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Abstract

This study develops a discrete choice locationallégium model to evaluate the benefits of the
air quality improvements that occurred in the LagAles area following the 1990 Clean Air Act
Amendments (CAAA). The discrete choice equilibtiapproach accounts for the fact that air
quality improvements brought about by the 1990 CA&R change housing choices and prices.
The study provides the first application of thecdete choice equilibrium framework (Anas,
1980, Bayer et al., 2005) to the valuation of lasgevironmental changes. The study also
provides new evidence for the distributional wedfampacts of the 1990 CAAA in the Los
Angeles area. Households’ location choices are taddeaccording to the random utility
framework of McFadden (1973) and the differentigbealduct specification of Berry, Levinsohn
and Pakes (1995). Findings suggest that the airtyjimprovements that occurred in the Los
Angeles area between 1990 and 2000 provided amgeequilibrium welfare benefit of $1,800
to households. In contrast, average benefits a¢0®Ilwhen equilibrium price effects are not
accounted, demonstrating that ignoring equilibrieffiects will likely underestimate the benefits
of large environmental changes. In addition, wel fimat the equilibrium welfare impacts of the
1990 CAAA in the Los Angeles area varied signifitaacross income groups.
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1 Introduction

Environmental regulations such as the Clean Air @sat lead to large air quality changes which
cover wide areas and affect many residential conmmesn These types of widespread non-
marginal improvements in air quality will have diggant equilibrium welfare effects across
local jurisdictions as households re-evaluate thesidential location choices and equilibrium
housing prices adjust. Traditional approaches tuating the impacts of air quality regulation
have relied on direct welfare measutéhese welfare measures are recovered directly fhem
estimated preference function of consumers usithgrethe hedonic framework (Rosen, 1974) or
the discrete choice framework (McFadden, 1973, L9M8wever, direct welfare measures do
not explicitly account for the adjustments in hogsprices which will occur when widespread
non-marginal changes lead households to re-satt@rhousing market. As a result, they will
generally underestimate the full, i.e. equilibriuwelfare gains from regulations that result in
widespread non-marginal improvemeénits environmental amenities (Bartik, 1988, Palmguis
1988)¢

Recent studies by Sieg et al. (2004) and SmitH. €2@04) have shown that incorporating
equilibrium adjustments can alter the estimatesvelfare benefits from large environmental
improvements. For instance, Sieg et al. (2004) fivad the reductions in ozone levels during the
five years following the implementation of the 19@ean Air Act Amendments led to

equilibrium price increases ranging from 11 percémt20 percent in the Los Angeles

2 These welfare measures are often referred aspagiiilibrium welfare measures.

% These are changes that are large enough to latestock of environmental quality in the market. aksexample,
consider the cleanup of all toxic waste sites anltbs Angeles metropolitan area.

* Equilibrium welfare measures are often referrederseral equilibrium welfare measures.



metropolitan area. These price changes resulteduilibrium welfare gains that were 13 percent
higher than the direct benefits estimates thatataocount for equilibrium adjustments.

This paper develops a discrete choice locationallibgum model to evaluate the welfare
benefits of the 1990 Clean Air Act Amendments (CAAA Los Angeles area households. The
study makes two empirical contributions to publomomics. First, the study provides the first
application of the discrete choice equilibrium fework (Anas, 1980, 1982) to the valuation of
large environmental changes. Households’ locatiamoes are modeled according to the random
utility framework of McFadden (1978). The equillom model is closely related to the model of
Bayer et al. (2005). This, more recent, discret®iagh equilibrium model follows the
differentiated product specification of Berry, Lesohn and Pakes (1995) by incorporating
unobserved attributes of residential locations ha household utility function. The discrete
choice equilibrium framework provides an alternatte the framework proposed by Sieg et al.
(2004) for evaluating the general equilibrium bésedf large environmental improvements. It
allows for a richer and more realistic characteitraof households’ substitution patterns as well
as preference heterogeneity.

Second, the paper provides new evidence for thakdisonal benefits of the CAAA in the
Los Angeles area. Using the changes in ozone lagwelsoccurred in the Los Angeles area
between 1990 and 2000 we estimate average weltamefits as well as the distribution of
welfare benefits across income groups. Recentlg &t al. (2004) have provided estimates of
the benefits of the CAAA based on the changes amezevels that took place between 1990 and
1995. With the availability of air quality monitog data for the year 2000, we are able to

evaluate the benefits of the CAAA from 1990 to 2000



Little is known about the distribution of the betefamong households from the 1990
CAAA regulations. The only attempts at such anysialhave focused on the spatial distribution
of welfare gains. For instance, welfare gains in predominantly higteme neighborhoods are
compared with those in low-income neighborhoodss Bipproach, however, fails to capture the
distribution of welfare gains and losses acrossébald characteristics such as income and race.
It only provides a comparison of the welfare gainososs neighborhoods.

Household preferences are estimated using a datasst includes households and housing
units from the 1990 Census Public Use Microdata @antPUMS), annual ozone summaries
from the California Air Resource Board, school periance data from the California
Department of Education and crime indices from @aifornia Criminal Justice Statistics
Center. Households’ residential location choicesdraracterized by a discrete choice model in
which equilibrium conditions are enforced. The nochptures the heterogeneity of household
preferences for location amenities by incorporatitigerved household characteristics in the
utility function. Observed household charactersstieclude household income, household size,
employment location and educational attainmenhefrtousehold head.

Estimation of the equilibrium welfare impacts ingorates price adjustments that result from
the fact that households alter their residentiabtmn choice after the changes in air quality
throughout the Los Angeles area. Computation ofefeilibrium adjustments is obtained via
simulation. Using 1990 as a benchmark we simulaseket clearing prices and household
choices for the counterfactual locational equilibmi that would have resulted in 1990 if air

qguality levels were identical to those observed2000, while all other housing attributes

®> See for example Shadbegian et al. (2004). Smithl.€2004) investigate the distributional impaofsthe 1990
CAAA using the projected air quality changes, ie ttos Angeles area for the year 2000, from the EP&99
prospective study. However, the actual air qualitgnges between 1990 and 2000 significantly dfffem the EPA
projections.



remained at their 1990 levels. The counterfactgaildrium only captures the changes in air
quality that occurred in the Los Angeles area betwe990 and 2000. Other factors
characterizing the Los Angeles area housing masket) as population, household income and
housing supply, are assumed fixed in the simulation

The empirical analysis focuses on the four countiethe Los Angeles area which makeup
the South Coast Air Quality Management District. isTharea experienced significant
improvements in air quality during the decade todibwed the implementation of the 1990
CAAA. The results suggest that the reductions ionezconcentrations across Los Angeles,
Orange, Riverside and San Bernardino counties,igiedvan average equilibrium benefit of
$1,800 to households. In contrast, average berafit$1,400 when equilibrium adjustments are
not accounted, demonstrating that ignoring equiliar effects will likely underestimate the
benefits of large environmental changes. We firat the equilibrium welfare impacts of the
1990 CAAA in the Los Angeles area varied signifitamcross income groups. Households in
the highest income quartile experienced equilibribenefits of approximately $3,600 as
compared to only $400 for households in the lovimstme quartile. We also find that ignoring
equilibrium adjustments can significantly alter tHistribution of relative welfare gains (i.e.
welfare gains as a proportion of household incornmeleed, welfare impacts that do not account
for equilibrium effects suggest that high-incomeusgholds have larger relative welfare gains
compared to low-income households. However, whaowtting for equilibrium adjustments,
we find that the distribution of relative welfaraigs from the 1990 CAAA is fairly even across
income groups.

The remainder of this paper is organized as follo8exction 2 provides some background

information and reviews the current body of literat on the valuation of housing amenities.



Section 3 characterizes the locational equilibrimodel. Section 4 describes the various datasets
used to estimate the household utility functiorctiea 5 outlines the estimation of the household
preference parameters. Section 6 discusses thdasiomuand the welfare results. Section 7

concludes the analysis.

2 Background and Literature Review

2.1 Background

The 1990 Clean Air Act Amendments ®

The Clean Air Act Amendments (CAAA) of 1990 addexsshree major environmental issues in
the United States: acid rain, urban air pollutionl &oxic air emissions. Title | established new
provisions for the attainment and maintenance efNational Ambient Air Quality Standards
(NAAQS). It is intended to address the urban aitytion problems arising from ground-level
ozone, carbon monoxide and particulate matter (BM-Areas for which ambient levels of these
pollutants were above the target levels were daseghas non-attainment areas by EPA. Non-
attainment counties for ozone were classified inte categories (marginal, moderate, serious,
severe and extreme). These areas were then redainetplement control measures that vary
with the severity of their non-attainment statuer Earbon monoxide and particulate matter,
areas that did not meet the federal health stasdeede classified into either moderate or serious
non-attainment status. Areas exceeding carbon mdewtandards were required to introduce
oxygenated fuels programs and/or implement enhaaggsdsion inspections. Depending on the

severity of their status, particulate matter namatatnent counties were either required to

® Based on U.S. Environmental Protection Agency 6200



implement reasonably available control measuresGQRAor best available control measures
(BACM).

Air Quality Standards for Ground-level Ozone’

Under the Clean Air Act, EPA is required to set ibiaal Ambient Air Quality Standards
(NAAQS) for pollutants that are considered to bemfal to public health and the environment.
Currently, two standards are used to regulate ozewels in the U.S. The national 1-hour
standard for ozone, set at 0.12 parts per millgpm() by volume, was established in 1979. It is
achieved when the average number of days per calegdar with maximum hourly
concentrations above 0.12 ppm does not exceed 1996, EPA established a new national 8-
hour ozone standard which was set at 0.08 ppm hyma This standard is attained when the
three-year average of the fourth highest daily maxn 8-hour ozone concentration measured at
each ozone monitor within an area is less than p@8. In June of 2005, the 1-hour ozone
standard was revoked in all areas and replacetido@-hour standard, except in the fourteen 8-
hour ozone non-attainment areas that were parPéf€Early Action Compactgrogram.

In addition to setting the NAAQS, EPA designate=aaras either non-attainment, attainment
or unclassified. The designation process playsngportant part in the implementation of air
pollution control measures by states and local gowents. Currently, an area is designated as
non-attainment if it violates the national 8-houoboe standard over a three-year period. An area
will be designated as attainment if it has air guahonitoring data showing that the area has not
violated the ozone standard over a period of thesgs. Areas are designated as unclassified if

there are not enough data to determine ozone levels

" Based on U.S. Environmental Protection Agency 6200

8 Early Action Compacts give local communities thexibility to develop their own approach to meetthg 8-hour
ozone standard, provided the communities contradsions from local sources earlier than the Cleam\at would
otherwise require.



Air Quality Improvementsin the Los Angeles Area

The South Coast Air Quality Management District (AD) is the main regulatory body for air
pollution in the Los Angeles area. It encompassen@e County and the urban areas of Los
Angeles, Riverside and San Bernardino County. Tea & the most densely populated urban
center of the state of California and is home terol6 million people. The South Coast Air
Quality Management District has historically exks#loi some of the worst ambient levels of air
quality in the nation (U.S. EPA, 2006c). Every thrgears AQMD develops an air quality
management plan which identifies implementation suess designed to bring the area in
compliance of state and federal air quality stadgslar

Figure 1 provides maps of ozone concentrations9@0land 2000 for the four counties
which makeup the South Coast AQMD. The 1990 mapvsheo wide variation in ozone levels
across the area. Specifically, ozone concentrativaese lowest in the coastal areas of Los
Angeles and Orange County. Average 1-hour grounellezone concentrations, in those areas,
were below the federal 1-hour standard (0.12 pi@n)the other hand, the areas east of the San
Bernardino Mountains and south of the San Gabrieumains exhibited the highest ozone
concentrations in 1990. Average 1-hour ground-lezeine concentrations in these areas ranged
from 0.185 ppm to as high as 0.225 ppm.

The South Coast AQMD counties experienced sigmficaductions in ozone concentrations
between 1990 and 2000. Table 1 reports averagesazmmcentrations from monitoring stations
across the area. The average 1-hour ground-lewsleoreading in 2000 was roughly 0.10 ppm,
compared to 0.14 ppm in 1990. In addition, the neimif days exceeding the federal 1-hour
standard (0.12 ppm) significantly decreased betwkE¥0 and 2000. The average number of

recorded exceedences across the area was abal#y3.5n 2000, compared to nearly 36 days in



1990. Figure 1 shows that the ozone reductions higieest in areas with the worst ground-level
ozone concentrations in 1990. Average ozone corateris fell by nearly 62 percent at

monitoring stations with a recorded 1990 ozone lla®ve the federal 1-hour standard (0.12
ppm). On the other hand, monitors with a record@@0lozone level below the federal 1-hour

standard experienced an average reduction of @pecent.

2.2 Approaches to Valuing Amenity Changes

The type of empirical approach required to valuesiity changes ultimately depends upon the
guestion of interest. Researchers are generallyasted in estimating the marginal value from
amenity changes. This is obtained by estimating htbéonic price function for the relevant
housing market and taking the gradient with respetihe amenity of interest. Smith and Huang
(1995) provide an extensive survey of the applicetiof this approach to air quality valuation.
Sometimes a researcher might want to estimate ithegmess to pay (WTP) of households for a
non-marginal amenity change at their residentieation. This requires estimating the demand
or WTP function for the amenity. The welfare estilma can be implemented via Rosen’s
(1974) two-stage hedonic approach or McFadden'ggLdiscrete choice approach. Palmquist
(2006) provides a recent review of hedonic andrdtecchoice demand approaches to valuation.
The hedonic and discrete choice demand estimadiom®t, however, allow the researcher to
evaluate the welfare impact resulting from largeeaity changes. In fact, these methods will
underestimate the welfare gains from large ameatignges because they do not account for the

fact that households change their locations. Evialgathe welfare impact of large amenity
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changes is generally a more complex task as ondsn@enodel that explicitly incorporates
changes in household location choites.

In contrast to the hedonic and discrete choice aenestimation, which assume that non-
marginal amenity changes do not affect househotdtion choices, locational equilibrium
models are able to incorporate price adjustmerds rigsult from the re-sorting of households
across housing locations in response to a polieynge. These models use estimated household
preferences to simulate a counterfactual equilibrautcome for a policy change.

Sieg, Smith, Banzhaf and Walsh (2004) provide thet fempirical analysis of the
equilibrium welfare impacts from non-marginal ewvimental improvementS. The study
develops a locational equilibrium model based ufpple and Sieg's (1999) equilibrium
framework. Households, in the Sieg et al. moddecsénousing locations among a finite set of
differentiated communities. The set of communitiescharacterized by 91 school districts.
Communities differ in their provision of local publgoods (including air quality) and housing.
Conditional on their community choice, householdsles housing as a continuous,
homogeneous good. Households’ preferences varyregect to income and a taste parameter.
The locational equilibrium is defined in terms bfge conditions: boundary indifference, income
stratification and ascending bundles. These prigsedre used to estimate parameters of the
household’s utility function, which are then usedstmulate alternative equilibrium outcomes
for changes in ozone concentrations at the schstrlad level.

Sieg et al. (2004) apply this framework to investegthe welfare benefits of the 1990 CAAA

in the Los Angeles area. They find that equilibrilb@nefits that account for adjustments in

® There is one instance when evaluating the welfapact of a large amenity change is a simple thls occurs
when the amenity change is localized, i.e., codfittea small geographic area. In this case it eashown (see
Bartik, 1988) that the welfare impact will equag tbum of the changes in housing prices within ffexted area.
19 See also Smith et al. (2004) and Walsh (2003ptieer applications related to the Sieg et al. (2@@proach.
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housing prices differ substantially from direct bBhestimates. The average equilibrium welfare
gain from the reductions in ozone concentratiortackvoccurred between 1990 and 1995 in the
Los Angeles area, was estimated at $1,371. Thigpams with the average direct benefit of
$1,210. In addition, the study finds a significantount of heterogeneity in welfare gains across
counties. Equilibrium benefits were found to beheigt in Los Angeles County ($1,556) and
lowest in San Bernardino County ($367). The studg &inds considerable variation in benefits
across school districts, within each county. Fanegle, the equilibrium benefits in Los Angeles
County ranged from $486 in the Compton Unified SdHaistrict to $9,000 in the Beverly Hills
School District.

