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RISK EFFICIENCY IN THE INTERPRETATION OF
AGRICULTURAL PRODUCTION RESEARCH

Jock R. Anderson*

Risk is often perceived by farmers as being more formidable in new
technologies emanating from agricultural research than in more traditional
practices. Consequently risk may tend to act as an impediment to
adoption of improved practices as well as a general friction on efficient
use of resources. Research and extension workers in agriculture may
thus wish to identify technologies that are not only “improved” (more
productive and profitable on the average) but are also less risky in that
they would be preferred by “risk-averse” farmers. The extent to which
this identification can proceed in the absence of knowledge of farmers’
individual attitudes to risk is explored here through application of the
concepts of stochastic dominance.

I INTRODUCTION

Risk is now widely recognized as a key factor in nearly all farming
activities and has especially come into prominence as an important
factor in the adoption of new technology by farmers, especially those in
traditional agricultures.

The well-developed analytical framework of Bernoullian decision theory
exists for incorporating consideration of risk in planning but it is a
personalized structure that emphasizes the individual’s preferences for
risk and his individual feelings of uncertainty and perception of risk
[3, 10, 16]. Even such decision-theoretic methods have so far found
very restricted practical application because of the difficulties and costs
involved in eliciting farmers’ subjective probabilities and encoding their
preferences in utility functions. To date, preferences have probably
been elicited for something less than 400 farmers. How, then, can
anything useful be said about risky planning for the remaining millions
of farmers?

An approach which holds some promise is the notion of ordering risky
prospects according to stochastic dominance (SD) rules [14]. The
present purpose is first (in section 2) to review these rules in a didactic
manner that is hopefully easier to follow than the classical articles on
the subject [15, 17, 18, 34, 42] and then to exploit the rules in several
agricultural applications in section 3 in order to exemplify the promise.

* Faculty of Economic Studies, University of New England, Armidale. Much
of this work was done at the International Maize and Wheat Improvement Centre
{(CIMMYT), Mexico where Tony Fischer, Gonzalo Granados, Alejandro Ortega
generously provided data and Glenn Anderson, Keith Finlay, Tony Turrent and
Don Winkelmann offered constructive feedback. Without implicating them, I
am also grateful to John Dillon, Ron Duncan, Ian Greig, Rob Masson, Gerry
O’Mara, John Phillips, Jim Ryan, Grant Scobie, Mike Twomey, and especially
Ross Drynan for critical comments on previous versions.
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Most of the work on stochastic dominance [15, 18, 19, 29, 30, 31] has
had as its rationalization the evident superiority of SD to orderings of
uncertain quantities based only on moments, notably the mean and
variance. This is not regarded here as a crucial advantage of SD—
the prime purpose is to explore how far one can go in risk planning
in the absence of specific assumptions about the algebraic form of
farmers’ preference functions.

The SD ordering rules prove computationally tedious in most applic-
ations, so an important part of the applications sections is the discussion
of the development of several computer programs that greatly simplify
SD procedures.

The empirical applications described below all retate to problems in the
interpretation of agricultural research. It is believed that, whenever
research is addressed to the development of new varieties and practices,
etc. that are intended for adoption by “risk-averse” farmers, the
principles of stochastic efficiency are pertinent and indeed offer an
important method of filtering out inefficient technological packages
(i.e. packages that would not be preferred and adopted by those averse
to risk) so that they are not extended to the farming community.

2 MATHEMATICAL BACKGROUND OF SD ORDERING
RULES
Definitions

Consider two probability density functions (PDF’s) f(z) and g(z) for
the random variable z which does not take values outside the range
[a, b], (i.e. outside [a, b], f(z) and g(x) are everywhere zero). Assuming.
x to vary continuously over its range so that the PDF’s are continuous,
(less-than) cumulative distribution functions (CDF’s) can be defined as:

R R
(2.0.1) Fy(R) = f f(@) dv, Gy(R) = f ¢(z) de, so that R varies con-

tinuously on the interval [a, b].
The procedure of accumulating areas under f(z) to define F;(R) can be
applied to F;(R) to accumulate area under the CDF and thus define
Fy(R), ie.,

R R
(2.0.2) FyR) = f Fy(@) de, Go(R) = f G () dr.
Analogously define

R R
(2.0.3) FyR) = f Fy(@) de, Gy(R) = f G() dz, so that in general,

R
(2.0.4) Fu(R) = f Fu_, (o) dx, forn = 1,2, 3, .

and for consistency, write Fo(R) = f(z). These functions are illustrated
in figure 1.
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We shall be concerned with choice between alternatives described by a
single uncertain quantity, . A decision-maker’s preferences for z are
encoded in a utility function U(z) which is defincd for all = in [a, b].
Several increasingly restrictive assumptions shall be introduced concerning
the preference function. These shall involve the first three derivatives
of U(z), of which the i-th is written Uj;(z), which are also defined for
all z in [a, b]. Under risk, utility maximization implies maximizing
expected utility.

2.1 FirsT-DEGREE STOCHASTIC DOMINANCE (FSD)
Preference Assumption

This initial case presumes only that decision-makers prefer more to
less of 2. This implies that the function U(z) is monotonically
increasing between ¢ and b or equivalently, U,(z) > O.

Ordering rule

The distribution f (x) dominates g(x) by first-degree stochastic dominance
(FSD) if, and only if, Fi{(R) < G,(R) for all R in [a, b] with strict
inequality for at least one value of R.
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FIGURE 2: Hlustration of FSD (F; dominates G* but not G»)

Figure 2 depicts the FSD case graphically. For f(z) to dominate g(x),
the F; (CDF) curve must nowhere lie to the left of the G, curve.

Theorem

If Fi(R) < Gy(R) for all R in [a, b], (i.e., if f(x) dominates or is
identical to g(x) in the sense of FSD), then f () is at least as preferred
as g(z) (i.e. the expected utility associated with f(z), us is at least as

large as the expected utility of g(z), #,). That is, decision-makers with
any U(z) such that U,(z) > 0 will prefer an FSD dominant distribution
to one that is dominated.

Proof
It is required to prove that if F(R) << G,(R) (or G,(R) — Fy(R) > 0)

for all R in [a, b], then u; > Uy, or ur — ug > 0. An expected utility
is defined by,

- b
= f U) f () de.
Thus
- - b b
N — g = f V@) f (@) dz — f U@) g(z) do
and recalling that the derivative of a CDF is the corresponding PDF,
— — b b
W — Ty = f U(z) (dFy(2)) do — f U() (dG (%)) de
b

= (U@ 4R - d6,@)] do
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which is in a convenient form to integrate by parts,! thus
(2.1.D)

@—@:[W@m@~ﬂmd}fﬁﬁhﬁMHW@@

Since a CDF ranges from zero at the lowest range (z = a) to unity at
upper bound z = b, the first term in the above expression disappears
since

ub)[1 — 11 - U@ [0 — 0] = 0.
Then

@12) i — iy = = [0, (A@ - G ds

=fwmm@—mma

By assumption, U(z) > 0 and [G,(z) — Fy(z)] > 0 for all possible
values of x, so the integral in (2.1.2) consists of integrating the non-
negative product of the positive marginal utility and non-negative
differences in_cumulative probabilities and accordingly is also non-
negative, i.e. ur — uy > 0 which is what was required to be proved.
When the theorem is modified by introducing strict inequality of F,(R)
and G,(R) for at least one possible value of R, it can be proved that
us > ug, and it follows that FSD as defined implies strict preference for
a dominant distribution.

Related results

A converse theorem can also be proved [15] but this is not done here
since the converse result is not so important in the present context.
If f () is preferred to g(z) according to all Bernoullian utility functions
for which U,(2) > 0, then f(z) dominates g(z) by FSD.

The FSD theorems hold also for the case of discrete distributions [15]
where, say, « takes only a finite number of values z;, i = 1, n all on the
interval [a, b]. A probability mass function can then be written as
J (%), and with the z; arrayed in ascending order, a CDF defined as

(2.1.3) Fi(R) =P < R) = T f(x), whichisa step function consisting
allz < R

of horizontal lines the leftmost heights of which are defined at the sample
values of z; as

214) Fed = Ef@hr=1. . .n

The FSD ordering rule can then be stated as: f(2;) dominates g(z;) by
FSD if, and only if, F;(%;) < Gy(x;) for all z;’s with strict inequality for
at least one value.

1If y and z are functions of =,

b b b
f y (dzjds) dx = [y z] — f 2 (dylde) dx
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2.2 SECOND-DEGREE STOCHASTIC DOMINANCE (SSD)
Preference assumptions

The second case adds the assumption that successive amounts of x have
diminishing value to a decision-maker—e.g. the 1 000-th unit of income
is not quite as valuable to its recipient as the 1-st or the 999-th. This
is the assumption of diminishing marginal utility or of a concave
preference function. Algebraically it amounts to assuming that, as
well as Uy(x) > 0, the second derivative Uy(z) < 0, (i.e. U(x) is concave
with respect to ).

