035 0.007 -0.018 0.066**  

PUMA is on Pacific coastline 0.342**  0.378**  0.327**  0.315**  0.167**  

Log density 0.079 0.075 0.068 0.001 0.188**  

Prop. of population Hispanic -0.380* - -0.32* -0.498**  -0.611**  

Ozone 0.161 0.120 0.17 0.211 -0.095**  

      

R2 0.054 0.053 0.054 0.052 0.302 

Observations 4,037 4,037 4,037 4,037 17,894 
Notes: 
**  Significant at 1% level. * Significant at 5% level. † Standard errors are computed using White’s robust covariance matrix. 
‡ Model 1  : Benchmark specification used in the simulation and welfare analysis. 
    Model 1a: Estimates the second stage without  the variable “proportion of Hispanics.” This is intended to check the endogeneity of 

neighborhood ozone. 
   Model 2: Estimates the first and second stage without  the “crime” variable. 
   Model 3: Estimates the first stage without  the “employment” variable. 
   Model 4: Characterizes residential locations using individual houses instead of discrete housing types. 
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Table 7: Changes in Neighborhood Ozone Levels across the Los Angeles Area 

 1990 1995 2000 
% ∆ 

1990-95 

% ∆ 
1990-95 

(Sieg et al.) 

% ∆ 
1990-2000 

Study area 0.146 0.116 0.089 -20.8 -19.3 -38.9 

        

Los Angeles County 0.143 0.110 0.086 -22.6 -20.8 -39.8 

Orange County 0.109 0.094 0.076 -13.8 -18 -29.8 

Riverside County 0.177 0.140 0.115 -20.6 -20.7 -35.2 

San Bernardino County 0.198 0.162 0.115 -18.1 -16.3 -41.9 

 
 
 
 
 

Table 8: Mean Direct (D) and Equilibrium (E) WTP* for the CAAA (1990-2000) 

 
Avg. 
1990 

Income 

1990 
Ozone 

% ∆ 
Ozone 

1990 
Avg. 
Price 

% ∆ 
Price 

WTPD WTPE WTPE / D 

         
Study area (mean) 49,197 0.146 -36.1 748 0.14 1,386 1,829 1.32 
         
Counties          
Los Angeles County 47,152 0.143 -37.6 728 0.17 1,325 1,757 1.33 
Orange County 60,924 0.109 -23.8 926 -4.10 1,659 2,134 1.29 
Riverside County 47,374 0.177 -34.4 687 1.02 1,299 1,764 1.36 
San Bernardino County 48,096 0.198 -41.9 682 4.35 1,384 1,836 1.33 
         
Neighborhoods by income levels         
1st percentile (lowest) 24,657 0.103 -46.8 455 -1.14 382 704 1.84 
50th percentile 47,331 0.119 -40.4 805 -1.33 1,157 1,665 1.44 
99th percentile (highest) 92,708 0.148 -48.7 982 2.57 2,378 2,837 1.19 
         
Neighborhoods by ozone levels         
1st percentile (lowest) 65,135 0.058 30.0 1,000 -12.93 2,018 2,434 1.21 
50th percentile 54,568 0.148 -43.7 822 1.41 1,462 1,832 1.25 
99th percentile (highest) 39,979 0.212 -43.9 580 5.22 1,109 1,492 1.35 
         

* Note: WTP is computed as the expected compensating variation (ECV). All WTP estimates computed using McFadden’s simulation 
approach. WTP estimates are in annual 1990 dollars. 
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Table 9: Distribution of Equilibrium WTP * for the CAAA (1990-2000) 

 
Avg. 
1990 

Income 

% ∆ 
Ozone 

% ∆ 
Price 

WTP 
Income 
< 20k 

WTP 
Income 

20k - 37k 

WTP 
Income 

38k - 60k 

WTP 
Income 
> 60k 

        
Study area (mean) 49,197 -36.1 0.14 441 1,019 1,706 3,634 
        
Counties         
Los Angeles County 47,152 -37.6 0.17 433 1,009 1,682 3,638 
Orange County 60,924 -23.8 -4.10 518 1,058 1,707 3,774 
Riverside County 47,374 -34.4 1.02 384 1,053 1,796 3,133 
San Bernardino County 48,096 -41.9 4.35 433 1,017 1,812 3,510 
        
Neighborhoods by income levels        
1st percentile (lowest) 24,657 -46.8 -1.14 409 850 1,439 2,325 
50th percentile 47,331 -40.4 -1.33 392 1,075 1,695 2,566 
99th percentile (highest) 92,708 -48.7 2.57 479 909 1,590 4,505 
        
Neighborhoods by ozone levels        
1st percentile (lowest) 65,135 30.0 -12.93 577 1,090 1,759 4,015 
50th percentile 54,568 -43.7 1.41 388 964 1,790 4,341 
99th percentile (highest) 39,979 -43.9 5.22 541 845 1,527 2,761 
        

* Note: WTP is computed as the ECV. All WTP estimates computed using McFadden’s simulation approach. WTP estimates are in 
annual 1990 dollars. 