In a subsequent study, Smith et al. (2004) evalutite benefits of the 1990 CAAA in the
Los Angeles area for 2000 and 2010. Using the ER#Adgected changes in ozone levels for
2000 and 2010 together with the estimated househ@térences from Sieg et al. (2004), the
study measures the equilibrium WTP for the policgrarios developed for EPA’s prospective
study (EPA, 1999) as they relate to the househofddhe Los Angeles area. The study also
investigates the distribution of equilibrium bemefacross income groups. They present the
benefits associated with the™%0" and 74" income percentiles for selected school districts i
the Los Angeles area. The estimated equilibriunfaselestimates vary significantly across the
household income distribution. The distributiortled welfare estimates also varies across school
districts. In the lowest-income community, San JuacUnified School District, the welfare
estimates are -$59 annually for the"2Bcome percentile as compared to -$28 for th8 75
percentile. The welfare estimates in Beverly Hilchool District, the highest-income
community, are $3899 for the ®5income percentile as compared to $7406 for th8 75

percentile.
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Sieg et al. (2004) provide a major contributiorthie valuation of large widespread changes
in environmental amenities. The study provides fhst explicit characterization of the
equilibrium impact of non-marginal amenity changeshousehold choices and housing prices.
In addition, the Sieg et al. model has the advantaf being simple to implement and
computationally tractable even with a large numibérhousing locations. However, the
specification of household preferences, that isleddo ensure that the necessary conditions for
the equilibrium are met, gives rise to some linntas.

First, the characterization of preferences for atremnleads to somewhat restrictive patterns
of substitution across locations. This is becaosatlon amenities enter the household’s indirect
utility function through a single public good indeXs a result, households are forced to have the
same ranking of communities in the amenity spabtes Vertical differentiation of communities
simplifies the estimation of preference parametansl the computation of the locational
equilibrium. However, one would generally expectuseholds to have different relative
preferences for community-specific amenities sushaa quality, education and crime. For
instance, other things equal, one would expect hHmatseholds with children enrolled in a
secondary public school will have higher preferent@m communities with good secondary
public schools.

A second limitation of the Sieg et al. (2004) moddltes to the characterization of the
heterogeneity in households’ preference for locatimenities such as air quality, school quality
and crime. Heterogeneity in households’ prefererficeshe public good index is characterized
by a single taste parameter whose marginal digtobus assumed normal. Hence a household’s
marginal valuation for a given community amenitymdy a function of the household’s income

and does not depend on other household charamt®ristiouseholds’ preferences for

13



community-specific attributes are, however, likedywary across other household characteristics
such as household size, the presence of childr@redmcational attainment. For instance, highly
educated household are likely to have a higher margaluation for school quality. As a result,
a preference specification which incorporates aeraction between neighborhood school
quality and household educational attainment walilolw the model to better fit the data. In
addition, when investigating welfare gains from a@menity change, a researcher is able to
provide an analysis of the distributional impactsoas household characteristics other than
income. For instance, one may want investigatalifierential impact of an improvement in air
guality on minority households.

An alternative to the Sieg et al. (2004) equilibnidramework is the discrete choice
equilibrium framework. This is the equilibrium appch adopted here. Anas (1980, 1982)
developed a theory of locational housing marketildgwm based on the discrete housing
choice model of McFadden (1978). In recent years framework has been extended to
incorporate advances in urban economics and erapindustrial organization. One such model
was proposed by Bayer and Timmins (2005). Their ehadcorporates endogenous social
interaction effects as well as unobserved locadibmbutes.

The discrete choice equilibrium approach proviagesafricher characterization of preference
heterogeneity and more general patterns of subetituThe discrete-choice modeling of the
household location allows community-specific amesitto enter directly the utility function.
This provides for more general substitution pateatross communities. In addition, the
researcher can characterize the observed heteibganehouseholds’ tastes for location
amenities by incorporating interactions of housdhdiaracteristics and location amenities into

the utility function. This would allow the reseaecho evaluate the impact of a policy change on

14



various socio-economic subgroups of the householpulation. The main limitation of the
discrete choice equilibrium approach is that itsplementation requires significant
computational work.

To date, discrete choice equilibrium models havenbmostly used to analyze urban and
transportation policy changes. Anas (1982) evatutite impact of public transportation projects
proposed for the Chicago area in the early 198@geBet al. (2005) use an equilibrium model
similar to the Bayer and Timmins (2005) model twestigate the impact of an increase in
income inequality in the San Francisco bay areandins (2007) uses a similar equilibrium
model to evaluate the welfare costs of rainfallnges in Brazil using labor market data. The

equilibrium model in this paper is based on thecgpation of Bayer et al. (2005).

3 A Locational Equilibrium Model for the Los Angeles Area

This section develops the discrete choice equilibrmodel used to evaluate the welfare impacts
of the 1990 Clean Air Act amendments in the Los élag area. We model households’ location
decisions according to the framework of Bayer et (2D05). The characterization of the

locational equilibrium follows Anas (1982).

3.1 Modeling Households’ Location Choice

Households are assumed to choose their resideatiaion h from a discrete set of housing
types H). A housing type is defined as a collection of $ws with identical observed
characteristics and located within the same neididmal. The utility that a househaoldlerives

from a residential locatioh is given by:

15



v,, =alog(y' - p,) +ud;, +thk:3ik +& + &, (3.1)
X

wherey' represents househais monthly income ang, is the monthly rental price of houbke
dn is a dummy variable which equals 1 if the residérbcation is within the household’s
employment zone. It is intended to capture the &lbolsl’'s preference for housing locations that
are closer to its workplace. Thé& kelement of the vector of observed attributes &sidential
locationh is given byx.. These are the housing and neighborhood attriibtgsare present in
the researcher’s data. Housing characteristicsidiecbedrooms, age, dwelling type and tenure
status. Neighborhood characteristics include ozzovecentration, 8 grade math score, crime
index, elevation, proximity to the Pacific coastlimhousing density and proportion of Hispanics.
Other attributes of the residential location that @bserved by the household but not observed in
the data enter the household’s utility via the tmeaspecific error termg,. This term will
capture the household’s average valuation of tlebserved attribute's. The last termgis, is a
mean-zero stochastic error which captures the @moeéd taste heterogeneity among households.
Each household chooses the residential locatiohwprovides it with the highest utility.

The household’s indirect utility derived from tlmgaximization problem is given by:

Viy =Max alog(y' = p,) +ydy + D X By +&, + &, (3.12)
k

™ As in Bayer et al. (2005) and Berry et al. (1995 specification of the indirect utility assuntkeat households
have the same valuation for the unobserved ateihiHence, we are not able to identify heterogeshpoeferences
for unobserved location attributes. Athey and In®b@007) use Bayesian methods to estimate a rantitity
model which incorporates individual-specific tadi@sthe unobserved attributes.

16



wherea, y and i are parameters of the household’'s preference itmat characterizes the
household’s marginal utility of the log of incofevhile g captures the household’s taste for

location attributek. The parametey characterizes the household’s disutility for contimy to
work. We explicitly account for the heterogeneity households’ preferences for location
characteristics by allowing the taste parametersaty systematically across households. The
specification of the heterogeneous taste parametsess interactions between location
characteristics and observed characteristics ofsdimlds. These observed household
characteristics include household income, housesiakel the presence of children under the age
of 18 and whether the household head is collegecagdd. The functional form of the

household’s taste for an attribltés given by:

Bi =B+ z Z, By (3.2)

wherez, represents the" characteristic of householdThe first term captures the component of
the household’s taste for the attribltevhich is common across all househdlddhe second

term is intended to capture systematic differenicesastes which can be attributed to the
household’s observed characteristics.
The final form of the indirect utility function igbtained by substituting equation (3.2) into

equation (3.1a) for the chosen location. It is gibg:

12,50 that the marginal utility of income is givendy(y; - pr).
13 When the household characteristizg @re demeaned, this term will equal the mean feestameter across
households.
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V,, =6, +alog(y' - p,) + ud;, +thkzir:81kr t &, (3.3)
kr

where,

0, = z XotBok + S - (3.4)

Equation (3.3) outlines the two main componentghef household’s valuation of its chosen
location. The first component, represented by tbastant term «,), captures households’
common valuation of location attributes. This véioa is shared by households regardless of
their characteristics. For instance, all else eghauseholds would prefer a house with more
bedrooms, less pollution, better schools, lesserietc. This common valuation represents the
base utility that households derive from the rasiiéé location h.** The second component
captures households’ individual valuation of thealion attributes. These individual valuations
are assumed to arise from differences in the obsetharacteristics of households. For instance,
all other things equal, households of larger siedikely to choose houses with more bedrooms.
Bayer et al. (2005) suggest a two-stage approaeltimate the parameters of the household
location choice model in equation (3.3). In thestfistage, one would recover the household-
specific taste parameters, (y, 1) and the location-specific constants)( This stage can be
implemented by maximum likelihood estimation. Besmof the large number of housing types
the alternative constants are estimated using dh&action mapping proposed by Berry et al.

(1995). The details of the estimation are provide&ection 5. The second stage then estimates

14 When the household characteristizg (n equation (3.2) are demeaned, this base uiililyalso represent the
mean utility provided by the residential locatioan

18



the mean taste parametefy) from the regression specification provided by awn (3.4)
using the location constants estimated in the tage.

The household utility in equation (3.3) closelyambles the utility specification in Bayer et
al. (2005). However, there are two differences leetwour specification and that of Bayer et al.
(2005). One difference arises from the characteozaf the non-housing good. We characterize

the household’s consumption of the composite narsimg good using the terlog(y; - pn). This

allows the model to capture income effects thatpaesent in the household’s choice problem. It
also allows us to derive Hicksian welfare measuhed are consistent with the household’'s
utility maximization problem. In the Bayer et alodel the indirect utility does not incorporate
the composite non-housing good. The household iecenters the utility as a linear interaction
with location attributes, and the housing priceeentthe utility linearly as an attribute of the
residential location.

The second difference between our model and theemgd by Bayer et al. (2005) is that
we do not incorporate endogenous social interaaifects. Social interaction effects emerge
from the fact that households may care about tleeage socioeconomic characteristics of their
neighborhoods. These social interaction effectdikeéy to be endogenously determined in the
sorting equilibrium when households have heterogesepreferences. This is because the
average socioeconomic makeup of neighborhoods elsapgch time households resort. In our
utility function the social interaction effect ass from households’ homogeneous tastes for the
proportion of Hispanics in their neighborhood. Asresult the social interaction effect is
exogenous.

Our specification of the household’s indirect tildiffers fundamentally from Sieg et al.

(2004). Sieg et al. specify the indirect utilityahousehold residing in a commurjitys:
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Vij :[agjp +h(y;, pj)p]llp, (3.5)

whereg; is the public good index for communjtyandh(e) is a non-linear function characterizing
the household’s expenditures on housingrepresents the household’s income whilds a
parameter characterizing the heterogeneity of thséhold’'s valuation for the public good
index.p; represents the housing price index for commuynity

Two main distinctions arise between our equilibriomadel and the model used by Sieg et al.
(2004). First, according to the Sieg et al. speatfon, households value community amenities
through the single public good index As a result, households will have the same peefss
ordering of communities in the amenity space. Tiyse of preference structure generates
substitution patterns that can be restrictive simmgseholds are forced to have the same ranking
of communities in the amenity space. In our spe&iion, substitution patterns are determined
by the interaction of household characteristics kation attributes. Hence, households will
have different relative preferences for communpgefic amenities such as air quality,
education and crime.

Second, the interaction of household charactesisditd location attributes also provide a
richer characterization of the heterogeneity indatwld preferences for location amenities. The
taste heterogeneity with respect to the communmitgeality level is captured by interaction with
household income. Heterogeneity in preferencessétiool quality is captured via interaction
with the household’s educational attainment. Thgpraach differs from the Sieg et al. model
where heterogeneity in preferences for amenitiehaacterized by the single unobserved taste

parameterg.
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3.2 Characterizing the Locational Equilibrium

We now turn to the characterization of the locaoequilibrium for the housing market. We
first derive the predicted demand for each hougypg. The demand side of the market is made
of N heterogeneous households. The supply side ofdhsirig market comprisd$ occupied
housing units classified intd housing types. The supply of each housing tygedefined as the
measure of housing units of tygein the study area and is assumed fixed. The locati
equilibrium defines a set of market clearing prifpg and household choice probabilitieB;f}.
Characterizing the Housing Demand

We will assume that the idiosyncratic error compung, is identically and independently
distributed and has a Type | Extreme Value (EV)ritigtion. Given this assumption, the

probability that a household chooses a residelattaltionh is defined by:

expd, +alog(y, = p,) + Wy + D X Z, Buc
kr

P(P,z,X) =PrV, >V, g1 =
> expld,, +a1og(y; = Py) + Wi + D XuZi Bue]
kr

m=1

(3.6)

The predicted aggregate demand for housing types obtained by summing the choice

probabilities P;,) over the household population.

d(P) =2 P(P.2.%). (3.7)

wherep is a vector of housing prices,is a vector of housing characteristics and a matrix of

location attributes whose columns age
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Equation (3.6) characterizes a multinomial logitNM choice structure. An implication of
the MNL choice structure is the independence fromlavant alternatives (ll1A) property, which
has been the subject of much criticism in the @igcchoice literature. A direct consequence of
the IIA property is that, for a given households tiatio of the choice probabilities for any two
alternatives is independent of the household’'sesyatic valuation of the remaining other
alternatives in the household’s choice set. It &hdwe noted that while IIA is a property of the
individual household choice probabilities in our def it is not a property of the housing
demands. This can be easily seen by looking atatie of the predicted demands for housing

alternativesk andl:

da(P) _ Z o izl/(H 2, 4PN

m#h jj . (3.8)

d, (p) >R Zl/(1+ZeXPM]

m#|

It is clear that the ratio in equation (3.8) is matependent of the remaining housing alternatives
in the choice set. The only instance when thisoratn be independent of the remaining
alternatives is when households have identicalattaristics. In this case the ratio equals one.
Hence, the inclusion of household characteristiche indirect utility function ensures that the
housing demands derived from the model will exhigélistic substitution patterns.

Defining the Locational Equilibrium

The supply of housing units of types;,, is assumed fixed and is given by the number ashny
units of typeh in the data. The locational equilibrium is suchttthe demand for each housing

type equals its supply. It is characterized by etmeof H housing pricep and a set oNH
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household location choice probabilitieB;ff. More specifically, the vector of market-clearing

pricesp is defined by:

d.(p)=s, h=1,.,H. (3.9)

Equation (3.9) defines a systemhbfequations irH variables. Anas (1982) shows that a unique
vector of market-clearing prices exists when thadetold location choice probabiliti®s, are
strictly decreasing in the housing prige This occurs when the estimate for the parameisr

positive.