Behaviourally, individuals whose preferences accord with these
assumptions are said to be averse to risk. The following rule, theorem
and results also hold under the assumption of “non-preference” for
risk (Uy(z) < 0) but this is not highlighted since the addition of risk
indifference to the risk aversion assumption seems of trivial practical
importance.

Ordering rule

The distribution f(x) dominates g(z) by second-degree stochastic
dominance (SSD) if, and only if, Fy(R) < G(R) for all possible R with
strict inequality for at least one value of R.

Figure 3 depicts the SSD case graphically, where f is dominant if the
F, curve lies nowhere to the left of the G, curve. Intuitive interpretation
of this rule is not casy in terms of the F,-type curves but is simplified
by observing the corresponding CDF curves of figure 3. A necessary
condition for f to be dominant in the sense of SSD is that the area
labelled A is not less than the area labelled B [19].

Theorem

If F)(R) < G4(R) for all possible R and U,(R) < 0 for all R in [a, B],
then f(z) is at least as preferred as g(x).

Proof

The proof follows a similar style to that used for FSD and the same
notation is employed. In fact, proof is identical up to the stage of
equation (2.1.1) at which time under FSD the residval term,

b
— j U(2) [Fi(x) — Gy(z)] dz, could be declared non-negative. Now

it is no longer assumed that the [F;(z) — G4(2)] is non-negative for all
z—in fact the CDF’s underlying SSD comparisons will, in general,
intersect otherwise FSD would have indicated the dominated distributions
as being unworthy of further attention by utility-maximizing decision
makers. To proceed we need to disentangle the residual term of
equation (2.1.1) by a further integration by parts. Recall that from the
definition of Fu(R) it follows by differentiating that d[Fy(x)]/dz = Fi(%),
so that

[[ v 5@ - 6@ de = [ Vi@ (1) ~ G do

- U@ 1) — Gu@)] — [ [R6) — 6o Uy@) d.
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FIGURE 3: Illustration of SSD where CDF’s cross twice (area A > area B)
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This expanded expression can now be substituted in (2.1.2) to give
2.2.1)

- - b b
i — ity = — [ @ i) - 641 || + [V 1Fto) - Gu@1 s >0

because it has been assumed that U,(z) > 0, Uyx(z) << 0 and [Fy(z) —

G«z)] < 0, including, of course, [Fy() — Gy(b)] < 0. Note that
Fy(a) = Gya) = 0.

Related results

The converse theorem that: “if uy > uy for all utility functions featuring
Uy(x) > 0, Uyz) < 0 for all z in [a, b] then f(z) dominates g(z) by
SSD” also can be proved. Hadar and Russell [15] offer a proof and
the proof of the equivalent theorems of the case of discrete distributions.
The operative discrete theorem can be stated by following the earlier
notation, defining Aw%; = ., — «, ®x» as the highest value taken by z,
and defining the analogue of F,(R) as

(2.2.2) Fyar) :;f:lﬁl(xi) Ae,r=1,. . .n

Then, if Fo(zy) < Gyo(zr) for all r < n, Us(x) > 0 and Uy(z) < 0, then
f(z;) is at least as preferred as g(z:).

SSD can usually order a larger set of risky prospects than FSD, which
is as to be expected with the additional but still quite reasonable and
defensible restriction on the preference function. Alternatively, SSD
can be thought of as ordering some prospects that are not orderable
under FSD. While the set of stochastically efficient alternatives under
SSD will usually be smaller than under FSD, there is no guarantee that
the set will be small, and to make further progress on narrowing down
the efficient set it is necessary to make more restrictive assumptions
about the nature of preferences. Of course, the limit to such activity
is to define a particular preference function which will inexorably lead
to the identification of a unique efficient (utility maximizing) prospect.
There is, however, one more fairly reasonable assumption that can be
introduced to narrow down the utility-nonspecific efficient set, namely
a constraint on the third derivative.

2.3 THIRD-DEGREE STOCHASTIC DOMINANCE (TSD)

Preference assumptions

The third and final case considered is to add the assumption that the
third derivative is positive, Ug(z) > 0, to the assumptions that U,(x) > 0
and Uy(x) < 0.

This additional restriction is not so strong in intuitive appeal as the
former but is likely to characterize the preferences of many decision-
makers including peasant farmers. The restriction is implied by the
requirement that decision-makers become decreasingly averse to risk
as they become more wealthy [32], although it is a necessary but not a
sufficient condition for decreasing risk aversion. The positive third
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derivative also usually (but ambiguously [20]) implies that owners of
the utility functions prefer positive skewness in distributions of z to
negative skewness (i.e. prefer long tails in the upper values of z).

Ordering rule

The distribution f (z) dominates g(x) by TSD if, and only if, Fg(R) < G4(R)
for all R in [a, b] with strict inequality for at least one value of R, and
if Fo(b) < Go(b).

Theorem

If Fy(z) < Gy(x) for all z in [a, b, Fy(b) < Gy(b), Uy(z) > 0, Uy(2) < 0
and Uy(x) > 0, then f () is at least as preferred as g(z).

Graphically, for f to dominate g, the F, curve must be nowhere to the
left of the G; curve (¢f. figure 11 p.162) and the top of the F, curve
must not be to the left of the top of the G, curve. Integration by parts
reveals that Fy(h) <C Gy(b) is equivalent to the requirement that the
mean of f'is not less than the mean of g and so is a necessary condition
for TSD and SSD.

Proof

Proof proceeds as for the SSD case but this time continues from the
position reached in equation (2.2.1). First take the term

b
[- v v - G|
which is evaluated as
—Uy() [Fo(b) — Go(D)] + O,

and since Uy(b) > O by assumption and also [Fy(b) — G,(b)] < 0 by
assumption, the expression is non-negative.

To explore the second term recall that d[Fy(z)]/dz = Fy(x), so that the
second term of (2.2.1) can be rewritten and then integrated by parts as:

[v.0 1R ~ Gy o
_ f V@) {dFse) — Go(o))do} de

b b
- [v0 5@ - ] - [(vi0 110 - G0
=> 0.

The result is strictly non-negative because Uy(z) < 0, [Fy(b) ~— G4(b)]
< 0, Us(z) > 0 and [Fy(z) — G4(z)] < 0 for all possible z.

Substituting both these non-negative results for the two terms of

equation (2.2.1) yields u; — ug > 0, and again an appeal to at least one
strict inequality in the Fy(z) < G4(x) gives the strict TSD result.
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Related results

As for earlier cases, a converse theorem exists and is proved by
Whitmore [42] to whom the foregoing proof is also due. He does not
prove a TSD theorem for discrete distributions but, by induction, the
theorem can be stated after defining, in terms of earlier notation, the
analogue of F3(R) as

(2.3.1)  Fylon) :Aéng(x@-) Ay

Then, if Fy(xr) < Gy(ay) for all ¥ << n, Fo{wa—q) < Go(xn_y), Uy(x) > 0,
U z) < 0 and Us(z) > O for all » in [a, 5] then f(z) is at least as
preferred as g(w).

2.4 COMMENTS AND CAVEATS

The literature contains numerous mentions of “weakness” and “strength”
of criteria, orderings and results, which can be confusing. Results
are said to be relatively strong if based on a strong criterion, l.e. one
with relatively fewer restrictions and assumptions. Thus FSD is
stronger than SSD which is stronger than TSD. Theoretically a
criterion weaker than TSD can be based on a requirement for decreasing
risk aversion, but this has not been worked out. Hammond [17] has
approached such a criterion but at the cost of various additional
assumptions about risk aversion and the relationships between probability
distributions. It has also been suggested that further criteria be
developed by confining attention to payoffs lower than, say, the
median.?

TABLE 1

Swmmary of Assumptions and Rules for Stochastic Dominance Orderings
FSD SSD TSD QSD
U, > 0 U, >20 | U, > 0 U, > 0
Fi(2) < Gy(2) U, <0 U, <0 U, <0
Fy(x) < G,(®) U; > 0 U; > 0
Fy() < Ga(@) U, <0

Fy(b) < Ga(b) Fy(@) < G4®)

Fy(b) < Gb)

Fy(b) < Gy(b)

2 Robert T. Masson (personal communication). A similar suggestion is embodied
in the idea of mean-semivariance (E-S) ordering/efficiency which Porter [30]
demonstrates to be rather similar to SSD ordering and indeed proves that the E-S
efficient set is a subset of the SSE set.
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It will probably have occurred to the reader that the process taken here
to three steps can be continued (e.g. to the fourth, “QSD”) to yield
progressively weaker ordering rules (i.e. rules that can order larger and
farger sets of prospects) in the manner summarized in table 1.