 

 

Table 10: Direct and Equilibrium WTP for the CAAA ( 1990-1995) 

 
Discrete Choice Equilibrium 

Approach 
Epple-Sieg Equilibrium  

Approach (Sieg et al., 2004) 
 WTPD WTPE WTPE / D WTPD WTPE WTPE / D 
       
Study area 589 896 1.52 1,210 1,371 1.13 
       
Los Angeles County 568 866 1.52 1,472 1,556 1.06 
Orange County 698 1,029 1.47 901 1,391 1.54 
Riverside County 526 858 1.63 834 372 0.45 
San Bernardino County 576 891 1.55 738 367 0.50 
       

 



 64 

Figure 1: 1990 and 2000 Ozone25 Concentrations for the Greater Los Angeles Area 

 

                                                 
25 Ozone concentrations are obtained via interpolation. We generate a pollution surface for the entire study area 
using 100-meter-by-100-meter grid cells. We then assign to each grid cell a distance-weighted average of the 
readings from the three closest monitors. 
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Figure 2: Percent Housing Price Changes in Counterfactual Simulation (PUMA average) 

 

 

Figure 3:
Relative Welfare Gains Across Income Groups
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Appendix for “Equilibrium Welfare Impacts of the 19 90 Clean Air 
Act Amendments in the Los Angeles Area” by Constant Tra 

 
Section A of this appendix describes the procedure used to arrive at a single measure of housing 

price for owned and rental housing units. Section B describes the remainder of the neighborhood 

attribute data. Section C discusses the asymptotic properties of the estimated household 

preference parameters. Additional robustness checks for the estimated parameters are provided in 

section D. Section E compares the marginal willingness to pay (MWTP) values, implied by the 

parameter estimates, with other studies in the literature. The final section describes the 

simulation model. 

A. Computing the rental price of housing across tenure 

The housing price is a key characteristic which determines the sorting of households in our 

model. In the Census data the price of a house is reported as the owner’s assessment of the 

market value, in the case of an owner-occupied unit, or the monthly rent in the case of a renter-

occupied unit. To arrive at one price variable which will characterize both owner- and renter-

occupied units we follow the approach of Bayer et al. (2005) by converting the market value of 

owner-occupied units to a monthly rental rate. Before describing this procedure we address some 

potential issues with the reported market value and monthly rent.  

Value of Owner-Occupied Housing 

A number of issues must be addressed when using the house value reported in the Census long 

form. The first issue relates to the fact that the housing price reported in the Census long form is 

based on the owner’s own assessment of the market value. This assessment may not always 

reflect the true market value of the house, as most owners may either report the price of the 

house at the time of purchase or simply misrepresent the true market value of the house. The 
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second issue regards the fact that the housing values reported in the 1990 Census are top-coded 

at $500,000. Because housing prices in California are generally higher than the remainder of the 

United States, we would expect to see a higher occurrence of binding top-codes. According to the 

2000 Census 11.4 percent of houses in California where reported at a value of $500,000 or more 

compared to only 2 percent for the overall United States. In our 1990 sample approximately 8 

percent of the houses have top-coded values. 

To address these issues, we construct a predicted value for each house by making use of the 

property tax payment reported for each owner-occupied housing unit. The predicted value makes 

use of the California law (Proposition 13) that requires the property tax to equal either 1 percent 

of the transaction price of the house at the time the current owner bought the property or the 

value of the house in 1978. The predicted market value of each owner-occupied house is 

obtained by regressing the log of the reported house value on the estimated transaction price, i.e. 

100 times the property tax, and a set of dummy variables for the year that the house was 

purchased. The regression specification is given by: 

 

hhhh yTp εαα ++= 21 )log()log( .  (1) 

 

Where ph represents the reported market value, Th represents the estimated transaction price and 

yh is a set of year dummies.  

If the reported values were true, and all houses were identical except for the year of sale, then 

α1 would equal 1 and α2 would represent how much the house has appreciated in value. If, on the 

other hand, long-time owners tend to underreport the value of their house then α2 would 

underrepresent the appreciation of the house in the market. In this case, the predicted value of the 
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house from equation (1) should be a conservative estimate of the true market value. We replace 

the reported value for each house with our computed estimate whenever the latter exceeds the 

former, which would represent a case of significant underreporting on the part of the owner. In 

the actual implementation we allow the parameters to vary across subregions of our study area 

by running the regression in (1) for each of the three metropolitan statistical areas (MSA) in the 

study area. These are, Los Angeles-Long Beach, Orange County and Riverside-San Bernardino. 

To correct for the bias in the house values, resulting from top coding, we use the following 

procedure. First, we estimate equation (1) using only the sample of houses whose values do not 

equal the top-code. We then use the estimated parameters to predict the market value for the 

houses with reported top-coded values. The estimated regression specification is reported in 

Table A.1. 

Reported Housing Rents 

As in the case of reported owner-occupied house values one may expect that reported monthly 

rents of renter-occupied units may not represent a fair assessment of the true market rent. This is 

likely to be true when the resident has lived in the house for a long period of time. In this case, 

we may expect that the reported rent will be an understatement of the true market rent. This 

could be either a result of rent controls or implicit tenure discounts. To correct this issue we 

compute an adjusted market rent by regressing the log of the reported market rent on a set of 

dummies characterizing the tenure of the current owner as well as a vector of housing 

characteristics. The regression specification is given by: 

 

hhhh Xyp ωββ ++= 21)log( .  (2) 
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Where yh is a dummy variable representing the year the current renter moved into the unit, and 

Xh is a set of housing and neighborhood characteristics for the house. As in the case of housing 

values we run this specification for each of the three MSAs in our sample. The estimated 

regression specification is reported in Table A.2. The parameter β1 in equation (2) represents the 

tenure discount in a given PUMA. The corrected rent is then obtained as: 

 

])exp[log( 1 hh
corrected
h ypp β−= . 