4 Data Sources

The focus of this study is on the four countiest theake up the South Coast Air Quality
Management District (AQMD): Los Angeles County, Gga County, Riverside County and San
Bernardino County. We estimate the parameterseohttusehold preference function defined by
equations (3.3) and (3.4) using a cross-sectiod990 microdata which includes household
characteristics, housing characteristics, neighimahair quality, neighborhood school quality,
neighborhood crime rate, neighborhood racial comtipos neighborhood housing density,
neighborhood elevation and proximity of the neighiood to the Pacific coastline. The
remainder of this section describes the housing a@ndquality data. A description of the

remaining data is provided in the appendix.
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4.1 Household and Housing Characteristics

Households and housing characteristics are obtdinetdthe 1990 Census 5 percent Public Use
Microdata Sample (PUMSY. These are records containing a 5 percent sampédl dousing
units in the United States. The PUMS records pmwd extensive description of the housing
stock and the households in the occupied dwellmtsuThe PUMS are extracts from the actual
decennial Census long-form questionnaire, which teen in a way that protects the
confidentiality of households. However, unlike ttenfidential long-form files, which identify
each household’s Census block (an area of approeiynd00 people), the 5 percent PUMS
sample only identifies the location of householdsai Public Use Microdata Area (PUMA),
which is a Census geographic area containing appedgly 100,000 people. The PUMS also
identify the employment location of household mersli® their workplace PUMA.

The 1990 PUMS sample for the four counties in tieysarea comprises 224,565 occupied
housing units. The original household sample con$ the 224,565 households that occupy
those housing units. Our analysis focuses on thsdtwlds occupying single and multi-family
dwelling units. Mobile homes and group quartessexcluded from the sample. In addition, we
restrict our sample to households that have a rmhomicome of at least five hundred 1990
dollars. Finally, we dropped the observations wheee household’s reported monthly income
was less than the monthly rental price of the hmysinit. The final sample, which is used to
represent the population of households and housiitg in this study, consists of approximately
171,000 observations.

Sieg et al. (2004) estimate household preferencanpeters using housing transactions from

1989 to 1991 in Los Angeles, Riverside, Orange ¥adtura County. These data identify the

15 These data are publicly available from the U.SsDs Bureau (www.Census.gov), or at
www.ipums.umn.edu/usa/vars.html.
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Census tract in which a housing unit is locateég3it al. characterize residential communities
using 1990 school district boundaries. Housingdsations data provide a more comprehensive
set of housing characteristics than the Census fomg. However, these data do not provide
information on the households occupying the housessa result they do not allow one to
estimate richer preference specifications, suchth@mse used Bayer et al. (2005), where
preferences for location amenities vary across ¢toaisl characteristics.

Table 2 provides descriptive statistics of the letwaéd and housing characteristics in our
1990 PUMS sample. The microdata sample comprises0Q@@ observations describing
households and their occupied housing units. Thet waajority (nearly 70 percent) of the
households in the study area reside in Los Angetasmty. Orange County has the second most
household population (17 percent), followed by SZernardino County (10 percent) and
Riverside County (3 percent).

The average number of bedrooms for the houseseirstidy area is 2.25. We follow the
approach of Bayer et al. (2005) to compute an ieghunonthly rental housing price across
owner-occupied and rental units. A detailed desiompof the method is provided in the
appendix:® The mean monthly rental housing price is $749. Migrhousing prices are highest
in Orange County ($956) and lowest in San Bernar@ounty ($707). Half of the housing units
in the study area are owner-occupied. Riverside Saal Bernardino County have the largest
owner-occupied housing shares (0.63). Overall, hbasing stock is quite young. Nineteen

percent of the houses were built after 1980; 3¢guerwere built in the 1960s and 70s.

1 We construct a single price vector for owned amdal housing units by estimating a hedonic prézgession for
each of the three metropolitan statistical areaberPUMS sample (Los Angeles-Long Beach, Orangenoand
Riverside-San Bernardino). The regressions proaidestimate of the average ratio of housing vaiu@sonthly
rents in each metropolitan statistical area. Theragye ratio for the study area is 316.1. The aeeratjps are then
used to convert housing values to their correspandintal rates.
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A household’s preference for housing locations #ratcloser to its workplace is captured by
a dummy variable which equals 1 if a residentiabton is within the household’s employment
zone. The household’s employment zone is definedhasPUMA of the household head’'s
workplace. Other studies (see e.g., Bayer et 8052and Takeuchi et al., 2005) have instead
used the distance to the householder’'s employnomattibon. However, in the PUMS data, the
householder's employment location is given by tloekplace PUMA. Hence the distance to the
household’'s employment location cannot be calcdlaBecause the workplace PUMA is a
relatively large geographic area we prefer usimduanmy variable for whether the residential
location is within the workplace PUMA, instead betdistance from the residential location to
the workplace PUMA. The latter turns out to be asieo measure. Roughly half of the
households in the study area choose housing utitshvare located within their employment
zone.

The lower half of Table 2 provides a summary of nsefar the household characteristics that
enter the model. The average monthly householdnedo the sample is $4,098. Orange County
has the highest average monthly income ($4,945greds Riverside County has the lowest
average ($3,860). The racial profile of the housgi®given by the race of the household head.
The study area comprises 8 percent non-HispaniamAand 9 percent non-Hispanic Black
households. Fifty-eight percent of the householdshe study area are non-Hispanic Whites.
Households of Hispanic origin make up 23 percenthef population. The share of Hispanic
households is highest in Los Angeles County (2&grg) and lowest in Orange County (15
percent). The educational attainment of the houdehos captured by a binary variable
indicating whether the household is college edutaidirty-five percent of households in the

study area are headed by a college graduate.
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4.2 Neighborhood Variables

Defining Neighborhoods

Table 3 reports average values for the neighbortadtitbutes used in the model. We use the
1990 Census PUMA boundaries to characterize nerplolod geography. This is because the
PUMS identifies the geographic location of a dwelliunit as the Census PUMA. A Census
PUMA is a geographic area containing approximaf€®,000 individuals. Sieg et al. (2004)
characterize residential communities using 199@alctlistrict boundaries. They were able to do
so because housing transactions identify the Cenaasas well as the school district for each
housing unit. Because they had access to the 1888uS long-form files, Bayer et al. (2005)
were able to use Census block boundaries to cleaizeineighborhoods. The Census block is a
geographic area of approximately 100 individuals.

The study area comprised a total 87 PUMAs in 19905 compares with approximately 150
school districts and 2,400 Census tracts. The geePUMA in 1990 had approximately 3,000
housing units. To reduce measurement errors inackenzing neighborhood attributes, the
estimation only uses PUMAs whose boundaries areuallyt exclusive. PUMAs that are
enveloped by other PUMASs are excluded from the $anmihis reduces the number of PUMAS
to 79.

PUMAs are relatively large geographic units comgatiee Census tracts or school districts.
However, for the main attributes used in the ediona the variation within PUMASs is small
compared to the variation across PUMAs. Table 4vshwithin and between PUMA standard
deviations for selected characteristics. For matres ozone and PM-10 values, the variation
across PUMAs is nearly five times larger than ththiw PUMA variation. The difference is

smaller for the crime measure. The standard dewiadif crime values across PUMAS is 20
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percent higher the mean standard deviation witHilMRs. We therefore conclude that the
PUMA boundaries provide a good characterizationefjhborhood school quality, crime and air
quality.

Air Quality Data

The air quality data used in this study were olgdifrom the California Air Resources Board
(CARB). CARB provides California ambient air quglitlata for criteria and toxic pollutants
from 1980 through 2002. The data include hourly daily values as well as annual summaries
collected from a large network of monitors dispdr@oughout the state of California. Annual
averages for 1990, 1995 and 2000, are obtainetivibmajor primary criteria pollutants: ozone
and particulate matter (PM-10). These pollutanteehzeen shown to have a significant impact
on housing prices (Sieg et al., 2004). Ozone issorea@ as the average of the top-30 daily
maximum readings at a monitor, while particulatettera(PM-10) is measured by the annual
geometric mean.

Table 1 provides descriptive statistics of the rtwmair quality data in the study area.
Average ozone concentrations in 1990 were higlnelsbs Angeles County and lowest in Orange
County. Ozone concentrations fell by nearly 40 petbetween 1990 and 2000, with the largest
reductions recorded in the worst areas. Monitodiregs tend to be strongly correlated across
pollutants. Table 5 shows the correlation betwerone, PM-10, nitrogen oxide (NOx) and
sulfur dioxide (SQ@). The correlation coefficient for ozone and PM-40 monitor locations
measuring both pollutants is 0.44. Ozone and PMe¥@ls are also strongly correlated with
secondary pollutants such as nitrogen oxide antursdioxide. The correlation coefficient

between ozone and NOXx is 0.47; for ozone angit® -0.56.
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The study area had a total of 50 active monitorasueng ozone between 1989 and 1991.
This compared with 18 monitors measuring PM-10 eatrations. Interpolation techniques are
used to determine neighborhood air pollution levélge use two approaches to determine
neighborhood air pollution levels. The first appioassigns to each PUMA the centered three-
year average of readings from the closest monifomore than one monitor falls within a
PUMA, the PUMA is assigned the average from thesaitars. Sieg et al. (2004) used a similar
approach to assign air quality levels to each haudbeir sample. They then approximate the
neighborhood air quality level using the averagegtie houses sold in each school district. One
potential issue with this approach is that it magign the same monitor readings to a collection
of neighborhoods, regardless of how far they acatkd from the monitor. Hence, it does not
account for the fact that pollution concentratians likely to dissipate with distance.

The second interpolation approach addresses #hs isy using a distance-weighted method.
We generate a pollution surface for the entire wtacea using 100-meter-by-100-meter grid
cells. We then assign to each grid cell a distamegthted average of the readings from the three
closest monitors. The neighborhood air quality meass then computed by averaging the grid
values within each PUMA. The two interpolation agghes lead to similar neighborhood ozone
and PM-10 concentrations. We follow Sieg et al.0@0and use the pollution levels from the
closest monitor interpolation approach in the estion of household preferences and the

computation of welfare benefits.

4.3 Characterizing the Residential Location

We characterize the household’s residential looattwice alternatives in terms of 4037 discrete
housing types. These are also referred as hopsotyicts. Each housing type is a collection of

housing units that are located within the same himdgood and have identical observed
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characteristics. Housing types are defined in tevfrex variables: ownership status, number of
bedrooms, dwelling type, built after 1980, builtridg 1960s or 70s and PUMA. The first five
variables represent the housing characteristicedch housing type. We characterize the rental
price of a given housing tygeas the average of the rental prices for all umiits/peh. This is
similar to the approach used by Berry et al. (1985)btain average prices of car products. The
neighborhood characteristics for each housing &ypeagiven by the characteristics of the PUMA.

The ownership status is defined as either rentetymed or owner-occupied. The number of
bedrooms ranges from 0 to 5. The dwelling typeafingd as either single-family or multi-
family. The variables “built after 1980” and “buduring 1960s or 70s” are binary variables that
equal one if true and zero otherwise. Lastly, thelysarea contains 79 neighborhoods. These six
categories provide a total of 7,584«B+ 2+ 2+ 2+ 79) possible housing types. The actual
number of combinations that exist in the study aseamuch smaller. We obtain a total of 4037
distinct housing products. This is because sonteef7,584 possible housing types do not exist
in the data. For example, in a given neighborhbede are eight possible types of four-bedroom
multi-family units. However, some neighborhoods team no multi-family four-bedroom units.
As a result these neighborhoods will have zerdeats of eight, types of four-bedroom multi-
family units.

Using housing types rather than housing units taradterize residential locations
significantly reduces the number of alternativegha housing market while still providing a
complete span of the product space. This has atdingplication for the identification of
preference parameters in the first stage of thenatbn. Indeed, a necessary requirement for the
identificationt’ of the first stage is that the number of obseoratibe larger than the number of

alternative-specific constants plus the numbentdraction parameters. This requirement is not

" A discussion of identification issues is providedhe appendix.
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met when housing units are used to characterizelersal locations, as the number of

observations (i.e., households) will equal the neind§ housing alternatives.

5 Estimation Strategy

We estimate the parameters of the household’saadutility in equations (3.3) and (3.4). In
section 5.1 we characterize the sampling framewssdd to generate the household sample and
the choice set of sampled households. Sectionisc2gses the details of the estimation strategy.

Section 5.3 presents the results of the estimation.

5.1 Sampling Framework

Two issues arise in the empirical estimation of leeisehold location choice model. The first
issue regards how to draw the sample of househole used in the estimation of the model.
The sampling of households is necessary becausendt computationally feasible to estimate
the model from the population of 171,000 househotdshe study area. The second issue
pertains to the characterization of the relevamticghset for the sampled households. This is a
classical issue in the estimation of discrete ahaorodels (See, for example, McFadden, 1978

and Quigley, 1985).

5.1.1 Drawing the Household Sample

We devise a sampling scheme that allows using dlesmget representative sample of the
households in the data. The sampling framework wsestratified, choice-based sampling

design®® In particular, we draw a 10 percent random saroptee households who choose each

18 Ben-Akiva and Lerman (1985) provide a review ahpting theory and applications to the estimationlistrete
choice models.
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housing type. This produces the final sample 083% households used to estimate the location
choice model.

The choice-based sampling design does not prodéuéyaandom sample of the household
population. Indeed, it is easy to show that theaye household characteristics from this sample
will be biased estimates of the mean householdachenistics in the population. An alternative
to the choice-based sampling design would be tawsmple random sampling scheme. While a
simple random sampling design produces indepenaleservations, it does not guarantee that
every housing type will be represented in the samphis will likely be the case for housing
alternatives that are chosen by very few househtidsther words, the random sample may not
produce households from those residential locatidms an attempt to provide a full
characterization of the housing market, we optegréserve the product space at the expense of
the independence of household observations. Wedatdor the bias in the first-stage estimation,
resulting from the choice-based sampling desigmguthe approach of Manski and McFadden

(1981). This correction is explained below in tletails of the estimation.

5.1.2 Determining the Choice Set of Sampled Households

The household’s relevant choice set or feasibleotelternatives is an essential component of
the estimation. A sampling approach is also usedottstruct the choice set. Potentially, one
could set the household’'s choice set as the 4038imhg types in the sample. However, this
would render the estimation computationally intadd¢. The reason is that the computational
burden of the estimation grows linearly with theesiof the household’s choice set. An

alternative is to construct the choice set by saimgpa few alternatives from the full set of

available alternatives. In particular, the housdisolchoice set includes (i) the household’s

chosen residential location and (i) a random samgf 20 residential locations from the
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remaining non-chosen alternatives. McFadden (18@8)shown that such a scheme will yield

consistent parameter estimates for the multinologit model.

5.2 Estimation of Household Preference Parameters

The parameters( y, fo, 1) of the household indirect utility function defohéy equations (3.3)
and (3.4) are estimated from a multinomial logitd®lo The estimation follows the two-stage
approach proposed by Bayer et al. (2005). In it $tage we estimatel{1l) alternative-specific
constantS’ () and the household-specific taste parameters,(8:) in equation (3.3). The

second stage estimates the vector of mean tastenptars £,) using the estimated vector of

alternative constants as the dependent variabileeimegression specification given by equation

(3.4).

5.2.1 Recovering the Household-Specific Taste Paramete(Birst Stage)

The alternative-specific constant)(and the household-specific taste parametersg, (51) are
obtained via maximum likelihood estimation (MLEh& indirect utility in equation (3.3) defines

the household-specific multinomial choice probaigd given by:

exp[d, +alog(y; = p,) + Wy, + D X, Z, By,]
P.(p.z,x0,a,y.) = 2 : (5.1)
Zexp[a-m + alog(y| - pm) + }'dim + Z kazir ﬁlkr]
jynes kr

whereC; represents the choice set of househof@iven the household choice probabilities, the

log-likelihood for the household choices observethe data is defined as:

19 Note: TheH™ alternative constant is set to zero.
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L(6.a,y.8) =2 > lnlogR.(p.Z,x0.a.y.5), (5.2)

i hOC,

wherelj, is a dummy that equals 1 whenever househaldooses locatioh in the data. The
estimates for the preference parameters,(f1) and the choice-specific constan®$ ére then
obtained via maximization of the log-likelihoadd, a, y, £1).