However, the difficulty with rules such as fourth-degree stochastic
dominance (QSD) and analogues of higher order is the lack of either
theoretical or intuitive justification for the constraints on the derivatives
of utility functions beyond the third.

Note that the presumption throughout of a finite range of the random
variable z is not restrictive since the domain [a, 5] can be extended to
embrace any interval. Proofs unfortunately become more complicated
when the domain is infinite but the theorems still hold [15].

As always is the case with strong results, one pays a price for
unrestrictive generality in a choeice criterion. In all of the stochastic
dominance criteria the “‘price’” seems to be the important emphasis
placed on the lower tails of the distributions compared. A review of
the criteria reveals that a necessary condition for FSD, SSD and TSD
is that the Jower bound of a dominant distribution not be less than that
of an unpreferred distribution. As an empirical matter this places
inordinate emphasis on estimation of (lower) extreme values of uncertain
quantities. As a choice-theoretic matter, one can easily envisage
preferring one distribution to another in spite of the fact that the
preferred has some small probability in its relatively leftwards lower
tail.

However, when people talk of risk in farming it is usually the prospect
of falling into the lower tails of probability distributions of yields, prices,
profits or sustenance consumption that they have in mind. It thus seems
appropriate to focus attention on these tails. Indeed this is the rationale
for the emphasis on “safety-first’” [38] and ““safety-fixed” [8, 22] criteria
in work related to this [4, 26, 36, 37]. The difficulties of working with
these criteria are the theoretical implications of discontinuous preferences
at the crucial or critical level and the empirical question of appropriate
specification of critical levels and the probabilities with which they
should be exceeded.

A second necessary condition for FSD, SSD and TSD that has not
been highlighted in the above presentation is that the mean of a
dominant distribution cannot be less than the mean of an unpreferred
distribution. It might appear at first blush that these two necessary
conditions (on means and lower bounds) provide an expedient first
approach in computations for reviewing stochastic dominance. How-
ever, since they are necessary and not sufficient conditions, they can in
general, only identify pairs of distributions that can rot be separated
through the SD criteria. General implementation of the SD rules
requires identification (and then elimination) of distributions that are
dominated in an SD sense and for this review process there is no
alternative to comprehensive pairwise comparisons based on the rules
elaborated above. The exception to this general result occurs in the
case where the CDF’s are known to intersect only once [l7]—a case
encountered in dealing with many theoretical continuous distributions,
and introduced in section 3.1.3.
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3 APPLICATIONS

The principles of stochastic dominance introduced and elaborated in
section 2 are applicable to many decision problems in agriculture and
other fields provided that (1) probability distributions can be usefully
specified; and that, (2) computational problems inherent in the SD
applications can be overcome. Probability specification is clearly of
basic importance but because it is not the major focus of this study,
discussion of its practice and problems is omitted here (see [3, 35, 40]).
This section is primarily concerned with computational and practical
aspects of examining alternative prospects for SD.

Risky decision problems can conveniently be categorized into two broad
groups: (1) Those where only a finite number of risky prospects is to
be compared, which hereafter are referred to as discrete actions (e.g.
varieties); and, (2) those where the number of actions open to the
decision-maker is logically (if not practically) infinite (e.g. fertilizer
rates), hereafter called continuous actions. Application of SD is most
straightforward in the case of discrete actions which is considered in
section 3.1 through several examples of generally increasing analytical
complexity. For each type of distribution (in sections 3.1.1 to 3.1.3)
the introductory example is of a simplicity chosen to permit analysis
without resort to electronic computation whereas subsequent examples
generally demand such resort.

Analysis for continuous actions employs the procedures developed for
discrete actions but raises some additional difficulties which are discussed
and their solutions illustrated in section 3.2.

3.1 DISCRETE ACTIONS

An SD review of several risky prospects involves pairwise comparisons
among the prospects whilst progressively eliminating from further
comparison those prospects (actions) that are revealed as being
dominated at any degree, commencing with degree one (FSD).
Conceptually, distributions of any type can be compared but the
pragmatic simplification adopted here is to confine comparisons to
those among distributions of the same category. Three categories are
considered below, namely: (1) discrete distributions; (2) arbitrary
continuous distributions (approximated as rectangular histograms);
and, (3) theoretical continuous distributions.

3.1.1 DISCRETE DISTRIBUTIONS

Analysis of stochastic efficiency (non-dominance) is simplest from a
computational point of view in the case of discrete distributions.
Against this simplicity must be balanced a recognition that the
assumption that a random variable is (or the states of nature are)
discrete is usually a rather simplistic interpretation of a probabilistic
sitnation that is properly continuous. However, because of analysts’
frequent (hitherto seemingly invariable [19, 29, 31]) resort to the
assumption, the case is important and deserves careful attention.
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The algebra of this case has already been spelled out in section 2 following
the notation introduced in the ultimate subsection of section 2.1. For
any two probability mass functions f(z;) and g(w;), compatibly defined
in terms of an appropriate uncertain quantity x;, analysis of stochastic
efficiency proceeds straightforwardly by first listing all the combined
(finite) values taken by z in ascending order such that if / < j then
z; < x;.3 If two or more have the same numerical value each value is
considered to be distinct and the rank allocated to ties is lowest for
those ties associated with the distribution with the non-zero probability
for the lowest value of = or, where this is also tied, with the potentially
dominated distribution. With the z; listed, the f(x;) and g(z;) can then
be written out and the cumulative functions Fi(z;), Fy(z:) and Fy(x;)
and those corresponding for g{z;) readily computed using the formulae
in equations (2.1.3), (2.2.2) and (2.3.1), respectively and the definition
of Az; defined in the preamble to (2.2.2).

Consider, for purposes of illustration, the example depicted in the mass
and cumulative functions of figure 4. The steps of the previous
paragraph are executed in table 2. Inspection of these hypothetical
data indicates that the prospects cannot be differentiated on the FSD
rule but, since Fy(x;) << Gy(z;) for i = 1, 4, f(z;) dominates g(#;) in the
SSD sense. It follows (as can be observed) that f(z;) is also dominant
in the TSD sense.

TABLE 2

Hlustrative SD Review for Discrete Distributions

xi 2 ‘ 3 3 5 6 ‘ SD comparison
|
| | |
S{xs) 0 0 -6 0 4
() 2 103 0 5 0
Fy(x) 0 0 6 6 | 10
s AN A~ I FSD
eNED) 2 -5 5 10 110 |
Faxa 1 0 ! 2 1 i
Fy(a,) 0 o |12 |18 .
~ A i N SSD
Golxs) 2 2 1-2 2-2 -
Fy(z;) 0 0 2:4 ‘ .
‘ SN S Py TSD
Gy 2 ) 2 | 26 | 48 .

3 By “compatibly” and “appropriate™ is meant that # in each distribution should
be comparable (e.g. returns net of the same cost categories) and should be a
sensible argument of the (implicit) utility fanction (e.g. be some measure of profit).
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With these introductory remarks, two empirical exemplifications are
now considered. Example 1 treats the case of discrete distributions of
unequal probability elements. In example 2 the distributions are
assumed to have equal probability elements corresponding to the
(assumed equal) relative sample frequencies. Thus, if there are Ny
distinct observations on prospect f, then f(2;) = 1/Ny, and in comparing
two probability functions f(x) and g(z) there is a total of N = Ny + Ny
distinct observations and the relative frequencies of g(x) are g(x;) = 1/Nyg
or g{z;) = 0. That is, if the i-th of the merged observations belongs to
prospect f, the f(x;) = 1/Ny and g(z;) = 0. The assumptions of equal
probability elements and equal numbers of observations also simplify
the FSD review procedure as it is only necessary to show that, for f to
dominate g, the ranked outcomes for f are never less than the
corresponding ranked outcomes for g.

Example 1. Control of a Maize Insect Pest

Yield distributions of crops under different regimes of chemical controls
are doubtless continuous. However, agronomists and farmers often
think and talk about such distributions as if they were discrete (i.e.
have only a finite, usually small number of states). By following this
convention, an example is presented to illustrate the discrete SD analysis
but, because of this simplification and others that are subsequently
incorporated, the analysis must be classified as an extremely simplified
didactic version.

The specific problem considered is the control of whorlworm (fall army
worm) on maize at Poza Rica, Mexico. This pest is often a serious
problem for farmers in this and many other areas. Quite satisfactory
control measures have been evolved, even though they are not used as
widely as would appear to be socially desirable.