 

Imputing the Rental Value of Housing across Units 

In order to arrive at a comparable measure of housing price for both owner- and renter-occupied 

units, we convert owner-occupied house values into monthly rents using the approach described 

in Bayer et al. (2005). Poterba (1992) provides the theoretical foundation for this approach. Sieg 

et al. (2004) also use this approach to develop a price index for each housing unit in their sample. 

To convert housing values into monthly rents, we regress the log of the housing price (house 

value or monthly rent) on a dummy variable (Oh), indicating whether the unit is owner occupied, 

and a set of structural housing characteristics (Xh). 

 

hhhh XOp υγγ ++= 21)log(  (3) 

 

We run this specification for each of the three MSAs (Los Angeles-Long Beach, Orange County 

and Riverside-San Bernardino) in our sample. The estimated regression specification is reported 

in Table A.3. The parameter γ1 represents the ratio of house values to rents for each MSA, 

controlling for structural characteristics of housing units. This is the user-cost of owner-occupied 



 v 

housing as defined by Poterba (1992). We use this ratio to convert owner-occupied house values 

to a corresponding monthly rent. 

To summarize, there are three sets of adjustments that are used to characterize the price of 

housing across owner-occupied and renter-occupied units. The first adjustment accounts for the 

fact that the house values contained in the Census data are self-reported and top coded. The 

second adjustment addresses the fact that housing rents contained in the Census data may 

misrepresent the true market rent. The final adjustment deals with converting owner-occupied 

housing values into monthly rents. 

B. Other Neighborhood Data 

In addition to air quality, we collect data on other neighborhood amenities that households may 

value. These include school quality, crime and racial composition. The racial composition of the 

PUMA is characterized by the proportion of Hispanics. Finally, three variables are used to 

control for unobserved factors that may affect the level of air pollution in a neighborhood. These 

are mean elevation of the neighborhood, the proximity of the neighborhood to the Pacific 

coastline and the housing density of the neighborhood.  

School Quality 

Because California state law limits expenditures of local school districts, a more reliable measure 

of school quality would be one that is based on academic performance outcomes rather than 

expenditures (Sieg et al. 2004). The California Department of Education (CDE) administers 

standardized tests that are used to monitor the academic performance of public schools. In the 

early 1990s the California Learning Assessment System (CLAS) was administered to public 

schools throughout the State of California. The 1994 CLAS provides a measure of students’ 
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academic performance in math, reading and writing. More recent academic performance test 

scores are the Academic Performance Index (API) and the STAR report.  

We use the school district average 8th grade math score from the 1994 CLAS as the measure 

of school quality in 1990.  Ideally one would want to use the 1989 CLAS data. Unfortunately 

this dataset is no longer available. The neighborhood school quality variable is computed by 

using a weighted average of the scores for all the school districts that intersect the PUMA. We 

use the area of the school district which intersects the PUMA as weight. For instance, suppose 

PUMA j has total area A and overlaps area a(x) of school district x and area a(y) of school 

district y. Then the school quality level for PUMA j is computed as: 

a(x)·score(x)/A + a(y) ·score(y)/A. 

Figure B.1 provides a map of the neighborhood-level school quality data. The large cluster of 

neighborhoods with the worst school quality levels is part of the Los Angeles unified school 

district (LAUSD). The LAUSD is one of the largest school districts in the United States and the 

largest in the State of California. 

Crime Rate 

Currently, the most disaggregated crime data for California are provided by the Criminal Justice 

Statistics Center (CJSC) from the Office of the California Attorney General. The CJSC compiles 

statewide, county and city crime statistics and publishes them every year in the Criminal Justice 

Profiles. The crime variable used in this study is the FBI crime index for each jurisdiction in 

1990. The FBI crime index reports the number of crime occurrences per 10,000 populations. The 

neighborhood crime rate is computed using the same weighting average method used to compute 

the neighborhood school quality. The crime data are not as reliable as the school quality data 
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because they are only provided at the jurisdiction level and not all of the study area is 

incorporated. A map of the neighborhood crime levels in 1990 is shown in Figure B.2. 

Elevation, Proximity to Pacific Coastline and Housing Density 

A number of factors may determine the level of air pollution in a neighborhood. For example, all 

other things equals, air pollution will generally be less in coastal communities because of the 

prevailing west winds.  In addition, local climate conditions are likely to have a significant 

impact on the concentration of air pollutants. Also, densely populated urban areas generally tend 

to have more air pollution because of higher road congestion. To account for these factors we 

add three neighborhood variables to the household preference specification. These are the mean 

elevation of the neighborhood, the neighborhood’s proximity to the Pacific coastline and the 

housing density of the neighborhood.  

The National Elevation Dataset (NED) is a product of the US Geological Survey. It was 

developed by merging the highest resolution and best quality elevation data across the United 

States into a seamless raster format. The data are provided at a resolution of 1 arc second with 

the unit of elevation in meters. We use the NED to calculate the average elevation of each 

PUMA. The neighborhood’s proximity to the Pacific coastline is measured by a binary variable 

which equals one if a portion of the neighborhood’s boundary is on the Pacific coastline. The 

housing density of the PUMA is given by the number of housing units per square kilometer. 

C. Asymptotic Properties of Parameter Estimates 

Identification 

We discuss the identification of the parameters of the household’s indirect utility function. 

Specifically, we ask what features of the data allow for the identification of the estimated 
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parameters. A separate, though not unrelated, identification argument can be given for the each 

of the stages of the estimation. 