The closing conditions of the equilibrium model amplicitly enforced via maximization of
the log-likelihood. As pointed out by Bayer et @005), this can be observed from the first-

order condition of the maximization problem. Di#atiating the log-likelihood in (5.2) with

respect t05h yields:

S =Y a-R)+ N (-R)=Y1-Y B - TR =5, -3, =0, 5.3)

o, i ich ich  ich ich

where Ph is the estimated choice probability, represents the sample housing supply for

alternativeh, andi [0h indicates that householdchooses housing tyge Notice that equation
(5.3) closely resembles the equilibrium condition @quation (3.9). It is indeed the sample
equivalent of equation (3.9). Hence, the vectaaltdrnative-specific constants which maximizes
the log-likelihood also insures that the equilibmiicondition in equation (3.9) holds for the
sample.

The maximization of the log-likelihood in equatigh.2) with respect to the full set of

parametersd a, 7, f1) is computationally demanding. This is becausedingension ofd (the
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vector of location-specific constants) is generdHdyge. In this study, the housing market
comprises a total of 4037 housing alternativess Téquires estimating 4036 alternative-specific
constants in the first stage. As a result, maxingzihe log-likelihood using standard search
algorithms (i.e., Newton-Raphson, quasi-Newton ioea search) can be extremely slow and
inefficient. A contraction mapping proposed by Best al. (1995) allows one to circumvent this
computational burden by solving for the alternatpecific constants separately using the first-
order condition in equation (5.3).

Equation (5.3) implicitly defines the vector ofaltative-specific constants)(as a function
of the household-specific taste parametery,(f1) and the vector of housing-type suppligs (
This allows one to derive a concentrated versiologdlikelihood as a function otx( y, 1). The

concentrated log-likelihood is given by:

L.(@.y.5) =2, 1nlogR,(8(a.y.B).a.y.53). (5.4)

i hOC
For given values ofof, y, 1) that maximize the concentrated log-likelihobg we can obtain
estimates of the alternative constants by solvirgg dystem in equation (5.3). The contraction

mapping of Berry et al. (1995) provides a quick eucal solution to this system. It suggests

solving iteratively for the location constants gsthe following recursive algorithm:

87 =0, -1og TR av.5) s | 55)
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Berry et al. (1995) prove that the algorithm in a&pn (5.5) is a contraction mapping, which
means that it is guaranteed to converge for amjirsgavalue of6. Convergence generally occurs
quickly. In our estimation, convergence of the caction mapping usually occurs after 20 to 30

iterations. The computing time is between 5 andddbnds on Pentium 4 2Ghz PC stations.

The first stage estimation can be summarized &sisl
i. Set an initial guess far.
il. Given s, maximize the constrained log-likelihood in (6wijh respect tod, y, f1).
iii. Given the estimates o#( y, f1), solve foré using the contraction mapping in (6.5).

iv. Repeat (ii) and (iii) until the estimates conye.

It is easy to see that the above steps solve tk&emyof first-order conditions for the
unconstrained log-likelihood in equation (5.2). §implies that the estimates produced by this
sequential estimation are indeed the MLE estimatds, «, y, f1), which are unique given the

global concavity of the multinomial logit log-likbbod.

5.2.2 Correcting for the Sampling Design

As discussed in the previous section, the choisedaampling approach does not produce a
random sample from the household population. Assalt, additional steps need to be taken to
ensure that the first-stage MLE estimates are stardi It turns out that the log-likelihood in
equation (5.2) represents a special case whichiresq@nly a minor correction to achieve
consistency. In fact, it has been shown (McFadaehManski, 1981) that the MLE estimates for
(o, p1) are consistent as long as (i) the choice modal msultinomial logit and (ii) the model

contains a full set of alternative-specific constgiBen-Akiva and Lerman, 1985). Both of these
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conditions are satisfied by the log-likelihood iquation (5.2). In addition, a minor correction
will ensure the consistency of the alternative tams when the sampling design is such that
each choice alternative is a stratum and the pt@puolahare of each stratum is known. The

consistent estimate of, is obtained as:

= G _ (w/ ) (5.6)

Wherew;, is the fraction of the sample drawn from stratnandW, represents the population
share of straturh. For the sampling design described in the prevsmation, each housing type
represents a stratum. Therefewgis the ratio of the number of households drawn flfausing

type h to the total number of households in the samyleis the proportion of the household

population choosing each housing type

5.2.3 Estimating the Mean Taste Parameters (Second Stage)

In the second stage, the mean taste parameigrarge estimated via ordinary least-squares
(OLS). We regress the vector of alternative-speabnstants estimated in the first stage on the

housing and neighborhood attributes. The regrespenification is given by:
5-h =thkﬁ0k +&,. (5.7)
k

The underlying assumption of the second-stage segme is that the housing and
neighborhood attributes ix, are uncorrelated with the unobserved attributethefresidential

location. That is, they must be exogenous or atldatermined prior to the revelation of the
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household’s valuation for the unobserved attrib(levo, 2000). A potential endogeneity
problem may be due to unobservable neighborhoatbwtts that may be correlated with
neighborhood air quality. Bayer, Keohane and Ting{2005) address this issue by constructing
an instrument for neighborhood PM-10 air pollutitrat uses panel data. In particular, they
compute the PM-10 measure, for a locatipnsing changes in PM-10 levels originating from
sources outside locatign Though we recognize the potential endogeneitthefneighborhood
0ozone measure, the fact that we have a small nuafbexighborhoods (79) limits our ability to
construct reliable instruments. However, robustresescks suggest that the endogeneity of the
PUMA-level ozone measure is not a severe problem. rdlurn to this issue below in the
estimation results.

Differentiated product models (see e.g., Berryletl®95 and Bayer et al., 2005) have used
an instrumental variable (V) approach to deal witl potential endogeneity problem that arises
when the housing price enters the second stage. didogeneity is caused by the fact that
housing prices are likely to be correlated with hserved characteristics of residential locations.
However, we do not instrument for housing pricestlasy do not enter the second-stage
regression. Our model does not treat housing paseattributes of residential locations. Rather,
housing prices enter the first-stage estimatiopas of the household’s budget constraint. The
first-stage maximum likelihood estimation does, bkwer, assume that the household’s
expenditure on non-housing goods, i.e., the teym),(is uncorrelated with the household-

specific random error ternai).

5.3 Estimation Results

We estimate the specification of the householddract utility function in equations (4.3) and

(4.4). As explained in the data section, we usenezmncentrations to characterize air pollution
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in 1990. Due to the high correlation between thasebold characteristics we only estimate a

limited set of interaction parameters in the fatsige.

5.3.1 Parameter Estimates

Table 6 summarizes the results of the estima&fioModel 1 estimates the benchmark
specification which is used in the welfare estiimati The other models provide robustness
checks which are described below. The householdfsp&aste parameters estimated in the first
stage are all significant. The interaction paramsetdéso have the expected signs except for the
interaction parameter between crime and househotshe. We find that households with higher
income levels have a higher WTP for air qualityjehhs in accordance with the hypothesis that
air quality is a normal good. We also find thatgkr households are willing to pay more for
additional bedrooms. Households with college-edecthieads tend to have a stronger preference
for school quality. This is in accordance with tea that more educated people place a higher
value on the quality of their children’s educatiélauseholds prefer residential locations that are
within their employment zone, which is consistenthwthe notion that households dislike
commuting.

The positive and significant interaction betweea kbg of crime and household income is
contrary to our intuition. We would tend to expdieat public safety is a normal good. This
means that households with a higher income wouldt wahave more public safety and hence
be willing to pay more. This would imply a negatisgn for the interaction of crime with
income. As described in section 4, the crime véeiab quite noisy as crime rates are only

available at the city level. Also, as Table 4 shothere is not enough variation in the crime

20 Except for the term Log(y-p), all the householdeleinteraction variables have been demeaned.
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variable across neighborhoods. These factors mafrilbote to the counterintuitive interaction
effect between crime and income.

The second-stage taste parameters also generally the expected signs. On average,
households are found to prefer more bedrooms, ocarerpied dwellings, single-family
dwellings, better school quality and coastal commmes) The second-stage ozone coefficient is
not statistically different from zero at the 10 gant level. The mean taste for ozone can be
obtained by multiplying the ozone-income interactomefficient, -0.02, by the mean of Log(y-p)
in our sample, 8.

The estimated ozone coefficient implies a mean matgvillingness to pay (MWTP) of $62
for a 1 percent reduction in the 1990 average oromeentrationWe follow Sieg et al. (2004)
by reporting the MWTP for a 1 percent reductiontie 1990 ozone levels. This allows
comparing the MWTP estimates with estimates froevious studies. Sieg et al. (2004) report a
MWTP of $61 for a 1 percent reduction in the 1996rage ozone concentratidhWe also find
a significant variation in MWTP across householgsr example, the MWTP for a 1 percent
reduction in ozone for households in the highesbime quartile (top 25 percent) is $130

compared to only $8 for households in the lowesbime quartile.

5.3.2 Robustness Checkd

Endogeneity of Neighborhood Air Pollution

As discussed in the previous section, the estinot®zone pollution in the second-stage
regression is likely to be endogenous as a nei¢igool's ozone level may be correlated with
unobserved neighborhood socioeconomic variablasetitar the error ternty). As a result, the

estimated mean taste parameter for air pollutiop beabiased and inconsistent. The direction of

2L A detailed comparison of the MWTP estimates wlhi literature is provided in the appendix.
22 pdditional robustness checks are provided in fhgeadix.
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this bias is to make the coefficient less negatage air pollution will generally be positively
correlated with neighborhood characteristics, saglshare of low-income households and share
of ethnic minorities, which are often disliked biglirincome households. This could explain the
positive estimate of ozone pollution in the secstalye regression.

As explained previously, the small number of nemhlbods in the data limits the
construction of reliable instruments. However, wefgrm a simple robustness check for the
endogeneity problem that would result from the eation between neighborhood ozone level
and unobserved neighborhood characteristics. Thislves estimating the second-stage OLS
regression without the proportion of Hispanics. Tassumption is that the unobserved
neighborhood socioeconomic variables are correlatighl the proportion of Hispanics in the
neighborhood. Hence, if the ozone level is coreslatwith unobserved socioeconomic
characteristics, removing the neighborhood proportof Hispanics from the second-stage
regression should significantly lessen the biaghm estimated ozone mean taste parameter.
Model 1a of Table 6 reports the results from therahte regression specification. We find that
the estimated ozone coefficient remains positivel amsignificant. The magnitude of the
coefficient is also roughly the same in Model 1 &nddel 1a. We should again note that the
mean taste for ozone remains negative, as the emoame interaction coefficient is the same
across models 1 and 1la.

Robustness Checks with Respect to the Crime and Employment Variables
We mentioned previously that the crime variablguge noisy as crime rates are only available
at the city level. One may wonder whether the meiss in the crime variable may significantly

affect the estimates of the taste parameters #®rother neighborhood variables. Model 2 of
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Table 6 runs the estimation without the crime Jaaan both the first and second stages. The
estimated parameters from this model are very aml the estimates in Model 1.

The estimated taste parameter for the househotdfengnce for locations that are within its
employment zone is significantly large in absol#éue compared to the other taste parameters.
It is possible that the employment dummy may alsocapturing households’ preferences for
other unobserved neighborhood characteristics. hBoeixtent that this is the case, one may
wonder if the presence of the employment dummyisogmtly distorts the estimated coefficient
for ozone in both the first and second stages. Aebaistness check, we run the estimation
without the employment dummy in the first stagee Tésults are reported in Model 3 of Table 6.
Except for the coefficients involving the crime iadole, the remaining estimated parameters are
similar to those in Model 1.

Alternative Characterization of Residential Locations

We explained in section 4.3 that the residentiahtions are characterized in terms of housing
types, rather individual housing units. This nolyooonsiderably reduces the computational
burden of the estimation, but also plays a key iolée identification and asymptotic properties
of the estimates (see appendix). When residentiehtions are characterized in terms of
individual housing units, the alternative constany not be identified sindd < H + k — 1%
One would essentially be trying to recover moreapsaaters than the number of observations in
the first-stage estimation.

Model 4 of Table 6 estimates the household pretereparameters by characterizing
residential locations using housing units. Thishis approach used by Bayer et al. (2005). The

sample of housing alternatives is formed by talangndom subsample bif (= 17,894) housing

% HereH is the number of housing alternatives &répresents the number of interaction parametess to
estimated in the first stage.
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units from the 171,000 houses in the 1990 PUMS fiaitthe study area. The household sample
is given by the households choosing theampled housing units (i.\, = H). This means that
the first stage will involve estimating)l-1 alternative-specific constants plksinteraction
parameters from the location choiced\bfiouseholds. Hence, there are not enough obsemgatio
to explain all the parameters in the first stagaregion. This is reflected by the likelihood ratio
test result for the first stage estimation. Thataoiull hypothesis that the estimated alternative

constants are all zero cannot be rejected.

6 The Benefits of the 1990 Clean Air Act Amendments

6.1 Simulation of the Counterfactual Locational Equilibrium

Induced price changes that result from the ressgrtif households are obtained by simulating
the counterfactual equilibrium which would have egeel in 1990 if air quality levels were

identical to those observed in 2000 while all othHesusing attributes and household
characteristics remained at their 1990 levels. ddhwenterfactual equilibrium is given by the new
set of housing prices and the resulting househmddtion choice probabilities which solve the
market equilibrium condition in equation (3.9). Riesitial location demands are calibrated using
the estimates of the preference parameters entdrengousehold indirect utility function. The

counterfactual equilibrium captures the changeshm air quality that occurred in the Los

Angeles area between 1990 and 2000. Other fadarsicterizing the Los Angeles area housing
market, such as population, household income andihg supply, are not allowed to change in
this simulation. A detailed description of the slation model is provided in the appendix at the

end of the paper.
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Figure 8 shows the PUMA-level average housing pcitanges in the counterfactual 2000
equilibrium. There are substantial housing-pricardes across the study area, which suggests
that the air quality changes that occurred betwl&¥9 and 2000 led many households to change
their location choices. We find that housing priees lower in the counterfactual equilibrium in
the areas with below average air quality improvetsiehhese were also areas with the highest
air quality levels in 1990 (see Figure 1). Averageising prices fell by as much as 13 percent in
those areas. On the other hand housing priceicdhnterfactual equilibrium are higher in the
areas that experienced above average air qualpgyomements in 2000. These were areas with

the highest ozone levels in 1990. Housing pricses try as much 8 percent in those areas.

6.2 Welfare Measurements

We characterize and estimate Hicksian welfare mreaswhich are derived from a random
utility function with non-linear income effects. &@ousehold-level Hicksian welfare measure
for the changes in air quality is obtained using piinciple of compensating variatio@Y). The
compensating variation for an air quality changeefined as the reduction in the household’s
income which is such that the household’s maximutitityu after the change equals the
maximum utility before the change. Hence, by dé&bni the compensating variation will be
negative for an air quality improvement and positior a reduction in air quality.

For the utility function ¥,) defined by equation (3.1), the household compéergaariation

for the air quality improvements that occurredha tos Angeles area is implicitly defined by

Vi (Y = Prs X Xons €n) =V; (Y - p,1 _C\/ilx'ij’xgjlgij)’ (6.1)
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where V, :Mlgx{vih}. The superscript zero indicates the 1990 markeiditions, and the

superscript one indicates the market conditionerafite air quality changes. For ease of
exposition, the attribute vector is broken into temnponentsx;, represents the air quality level
at locationh, andxyy, is a vector capturing all other attributes of thsidential location.

The household levelV measure defined by equation (6.1) is a randonmabkrias it is a
function of the unobserved taste ersoHence the welfare measure that is of interegtoley
analysis is the expected value of the householel IB¥ympensating variation over the distribution

of the unobserved taste ereoWe define this expectation as:

ECV =E[CV|(y, p°, p', X% X", &)] (6.2)

The expectatiorECV will characterize households’ averayélP for the air quality changes
across the Los Angeles area.