Two treatments are compared here. The simplest is a “seed’ treatment
with an appropriate insecticide in wettable powder form which works
out at about 120 pesos/ha for purchased ingredients. Since farm labour
can readily perform this task during slack periods, labour costs are
ignored. The second treatment consists of seed treatment as mentioned
plus a foliar application early in the growth of the crop in the form of
granules of another appropriate insecticide. The cost of the granules
and labour is about 150 pesos/ha so that the total cost of the second,
“both”, treatment is about 270 pesos/ha. More sophisticated treatment
strategies such as deciding on foliar applications on the basis of
observed levels of insect infestation are presently ignored.

Three discrete states are assumed, namely “low’’, “medium” and “high”
levels of infestation prevailing. “No” infestation was thought not to
be a possibility. With these assumptions, the basic data assumed for
this example are presented in table 3. The yields and probabilities are
agronomists estimates of typical situations prevailing on farms in the
area with appropriate fertilization. Valuing maize at 1-2 pesos/kg
and subtracting the respective treatment costs converts the yields of
table 3 to the gross margins of table 4.
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TABLE 3

Technical Data for the Insect Control Problem

Treatment yields (kg/ha)
State o
(infestation) Probability
None Seed Both
Low . - .. ‘15 4 500 4 600 4700
Medium .. .. .. 70 2200 4 000 4 650
High .. .. .. 15 600 2 500 4 600
TABLE 4
Economic Data for the Insect Control Problem
Returns (pesos/ha)
State Probability
None Seed Both
Low .. .. .. -15 5 400 5 400 5370
Medium .. .. .. 70 2640 4 680 5310
High .. .. .. ‘15 720 2 880 5250
Expected returns® .. 2106 4 086 5328

® Returns weighted by respective probabilities. The act “Both” has the highest
expected money value and accordingly would be preferred by farmers who are
indifferent to risk.

With the data displayed as in table 4, one simple form of dominance
is immediately apparent, namely ‘“‘seed” is dominant over “none” since
no matter which state occurs, the payoff from seed treatment exceeds
or equals that from no treatment. This means that the act “none”
need not be considered further in this analysis.

The decision problem is now reduced to exploring if the SD rules permit
the identification of either “seed” or “both” treatments as being
stochastically efficient. The analysis proceeds in table 5 by first ranking
the discrete payoffs in the two acts to be considered and then defining
the SD functions as previously illustrated. Since only the *“both”
treatment is efficient in the sense of SSD, analysis can cease at that point:
but for completeness, the TSD functions are also presented in table 5.
Naturally, “both™ is also dominant over “seed” in the TSD sense.
Thus, as one might anticipate when there is an effective and fairly cheap
measure available for control of a serious pest, “risk-averse” farmers
should adopt the safest treatment irrespective of their own particular
attitudes to risk.
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TABLE 5
SD Review for the Insect Control Problem
x 2 880 | 4 680 5250 5310 5370 5400

Fo(z) .. ..| Seed -15 70 .. .. .. -15

Both .. .. -15 70 15 ..
Fi(x) .. ..| Seed -15 -85 -85 -85 -85 1-0

Both 0 0 ‘15 -85 1-0 1-0
A L. .. 1 800 570 60 60 30
Foay) .. ..| Seed 270 7545 805-5 856-5 882

Bothe 0 0 9 60 90
Fy(z) .. ..| Seed 486 m?} 916 m| 964 m (1016 m|1-042 m

Both 0 0 540 4-140 6-840

2 The “Both” SSD function is less than the ‘““Seed” function at each value of =
so “Both” is second-degree stochastically efficient.

b Letter m denotes multiplication by 10%.

Example 2. Selection of Wheat Varieties

Several methods have been used for identifying crop varieties that have
wide environmental adaptability. The basic data for such work are
usually obtained from nursery trials conducted in diverse environments,
sometimes across many countries such as in the collaborative International
Spring Wheat Yield Nursery (ISWYN) administered by the International
Maize and Wheat Improvement Centre (CIMMYT) [6]. The identific-
ation methods used have ranged from comparisons of mean yields [6]
to comparisons of statistics based on regressions of varietal yields on
environmental indices [11, 12, 41].

Without presently indulging in a critical review, it seems clear that in
the absence of specifically and carefully elaborated criteria, there can
be no one perfect method of appraisal. The present example examines
the question of adaptability from the new point of view of risk aversion
and stochastic efficiency—a point of view believed to be relevant if the
ultimate purpose of identifying widely adapted varieties is to make
them available for adoption by farmers who generally are averse to
risk. As Finlay and Wilkinson [12] have observed in an earlier day:
“Plant breeders are inclined to ignore the results obtained in low-
yielding environments (e.g. drought years), on the basis that the yields
are too low and are therefore not very useful for sorting out the
differences between selections. This is a serious error, because high-
yielding selections under favourable conditions may show relatively
greater failure under adverse conditions”.

The notions of stochastic dominance and efficiency seem to provide a
useful framework for posing the essentially empirical question of how
different selections perform in diverse risky environments. This analysis
is straightforward, as is demonstrated below, with some important
provisos; most importantly, that it makes good sense to speak of a
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world (or large regional) probability distribution of wheat yields. Such
a concept seems implicit and inherent in the conduct of world (or
regional) yicld nuorseries and in the comparison of means (of probability
distributions) from such nurseries. A second proviso, which necessarily
almost amounts to a presumption, is that the selection of sites, co-
operators, fields and growing and disease conditions is somehow
representative of the relevant world (or regional) domain of production.

A third proviso is of importance for the logical application of the
principles of stochastic dominance as outlined in section 2. This is
that yield per se, provides a reasonable surrogate for the argument of
the impticit ntility function. This assumption which involves ignoring
likely varving production costs is nnavoidable in processing international
nursery data since each trial is in general grown under differing regimes
of irrigation (where practised), tillage, fertilizers and weed and pest
control that are most difficult to cost.

Just whose utility function is implicit is not too obvious. It is not
some omnipotent wheat producer since, with his global long-term
vision, he would arguably be indifferent to risk on individual farms
and accordingly focus only on mean yields. It is more like “Mr
Average Farmer” hypothetically assuming responsibility for risk-bearing
in the production of wheat on farms around the world.

To make the exemplification concrete, attention is now concentrated
on the data from the Sixth ISWYN [6]. In this nursery, forty-nine
varieties were compared in trials at sixty locations in thirty-seven
countries during 1969-70. For each variety, each trial observation
is regarded as a distinct component of the discrete sample probability
function of that wvariety. The pairwise comparison of forty-nine
discrete actions involves up to (49)(48)/2 = 1176 FSD comparisons at
each of up to (60)(2) = 120 values of the uncertain quantity yield.
Such a computational burden can be faced with equanimity only with
the aid of an electronic digital computer. To this end a program has
been prepared to undertake analysis of stochastic efficiency in this case
of discrete distributions from samples of equal size.* This program
works on a fully defined yield matrix for varieties and states (sites) and
provides listings of those varieties that are stochastically efficient of
degrees 1, 2 and 3.

The results of applications to three (sub-) sets of the Sixth ISWYN
yield data are summarized in table 6. The results can be appraised
from two viewpoints; first the empirical identification of the numbered
varieties into categories of stochastic efficiency—information that would
seemingly be useful to plant breeders. Secondly, there is the
methodological question of the relationship between stochastic efficiency
and rank according to mean yield of each variety. Not surprisingly,
there is a close relationship, especially between first-degree stochastic
efficiency (FSE) and rank. The FSE set includes most of the top-ranked
varieties, and perhaps the most useful aspect of this identification is
in pinning-down a cut-off point of mean yields that is less than

4+ This, and subsequently mentioned programmes are written in FORTRAN IV
and listings are available from the author on request.
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arbitrary. It should also be emphasized that risk-efficient varieties in
the second-degree stochastically efficient, (SSE) and third-degree
stochastically efficient (TSE) sets are necessarily selected from the FSE
set.

These three applications offer little scope for generalizations about the
likely general composition of the SSE and TSE sets but it seems
reasonable to risk one—namely that as the environmental scope of
analysis becomes more restrictive (e.g. as in the irrigated and non-
irrigated cases reported in table 6), the greater is the chance that only
the very highly mean ranked varieties will be SSE or TSE. The
implication of this shaky generalization is that, providing breeders
confine environmental scope in some way for selecting “broadly”” adapted
varieties, then by focussing on mean yield they shall most probably be
selecting varieties that are also stochastically efficient for “risk-averse”
growers.

Finally, in assessing the proposed SD method of sorting out varieties,
it would be useful to know how it matched up against the methods
employing regressions of yields on environmental indices (inevitably
equal to site mean yields). One shortcoming for such methods is that,
in the absence of either sophisticated computer plotters or tolerant
artistic/technical assistance, they are rather tedious to employ.
Consequently, only the third case of table 6 is subjected to further such
analysis in this comparison.