A necessary data requirement for identification of the first-stage parameters is that the 

number of observations be larger than the number of alternative-specific constants (H-1) plus the 

number of interaction parameters (k) to be estimated. In particular let N be the number of 

households in the sample. Then we must have that N ≥ H + k – 1. Note that this condition has a 

direct implication for the characterization of residential locations and the household sample. 

First, it implies that the household sample used in the estimation must be at least of size H + k – 

1. Second, characterizing the residential locations as individual housing units would imply that N 

< H + k – 1. As a result, the alternative constants may not be identified, hence the need to 

characterize residential locations using housing products rather than individual houses. 

Given that the data satisfy the necessary requirement for identification, the heterogeneous 

taste (i.e., interaction) parameters will be identified, provided that there are sufficient differences 

in the attributes of households’ location choices across each dimension of the household 

characteristics. For instance, suppose we hypothesize that college-educated households have a 

higher WTP for school quality relative to the remainder of the population. Then, for the 

interaction parameter between school quality and college education to be identified, we need to 

observe a sufficient difference (in this case positive) in the school quality levels of residential 

locations chosen by college-educated households compared to the remainder of the households.  

The alternative-specific constants, which will characterize the mean utility from each 

residential location, are identified by the variation in the market shares26 of residential locations. 

Simply put, if residential location A is on average preferred to residential location B (i.e., 

                                                 
26 The market share of a housing product is defined as the proportion of households choosing the housing product in 
the 1990 PUMS data. 
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BA δδ > ) then, all other things equal, we should observe more households choosing A over B in 

the data. 

The mean taste parameters in the second-stage regression are identified from the variation in 

the market shares of residential locations across housing and neighborhood attributes. Notice that 

a necessary condition is that the alternative-specific constants are identified in the first-stage 

estimation. This should obviously be the case, since the second-stage regression cannot be 

defined without the alternative-specific constants. We can illustrate the second-stage 

identification argument as follows. Suppose, for example, that we hypothesize that households 

place, on average, a negative value on air pollution. Then in order to identify the negative mean 

taste parameter for air pollution we must observe that, holding all other attributes equal, 

residential locations in highly polluted areas have a lower market share compared to residential 

locations in the least-polluted areas. 

Consistency and Asymptotic Normality 

Similar to the identification argument, the asymptotic properties of the estimates can be 

discussed in terms of the first- and second-stage estimation. An in-depth discussion of the 

asymptotic properties of the two-stage estimator can be found in Bayer et al. (2005). The 

consistency and asymptotic normality of the first-stage estimates follow in the same spirit as in 

the traditional multinomial logit estimation. Given identification of the first stage, the estimated 

alternative-specific constants and heterogeneous taste parameters will be consistent and 

asymptotically normal as long as the number of households (N) in the sample grows large (Bayer 

et al., 2005). 

The argument for consistency of the second stage is, however, less straightforward. The 

complication arises because the dependent variable in the second-stage regression is the 
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estimated vector of alternative-specific constants from the first stage. Hence a large number of 

housing products is not sufficient to guarantee consistency and asymptotic normality. A formal 

proof is given in Berry, Linton and Pakes (2004). They show that the second-stage estimates will 

be consistent as long as (i) the number of housing alternatives, H, grows large and (ii) H log H/N 

goes to zero. That is, not only must H grow large but the number of households in the sample 

must also grow faster than H. In addition, asymptotic normality at a rate H requires that H2/N 

be bounded. In other words, N must grow at a rate faster than H2. 

D. Additional Robustness Checks: Alternative Sampling Strategies 

We check the robustness of the estimated preference parameters with respect to the size of the 

household’s sampled choice set. In section 5.1.2 we explained that the household’s relevant 

choice set includes the (i) chosen alternative and (ii) a random sample of 20 non-chosen 

alternatives. Model 5a in Table D.1 re-estimates the preference parameters using a choice set that 

includes (i) the chosen alternative and (ii) a random sample of 10 non-chosen alternatives. Model 

5b uses a random sample of 50 non-chosen alternatives to form the household choice set. The 

estimated parameters from both specifications have the same signs with the coefficients in Model 

1. The magnitudes of the estimated parameters are also very similar across the specifications. 

We do a final robustness check of the estimated parameters with respect to the sampling of 

the households. In section 5.1.1 we explained that the household sample is formed by drawing a 

10 percent random sample of the households choosing each housing type. We re-estimate the 

household parameters using a different sample size for the random draws. The results are 

reported in Models 6a and 6b of Table D.1. Model 6a reports the estimates from a household 

sample obtained by drawing 20 percent of the households choosing each housing type. Model 6b 
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reports the estimates from a household sample obtained by drawing 40 percent of the households 

choosing each housing type. The estimated coefficients are also very similar to those in Model 1. 

E. Comparing MWTP Estimates with the Existing Literature 

Table E.1 summarizes the marginal willingness to pay (MWTP) estimates, in annual dollar 

terms, for selected housing and neighborhood characteristics. The mean MWTP, in annual dollar 

terms, for a housing attribute xk is defined as: 
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Where, ihV̂ is the estimated household indirect utility function, and kih xV ∂∂ /ˆ  represents the 

marginal utility of xk evaluated at the mean of the household sample. The term in the 

denominator represents the marginal utility of income evaluated at the mean of the household 

sample. The mean MWTP for a specific group of the household population (i.e., college 

graduates, annual income below $19,000) is obtained by evaluating the marginal value and the 

marginal utility of income at the group mean. 