A general closed form expression €V does not exist for the indirect utility function i
equation (3.3). This is because in certain case€thmeasure may be a nonlinear function of
the stochastic error term As a result its expectation, which requires iradgg out the
nonlinear error term, cannot be characterized eitigli McFadden (1999) suggested a general
simulation approach for recovering the ex&sgV. In this study, we adopt the simulation
approach of McFadden to obtain the average andrmaadistributional welfare impacts of the
1990 CAAA.

Direct vs. Equilibrium Welfare Measures
For the purpose of evaluating the benefits of thanges in air quality across the Los Angeles

area two welfare measures are of interest. Therfiemasure asks what households are willing to
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pay for the change in air quality at their residgrwlding housing prices and all other attributes
fixed. We will refer to this welfare measure as tieect WTP measureC{”) since it can be
recovered directly from the indirect utility funoti. This measure is sometimes referred as the

partial equilibrium welfare measure. For our randtitity model, C\* is implicitly defined by:

Vin (Y, = Prs Xth XonEn) = Vi (Y, = Pr _Cvidixllhixgh’gih)’ (6.3)

where the notation is similar to that used in eiguat6.1).

The direct WTP measure does not, however, providmraplete picture of the welfare
impact of the changes in air quality across the Angeles area. Bartik (1988) shows tiAf’
provides a lower bound to the full, i.e. equilibripwelfare impact of the air quality changes. We
define the equilibrium welfare measu@\f) as the WTP measure which takes into account the
induced changes in housing prices that occur asdimlids change their residential location

choice. It is given by:

\/ih(yi - pr?’xfh’xgh’gih) :\/ij (yi - p} _C\/ie’xilj ’ng ’gij)- (6.4)

The household’s residential location chojda theex-postequilibrium differs from the location
h in the benchmark equilibrium. This indicates ttireg household might change its residential
location choice as a result of the change in aalitu CV° is sometimes referred as the general

equilibrium welfare measure.
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6.3 Welfare Impacts of the 1990 CAAA

Our analysis of the benefits of the 1990 CAAA faesi®n the changes in neighborhood ozone
levels between 1990 and 2000. The neighborhoodsh®flLos Angeles area experienced
significant reductions in ozone levels during tleang that followed the 1990 CAAA. Table 7
summarizes the changes in ozone levels for théhhertpoods in our sample. The neighborhood
average ozone concentration fell by nearly 21 pegroetween 1990 and 1995. By the year 2000,
the average reduction in ozone levels was clogtpercent. The changes in ozone levels also
varied across the area. The neighborhoods of Logelss and San Bernardino counties
experienced the greatest ozone reductions betw@@® dnd 2000, while Orange and Riverside
counties had the smallest average fall in ozonel$ev

The neighborhood ozone changes for our sampler diffightly from the changes in ozone
levels used by Sieg et al. (2004). In Orange Cqufty instance, our neighborhood ozone
reductions between 1990 and 1995 were 4 percemrltvan the reductions observed by Sieg et
al. The slight divergence in ozone changes cantthibwded to the differences in neighborhood
geography. This study characterizes neighborhoottsRWMA boundaries while Sieg et al. use

school district boundaries to characterize neighbods.

6.3.1 Results

Mean Welfare | mpacts

Table 8 presents the mean welfare impacts of thAAC#Hom 1990 to 2000. These are the exact
welfare measures obtained via McFadden’s simulasipproach. The first row provides the
overall results for the study area. The second gmafurows provides the county-level results.
The last two groups of rows provide results foestdd neighborhoods. In the third set of rows

neighborhoods are ranked by their average 199Qriadevel and the mean welfare results are
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presented for the®1 50" and 99" percentiles. In the last set of rows we rank niséghoods by
their 1990 ozone level and present the mean welésdts for the 3, 50" and 99 percentiles.

The welfare results suggest that, on average,388 CAAA provided significant benefits to
the households of the Los Angeles metropolitan.aMéa estimate that the reductions in ozone
levels between 1990 and 2000 provided an averagibeym welfare benefit of $1,829 to the
households of the Los Angeles area. This benghitesents 4 percent of the annual average
household income in 1990. As conceptually predidigdBartik (1988) and demonstrated by
Sieg et al. (2004), direct welfare benefits, whitthnot account for induced changes in housing
prices, underestimate the benefits of the air guathprovements. On average, equilibrium
benefits were 32 percent higher than the direcéfieestimates.

The estimated mean welfare benefits vary somewbaissa the counties in the sample.
Average benefits are highest in Orange County amgk$t in Los Angeles County. The mean
equilibrium WTP for the ozone changes between 18802000 was $2,134 in Orange County.
This compares with an average equilibrium ben€fitsb, 757 in Los Angeles County. The
distribution of welfare benefits across countiasdgeto reflect equilibrium price effects across
the counties. Orange County, which experiencedllairfehousing prices, has a significantly
larger average equilibrium WTP.

We find a significant variation in welfare gaing@ss neighborhoods. The mean equilibrium
benefit in the neighborhoods with the highest ageramcome is nearly four times the mean
equilibrium benefit in the poorest neighborhoods&isTvariation can be attributed to richer
households that have a significantly higher MWTP & quality compared to low-income
households in our model. However, relative equilitor gains are higher in the lower-income

neighborhoods as evidenced by the ratio of equilibrto direct benefits. Indeed, equilibrium

48



benefits are 84 percent higher than direct benigfitae poorest neighborhoods, as compared to
only 19 percent in the richest neighborhoods.

We also find that households originally locatedhe most polluted neighborhoods have, on
average, lower equilibrium benefits than househaldginally located in the least-polluted
neighborhoods. This variation can be attributethtofact that the most polluted neighborhoods,
which had above average ozone reductions, expedean increase in housing prices. On the
other hand, housing prices decreased in the ledisitgd neighborhoods as they generally had
below average ozone reductions (an ozone increabe icase of the cleanest neighborhood).

I ncome Distributional Welfare I mpacts

Table 9 presents the distribution of equilibriumlfaee estimates across household income
quartiles. The lowest income quartile is compriggdnouseholds with annual 1990 income

below $20,000 dollars, whereas the highest incoomtide includes households with annual

income above $60,000. Income distributional besefie provided for the study area as well as
counties and neighborhoods.

Equilibrium benefits vary significantly across hehsld income groups. Specifically we find
that richer households generally have significahtbher benefits compare to households in the
lower-income groups. This is true for the overdlidy area as well as within counties and
neighborhoods. The variation in welfare gains acrnosome groups is to be expected as the
higher-income households have a significantly hid&/TP for air quality in our model.

We also find a somewhat significant variation inlffase gains across neighborhoods within
each income group. For instance, high-income haldshwho were located in neighborhoods
with low and median air quality levels in 1990 hasignificantly higher benefits than the

average high-income households. On the other Hagld;income households who resided in the
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dirtiest neighborhoods experience significantly éovbenefits than the average high-income
household in the study area. This disparity canatiebuted to the fact that housing prices
increased in the neighborhoods with the highesheZevels in 1990 as a result of the above
average air quality improvements in those neighbods.

Comparing Relative Welfare Gains across | ncome Groups

Figure 3 shows the mean WTP as a proportion ofhtthwesehold’s income in 1990. The bar
graphs characterize the distribution of relativdfave gains across income groups. The WTP
estimates are obtained using McFadden’s simulapproach. The distributional findings seem
to differ between the direct and equilibrium wedfaneasures. While the direct welfare measure
suggests that the richer households experiencdeehiglative welfare gains, the equilibrium
welfare measure suggests that the distributiorelaitive benefits is fairly even across income
groups. Hence ignoring equilibrium adjustments atso significantly alter the distribution of
relative welfare gains.

The divergence of the distributional welfare pietun the direct and equilibrium approach
can be explained from the relative difference betwthe two welfare measures which is also
shown in Figure 3. This difference can be integueas the household’s relative welfare gain
from adjusting to a new location after the air dyathanges. Figure 3 shows that the welfare
gains from the equilibrium adjustments represeriirger share of income for low-income
households. On the other hand, the direct welfanesgare larger for high-income households as
they are willing to pay more for a marginal improwent in air quality. Hence the direct benefit
measure will tend to misrepresent the distributiomalfare impacts from large air quality

changes.
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6.3.2 Comparing with Previous Studies

To provide a comparison of our results with thogeSeeg et al. (2004) we simulate the
counterfactual equilibrium that would have resultesin the changes in ozone levels between
1990 and 1995. This is because, in their empiacallysis, Sieg et al. use the changes in ozone
levels that occurred between 1990 and 1995. Tabledorts the welfare results for the changes
in ozone levels between 1990 and 1995. The resuiggest that the reductions in ozone
pollution between 1990 and 1995 provided an averagdlibrium benefit of $896 to the
households of the Los Angeles area. Similar tontbkare benefits from 1990 to 2000, there is a
significant variation in the equilibrium benefitsrf1995 across counties.

The last three columns of Table 10 report the dvaral county-level mean benefit estimates
from Sieg et al. (2004). The overall direct and ikogium benefit estimates are substantially
lower than the Sieg et al. estimates. The countgtibenefit estimates also differ significantly.
The county-level direct WTP estimates are consistéower than the Sieg et al. estimates. The
relationship between the equilibrium benefit estasais, however, more complex. The
equilibrium welfare estimates from this study arghler than the Sieg et al. benefit measures in
Los Angeles and Orange counties. The relationskipvden the welfare measures is reversed in
Riverside and San Bernardino counties. Sieg elsb. find that equilibrium adjustments in the
1995 counterfactual equilibrium resulted in averaggfare losses for households in Riverside
and San Bernardino counties. Our results, on therobhand, suggest that, on average, the
equilibrium adjustments resulted in welfare gamshouseholds in all four counties.

The disparity between our welfare estimates andelound by Sieg et al. can be due to a
number of factors. First, the differences could myjaeas a result of differences in the data. The

fact that the two studies use a different charaagon of neighborhoods (PUMA vs. school
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district) is likely to affect the welfare results. addition, Sieg et al.’s average welfare berfefit
the Los Angeles area includes Ventura County. Wxuebed Ventura County from our sample
because the 1990 PUMA boundaries for that countgwet mutually exclusive and hence did
not meet the selection criteria (see section 4.2).

Second, the welfare results are likely to divengemf the Sieg et al. results because of the
differences in the specification of households’ alben choices. The discrete choice
characterization of households’ location choicdevad estimating household preferences that
vary across income groups and educational levdis. preference estimates suggest that high-
income households have stronger preferences fayuaility relative to the average population.
We also find that the average household populdtias a lower preference for school quality
compared to college educated households. Thisasiatwith the Sieg et al. framework in which
households are restricted to have the same prefe@dering of neighborhoods with respect to
neighborhood amenities. This is due to the fact tha marginal rate of substitution between
community amenities is independent of the househdlittome and taste. In addition, the
preference specification in this study naturallptoaes the geography of the housing market by
allowing household preferences for locations toetepon the proximity to their employment
location. We find that households have strongefepeaces for housing alternatives that are

located within their employment zone.

6.3.3 Limitations

We now discuss some limitations of the equilibriunelfare measures developed. The
equilibrium welfare estimates in this study aredsh®n the simulation of a counterfactual
equilibrium which only accounts for air quality efges and induced housing price changes that

result from the resorting of households. The actuelfare impacts of the 1990 CAAA should
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also account for changes in the housing supplyséiooid income, household population and
other salient changes which occurred between 18€02800. These changes will likely affect
the welfare benefits of the 1990 CAAA.

Using the higher household income levels in 200Quld/idikely lead to higher benefit
estimates as high-income households have a higasgimal WTP for air quality. If the supply
of housing is elastic with respect to price, accmgnfor housing supply adjustments would
likely increase equilibrium benefits as the inflok new housing units would provide more
choices to households. An increase in populatiorotdikely to affect equilibrium welfare gains
to the extent that the increased demand for housisigt in higher prices everywhere.

The estimated equilibrium welfare measures coukb dle sensitive to the geographic
definition of the housing market. We assume in thark that the Los Angeles area housing
market comprises four counties: Los Angeles Coudtgnge County, Riverside County and San
Bernardino County. One could argue, as in Sied.€2@04), that the Los Angeles area housing
market also includes Ventura County. All else egadhrger geographic area is likely to lead to
higher welfare benefits as it would provide moreichs to households.

The equilibrium welfare measures could also beigeaso the geographic characterization
of neighborhoods. This study uses the 1990 CensbficPUse Microdata Areas (PUMA) to
characterize neighborhoods. On the other hand, &ied. (2004) use the 1990 school district
boundaries to define neighborhoods. One could elfswacterize neighborhoods using smaller
geographic units such Census tracts, Census blgeksps or Census blocks. Altering the
geographic definition of neighborhoods is less llikeo significantly affect the air quality
measures as they generally do not vary much asroal areas. As a result, welfare impacts of

air quality changes are likely to be less sensitivilhe characterization of neighborhoods.

53



The random utility specification in equation (380 assumes away endogenous social
interaction effects. Our utility function incorpoea an exogenous social interaction effect. The
social interaction effect is a result of householismogeneous tastes for the proportion of
Hispanics in the neighborhood. Incorporating endoge social interactions in the household’s
utility could affect the equilibrium welfare estites. For example, low-income renters could
suffer welfare losses as increases in housing piicéheir original neighborhoods force them to
relocate to neighborhoods with less desirablebaiteis. An avenue for future research would be
to explore empirically the extent to which the alkand distributional impacts of the 1990
CAAA are affected when endogenous social interastiare incorporated in the household’'s

random utility function.

7 Conclusions

This study has developed a discrete choice equifibmodel to evaluate the benefits of the air
quality improvements that occurred in the Los Aegedrea between 1990 and 2000 as a result
of the implementation of the 1990 Clean Air Act Amdenents. The study has two main
objectives. The first is to apply the discrete cleogquilibrium framework (Anas, 1980, 1982) to
the valuation of large environmental changes. Tlkeosd objective is to evaluate the
distributional welfare impacts of the 1990 CAAAthe Los Angeles area.

The empirical analysis suggests that the reductionszone concentrations across Los
Angeles, Orange, Riverside and San Bernardino @sjnprovided an average equilibrium
benefit of $1,800 to households. In contrast, ayefzenefits are $1,400 when equilibrium price
effects are not accounted, demonstrating that iggorequilibrium effects will likely
underestimate the benefits of large environmeritahges. We find that the equilibrium welfare

impacts of the 1990 CAAA in the Los Angeles areaeadsignificantly across income groups.
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Households in the highest income quartile expeadnequilibrium benefits of approximately
$3,600 as compared to only $400 for householdéeénldwest income quartile. The study also
finds that ignoring equilibrium adjustments in himgs prices can significantly alter the
distribution of relative welfare gains (i.e., welagains as a proportion of household income).
Indeed, welfare impacts that do not account forildgium effects suggest that high-income
households have larger relative welfare gains coetp&o low-income households. However,
when accounting for equilibrium adjustments, th&trdiution of relative welfare gains from the

1990 CAAA is fairly even across income groups.
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Table 1: Averagée Monitor Readings for Ozone and PM-1G*

Study Area Los Angeles Orange Riverside San Bernardino
County County County County

Ozone 1990 0.144 0.150 0.116 0.137 0.154

2000 0.097 0.089 0.078 0.111 0.109
Ozone 1990 36 37 11 33 47
Exceedances | 2000 3 2 0 5 6
PM-10"" 1990 55.4 51.5 42.3 61.1 59.5

2000 44.1 41.6 34.5 44.8 52.2

Average top 30 1-hour daily maximum readings @iomitor during a year (parts per million).
™ Number of days with a recorded violation the opesmational standard for ozone.
™ Annual geometric mean (ugin
" The yearly reading for each monitor is obtainedbymputing a three-year centered average. Fomiostahe 1990 reading for monitor x
is computed by averaging the readings for 19890 %1 1991 at monitor x.