TABLE 6
Results of Stochastic Dominance Analysis of Yield Data from the Sixth ISWYN

Stochastically efficient varieties and their mean ranks*

Sites Degree
Number and type
1 2t 3
60 All sites ..l Var, | 25147 | 33 | 15| 34| 11 | 23 ] 30 | 31 25|47 |34 25| 47| 34
Rank | 1 2 3 4 5 6 7 8 9 1 2 5 1 2 ]
Var, | 45 138 42,44 (2040 |18 | 13045114 (21 ] .. 45| 14
Rank | 10 | 11 | 12| 13 | 14 ;15! 16 | 17 | 18 ) 10 | 27 [ 34| .. | 10 | 27

Var. | 17 | 36 | 24 | 41 | 29 { 26 | 14 | 21 | 16
Rank | 19 | 21 | 22 | 23 | 24 | 26 27|34 35

28 Irrigated N. of| Var. | 25 |23 3301547 [ 30| 11|31 |3a]25]| ..
10°N. Rank| 1 21 31 4| 51 6| 17 8110 1
or
S. of 10° 8. Var., | 42 144 | 14
Rank | 12 | 13 | 15} 22 ..
22 Non-irrigated Var, | 15| 47 | 25 11337343023 4415147 .. ..115
sites not affec- Rank | 1§ 2 3 4 5 6 7 8 9 1 201.-1.. 1

ted by severe
biological limit-| Var, | 31 | 40 | 42 | 11 | 13 | 41 | 22 | 38 } 45
ations and for| Rank | 10 | 11 | 12 | 13 [ 14 | 15| 16 | 17 | 18
which rainfall
was reported, Var, | 17 | 26 | 24 | 36 | 18 | 43 | 21 | ..
Rank | 19 | 20 | 21 | 23 | 24 | 25| 28 | ..

* Ranks of varietal means calculated within the specified sites.

1 Risk-efficient varieties variously include: 14 Giza 155 (Egypt), 15 Siete Cerros
66 (Mexico), 25 LR-P4160® (E) (Pakistan), 34 Tobari 66 (Mexico), 45 CIANO 5
(Mexico), 47 Sonalika (India).
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FIGURE 5: Generalized interpretation of scatter diagrams of stability measure against
varietal mean vield [12]

Laing and Fischer [23] have conducted an analysis of the type discussed
using only the regression model

(311) Yij = aq; + bin

where Y;; = yield of variety i at site j and X; is mean yield at site J.
The “‘stability” estimates, b;, are then plotted against varietal means,
Vi, to give a scatter diagram of the type elaborated by Finlay and
Wilkinson [12] and to which they suggest the generalized interpretation
sketched in figure 5. Such an interpretation strikes a strong intuitive
note for categorizing a diverse range of genetic materials. However,
the analysis hinges on describing stability in terms of the single statistic,
namely the regression slope, and to me, questions arise as to the
adequacy of such a simple regression model and the comparability of
results based on alternative transformations of the data. For instance,
Finlay and Wilkinson [12] employed a logarithmic transformation and
fitted the model,

(3.1.2) log (Ys) = a + b; log (Xj).
Eberhart and Russell [11] and Laing and Fischer [23] rejected this

model in favour of the linear model (3.1.1) on the grounds that equation
(3.1.2) gives “too much weight” to low-yielding varieties and sites.

150



ANDERSON: RISK EFFICIENCY IN PRODUCTION RESEARCH

It seems to me that any such choice should be strongly influenced by
the data and pertinent extraneous information. In particular, if all
varieties yielded zero at a site, then mean site yield would necessarily
be zero. This information can be encapsulated in (3.1.1) by insisting
that the regression intercept is zero which is equivalent to “forcing the
regression through the origin” as in the model

(.1.3) Yy = biX;.

Since equation (3.1.2) only applies to strictly positive values of Yy and
Xj (i.e. does not accommodate zero yields), this extraneous information
cannot be applied in equation (3.1.2) and indeed, on these grounds
alone this model seems seriously questionable.

A question related to the somewhat arbitrary selection of data trans-
formations is the empirical adequacy of simple linear models. This
question was presently approached by fitting quadratic and cubic
variants of (3.1.1) and (3.1.3). The results suggested that this was not
too important a problem as only three of forty-nine fits of (3.1.1) and
nine of forty-nine fits of (3.1.3) indicated significant non-linearity.

This discussion of possible alternative models and their incumbent
problems has been discursive but necessary in leading up to discussion
of the relationship with stochastic efficiency. The reason is simply
that the pattern obtained by plotting b; against V; varies according
to the model used, and the related results for the last case of stochastic
efficiency reported in table 6 must be interpreted accordingly. The
diverse results are most easily interpreted, albeit crudely, in the graphical
summaries depicted in figure 6.

Detailed comparisons of the regression statistics (especially among
comparably computed estimates of standard errors for the equations)
suggests that models (3.1.1) and (3.1.3) are about equally good and
both are quite superior to the log model (3.1.2) for these wheat data.
For the log model, about all that can be said is that stochastically
efficient varieties are those with high means (as already noted in table 6)
and the risk-efficient selections are those with highest yields and general
adaptation.

The results for models (3.1.1) and (3.1.3) are more interesting and rather
surprising. This analyst’s a priori anticipation was that, with the emphasis
on lower-probability tails in the SD criteria, the stochastically efficient
sets would be located below the unit slope (stability) line, i.e. emphasizing
specific adaptation to unfavourable environments. Such, however, is
not the case as these results place the stochastically-efficient varieties
mainly in the region of below-average stability and good general
adaptation. Again, of course, the risk-efficient varieties are those with
highest mean yields and accordingly lie to the right-hand side of the
sketches.® In fact, the pattern of results obtained for (the author’s
preferred) model (3.1.3) indicates a very close correspondence between
(this version of) the regression approach and the analysis of stochastic
efficiency but probably little generality can be attached to this
correspondence.

& This appears to contrast with the observations of Purvis [33] in Tunisia.
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FIGURE 6 (a): Degree of stochastic efficiency, and adaptation versus varietal mean
vield—equation (3.1.1)
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To summarize, the regression approach was originally developed by
Finlay and Wilkinson [12] to sort out very diverse materials in early
screening trials conducted in diverse environments and it still seems
useful for this purpose. The analysis employing notions of stochastic
efficiency also seems to provide useful information but is probably
applicable at a much later stage of screening materials that are relatively
more similar in their adaptation and yield characteristics.

3.1.2 ARBITRARY CONTINUOUS DISTRIBUTIONS

The probability distributions that emerge from analyses of data or from
Judgements are often asymmetric or otherwise irregular so that a search
for a convenient theoretical distribution that fits adequately may be
tedious, futile or simply too costly. One pragmatic alternative is
simply to describe a graphical CDF by a smooth hand-sketched curve
and in turn approximate this curve by a number of segments of simple
algebraic form.

The simplest form consists of linear segments and for several reasons
this is the alternative adopted here. A linear-segmented CDF
corresponds to a rectangular histogram form of PDF and, if sufficient
segments (rectangles) are taken, this is bound to be an adequate
approximation. Analogously, a multiquadratic-segmented CDF corres-
ponds to a trapezahedral “histogram” form of PDF and if the segments
are constrained to have continuous first derivatives at the join points,
the PDF would have an “angular mountain” shape.® Unfortunately,
the additional constraints imposed by the necessity for a CDF to have
strictly positive slope (i.e. be monotonically increasing but not beyond
the perpendicular) make this mnext-most-logical alternative rather
impracticable.

Apart from conceptual simplicity, the advantage of specifying a CDF
in terms of linear segments is the relative simplicity afforded to the
integrations required to specify the SSD and TSD functions (see
equations (2.0.2) and (2.0.3)) and to the solution of simultaneous
equations required in SD comparisons implemented on a computer.

There is an infinity of ways of arranging linear approximation of an
arbitrary CDF. To narrow down the possibilities a little, the
alternative adopted here is to assume that each of a total number of
NS segments spans an equal interval of cumulative probability
(DP = 1/NS). The algebra of this case is now briefly reviewed.

Figure 7 depicts a linear segmented CDF for the i-th action. It
consists of NS (=6) segments and is described completely by the co-
ordinates Hyx, K = 1,. . ., NC, NC = NS + 1.7 The insistence

¢ A CDF consisting of two quadratic segments corresponds to the trizngular PDF.

" The Fy and G; notation of section 2 is inadequate here because generally more
than iwo (in fact NA) actions are to be considered. Notational equivalences are
as follows: H,: denotes the particular values of R at the endpoints of the
segments of Fi(R) of section 2, H,,; now denotes the values of R at the endpoints
of the segments of G,(R) of section 2. The values of the SSD (FAR). G4(R))
functions at the corresponding endpoints are stored in matrix S and the
corresponding TSD (F3(R), G4(R)) functional values in matrix T.
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FiGURE 7: Hlustration of FSD with linear-segmented CDF’s

on equal probability segments makes FSD review simpler when CDF’s
with equal numbers of segments are compared. Consider the j-th

action described by Hjx, kK = 1, . . ., NC. Corresponding to the
FSD ordering rule of section 2.1, action i dominates action j if, and
only if, Hy,x > Hjx, for all k = 1,. . ., NC with strict inequality

for at least one value of k.