All things equal, we find that households are willing to pay an additional $1,100 in annual 

housing rent for an extra bedroom in their house. Households are willing to pay an additional 

$10,000 annually or nearly twice the average annual rent to reside in a single-family housing 

unit. Households are also willing to pay an additional $9,800 annually, a one standard deviation 

increase in neighborhood school quality. The model also predicts that households will pay nearly 

twice the average rent to live in coastal communities. The estimated mean MWTP for locations 

that are within the household’s employment zone is very large. Households are, on average, 
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willing to pay roughly six times the average annual rent for locations that are within their 

employment zone. As explained earlier, this may be due to the fact that the employment zone 

dummy may be capturing other unobserved neighborhood characteristics that are valued by 

households. MWTP estimates also vary across household characteristics. For instance, compared 

to the average household, college graduates will pay an extra $500 per year for a one-point 

increase in the neighborhood schools’ average math score. Math scores range from 25 to 60 in 

the study area. 

Our estimate of the MWTP for air quality ($62) compares well with other estimates in the 

literature. Sieg et al. (2004) report a MWTP of $61 for a 1 percent reduction in the 1990 average 

ozone concentration. Estimates of the MWTP for air quality range from $18 to $181 in the 

literature (Sieg et al., 2004). The estimates of the MWTP for bedrooms also vary in the literature. 

Bayer et al. (2005) find a mean MWTP of $1,312, in annual 1990 dollars, for an additional 

bedroom. Quigley (1985) estimates a nested logit model of household choice in the Pittsburgh 

metropolitan area, and finds that households are, on average, willing to pay $618 in annual 1990 

dollars for an additional bedroom.27 On the other hand, Chattopadhyay (2000) estimates a similar 

model for the Chicago area using four alternative nesting structures. He finds that the WTP for 

an additional bedroom ranges from $82 to $533, in 1990 annual dollars.  

Our estimate of the mean MWTP for a one standard deviation increase in school quality is 

very large compared to the estimate obtained Bayer et al. (2005). Our mean MWTP estimate for 

a one standard deviation increase in the school quality level is $3,550 in annual terms. This 

compares with the Bayer et al.’s estimate of $21.5. It should be noted, however, that the two 

school quality measures are reported using different scales. The mean school quality in the Bayer 

                                                 
27 The estimate reported in the paper is $13.18 per month in 1967 dollars. This estimate is converted into annual 
1990 dollars. 
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et al. sample is 527, while our school quality measure has a mean of 34. As a result, it makes 

sense to also compare the mean MWTP for a 1 percent change in the annual 1990 mean school 

quality, as suggested by Sieg et al. (2004) in the case of air quality. Our estimate of the mean 

MWTP for a 1 percent change in the mean school quality level is $136, which is much closer to 

the Bayer et al. estimate of $18.  

We would expect our MWTP estimate of to be relatively higher than the estimate from Bayer 

et al. (2005). This is because, in our model, school quality may be correlated with other 

unobserved neighborhood-quality characteristics contained in ξh. As result, the second-stage 

OLS regression may tend to overestimate the mean taste for school quality. Bayer et al. control 

for this problem using school district boundary fixed effects. It is not possible to apply this 

approach to our data because the neighborhoods, ie. PUMAs, are too large compared to school 

districts. The neighborhoods in Bayer et al. are Census blocks, which are much smaller 

geographic units compared to school districts. This facilitates the use of school district boundary 

fixed effects because most Census blocks fall within the boundary of a school district, whereas 

most PUMAs do not. 

F. Simulation of the Counterfactual Equilibrium for th e Year 2000 

F1. Calibrating the Housing Demand 

The economic agents in this model are households. We consider the housing choices of Ns 

(=17,894) households sampled from the overall population of Np (=171,000) households 

obtained from the 1990 Census PUMS. The sampling framework used to generate the household 

sample is described in section 5.1. The housing market is characterized by 4,037 distinct housing 

types. The choice set of each sampled household is characterized by the sampling framework in 

section 5.1.  
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We could have each household facing the full set of 4,037 housing types. However, this 

would not be consistent with the estimation of household preference parameters. Recall that the 

maximum likelihood estimation, which uses choice set sampling, ensures that the market is in 

equilibrium in the 1990 benchmark (see section 5.2.1). This benchmark equilibrium, which is 

enforced via the first-order conditions of the maximum likelihood estimation (see equation 5.3), 

will no longer hold when households face the full set of alternatives.28 As a result, significant 

errors arise in the computation of the predicted housing-type demands, and the counterfactual 

equilibrium housing-type prices may have undesirable29 properties. Hence, we prefer to maintain 

the choice set sampling framework, used during the estimation, in the calibration of housing-type 

demands. We next discuss strategies for obtaining consistent estimates of housing-type demands 

under choice set sampling. 