Table 2: Mean Household and Housing Characteristice the 1990 PUMS

Study Los Angeles| Orange Riverside | San Bernardino
Area County County County County
Number of observations 170,95p 119,726 28,209 5,64p 17,378
Housing characteristics
Monthly housing price ($) 749 709 956 725 707
1 if unit owned 0.51 0.47 0.58 0.63 0.63
Bedrooms 2.25 2.09 2.58 2.71 2.66
1 if built in 80s or 90s 0.19 0.15 0.24 0.43 0.32
1 if built in 60s or 70s 0.37 0.33 0.56 0.33 0.39
1 if single-family dwelling 0.62 0.58 0.66 0.77 6.7
1 if unit is within householder’s 0.505 0.529 0.444 0.447 0.466
employment zone
Household characteristics
Monthly income ($) 4,098 3,943 4,945 3,860 3,926
1 if Asian and non-Hispanic 0.082 0.089 0.075 0.041 0.055
1 if Black and non-Hispanic 0.091 0.111 0.015 0.072 0.080
1 if Hispanic 0.237 0.262 0.147 0.189 0.224
1 if White and non-Hispanic 0.585 0.533 0.758 0.689 0.633
1 if children under 18 0.417 0.405 0.396 0.505 P.50
1 if married and has children under 18 0.015 0.014| 0.015 0.014 0.017
1 if householder is 65 or older 0.16 0.17 0.13 0.12 0.13
1 if householder has college degree 0.3% 0.33 0.44 0.29 0.32
Household size 2.99 2.97 2.95 3.14 3.16

% Source: California Ambient Air Quality Data. 20D4ta CD
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Table 3: Mean Neighborhood (PUMA) Characteristicsm 1990

Study Area Los Angeles Orange Riverside | San Bernarding
y County County County County

Number of observations 79 55 11 3 10
8" grade math scofe 34.0 31.6 45.1 34.3 34.8
Crime (FBI index) 786.5 843.3 604.2 831.6 661.2
Elevation (meters) 200.7 172.9 63.2 345.6 461.8
PUMA is on Pacific coastline 0.114 0.091 0.364 - -
Housing density (sq. km) 1,061.7 1,116.2 1,056.0 0222 479.4
Ozoné (ppm) 0.146 0.143 0.109 0.177 0.198
Ozone Exceedances 32.94 29.58 12.11 51.4p 68.80
PM-10 annual averagad/nr) 55.51 51.87 60.45 68.72 66.12

TSchool district average for 1994 CLAS. Math testres have been normalized so they fall betweerdLa0.
¥ Annual average of top 30 daily 1hr maximum reagifRIUMA is assigned the three-year centered avéragethe closest monitor.

Table 4: Within and between variation for SelectedUMA Characteristics in 1990

Mean of PUMA Std. of PUMA Mean of within PUMA

Values Means Std.
8" grade math score 34.0 355 5.7
Crime (FBI index) 786.5 770.1 631.9
Ozond 0.146 0.040 -
Ozoné 0.148 0.031 0.006
PM-10" 55.5 11.0 -
PM-10f 53.2 7.4 1.4

T Interpolation method: PUMA is assigned closest itoomeading.
*Interpolation method: PUMA is assigned distancegiviid average of readings from three closest mmnito

Table 5: Correlation between Primary and Secondaryollutants in 1990

Ozone PM-10 Nitrogen Oxide| Sulfur Dioxide
(NOx) (SO,
Ozone - 0.44 0.47 -0.56
PM-10 0.44 - 0.52 -0.54

Note:" Significant at 5 percent levél. Significant at 1 percent level.
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Table 6: Estimation Results

Model 1¥ | Model 1a Model 2 Model 3 Model 4
First Stage
Log(y-p) 1.475 - 1.499" 1.649" 2.052
Ozone * Log(y-p) -0.01% - -0.020" -0.028" 0.01"
Bedrooms * Household size 0.066 - 0.066" 0.066" 0.064"
Single family * Children under 18 0.227 - 0.227" 0.227" 0.165"
Math * College educated head 0.309 - 0.31" 0.244" 0.337"
Log crime * Log(y-p) 0.00% - - -0.013" 0.026"
Within household’s employment zone 1.889 - 1.989" - 2.194
Log-Likelihood -37,072 - -37,072 -40,719 -47,733
Likelihood Ratio statistic (1 5=0) 25,996 - 26,009 26,857 5,541
Likelihood Ratio p-value (i =0) 0.000 - 0.000 0.000 0.999
McFadden pseudo®R 0.319 - 0.319 0.252 0.124
Observations 17,894 - 17,894 17,894 17,89
Second Stage OLS '
Bedrooms 0.04 0.041 0.04 0.044 0.155"
Built after 1980 -0.594 -0.594" -0.594 -0.59¢" 0.267"
Built in 60s or 70s -0.172 -0.171 0173 -0.169" 0.131"
Single-family dwelling 0.352 0.346" 0.35%" 0.349" 0.185
Owned 0.054 0.057 0.053 0.04 0.044"
Math test score 0.139 0.177 0.153" 0.08¢ 0.097
Log FBI crime index 0.0005 -0.0005 - 0.003" -0.044"
Log elevation 0.016 0.035 0.007 -0.018 0.066"
PUMA is on Pacific coastline 0.342 0.378" 0.327 0.31%" 0.167"
Log density 0.079 0.075 0.068 0.001 0.188"
Prop. of population Hispanic -0.380 - 037 .0.498" -0.611"
Ozone 0.161 0.120 0.17 0.211 -0.095
R? 0.054 0.053 0.054 0.052 0.302
Observations 4,037 4,037 4,037 4,037 17,89
Notes:

" Significant at 1% level. Significant at 5% level.Standard errors are computed using White’s robmsiriance matrix.
¥Model 1 : Benchmark specification used in the s$ittion and welfare analysis.
Model 1a: Estimates the second stedhout the variable “proportion of Hispanics.” This igénded to check the endogeneity of

neighborhood ozone.

Model 2: Estimates the first and second staieout the “crime” variable.
Model 3: Estimates the first stagiéthout the “employment” variable.
Model 4: Characterizes residential locations ugalividual houses instead of discrete housing types
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Table 7: Changes in Neighborhood Ozone Levels acothe Los Angeles Area

%A %A %A
1990 | 1995 1 2000 | 4990.95 (slizgoé?;.) 1990-2000
Study area 0.146 0.116 0.089 -20.8 -19.3 -38.9
Los Angeles County 0.143 0.110 0.086 -22.6 -20.8 9.83
Orange County 0.109 0.094 0.074 -13.8 -18 -29.8
Riverside County 0.177 0.140 0.115 -20.6 -20.7 235.
San Bernardino County 0.198 0.162 0.115 -18.1 -16.3 -41.9

Table 8: Mean Direct (D) and Equilibrium (E) WTP” for the CAAA (1990-2000)

Avg. 1990 % A 1990 % A
1990 Ozone o Avg. . WTP, | WTP: | WTP:/p
zone . Price
Income Price
Study area (mean) 49,197, 0.146  -36.1 748 0..14 1,386,829 1.32
Counties
Los Angeles County 47,152 0.143 -3716 728 0.17 8,321,757 1.33
Orange County 60,924 0.109 -23.8 926 -4.10 1,659 132, 1.29
Riverside County 47,374 0.17y -34.4 687 1.02 1,299,764 1.36
San Bernardino County 48,096 0.198 -41.9 682 435,384 | 1,836 1.33
Neighborhoods by income levels
1% percentile (lowest) 24,657 0.108 -46.8 455 -1.14 82 3| 704 1.84
50" percentile 47,331 0.119 -40.4 805 -1.33 1,157 8,66 1.44
99" percentile (highest) 92,708 0.148 -48|7 98p 2.57 3782 | 2,837 1.19
Neighborhoods by ozone levels
1% Eercentile (lowest) 65,135 0.058 30.0 1,000 -1292,018 | 2,434 1.21
0" percentile 54,568 0.144 -43.7 822 1.41 1,462 1,832 1.25

99" percentile (highest) 39,979 0.212 -43(9 58D 5.22 ,109 | 1,492 1.35

“Note: WTP is computed as the expected compensadinigtion ECV). All WTP estimates computed using McFadden’s tien

approach. WTP estimates are in annual 1990 dollars.
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Table 9: Distribution of Equilibrium WTP ~ for the CAAA (1990-2000)

Avg. % A % A WTP WTP WTP WTP
1990 Ozone | Price Income | Income Income Income
Income <20k | 20k -37k | 38k-60k | > 60k
Study area (mean) 49,197 -36.1 0.14 444 1,019 1,706 3,634
Counties
Los Angeles County 47,152 -37.6 0.1y 433 1,009 2,684 3,638
Orange County 60,924 -23.4 -4.10 51§ 1,058 1,707 77483,
Riverside County 47,374 -34.4 1.02 384 1,053 1,796 3,133
San Bernardino County 48,096 -41.9 4.35 4338 1,017 8121 3,510
Neighborhoods by income levels
1% percentile (lowest) 24,657 -46.8 -1.14 409 850 39,4 2,325
50" percentile 47,331 -40.4 -1.33 392 1,078 1,695 &,56
99" percentile (highest) 92,708 -48.7 2.5[ 479 909 9@,5| 4,505
Neighborhoods by ozone levelg
1% percentile (lowest) 65,135 30.0 -12.93 577 1,090 ,754 4,015
50" percentile 54,568 -43.7) 1.41 388 964 1,79 4,341
99" percentile (highest) 39,979 -43.9 5.2p 541 845 21,5| 2,761

Note: WTP is computed as tieCV. All WTP estimates computed using McFadden’s satioh approach. WTP estimates are in

annual 1990 dollars.

Table 10: Direct and Equilibrium WTP for the CAAA ( 1990-1995)

Discrete Choice Equilibrium Epple-Sieg Equilibrium

Approach Approach (Sieg et al., 2004)

WTPp WTP: WTP:, p WTP, WTP: WTP:, p
Study area 589 896 1.52 1,210 1,371 1.13
Los Angeles County 568 866 1.52 1,472 1,556 1.06
Orange County 698 1,029 1.47 901 1,391 1.54
Riverside County 526 858 1.63 834 372 0.45
San Bernardino County 576 891 1.55 738 367 0.5(
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Figure 1: 1990 and 2000 Ozorfg Concentrations for the Greater Los Angeles Area
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Figure 2: Percent Housing Price Changes in Counteattual Simulation (PUMA average)
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Figure 3:
Relative Welfare Gains Across Income Groups
(1990-2000)
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Appendix for “Equilibrium Welfare Impacts of the 19 90 Clean Air
Act Amendments in the Los Angeles Area” by Constantra

Section A of this appendix describes the procedsesl to arrive at a single measure of housing
price for owned and rental housing units. SectiaheBcribes the remainder of the neighborhood
attribute data. Section C discusses the asympmtiperties of the estimated household
preference parameters. Additional robustness checkbe estimated parameters are provided in
section D. Section E compares the marginal willeggto pay (MWTP) values, implied by the
parameter estimates, with other studies in thealitee. The final section describes the

simulation model.
A. Computing the rental price of housing across tenure

The housing price is a key characteristic whichedeines the sorting of households in our
model. In the Census data the price of a housepserted as the owner’'s assessment of the
market value, in the case of an owner-occupied onithe monthly rent in the case of a renter-
occupied unit. To arrive at one price variable wahwill characterize both owner- and renter-
occupied units we follow the approach of Bayerle{2005) by converting the market value of
owner-occupied units to a monthly rental rate. Befdescribing this procedure we address some
potential issues with the reported market valuerandthly rent.

Value of Owner-Occupied Housing

A number of issues must be addressed when usinigaihee value reported in the Census long
form. The first issue relates to the fact thathbesing price reported in the Census long form is
based on the owner's own assessment of the madtee.vThis assessment may not always
reflect the true market value of the house, as rowsters may either report the price of the

house at the time of purchase or simply misreptegentrue market value of the house. The



second issue regards the fact that the housingsakported in the 1990 Census are top-coded
at $500,000. Because housing prices in Califorréagenerally higher than the remainder of the
United States, we would expect to see a higherrogece of binding top-code&ccording to the
2000 Census 11.4 percent of houses in Californiergvheported at a value of $500,000 or more
compared to only 2 percent for the overall Uniteadt&s. In our 1990 sample approximately 8
percent of the houses have top-coded values.

To address these issues, we construct a predietad for each house by making use of the
property tax payment reported for each owner-o@ipousing unit. The predicted value makes
use of the California law (Proposition 13) thaturegs the property tax to equal either 1 percent
of the transaction price of the house at the tihmee durrent owner bought the property or the
value of the house in 1978. The predicted markdtievaf each owner-occupied house is
obtained by regressing the log of the reported daasue on the estimated transaction price, i.e.
100 times the property tax, and a set of dummyabées for the year that the house was

purchased. The regression specification is given by

log(p,) = a,log(T,) +a,y, +&,. (1)

Wherepy, represents the reported market vallietepresents the estimated transaction price and
Vh is a set of year dummies.

If the reported values were true, and all housa® wentical except for the year of sale, then
o1 would equal 1 and, would represent how much the house has apprediatedue. If, on the
other hand, long-time owners tend to underrepoet thlue of their house thesm would

underrepresent the appreciation of the house im#r&et. In this case, the predicted value of the



house from equation (1) should be a conservatitimate of the true market value. We replace
the reported value for each house with our compestinate whenever the latter exceeds the
former, which would represent a case of signifiaamlerreporting on the part of the owner. In
the actual implementation we allow the parametergary across subregions of our study area
by running the regression in (1) for each of theehmetropolitan statistical areas (MSA) in the
study area. These are, Los Angeles-Long Beach,gér@ounty and Riverside-San Bernardino.
To correct for the bias in the house values, regyfrom top coding, we use the following
procedure. First, we estimate equation (1) usifyg the sample of houses whose values do not
equal the top-code. We then use the estimated péeesnto predict the market value for the
houses with reported top-coded values. The estineggression specification is reported in
Table A.1.
Reported Housing Rents
As in the case of reported owner-occupied houseegabne may expect that reported monthly
rents of renter-occupied units may not represdatraassessment of the true market rent. This is
likely to be true when the resident has lived ia bouse for a long period of time. In this case,
we may expect that the reported rent will be aneustatement of the true market rent. This
could be either a result of rent controls or impltenure discounts. To correct this issue we
compute an adjusted market rent by regressingatpeof the reported market rent on a set of
dummies characterizing the tenure of the currenheswas well as a vector of housing

characteristics. The regression specificationveigiby:

log(p,) =B Y, + B X, (2



Wherey;, is a dummy variable representing the year theeotinrenter moved into the unit, and
Xp is a set of housing and neighborhood charactesistir the house. As in the case of housing
values we run this specification for each of thee¢hMSAs in our sample. The estimated
regression specification is reported in Table AlRe parametef; in equation (2) represents the

tenure discount in a given PUMA. The corrected remhen obtained as:

corrected

Py =expllog(p,) = A.Y.] -

I mputing the Rental Value of Housing across Units

In order to arrive at a comparable measure of Imgugriice for both owner- and renter-occupied
units, we convert owner-occupied house valuesnmbathly rents using the approach described
in Bayer et al. (2005). Poterba (1992) providesth@®retical foundation for this approach. Sieg
et al. (2004) also use this approach to develogpca pndex for each housing unit in their sample.
To convert housing values into monthly rents, wgress the log of the housing price (house
value or monthly rent) on a dummy variab@®), indicating whether the unit is owner occupied,

and a set of structural housing characterisigs (

log(py,) = 1.0, + ), XU, 3)

We run this specification for each of the three MSRos Angeles-Long Beach, Orange County
and Riverside-San Bernardino) in our sample. Thienased regression specification is reported
in Table A.3. The parameter represents the ratio of house values to renteémh MSA,

controlling for structural characteristics of hawgunits. This is the user-cost of owner-occupied



housing as defined by Poterba (1992). We use éltis to convert owner-occupied house values
to a corresponding monthly rent.