SSD comparison involves functions defined as cumulative areas under
the linear-segmented CDF’s. Such areas are readily computed at the
endpoints of the linear segments from the areas of the component
triangles and rectangles. These are stored in matrix S for which the
i-th row (for the i-th action) is defined by the first element S;,; = 0 and
the k-th element.

(3.1.1) Six = Sikmy + DP (Hiyx — Hip_)(k — 15,k =2,. .
NC.
SSD comparison cannot be based merely on comparing the functions
at the segmental endpoints and interpolation is required. Comparison
by machine calculation (as opposed to graphical methods) is facilitated
by using two guidelines established in graphical comparisons, namely
(a) that a necessary condition for the i-th action to dominate the j-th
is that Hy,, > Hj,, and (b) if the SSD functions intersect below the
NC-th endpoint of the initially lesser function, it will most probably
be at a joinpoint on that function (i.e. joinpoint of the convex quadratic
segments). SSD review can thus proceed initially as follows: (a)
Identify the rightmost (lesser) SSD function at its lower bound by the
greater lowest limit of the H coordinates and label it ik and the
potentially dominated function as jk. (b) Find for each joinpoint
k =2,. . ., NC on the Hj, function the segment (iz-th) of the
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Hj,i. function vertically above or below Hig,z. (¢) Compare the SSD
function evaluated at Hig,x, i.€. Siz,x, with the interpolated value of the
Jjk-th SSD function at the same value of Hjx,r, namely

(3.1.2) SCF = Sjiyiz + -5 DP*RI*/(Hikyizer — Higyiz) + DP*RI*
(iZ - 1)5

where the marginal region of integration RI = Hip,x — Hjgyz It will
be recalled that function comparisons are required over the total range
of variables so that in general, one of the SSD functions must be
extrapolated up to the level of its underlying variable corresponding
to the larger of the ANC-th coordinates of the distributions being
compared.

When intersection of SSD functions (and consequently non-SSD) is
not detected in the fast and direct manner, a more tedious and thorough
review needs to be made. This is done by searching for intersection
of the SSD functions in all the intervals of the merged and ranked H
joinpoints. Generally (i.e. excepting for the linearly extrapolated upper
portions), intersection is found by solving (a quadratic expression) for
the equality of two quadratic segments and checking if any real solution
lies within the respective interval of interest. If one does, then of course
intersection is indicated.

TSD comparison involves exactly parallel steps to those outlined for
SSD with a marginal increase in algebraic complexity occasioned by
integration of the scalloped quadratic-segmented SSD functions yielding
steeper cubic-segmented TSD functions. The joinpoints of these are
stored in matrix T and defined by 7;,; = 0 and for the k-th element by

(3.1.3) Tyx = Tyky + 5 DPEDIP*(k — 2 + 1/3) + DI*Six_1, k = 2,

-1 3

where DI = Hy,y — Hi,r.,. After the initial check on the upper values
of the SSD functions (noted in the ordering rule of section 2.3), analysis
for TSD first follows a similar pattern of interpolation at the joinpoints
(and extrapolation at the endpoints) as noted for SSD. The inter-
mediate interpolation expression corresponding to (3.1.2) is, with R/
as there defined,

(3.1.4) TICF = Tipyiz + (1/6)*DP*RI3/(ij,iz+1 - ij,iz)
+ 5 DP*RI**(iz — 1) + RI*Sikiz.

This advocated review procedure is only approximate for TSD because
the final careful check for intersection at other than ik joinpoints is
omitted on grounds of the relative difficulty of solving for possible
intersections of pairs of cubic equations. However, experience gleaned
from graphical analysis suggests that this will result in very few, if any,
errors (i.e. few false declarations of TSD or non-TSD) but this is clearly
one point for possible methodological improvement.

The examples presented below are based on the assumptions that not
only do the linear segments span equal intervals of probability but also
that, in any comparison, each distribution shall have the same number
of segments (NS). These assumptions result in some simplification of
computation and programming but they could, if desired, be relaxed
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without a great deal of effort. Example 3 (with rather crude dis-
tributional representation based on NS = 4) is presented to illustrate
graphically the nature of the computations discussed above. Choice of
this example in which no SD of any order is encountered is deliberate
as it is only in such an example that the entire sequence of comparisons
should be performed. No generality should be attached to the
empirical aspects of this example which is atypical of the maize
technological situation in Mexico. Example 4 is both more realistic
and more complex. A computer programme was used to conduct the
analysis which was based on a fairly accurate distributional representation
employing NS = 20 linear segments.®

Example 3. Adoption Decision Concerning a Package of New Maize
Technology

The example chosen to illustrate review of SD based on distributions
described arbitrarily by linear-segmented CDF’s, concerns a hypothetical
choice between a presently-employed maize technology and a “new”
technology based on improved varieties and more intensive use of
fertilizer, seed and irrigation. The “new” technology here is that
recommended in the Program de Altos Rendimientos in the Chapingo
area of Mexico. All data used here come from a study of O’Mara [27]
and the particular subjective yield distributions are those elicited in his
farmer interview case 49. The use made here of these data is simplistic
in several ways including the simplification of couching the adoption
question in a “yes/no” or “all or nothing” context where, in reality,
partial adoption (i.e. on part of the maize area of a farm) is clearly an
important possibility. However, this simplification permits us to
ignore the dependence (included in O’Mara’s work) between yield
distributions under the two technologies.

The data are a farmer’s subjective estimates of several fractiles of grain
yield distributions under each technology and are presented in table 7.°
These data can be presented graphically in the form of a histogram as
in figure 8. The bimodal character of these histograms makes them
atypical of yield distributions of field crops and a more appropriate
analysis would first submit these to a smoothing process and probably
result in unimodiality. However, these distributions will serve well in
the present exemplification and accordingly are not altered.

TABLE 7
Yield Fractiles (t/ha) of Maize Under Alternative Technologies

Fractile l 0 1 25 1 5 i ‘75 ‘ 1-0
A “present” technology .. . I 75 1-25 15 ; 2:5 I 30
B “new’ technology .. . l 10 2:0 35 | 4-75 l 6-0

8 See footnote 4.

8 A “point b fractile’”, f.,, is that value of a random variable « such that
Plz <fa)=.b.
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FIGURE 8: PDF’s for yields under two maize technologies

Economic analysis of such data first involves bringing them to a common
basis with due account of the costs and returns in each technology.
Following O’Mara [28, pp. 97, 100, 268ff], this is done by computing
returns per hectare as: (grain yield times government guaranteed grain
price (940 pesos (1970) per tonne) less (variable costs excluding harvest
costs, land rent and fixed labour costs). This simplification is based
on the assumption that (a) returns from fodder; and, (b) costs of
harvesting grain and fodder ((a) and (b) both vary with grain yield)
are equal. The variable costs budgeted for technologies A and B were
866 and 1770 pesos/ha, respectively. The fractile data for yields were
then linearly transformed to fractiles for net returns and are reported
in table 8.

TABLE 8

Returns Fractiles (pesos|ha) for Two Maize Technologies

309
110

544 1484 1954

Fractile } 0 ’ 25 r 5 ‘ 75 ‘ 10
|
| 1520 2695 | 3870
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FiGURE 9: CDF’s (FSD functions) for profits under two maize technologies

In terms of the symbols introduced in this section, the data of table 8
constitute matrix H with NS = 4, NC = 5 and, because —161 > —830,
coordinates for technology A will be referenced as ik (and B as jk). As
is most convenient for SD review, these return fractiles are charted in
figure 9 and (corresponding with the rectangular PDF histograms) are
linked by linear segments to constitute two arbitrary CDF’s. The
intersection of these functions means that neither technology is
dominated (or dominant) in the sense of FSD.

Further analysis proceeds first by computing the SSD functions at the
join- and end-points of the basic FSD functions as elaborated in
equation (3.1.1). These points are tabulated in the (2 x NC) matrix S,
and presented in table 9.

TABLE 9
SSD Function Ordinates at Segiment Ends (Two Maize Technologies)

A L. . .. . 1 0 58:8 | 1469 | 734411456
B oee e . ‘ 0 117-5 | 6463 | 1380-6 | 24088
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FIGURE 10: SSD functions for profits under two maize technologies

The elements of matrix H and matrix S together specify the coordinates
of the segment endpoints of the SSD functions and these are plotted
in figure 10. Values of the jk SSD function in the vertical direction
of the ik abscissas are computed directly from equation (3.1.2). More
generally, however, equation (3.1.2) provides the means for calculating
the ordinate of any quadratic segment up to the 1:0 fractile of the
respective function. In this case, since the jk function has the larger
1-0 fractile, the ik function must be extrapolated. This is a linear
extrapolation (slope unity) since the area under the CDF when it is
unity is simply the region of integration itself. Again it is apparent
that the functions intersect so that A does not dominate B in the sense
of SSD.