Obtaining an Appropriate Forecast of the Demand for Housing Types 

The computation of the counterfactual equilibrium begins with forecasting the predicted demand 

for each housing type in the household population under the new air quality levels. Ben-Akiva 

and Lerman (1985) provide a detailed overview of various techniques for obtaining appropriate 

forecasts of aggregate demands for choice alternatives in discrete choice models. Our prediction 

of the aggregate demand for a residential location h uses the method of sample enumeration. This 

technique is especially appropriate in cases when (i) the household sample is drawn 

nonrandomly30 from the population and (ii) the choice set of the household is formed by taking a 

random subsample of the full set of alternatives. In both of these cases sample enumeration 

                                                 
28 In order for the benchmark equilibrium to hold we will need to re-estimate the preference parameters using the 
full choice set, which is not computationally feasible. 
29 Notably, some housing types may have negative prices in the counterfactual equilibrium. 
30 Our household sample is formed by drawing a 10 percent random sample of the households choosing each 
housing type. 
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allows the researcher to obtain a consistent31 estimate of the share of the household population 

choosing a residential location h. For a stratified sample with g = 1,…, G strata, Ben-Akiva and 

Lerman (1985) define the sample enumeration estimate of the share of the household population 

choosing an alternative h as: 
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where, Np is the household population, Ng is the population size of strata g, Nsg is the sample size 

of strata g, and ihP̂  is the estimated household choice probability. For the sampling design used 

in this study (see section 5.1.1), each housing type h represents a stratum. As a result Ng = Nh, Nsg 

= Nsh, the first summation term drops out and the expression for the estimated population share 

becomes: 
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Where, Nh is the number of households choosing location h in the population and Nsh the number 

of households choosing location h in the household sample. The population share is then 

converted into the predicted population demand for a housing location h by multiplying the 

estimated share by the household population (Np). For a given housing type h the predicted 

population demand is given by: 

                                                 
31 Consistency of the estimated population share holds as long as the estimated preference parameters are consistent, 
which is the case in our estimation. 
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The main limitation of the sample enumeration estimate, of the predicted population demand, is 

that it is subject to sampling error. The sampling error is due to the sampling of households and 

the sampling of the household choice sets. However, in our application, the sampling error is 

relatively small given the large size of our sample. The sampling error in the predicted 

population share for housing type h can be computed using the weighted root mean square 

formula provided by Ben-Akiva and Lerman (1985), which is due to Koppelman (1975). For our 

sampling framework, the sampling error in estimating the population shares for the 1990 

benchmark is given by: 

 

2/12

1

ˆ
ˆ




















 −
= ∑

=

H

h h

hh
h

p

h

N

N
rms

σ
σσσ ,       (8) 

 

where σh represents the actual share of the household population choosing housing type h, which 

in our sampling framework turns out to equal ph NN / . The weighted root mean square in our 

application is approximately 10-10 which is fairly small. An alternative way of assessing the 

sampling error is to compute the square root of the sum of squares of the excess demands across 

housing types in the benchmark. This is because, by virtue of the maximum likelihood 

estimation, the benchmark excess demands32 must equal zero if there is no sampling error in the 

                                                 
32 The excess demands are given by hh sd −ˆ , where sh is the supply of housing units of type h. 
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predicted population demand. The sampling error in the predicted population demand can then 

be obtained as ( )
2/1

1

2ˆ






 −∑

=

H

h
hh sd . In our application the sampling error in the predicted 

population demand is roughly 10-6 which is also small. 

Computing the Predicted Population Demand under the New Air Quality Levels 

Using equation (7) we can now characterize the predicted population demand for each housing 

type under the new air quality levels. It is given by: 
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where, ihP̂  has been defined explicitly. Ci represents the choice set of household i. The 

superscript 1 is used to indicate market conditions after the air quality changes have occurred. 

1
khx  is the vector of attributes for housing type h which includes the new air quality level. 1ĥδ  

represents the predicted base utility for housing type h under the new air quality levels. It is 

given by: 
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where hξ̂  is the vector of residuals obtained in the second-stage OLS estimation (Equation 5.7). 

hξ̂  characterizes the estimate of the mean valuation from the unobserved location attributes. The 
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vector of residuals must be added because the alternative constants which characterize the 

benchmark 1990 equilibrium are given by: 

 

h
k

khkh x ξβδ +=∑ 0
00 . 

 

The reader can note that this is the same equation characterizing the mean utility in equation 

(5.4). Hence hξ  is an key component of the functional form of hδ . In our application, the 

second-stage taste parameter for air quality is not statistically different from zero. Hence the 

predicted base utility levels (1ĥδ ) under the new air quality levels are the same as the benchmark 

base utility levels ( 0ˆ
hδ ) obtained from the first-stage of the estimation. 

F2. Defining the Counterfactual Locational Equilibrium 

The 171,000 housing units occupied by the population of households in the 1990 Census PUMS 

are classified into 4,037 residential locations. The housing supply sh is given by the number of 

housing units at each residential location h. We assume that the housing supply is exogenous 

with respect to the changes in air quality. Given the housing supply (sh) and the predicted 

housing demand (1ˆhd ), the counterfactual equilibrium price vector is defined by: 

 

0*)(ˆ*)( 1 =−= hhh spdped  h = 1,…, H.  (10) 

 

The counterfactual locational equilibrium defined by equation (10) is unique and locally stable. 

This follows from the fact that the parameter estimate α̂  is positive and hence the excess 

demand edh(p) satisfies the strict gross substitution property (see Anas, 1982). 
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F3. Implementation 

A numerical solution to the system of H equations in H variables, which defines the 

counterfactual locational equilibrium, is obtained via an efficiently convergent algorithm 

suggested by Anas (1982). The equilibrium price vector is found iteratively via a price-

adjustment process that starts with the benchmark 1990 price vector p0 and adjusts the location 

prices until the adjusted price vector is arbitrarily close to the equilibrium price vector p*. 

Let t = 1, …, T define a sequence of T iterations such that *ppT ≈ . The price vector at 

iteration t + 1  is given by the Newton step: 
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ed(p) represents the system of excess demands for all H residential locations, and 

]/)([ pped t ∂∂ is the Jacobian matrix of ed(p) evaluated at tp . Computation of the Newton step 

defined in (11) requires evaluating and inverting the Jacobian which has dimension H = 4037. 