To summarize, there are three sets of adjustmbatsate used to characterize the price of
housing across owner-occupied and renter-occuméd. urhe first adjustment accounts for the
fact that the house values contained in the Cedats are self-reported and top coded. The
second adjustment addresses the fact that housmg contained in the Census data may
misrepresent the true market rent. The final adjest deals with converting owner-occupied

housing values into monthly rents.
B. Other Neighborhood Data

In addition to air quality, we collect data on atmeighborhood amenities that households may
value. These include school quality, crime andalambmposition. The racial composition of the
PUMA is characterized by the proportion of Hispani€inally, three variables are used to
control for unobserved factors that may affectldwel of air pollution in a neighborhood. These
are mean elevation of the neighborhood, the prayiraf the neighborhood to the Pacific
coastline and the housing density of the neighbmiho

School Quality

Because California state law limits expenditure®oél school districts, a more reliable measure
of school quality would be one that is based ordawgac performance outcomes rather than
expenditures (Sieg et al. 2004). The California &apent of Education (CDE) administers
standardized tests that are used to monitor théeata performance of public schools. In the
early 1990s the California Learning Assessment é8ys(CLAS) was administered to public

schools throughout the State of California. The4l@ AS provides a measure of students’



academic performance in math, reading and writMgre recent academic performance test
scores are the Academic Performance Index (APIlaa&TAR report.

We use the school district averadédgade math score from the 1994 CLAS as the measure
of school quality in 1990. Ideally one would wdatuse the 1989 CLAS data. Unfortunately
this dataset is no longer available. The neighbmidhschool quality variable is computed by
using a weighted average of the scores for allsti@ol districts that intersect the PUMA. We
use the area of the school district which intesséioe PUMA as weight. For instance, suppose
PUMA j has total area A and overlaps aeg&) of school districtx and areaa(y) of school
districty. Then the school quality level for PUMAs computed as:
a(x)-score(x)/A + a(y) -score(y)/A

Figure B.1 provides a map of the neighborhood-leeibol quality data. The large cluster of
neighborhoods with the worst school quality levisipart of the Los Angeles unified school
district (LAUSD). The LAUSD is one of the largesth®ol districts in the United States and the
largest in the State of California.

Crime Rate

Currently, the most disaggregated crime data fdif@@aia are provided by the Criminal Justice
Statistics Center (CJSC) from the Office of theifGatia Attorney General. The CIJSC compiles
statewide, county and city crime statistics andlipabs them every year in ti@&iminal Justice
Profiles The crime variable used in this study is the EBne index for each jurisdiction in
1990. The FBI crime index reports the number aheroccurrences per 10,000 populations. The
neighborhood crime rate is computed using the saeighting average method used to compute

the neighborhood school quality. The crime datarereas reliable as the school quality data

Vi



because they are only provided at the jurisdictievel and not all of the study area is
incorporated. A map of the neighborhood crime lewel1990 is shown in Figure B.2.

Elevation, Proximity to Pacific Coastline and Housing Density

A number of factors may determine the level ofpmlution in a neighborhood. For example, all
other things equals, air pollution will generallg kess in coastal communities because of the
prevailing west winds. In addition, local climatenditions are likely to have a significant
impact on the concentration of air pollutants. Aldensely populated urban areas generally tend
to have more air pollution because of higher roadgestion. To account for these factors we
add three neighborhood variables to the househeli@qignce specification. These are the mean
elevation of the neighborhood, the neighborhood®ximity to the Pacific coastline and the
housing density of the neighborhood.

The National Elevation Dataset (NED) is a producthe US Geological Survey. It was
developed by merging the highest resolution and feality elevation data across the United
States into a seamless raster format. The datpraveded at a resolution of 1 arc second with
the unit of elevation in meters. We use the NEDc#éiculate the average elevation of each
PUMA. The neighborhood’s proximity to the Pacificastline is measured by a binary variable
which equals one if a portion of the neighborhodatsindary is on the Pacific coastline. The

housing density of the PUMA is given by the numbiehousing units per square kilometer.
C. Asymptotic Properties of Parameter Estimates

| dentification
We discuss the identification of the parametershaf household’s indirect utility function.

Specifically, we ask what features of the datavalfor the identification of the estimated
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parameters. A separate, though not unrelated,ifdation argument can be given for the each
of the stages of the estimation.

A necessary data requirement for identificationtloé first-stage parameters is that the
number of observations be larger than the numbattefative-specific constantd{1) plus the
number of interaction parameters) fo be estimated. In particular I& be the number of
households in the sample. Then we must haveNiaH + k — 1 Note that this condition has a
direct implication for the characterization of @mntial locations and the household sample.
First, it implies that the household sample usetheestimation must be at least of dtze k —

1. Second, characterizing the residential locatemsdividual housing units would imply thst
< H + k — 1 As a result, the alternative constants may notdeetified, hence the need to
characterize residential locations using housimgipcts rather than individual houses.

Given that the data satisfy the necessary requimerog identification, the heterogeneous
taste (i.e., interaction) parameters will be idieedi, provided that there are sufficient differesice
in the attributes of households’ location choicesoss each dimension of the household
characteristics. For instance, suppose we hypathdbat college-educated households have a
higher WTP for school quality relative to the rend®r of the population. Then, for the
interaction parameter between school quality arlgge education to be identified, we need to
observe a sufficient difference (in this case pesjtin the school quality levels of residential
locations chosen by college-educated householdpad to the remainder of the households.

The alternative-specific constants, which will cerize the mean utility from each
residential location, are identified by the vaoatin the market shar@sof residential locations.

Simply put, if residential location A is on averageeferred to residential location B (i.e.,

% The market share of a housing product is defirsetthe proportion of households choosing the housinduct in
the 1990 PUMS data.
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J, > Jy) then, all other things equal, we should obsereeenmouseholds choosing A over B in

the data.

The mean taste parameters in the second-stagessemrare identified from the variation in
the market shares of residential locations acrossing and neighborhood attributes. Notice that
a necessary condition is that the alternative-$ijgeconstants are identified in the first-stage
estimation. This should obviously be the case, esitiie second-stage regression cannot be
defined without the alternative-specific constanitle can illustrate the second-stage
identification argument as follows. Suppose, foaraple, that we hypothesize that households
place, on average, a negative value on air potiuffdnen in order to identify the negative mean
taste parameter for air pollution we must observat,tholding all other attributes equal,
residential locations in highly polluted areas haviewer market share compared to residential
locations in the least-polluted areas.
Consistency and Asymptotic Normality
Similar to the identification argument, the asyntigtoproperties of the estimates can be
discussed in terms of the first- and second-staggegnation. An in-depth discussion of the
asymptotic properties of the two-stage estimator ba found in Bayer et al. (2005). The
consistency and asymptotic normality of the fitstge estimates follow in the same spirit as in
the traditional multinomial logit estimation. Givésentification of the first stage, the estimated
alternative-specific constants and heterogeneogse tparameters will be consistent and
asymptotically normal as long as the number of Bbakls N) in the sample grows large (Bayer
et al., 2005).

The argument for consistency of the second stagbowever, less straightforward. The

complication arises because the dependent varimbléhe second-stage regression is the



estimated vector of alternative-specific constdram the first stage. Hence a large number of
housing products is not sufficient to guaranteesiancy and asymptotic normality. A formal
proof is given in Berry, Linton and Pakes (2004)ey show that the second-stage estimates will
be consistent as long as (i) the number of housltegnativesH, grows large and (iid log H/N
goes to zero. That is, not only mu$tgrow large but the number of households in thepdam
must also grow faster thath. In addition, asymptotic normality at a rafei requires thati*/N

be bounded. In other word¥,must grow at a rate faster thidf

D. Additional Robustness Checks: Alternative Samplindstrategies

We check the robustness of the estimated prefenem@meters with respect to the size of the
household’s sampled choice set. In section 5.1.2ewmained that the household’s relevant
choice set includes the (i) chosen alternative @ilda random sample of 20 non-chosen
alternatives. Model 5a in Table D.1 re-estimatespieference parameters using a choice set that
includes (i) the chosen alternative and (ii) a mndample of 10 non-chosen alternatives. Model
5b uses a random sample of 50 non-chosen alteesativform the household choice set. The
estimated parameters from both specifications tla@esame signs with the coefficients in Model
1. The magnitudes of the estimated parameterdsoevary similar across the specifications.

We do a final robustness check of the estimatednpaters with respect to the sampling of
the households. In section 5.1.1 we explainedttitehousehold sample is formed by drawing a
10 percent random sample of the households cho@sin housing type. We re-estimate the
household parameters using a different sample feizeghe random draws. The results are
reported in Models 6a and 6b of Table D.1. Modelr&aorts the estimates from a household

sample obtained by drawing 20 percent of the harldslthoosing each housing type. Model 6b



reports the estimates from a household samplerdatdly drawing 40 percent of the households

choosing each housing type. The estimated coeff€iare also very similar to those in Model 1.
E. Comparing MWTP Estimates with the Existing Literature
Table E.1 summarizes the marginal willingness tg ((dWTP) estimates, in annual dollar

terms, for selected housing and neighborhood cterstics. The mean MWTP, in annual dollar

terms, for a housing attribuigis defined as:

_ (8V,, /9x,) 12
al(y-p)

MWTR (4)

Where,\7ih is the estimated household indirect utility funoticand G\Zhlaxk represents the

marginal utility of x, evaluated at the mean of the household sample. t&tma in the
denominator represents the marginal utility of meoevaluated at the mean of the household
sample. The mean MWTP for a specific group of tleisehold population (i.e., college
graduates, annual income below $19,000) is obtayedvaluating the marginal value and the
marginal utility of income at the group mean.

All things equal, we find that households are wilito pay an additional $1,100 in annual
housing rent for an extra bedroom in their houseudé¢holds are willing to pay an additional
$10,000 annually or nearly twice the average annert to reside in a single-family housing
unit. Households are also willing to pay an addiio$9,800 annually, a one standard deviation
increase in neighborhood school quality. The madka predicts that households will pay nearly
twice the average rent to live in coastal commasitiThe estimated mean MWTP for locations

that are within the household’s employment zoneesy large. Households are, on average,
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willing to pay roughly six times the average annuaht for locations that are within their
employment zone. As explained earlier, this maydbe to the fact that the employment zone
dummy may be capturing other unobserved neighbarhdwaracteristics that are valued by
households. MWTP estimates also vary across holgseharacteristics. For instance, compared
to the average household, college graduates will gra extra $500 per year for a one-point
increase in the neighborhood schools’ average mathe. Math scores range from 25 to 60 in
the study area.

Our estimate of the MWTP for air quality ($62) caangs well with other estimates in the
literature. Sieg et al. (2004) report a MWTP of $6f.a 1 percent reduction in the 1990 average
ozone concentration. Estimates of the MWTP forcaiality range from $18 to $181 in the
literature (Sieg et al., 2004). The estimates efMWTP for bedrooms also vary in the literature.
Bayer et al. (2005) find a mean MWTP of $1,312,amual 1990 dollars, for an additional
bedroom. Quigley (1985) estimates a nested logidehof household choice in the Pittsburgh
metropolitan area, and finds that households ar@verage, willing to pay $618 in annual 1990
dollars for an additional bedroothOn the other hand, Chattopadhyay (2000) estinsgimilar
model for the Chicago area using four alternatigsting structures. He finds that the WTP for
an additional bedroom ranges from $82 to $5339®0lannual dollars.

Our estimate of the mean MWTP for a one standawiatien increase in school quality is
very large compared to the estimate obtained Balyat. (2005). Our mean MWTP estimate for
a one standard deviation increase in the schoditguavel is $3,550 in annual terms. This
compares with the Bayer et al.’s estimate of $2k.Should be noted, however, that the two

school quality measures are reported using difteseales. The mean school quality in the Bayer

?" The estimate reported in the paper is $13.18 peitimin 1967 dollars. This estimate is converted annual
1990 dollars.
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et al. sample is 527, while our school quality nneashas a mean of 34. As a result, it makes
sense to also compare the mean MWTP for a 1 pectemge in the annual 1990 mean school
guality, as suggested by Sieg et al. (2004) incthee of air quality. Our estimate of the mean
MWTP for a 1 percent change in the mean schoolityualel is $136, which is much closer to
the Bayer et al. estimate of $18.

We would expect our MWTP estimate of to be reldyivegher than the estimate from Bayer
et al. (2005). This is because, in our model, sclp@lity may be correlated with other
unobserved neighborhood-quality characteristicstainad in&,. As result, the second-stage
OLS regression may tend to overestimate the mesda far school quality. Bayer et al. control
for this problem using school district boundaryefix effects. It is not possible to apply this
approach to our data because the neighborhoodBUiEIAS, are too large compared to school
districts. The neighborhoods in Bayer et al. arendde blocks, which are much smaller
geographic units compared to school districts. Téiditates the use of school district boundary
fixed effects because most Census blocks fall withe boundary of a school district, whereas

most PUMAS do not.
F. Simulation of the Counterfactual Equilibrium for th e Year 2000

F1. Calibrating the Housing Demand
The economic agents in this model are households.c@nhsider the housing choices N
(=17,894) households sampled from the overall patprd of N, (=171,000) households
obtained from the 1990 Census PUMS. The samplangdrork used to generate the household
sample is described in section 5.1. The housingetas characterized by 4,037 distinct housing
types. The choice set of each sampled househaldaimcterized by the sampling framework in

section 5.1.
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We could have each household facing the full se4,687 housing types. However, this
would not be consistent with the estimation of lethed preference parameters. Recall that the
maximum likelihood estimation, which uses choice sampling, ensures that the market is in
equilibrium in the 1990 benchmark (see section1$.2ZT'his benchmark equilibrium, which is
enforced via the first-order conditions of the nmaxm likelihood estimation (see equation 5.3),
will no longer hold when households face the fell of alternative$® As a result, significant
errors arise in the computation of the predictedsimg-type demands, and the counterfactual
equilibrium housing-type prices may have undes#&digiroperties. Hence, we prefer to maintain
the choice set sampling framework, used duringeitenation, in the calibration of housing-type
demands. We next discuss strategies for obtairongistent estimates of housing-type demands
under choice set sampling.