The final check for SD resorts to TSD and the first step is to compute
the TSD functions at the endpoints of the segments using equation
(3.1.3). These TSD endpoints are reported in table 10 and intermediate

TABLE 10

TS D Function Ordinates at Segment Ends (Two Maize Technologies)

i | .
0 9204 32215 427 994‘% 865192

0

36817 533842 :1 695 86713 893 361

161
G 65389—39
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FIGURE 11: TSD functions for profits under two maize technologies

values are computed using equation (3.1.4) or some analogous vatiant.
Those functions are charted in figure 11 and again it is clear that
intersection occurs so that neither technology is dominant in the sense
of TSD.

In turn, this means that, given the farmer’s subjective probabilities and
the arbitrary representation accorded them here, it is not possible to
say which he would prefer without knowing something more of his
specific attitudes to risk beyond the assumptions involved in the SSD
and TSD ordering rules. The virtue of this example is to make explicit
the pertinent SD review procedures which, even from this small
exemplification, will be sensed to be computationally burdensome where
many (say 20) linear segments are used to approximate a CDF and
(especially) where many distributions are to be reviewed. Such an
example is explored in example 4.

Example 4. Discrete Rates of N and P on Wheat

In this example no attempt is made to treat fertilizer rates as the
continuous variables that (up to limits of machinery calibration) they
are. The example builds on material described more fully elsewhere
[1]. The starting point here is to use the thirty-six probability
distributions of unirrigated wheat yield estimated for each of the design
points of a 6 x 6 complete factorial. The treatments are for N approx.
0, 225, 449, 67-4, 89-8, 112-2 or 0, 22, 45, 67, 90, 112 kg/ha and for
P approx. 0, 9, 18, 27, 36, 45 kg/ha.
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FIGURE 12: Some examples of linear-segmnented CDF’s for yields of umirrigated
wheat under different fertilizer treatments

163



REVIEW OF MARKETING AND AGRICULTURAL ECONOMICS

The estimation of the distributions, which reflect between-year variability,
was based on sparse data [1, 2, 40] and some examples of these are
shown in figure 12 in the linecar-segmented CDF form in which all are
subsequently described in this exemplification. Each distribution is
described by twenty linear segments of equal height. The yield
distributions were transformed to return distributions by the linear
expression Ryjr = pyYiyr — palNi — ppPj, where R denotes return, Y
denotes yield, N denotes nitrogen applied and P denotes elemental
phosphorus applied, all per unit area, py, py and p, are the respective
unit prices of Y, N and P and the subscripts ijk denote respectively the
i-th level of N, the j-th level of P and the k-th fractile. Prices assumed
are as previcusl]y reported [1]. Note that tixed costs are not included
in this expression as they have no influence on the determination of
stochastic efficiency.

The outlined procedure for reviewing stochastic dominance with arbitrary
continuous distributions was applied to these thirty-six discrete actions
through the implemented computer programme. The results are most
easily overviewed in table 11 with rows and columns defined by rates
of N and P and the elements by the degree of stochastic efficiency, where
zero denotes dominated in the sense of FSD. FSE combinations of
fertilizers are indicated in table 11 by an integer >> 1. FSE combin-
ations become candidates for SSD review and those that are not
dominated in this sense (the SSE set) would be indicated by an integer
> 2 and in turn become candidates for TSD review. Those not
dominated in the sense of TSD are TSE and are indicated by the
integer 3. In this case the SSE and TSE sets are identical so that no
“2” entries appear in table 11. The SSE and TSE combinations shall
be referred to as “risk-efficient™.

TABLE 11
Degree of Stochasric Efficiency of Specified Fertilizer Combinations

’ P (kg/ha)
Lo 9 ‘ 18 27 36 45
o0 | o 1 ‘ 3 ' 3 3 3
2 o o | o | 3 3 i
N (kg/ha) | 45 | 0 0 1 30 1 1
o7 | o 0 0 1 1 1
90 |0 0 0 1 1 i
2o 0 ‘ 0 0 toy o

¢ The discrete combination with greatest mean return.

These results indicate a fairly consistent pattern wherein, in this case
which related to crop response on a red-brown earth in eastern Australia,
a necessary condition for stochastic efficiency of any order is a
reasonable dose of phosphorus. Nitrogen is indicated as being a
rather risky proposal, since most of the risk-efficient combinations
involve zero levels of N and the highest risk-efficient rate of N is 45
kg/ha in this non-irrigated situation.
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TABLE 12
Median® returns for the Risk-Efficient Rares

N (kg/ha) P (kg/ha) Return® ($/ha)
- - ‘
0 18 ! 63-7
0 27 : 63-5
0 36 61-3
0 45 51-1
22 27 65-2
22 36 62-2
45 27 64-5

! i

4 The probability of achieving less than (or more than) the median return is 0-5.
b Gross return less fertilizer cost.

Within the risk-efficient set, choice of fertilizer rate properly depends
upon the risk preferences of individual farmers. However, it should
be observed that in terms of average returns there is little difference
between several of these rates.

Given the consistent pattern of risk-efficient rates, it seems reasonable
to interpolate within the set. Making such an interpolation suggests
that all the risk-optimal rates computed after resorting to specific
assumptions about risk preference functions (assumptions and rates
reported in [1]) fall in the efficient range. This, of course, should not
be surprising, but the specific risk-optimal rates were computed by an
approximate procedure that used only the first two moments of the
yield distribution. In this particular example, as in others from the
field of portfolio analysis [29, 31], it does turn out that the risk-efficient
set corresponds very closely with the mean-variance efficient set [2].1°

3.1.3 THEORETICAL CONTINUOUS DISTRIBUTIONS

Man’s unending search for simplification has led him, in the development
of statistical theory and practice, to devote most attention to a relatively
small number of families of so-called theoretical probability distributions.
These are “theoretical” in two senses-——first because some represent
theoretical deductions through probability theory from assumptions
about sampling procedures; and secondly because, given their concise
mathematical and parametric structures, it is possible to deduce many
results about the probabilistic behaviour of the described random
variables.

10 A risky prospect is mean-variance efficient if it is not dominated by another in
this sense. Dlstrlbuglonf dominates g in the mean-variance sense if mean; > mean,,
and variance; < variance,;, with at least one of the strict inequalities holding.
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Many of these distributions are potentially important in empirical work
in agricultural research in the sense that they often provide a useful
approximation for describing observed (and judgmental) probabilistic
phenomena. For instance, the Beta distribution is one of sufficient
flexibility to describe adequately a diversity of uncertain yield and price
distributions. However, the theoretical distribution that has received
the greatest exploitation in agriculture is the normal distribution—in
spite of the mounting evidence [7] suggesting that the normal is often
a poor approximation for crop-yield and price distributions.

The two theoretical distributions selected for discussion here are the
Beta and the normal, for the mentioned reasons of flexibility/relevance
and popularity/familiarity, respectively. Several difficulties arise in
employing such distributions in reviews of stochastic dominance. The
foremost practical difficulty lies in defining the successive SD cumulative
functions. Even the first step of defining the CDF of standard normal
and Beta distributions is of such difficulty that these are presented as
tables in statistics books. Precise computation of the required successive
functions is considerably more difficult (not least because it must be
done for particular parameter settings and not just for the standard
(0,1) distributions) and for all intents and purposes in our context is
practically impossible.

However, this difficulty can be circumnavigated in two ways, both of
which are presently employed. First, the CDF of the theoretical
distribution can be approximated by a series of linear segments, wherein
the procedures of section 3.1.2 are directly applicable or secondly,
modified concepts of dominance can be used. An alternative concept
of dominance due to Hammond [17] is very useful for theoretical
distributions and is discussed first before the approximate procedures.

Hammond’s “Corollary 3.3”” may be restated as: If the CDF’s of f ()
and g(z) cross not more than once, if the mean of f is not less than the
mean of g and if f is less prone to low outcomes than g, then f will be
at least as preferred as g by all risk averse (Uy(z) > 0, Uy(z) < 0)
decision-makers. A distribution is less prone to low outcomes than
another if either its lower finite bound is greater or, in the case of equal
(finite or infinite) lower bounds, if its (left-hand tail) CDF les to the
right of the other before (in the case of single intersection) it lies to the
left. If fand g are normal, f will be less prone to low outcomes than
g if its variance is lesser.