The computational cost of this algorithm is considerably large. The evaluation of the Jacobian 

alone takes approximately 30 minutes on a Pentium 4 2Ghz PC station.  

Anas (1982) suggests a less costly iteration step which is obtained by ignoring the off-

diagonal element of the Jacobian matrix. In this case the iteration step t + 1 is defined 

independently for each residential location h as: 
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The computational cost of the iteration step in (11a) is significantly less than that of (11) since it 

only requires computing the diagonal vector of the Jacobian matrix and its element inverse. This 

alternate Newton step will converge to the equilibrium price vector p* as long as the off-diagonal 

elements of the Jacobian are significantly small in absolute value compared to the diagonal 

elements. Convergence is achieved when the price vector pT at iteration T is “sufficiently” close 

to p*. In our counterfactual simulation pT is considered “sufficiently” close to p* if  

 

510/)( −≤h
T

h sped  h = 1,…, H.  (12) 

 

In other words, the absolute absolute value of the excess demand for each location is less than 

0.001% of the housing supply. 

A computational issue arises from the fact that knowledge of H-1 housing-type excess 

demands is sufficient to characterize the system of H excess demands. This is because we 

assume that the housing market is a closed economy, which implies that no household relocates 

outside the study area. A direct implication of the closedness assumption is that the housing-type 

demands always sum to the total population (N) of households. This means that the system of H 

housing-type excess demands has only H-1 degrees of freedom. As a result, we fix one of the 

prices when solving for the numerical solution. This normalization guarantees that any starting 

value will lead to the same market clearing prices. The normalization also guarantees that the 

counterfactual equilibrium prices are within the same H-dimensional simplex as the benchmark 

price vector and hence lies in the positive quadrant +ℜH . 
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Table A1. Regression Used for Correcting House Values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: * Significant at the 5 percent level. **  Significant at the 1 percent level. Dependent variable is log of house value.  
Regression includes a full set of PUMA dummies. 

 
Table A2. Regression Used for Correcting Monthly Rents 

 
Los Angeles – 
Long Beach 

MSA 

Orange 
County 
MSA 

Riverside – 
San Bernardino 

MSA 
    
Moved in 1985 to 1988  (compared to 1989-90) -0.082**  -0.062**  -0.081**  

 Moved in 1980 to 1984 -0.207**  -0.193**  -0.234**  

 Moved in 1970 to 1979 -0.329**  -0.298**  -0.328**  

 Moved in 1960 to 1969 -0.410**  -0.439**  -0.295**  

 Moved in 1959 or earlier -0.421**  -0.310**  -0.459**  

Rooms 0.027**  0.014**  0.043**  

Bedrooms 0.154**  0.144**  0.121**  
Single-family house attached 
(compared to single-family detached) 

-0.056**  -0.029**  -0.080**  

 2 apartments complex -0.098**  -0.128**  -0.182**  

 3-4 apartments complex -0.128**  -0.132**  -0.168**  

 5-9 apartments complex -0.144**  -0.168**  -0.174**  

 10-19 apartments complex -0.142**  -0.166**  -0.133**  

 20-49 apartments complex -0.113**  -0.138**  -0.143**  

 50 or more apartments complexes -0.145**  -0.170**  -0.148**  
Built in 1985 to 1988 
(compared to 1989-90) 

-0.001**  0.011**  -0.053**  

 Built in 1980 to 1984 -0.089**  -0.073**  -0.139**  

 Built in 1970 to 1979 -0.078**  -0.045**  -0.158**  

 Built in 1960 to 1969 -0.068**  -0.072**  -0.211**  

 Built in 1950 to 1959 -0.105**  -0.103**  -0.257**  

 Built in 1940 to 1949 -0.122**  -0.149**  -0.291**  

 Built in 1939 or earlier -0.146**  -0.161**  -0.322**  
    
R2 0.368 0.410 0.395 

Observations 138,181 39,550 33,891 
Note: * Significant at the 5 percent level. **  Significant at the 1 percent level. Dependent variable is monthly rent.  
Regression includes a full set of PUMA dummies. 

 
Los Angeles – 
Long Beach 

MSA 

Orange 
County 
MSA 

Riverside – 
San Bernardino 

MSA 
    

Log Transaction price (10 times property tax) .335** .349** .440** 

Moved in 1985 to 1988  (compared to 1989-90) -0.013**  0.017**  -0.060**  

 Moved in 1980 to 1984 0.037**  0.075**  -0.071**  

 Moved in 1970 to 1979 0.192**  0.309**  0.040**  

 Moved in 1960 to 1969 0.253**  0.395**  0.097**  

 Moved in 1959 or earlier 0.201**  0.307**  0.088**  
    
R2 0.325 0.263 0.431 

Observations 138,181 39,550 33,891 
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Table A3. Regression Used for Converting House Values to Rental Rates 

 
Los Angeles – 
Long Beach 

MSA 

Orange 
County 
MSA 

Rverside – 
San Bernardino 

MSA 
    

Owner-occupied 5.654**  5.830**  5.474**  

Rooms 0.049**  0.042**  0.090**  

Bedrooms 0.052**  0.080**  0.036**  
Single-family house attached 
(compared to single-family detached) 