Obtaining an Appropriate Forecast of the Demand for Housing Types

The computation of the counterfactual equilibriuegims with forecasting the predicted demand
for each housing type in the household populatioden the new air quality levels. Ben-Akiva
and Lerman (1985) provide a detailed overview afotes techniques for obtaining appropriate
forecasts of aggregate demands for choice altegsain discrete choice models. Our prediction
of the aggregate demand for a residential locdtioees the method of sample enumeration. This
technique is especially appropriate in cases whgnthe household sample is drawn
nonrandomly® from the population and (ii) the choice set of limaisehold is formed by taking a

random subsample of the full set of alternativesbbth of these cases sample enumeration

% |n order for the benchmark equilibrium to hold wi#l need to re-estimate the preference parameisirg the
full choice set, which is not computationally fddsi

29 Notably, some housing types may have negativesiit the counterfactual equilibrium.

30 Our household sample is formed by drawing a 18grgrrandom sample of the households choosing each
housing type.

Xiv



allows the researcher to obtain a consistesstimate of the share of the household population
choosing a residential locatidn For a stratified sample withh = 1,..., Gstrata, Ben-Akiva and
Lerman (1985) define the sample enumeration estiobthe share of the household population

choosing an alternatiieas:
. 1 &2 me A ~
Oh :Z[N_QJN_ZPm(a— ©a,7.8), (5)

where,N, is the household populatioNy is the population size of stragaNsg is the sample size
of stratag, and I3ih is the estimated household choice probability. thersampling design used

in this study (see section 5.1.1), each housing lty@presents a stratum. As a redyt= Ny, Ngg
= Ngp, the first summation term drops out and the egioasfor the estimated population share

becomes:
N N, | 1 Aa
o.=|—|—)> P.(J,a,y.3), 6
h [NJNW h ( 1) (6)

Where,Ny is the number of households choosing locatiam the population ants, the number
of households choosing locatidn in the household sample. The population sharehés t
converted into the predicted population demandafdrousing locatiorh by multiplying the
estimated share by the household populatidy). (For a given housing typke the predicted

population demand is given by:

31 Consistency of the estimated population shareshaédong as the estimated preference parametecomasistent,
which is the case in our estimation.
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P.(3,8, 7,13, . 7)

The main limitation of the sample enumeration eatanof the predicted population demand, is
that it is subject to sampling error. The sampkmngr is due to the sampling of households and
the sampling of the household choice sets. Howewmeour application, the sampling error is
relatively small given the large size of our sampldie sampling error in the predicted
population share for housing tygecan be computed using the weighted root mean squar
formula provided by Ben-Akiva and Lerman (1985),iathis due to Koppelman (1975). For our
sampling framework, the sampling error in estimgtilhe population shares for the 1990

benchmark is given by:

y R 2 1/2
rms:{zmﬁ{u} } | .
h=1 g,

whereay, represents the actual share of the household @ipuichoosing housing tyge which

in our sampling framework turns out to equd) /N . The weighted root mean square in our

application is approximately 18 which is fairly small. An alternative way of assiem the
sampling error is to compute the square root ofstiva of squares of the excess demands across
housing types in the benchmark. This is becauseyviiye of the maximum likelihood

estimation, the benchmark excess dem¥nusist equal zero if there is no sampling errotia t

%2 The excess demands are givendyys, , wheres, is the supply of housing units of type
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predicted population demand. The sampling erradhé predicted population demand can then

H

1/2
be obtained as{Z(&h—sn)z} . In our application the sampling error in the pceztl

h=1
population demand is roughly f@vhich is also small.
Computing the Predicted Population Demand under the New Air Quality Levels
Using equation (7) we can now characterize theigted population demand for each housing

type under the new air quality levels. It is givin

N eXp[é—h +alog(y, - p,) +id;, +fol1kzir Blkr]
N 2 k , (©)

= Zexp[&i +@log(y, = P,) + Wi, + " X2, Buc
k

miC,

di(p) =

where, I5ih has been defined explicithC; represents the choice set of househioldhe
superscript 1 is used to indicate market conditiafter the air quality changes have occurred.
X, is the vector of attributes for housing typevhich includes the new air quality Ievarfhl

represents the predicted base utility for housype b under the new air quality levels. It is

given by:
OA_ﬁ zzxﬁk,éOk +§2h’
k

where q%h is the vector of residuals obtained in the secstade OLS estimation (Equation 5.7).

fh characterizes the estimate of the mean valuatam the unobserved location attributes. The
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vector of residuals must be added because thenatiiee constants which characterize the

benchmark 1990 equilibrium are given by:
N :ZXSKﬁOk +& .
k

The reader can note that this is the same equahliaracterizing the mean utility in equation
(5.4). Henceé, is an key component of the functional form &f. In our application, the
second-stage taste parameter for air quality isstatistically different from zero. Hence the

predicted base utility Ievelséﬁ) under the new air quality levels are the samtéhadenchmark

base utility levels @? ) obtained from the first-stage of the estimation.

F2. Defining the Counterfactual Locational Equilibrium
The 171,000 housing units occupied by the populatibhouseholds in the 1990 Census PUMS
are classified into 4,037 residential locationse Flousing supplg, is given by the number of
housing units at each residential locatlonWe assume that the housing supply is exogenous

with respect to the changes in air quality. Givee housing supplys{) and the predicted

housing demand&f), the counterfactual equilibrium price vector efided by:

ed,(p*) =dy(p*) -5, =0 h=1,.,H (10)

The counterfactual locational equilibrium defineg dguation (10) is unique and locally stable.
This follows from the fact that the parameter eatind is positive and hence the excess

demanded,(p) satisfies the strict gross substitution properge(édnas, 1982).
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F3. Implementation
A numerical solution to the system & equations inH variables, which defines the
counterfactual locational equilibrium, is obtaineth an efficiently convergent algorithm
suggested by Anas (1982). The equilibrium pricetareés found iteratively via a price-
adjustment process that starts with the benchm@®® price vectop® and adjusts the location

prices until the adjusted price vector is arbityaclose to the equilibrium price vectpt.
Lett = 1, ..., Tdefine a sequence f iterations such thap' = p .*The price vector at

iterationt + 1 is given by the Newton step:

P! = p' —[9ed(p")/dp] "Ted(p")]. (11)

ed(p) represents the system of excess demands forHalfesidential locations, and
[0ed(p')/dp] is the Jacobian matrix @&fd(p)evaluated atp'. Computation of the Newton step

defined in (11) requires evaluating and invertihg gacobian which has dimensidn= 4037.
The computational cost of this algorithm is consaiidy large. The evaluation of the Jacobian
alone takes approximately 30 minutes on a Penti@@Hlz PC station.

Anas (1982) suggests a less costly iteration stbmhwis obtained by ignoring the off-
diagonal element of the Jacobian matrix. In thisec#he iteration step + 1 is defined

independently for each residential locatioas:

p.™* = ph —ed,(p') /[ded,(p")/ap] , h=1,.,H (11a)
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The computational cost of the iteration step imajli$ significantly less than that of (11) since it
only requires computing the diagonal vector of daeobian matrix and its element inverse. This
alternate Newton step will converge to the equillitor price vectop* as long as the off-diagonal
elements of the Jacobian are significantly smalklosolute value compared to the diagonal
elements. Convergence is achieved when the priceg at iterationT is “sufficiently” close

to p*. In our counterfactual simulatiga is considered “sufficiently” close {o* if

ed (p')/s, <10° h=1,...,H (12)

In other words, the absolute absolute value ofetkmess demand for each location is less than
0.001% of the housing supply.

A computational issue arises from the fact thatwedge of H-1 housing-type excess
demands is sufficient to characterize the systentH afxcess demands. This is because we
assume that the housing market is a closed econ@mgh implies that no household relocates
outside the study area. A direct implication of th@sedness assumption is that the housing-type
demands always sum to the total populatidhdqf households. This means that the systetd of
housing-type excess demands has ¢y degrees of freedom. As a result, we fix one of the
prices when solving for the numerical solution. sThbrmalization guarantees that any starting
value will lead to the same market clearing priCHse normalization also guarantees that the

counterfactual equilibrium prices are within thengeH-dimensional simplex as the benchmark

price vector and hence lies in the positive quadiah’ .

XX



References

Anas, A. 1982.Residential Location Markets and Urban Transpodati Economic Theory,
Econometrics and Policy Analysis with Discrete €krdViodels Academic Press, New York.

Bayer, P., R. McMillan and K. Rueben. 2005. “An Higuium Model of Sorting in an Urban
Market.” NBER Working Paper: 10865.

Ben-Akiva, M., and S. R. Lerman. 198Biscrete Choice Analysis: Theory and Application to
Travel DemandMIT Press, Cambridge.

Berry, S., O. B. Linton and A. Pakes. 2004. “Lifiteorems for Estimating the Parameters of
Differentiated Product Demand SystenmReview of Economic Studié(3):613-54.

Chattopadhyay, S. 2000. “Effectiveness of McFadsi&€sted Logit Model in Valuing Amenity
Improvements.’Regional Science and Urban Econon€g1): 23-43.

Koppelman, F. 1975Travel Prediction with Models of Individualistic Giece Behavior Ph.D.
dissertation, Department of Civil Engineering, MOambridge, Mass.

Poterba, J. 1992. “Taxation and Housing: Old QoeastiNew Answers.American Economic
Reviewd2(2): 237-42.

Quigley, J. M. 1985. “Consumer Choice of DwellilNgighborhood and Public Services.”
Regional Science and Urban Econoniiég1):41-63.

Sieg, H., V. K. Smith, H. S. Banzhaf and R. Wa&b04. “Estimating the General Equilibrium

Benefits of Large Changes in Spatially Delineatalilie Goods."International Economic
Review45(4): 1047-77.

XXI



Table Al. Regression Used for Correcting House Vahs

Los Angeles — Orange Riverside —
Long Beach County San Bernardino
MSA MSA MSA

Log Transaction price (10 times property tax) 335 .349" 440"
Moved in 1985 to 1988 (compared to 1989-90) -07013 0.017" -0.060"
Moved in 1980 to 1984 0.037 0.075 -0.071
Moved in 1970 to 1979 0.182 0.309" 0.040
Moved in 1960 to 1969 0.253 0.395" 0.097
Moved in 1959 or earlier 0.201 0.307" 0.088
R? 0.325 0.263 0.431
Observations 138,181 39,550 33,891

Note:" Significant at the 5 percent levél.Significant at the 1 percent level. Dependentalsd is log of house value.
Regression includes a full set of PUMA dummies.

Table A2. Regression Used for Correcting Monthly Rets

Los Angeles — Orange Riverside —
Long Beach County San Bernardino
MSA MSA MSA

Moved in 1985 to 1988 (compared to 1989-90) -07082 -0.067" -0.081"
Moved in 1980 to 1984 -0.207 -0.19% -0.234"
Moved in 1970 to 1979 -0.329 -0.298" -0.328"
Moved in 1960 to 1969 -0.410 -0.439" -0.295
Moved in 1959 or earlier -0.421 -0.310° -0.459"
Rooms 0.027" 0.014" 0.043
Bedrooms 0.154" 0.144 0.121
(compared t smole-family detached) -0.056 -0.029 -0.08
2 apartments complex -0.098 -0.128" -0.182
3-4 apartments complex -0.128 -0.137" -0.168
5-9 apartments complex -0.124 -0.168" -0.174
10-19 apartments complex -0.142 -0.166" -0.133
20-49 apartments complex -0.113 -0.138" -0.143
50 or more apartments complexes -07145 -0.170° -0.148
5:‘3&&?3??533899830) -0.001" 0.011" -0.053"
Built in 1980 to 1984 -0.089 -0.073" -0.139"
Built in 1970 to 1979 -0.078 -0.045" -0.158"
Built in 1960 to 1969 -0.068 -0.077 -0.211"
Built in 1950 to 1959 -0.105 -0.103" -0.257"
Built in 1940 to 1949 -0.122 -0.149" -0.291"
Built in 1939 or earlier -0.146 -0.161 -0.327"
R? 0.368 0.410 0.395
Observations 138,181 39,550 33,891

Note:™ Significant at the 5 percent levél Significant at the 1 percent level. Dependentalde is monthly rent.
Regression includes a full set of PUMA dummies.
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Table A3. Regression Used for Converting House Vads to Rental Rates

Los Angeles — Orange Rverside —
Long Beach County San Bernardino
MSA MSA MSA

Owner-occupied 5.654 5.830" 5.474
Rooms 0.049" 0.047 0.090°
Bedrooms 0.052 0.080" 0.036°
(compared to Single-famiy detached) | 0126 | 0080 0015
2 apartments complex -0.717 -0.143 -0.160"
3-4 apartments complex -0.210 -0.179 -0.130°
5-9 apartments complex -0.232 -0.207" -0.13¢
10-19 apartments complex -0.229 -0.204 -0.108
20-49 apartments complex -0.201 -0.166" -0.111"
50 or more apartments complexes -07234 -0.188 -0.119
ol 199 01988
Built in 1980 to 1984 -0.083 -0.158 -0.142
Built in 1970 to 1979 -0.105 -0.197 -0.200"
Built in 1960 to 1969 -0.182 -0.239" -0.30%"
Built in 1950 to 1959 -0.247 -0.293 -0.382
Built in 1940 to 1949 -0.255 -0.316 -0.402
Built in 1939 or earlier -0.257 -0.319" -0.409"
R? 0.992 0.987 0.986
Observations 138,181 39,550 33,891

Note:” Significant at the 5 percent levél. Significant at the 1 percent level. Dependental#d is log of corrected
house value if owned, otherwise, log of correctemhtnly rent. Regression includes a full set of PUBWAMmies.
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Table D.1: Alternative Sampling Strategies

Model 1 Model 5a | Model 5b Model 6a | Model 6b
First Stage
Log(y-p) 1.475 1.394 1.536" 1.6" 1.56"
Ozone * Log(y-p) -0.01% -0.023 -0.019 -0.027" -0.021"
Bedrooms * Household size 0.066 0.07" 0.066" 0.067" 0.053"
Single family * Children under 18 0.227 0.271" 0.225 0.217 0.253"
Math * College educated head 0.309 0.37" 03" 0.295 0.297
Log crime * Log(y-p) 0.004 0.001 0.006 0.006" 0.009"
Within household’s employment zone 1.589 | 1.986" 2.006" 1.971" 1.961"
Log-Likelihood -37,072 -27,104 -51,690 -67,241 - 5B
Likelihood Ratio p-value (b & =0) 0.000 0.000 0.000 0.000 0.000
McFadden pseudo?R 0.319 0.368 0.265 0.353 0.365
Observations 17,894 17,894 17,894 34,13p 67,304
Second Stage OLS '
Bedrooms 0.04 0.03 0.045 0.048 0.05"
Built after 1980 -0.594 -0.602 -0.588" -0.596" -0.59"
Built in 60s or 70s -0.172 -0.18" -0.168 -0.18" -0.175
Single-family dwelling 0.352 0.359" 0.356" 0.351" 0.355
Owned 0.054 0.06 0.041 0.045 0.047
Math test score 0.139 0.13 0.143 0.147" 0.138
Log FBI crime index 0.0005 0.001 0.0001 0.000 0.00(
Log elevation 0.016 0.009 0.025 0.028 0.028
PUMA is on pacific coastline 0.342 0.341" 0.334 0.341" 0.349"
Log density 0.079 0.07 0.089 0.09 0.094
Prop. of population Hispanic -0.38 -0.401 -0.387 -0.376 -0.41"
Ozone 0.161 0.19 0.148 0.151 0.141
R2 0.054 0.052 0.055 0.056 0.057
Observations 4,037 4,037 4,037 4,037 4,037

Notes:
™ Significant at 1% level. Significant at 5% level. Standard errors are computed using White’s robmgiriance matrix.
¥Model 1 : Benchmark specification used in the dattion and welfare analysis.
Model 2a: Characterizes the household’s relevaoicehset using 10, instead of 20, randomly samptedchosen alternatives.
Model 2b: Characterizes the household’s relevaaicehset using 50, instead of 20, randomly sampéedchosen alternatives.
Model 3a: household sample is form by drawing 86tdad of 10, percent of the households choosicly &gernative in the 1990 PUMS.
Model 3b: household sample is form by drawing #6téad of 10, percent of the households choosidy @&gernative in the 1990 PUMS.
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Table E.1: MWTP for Selected Housing and Neighborhod Attributes (1990 Annual Dollars)

| Income < Income >

Mean MWTP | College Grads $19,600 $60,400
Bedrooms
(+1 bedroom) 1,143 - 150 2,426
Single-family dwelling 10,104 - 1,326 21,450
(vs. Multi-family)
Math test score
(+1 standard deviation) 3,550 11,474 466 7,538
PUMA is within household’s
employment zone 57,119 - 7,494 121,262
(vs. outside)
PUMA is on Pacific coastline 9.821 ) 1,289 20,850
(vs. inland)
Share Hispanics
(+0.01) -109 - -14 -232
Ozoné
(~1%) 62 - 8 131

Note: All values are in annual rental rates. Faregle, the average household is willing to pay 43 dnnually for an

additional bedroom whereas households with incoet@b$19,000 are only willing to $150. The annuaam rental
housing price in the study area is $9,000.

"MWTP for a 1 percent change in 1990 average.
* Math test score: mean = 34, standard deviatio®z=r8nge: 25 to 60.
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Figure B.1: 1990 Neighborhood School Quality Levels
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