-0.126**  -0.080**  -0.015**  

 2 apartments complex -0.217**  -0.143**  -0.160**  

 3-4 apartments complex -0.210**  -0.179**  -0.130**  

 5-9 apartments complex -0.232**  -0.207**  -0.138**  

 10-19 apartments complex -0.229**  -0.204**  -0.108**  

 20-49 apartments complex -0.201**  -0.166**  -0.111**  

 50 or more apartments complexes -0.234**  -0.188**  -0.119**  
Built in 1985 to 1988 
(compared to 1989-90) 

-0.014**  -0.063**  -0.049**  

 Built in 1980 to 1984 -0.083**  -0.158**  -0.142**  

 Built in 1970 to 1979 -0.105**  -0.191**  -0.200**  

 Built in 1960 to 1969 -0.182**  -0.239**  -0.303**  

 Built in 1950 to 1959 -0.247**  -0.293**  -0.382**  

 Built in 1940 to 1949 -0.255**  -0.316**  -0.402**  

 Built in 1939 or earlier -0.257**  -0.319**  -0.409**  

    

R2 0.992 0.987 0.986 

Observations 138,181 39,550 33,891 
Note: * Significant at the 5 percent level. **  Significant at the 1 percent level. Dependent variable is log of corrected  
house value if owned, otherwise, log of corrected monthly rent. Regression includes a full set of PUMA dummies. 
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Table D.1: Alternative Sampling Strategies 

 Model 1‡ Model 5a Model 5b Model 6a Model 6b 

      

First Stage      

Log(y-p) 1.475**  1.394**  1.536**  1.6**  1.56**  

Ozone * Log(y-p) -0.019**  -0.023**  -0.019**  -0.022**  -0.021**  

Bedrooms * Household size 0.066**  0.07**  0.066**  0.062**  0.053**  

Single family * Children under 18 0.227**  0.271**  0.225**  0.21**  0.253**  

Math * College educated head 0.309**  0.32**  0.3**  0.295**  0.297**  

Log crime * Log(y-p) 0.004**  0.001 0.006**  0.006**  0.009**  

Within household’s  employment zone 1.989**  1.986**  2.006**  1.971**  1.961**  

      
Log-Likelihood -37,072 -27,104 -51,690 -67,241 -130,056 
Likelihood Ratio p-value  (H0: δ =0) 0.000 0.000 0.000 0.000 0.000 
      
McFadden pseudo-R2 0.319 0.368 0.265 0.353 0.365 

Observations 17,894 17,894 17,894 34,132 67,304 

      

Second Stage OLS †      

Bedrooms 0.04* 0.03 0.045* 0.048* 0.05**  

Built after 1980 -0.594**  -0.602**  -0.588**  -0.596**  -0.59**  

Built in 60s or 70s -0.172* -0.18**  -0.168* -0.18**  -0.175**  

Single-family dwelling 0.352**  0.359**  0.356**  0.351**  0.355**  

Owned 0.054 0.06 0.041 0.045 0.047 

Math test score 0.139**  0.13**  0.143**  0.147**  0.138**  

Log FBI crime index 0.0005 0.001 0.0001 0.000 0.000 

Log elevation 0.016 0.009 0.025 0.028 0.028 

PUMA is on pacific coastline 0.342**  0.341**  0.334**  0.341**  0.349**  

Log density 0.079 0.07 0.089* 0.09* 0.094* 

Prop. of population Hispanic -0.38* -0.401* -0.387* -0.376* -0.41**  

Ozone 0.161 0.19 0.148 0.151 0.141 

      

R2 0.054 0.052 0.055 0.056 0.057 

Observations 4,037 4,037 4,037 4,037 4,037 
Notes: 
**  Significant at 1% level. * Significant at 5% level. † Standard errors are computed using White’s robust covariance matrix. 
‡ Model 1  : Benchmark specification used in the simulation and welfare analysis. 
    Model 2a: Characterizes the household’s relevant choice set using 10, instead of 20, randomly sampled non-chosen alternatives. 
   Model 2b: Characterizes the household’s relevant choice set using 50, instead of 20, randomly sampled non-chosen alternatives. 
   Model 3a: household sample is form by drawing 20, instead of 10, percent of the households choosing each alternative in the 1990 PUMS. 
   Model 3b: household sample is form by drawing 40, instead of 10, percent of the households choosing each alternative in the 1990 PUMS. 
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Table E.1: MWTP for Selected Housing and Neighborhood Attributes (1990 Annual Dollars) 

 Mean MWTP College Grads 
Income  < 
$19,600 

Income > 
$60,400 

     
Bedrooms  
(+1 bedroom) 

1,143 - 150 2,426 

Single-family dwelling 
(vs. Multi-family) 

10,104 - 1,326 21,450 

Math test score*  
(+1 standard deviation) 

3,550 11,474 466 7,538 

PUMA is within household’s 
employment zone 
(vs. outside) 

57,119 - 7,494 121,262 

PUMA is on Pacific coastline  
(vs. inland) 

9,821 - 1,289 20,850 

Share Hispanics  
(+0.01) 

-109 - -14 -232 

Ozone†  
(-1%) 

62 - 8 131 

Note: All values are in annual rental rates. For example, the average household is willing to pay $1,143 annually for an  
additional bedroom whereas households with income below $19,000 are only willing to $150. The annual mean rental  
housing price in the study area is $9,000. 
†MWTP for a 1 percent change in 1990 average. 
* Math test score: mean = 34, standard deviation = 8.9, range: 25 to 60. 
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Figure B.1: 1990 Neighborhood School Quality Levels 

 

 

Figure B.2: 1990 Neighborhood Crime Levels 

 

 