This concept of (second-degree) stochastic dominance is based on the
assumption that CDF’s do not cross more than once. This assumption
does indeed hold for some probability families (e.g. normal, standardized
Beta (0-1 range), and some others [17]) provided that comparisons are
confined to distributions from the same family but will generally not
hold for comparisons of distributions from different families (c.g. a
normal compared with a Beta distribution). For the normal distribution,
it means that SSD analysis is equivalent to mean-variance analysis (see
footnote 10). Unfortunately, generalized Beta distributions (lower
range limit a, upper range limit » and shape parameters ¢ and d [27])
may entail more than one CDF intersection and so for these
distributions, analysis of risk efficiency cannot be confined to comparisons
of the lower range parameters, @, and the means, (ad + bc)/(c + d).
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Example 5. Rice Production Packages

The procedures for normal distributions are now introduced in a small
example due to Roumasset [37]. It concerns four alternative packages
of rice technology under irrigated conditions in the Philippines (Bicol
region). Techniques M,, M, and M, involve progressively more
intensive use of fertilizer, other chemicals and labour on improved
variety IR-5 while technique 7" involves traditional practices applied to
local varieties. Mean profits are budgeted in Roumasset’s Table 3-2
[37, p. 54] and are 960, 1055, 1135 and 510 pesos/ha, respectively.
The introduced assumption of normality, and the estimation of standard
deviations are much more arbitrary being designed to equilibrate the
profit distributions at two standard deviations below each mean. The
standard deviations suggested are, respectively, 320, 400, 480 and 128
pesos/ha.

Since all four distributions are from the same family, the modified
procedure can be employed and as the family is normal, this devolves
to a mean-variance (equivalently, mean-standard deviation) analysis.
However, comparison among these distributions reveals that for no
pair does the condition hold that simultaneously a mean is greater and
a standard deviation lesser. Thus all four distributions belong to the
SSE set.

One of the difficulties associated with the assumption of normality is
that the range is necessarily - infinity. Clearly this is not a very
realistic assumption for most empirical phenomena in agriculture and
indeed this is one reason for favouring the Beta distribution above.
Presumably, however, the frequent resort to the normal distribution
must imply that it does fit empirical distributions tolerably well over
much of their relevant domains. Thus perhaps in risk analysis we
should “go along” with the assumption of normality, but somehow
ignore the extreme tails. This is the rationale behind the following
suggestion for a modified definition of FSD for normal distributions.

Consider two normal distributions with means y;, p; and standard
deviations o, oy, respectively. Assume that p; > y; and that o; # o4 so
that the CDF’s will intersect once at z*, which lies z* standard deviations
from each mean and at a cumulative probability P*, The important
case is where o; > oy, z¥ << 0 and P* < -5 but for completeness we look
also to the case of upper-tail intersections where o; << o; and P* > -5,
For the lower-tail intersection, z* = (u; — z%)/o; = (b — 2%)/o; from
which it follows that C* = 1/z* = (s; — o;)/(1s — uy) and analogously,
for intersections in both tails, C* = | o; — ;| f(ws — ). Now, if
intersections in the extreme tails of normal distributions can in some
pragmatic sense be ignored, then pragmatic FSD orderings can be based
on calculated values of C*. The procedure is as follows: (1) define a
critical left-tail probability, P**  below which CDF crossovers can be
ignored, (2) from tables of the cumulative standard normal distribution,
look up z** and find C** = 1/z** (or consult table 13 below), (3)
compute C* and (4) if p; > wy and C* < C**, distribution i pragmatically
dominates j in the sense of approximate FSD.
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TABLE 13
Critical Values for Approximate FSD Testing for Normal Distributions
pr* Ok
-0001 -267
001 -308
-01 -429
-05 -606
-1 772

While *choice of any critical probability is necessarily arbitrary, the
suggestion offered here is that a value of -01 seems a reasonable
guideline, bearing in mind the typical adequacy of the normal
assumption in empirical applications. This is the critical probability
used in applying this approximate FSD procedure to the alternative
rice technology data. The calculations are reported in table 14.

TABLE 14
Approximate FSD Analysis of Four Normal Distributions
Rice production :
techniques Data Ratio
M, M, | (320-400) | / (960-1 055) -842
M; M, | (320-480) | / (960-1 135) 914
M, T [ (320-128) | / (960-510) 426
M, M, | (400-480) | / (1 055-1 135) 1-000
M, T | (400-128) | / (1 055-510) -499
M, T | (480-128) | / (1 135-510) -563

According to the criteria developed, and the critical levels reported,
only one technique, 7, is dominated in the sense of approximate FSD,
for with P** = -0l and C** = 429, since 320 > 128 and -426 < -429,
then M, dominates 7% Similarly, if the critical probability is raised to
‘05, T is also dominated by M, and M, However, for critical
probabilities up to -1, all the three improved-variety techniques are
stochastically efficient of first degree.

The second (previously-noted) general approach to analyzing stochastic
efficiency among theoretical distributions involves approximating the
theoretical CDF with linear segments and proceeding as in section
3.1.2. This notion is presently introduced by reference to the normal
distribution, and is exemplified in section 3.2.2 below.
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FiGURE 13: A linear-segmented approximation to the standard normal CDF

Figure 13 depicts a standard normal CDF represented by 20 linear
segments each spanning -05 cumulative probability. The inner 19
ordinates come directly from a tabulation of the percentiles of the
standard normatl distribution [27]. The extreme values (the 0-0 and 1-0
fractiles) are further arbitrary approximations (for -~ oo) of -4 2-5,
which are the approximate intercepts with the 0 and 1 probability lines
formed by extrapolating the extreme linear segments drawn through
the coordinates of the (5 and 1) and (95 and 99) percentiles. The co-
ordinates for linear approximations for any normal distribution could
then be found simply by multiplying each of these standard ordinates
by the respective standard deviation and adding the respective mean.
Thereafter, SD analysis could proceed as for the case of arbitrary
continuous distributions.

3.2 CoNTINUOUS ACTIONS

The foregoing theoretical, methodological and exemplary sections have
illustrated that analysis of stochastic dominance is intrinsically a discrete
affair involving as it does pairwise comparisons of the SD functions.
It appears to bc impossible to make the procedures continuous, say,
analogously to the typical response analysis procedures. This means
that applications of the SD principles to a problem that is inherently
continuous must involve making the problem discrete in such a way
that the essence of the original problem is not lost.
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A crude illustration of this has already been provided by example 4,
the results of which seemed to enable some degree of interpretation
of a continuous nature. There the approach taken was to interpolate
among the results to draw conclusions about the intervening continuum.
The alternative approach is to follow a more familiar analytical route
and interpolate among the data. For example, if normal distributions
have been fitted to response data at several levels of a continuous
variable, an analysis might reasonably postulate smooth functional
relationships between the continuous variable and the distributional
parameters. Then analysis for stochastic efficiency could proceed on
the basis of (discrete) predicted or interpolated distributions at levels
of the continuous variable other than those at which the observations
were available. The interpolation procedure could presumably be
carried to any desired intensity to allow effectively a continuous analysis.
Such is broadly the approach adopted in this section.

Only two distributional cases are considered as it is speculated that
analysts would very seldom wish to specify a continuous-action decision
problem in terms of discrete distributions. Interpolation of linear-
segmented arbitrary continuous distributions is considered in section
3.2.1. As the interpolated distributions have the same linear-segmented
character, analysis then proceeds as claborated in section 3.1.2.
Continuous-action decision problems involving continuous theoretical
distributions are investigated in section 3.2.2 employing the procedures
introduced in section 3.1.3.

3.2.1 ARBITRARY CONTINUOUS DISTRIBUTIONS

As just noted, the only issue novel to this section is how to interpolate
among related linear-segmented distributions. There are several
possibilities all in keeping with the arbitrary nature of the distributions
and all hinging on the underlying continuous decision variable(s) as a
basis for interpolation. The most arbitrary is simply a linear inter-
polation between respective fractiles leading directly to (proper)
intermediate CDF’s, While this has the advantage of simplicity it
suffers from an overarbitrariness in that interpolators usually like to
undertake non-linear interpolation on a non-linear albeit approximate
basis. Most simply, this involves using low-order polynomial functions
such as the quadratic and cubic. Depending on the number of data,
these can be fitted directly or with least-squares or other regression
analysis.

The most serious difficulty with such non-linear interpolation is that
the derived CDF’s may not be proper (i.e. may imply negative
probabilities) and this may require some adjustment and correction.
Such problems are best discussed empirically through example 6.

Example 6. Rate of N on rice

This example is chosen for three main reasons: (a) there is a single
continuous decision variable, namely rate of nitrogen; (b) resulting
from a good deal of analytical effort, probability distributions for rice
yield have been specified and reported at several levels of nitrogen;
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and, (c) the data have been subjected to alternative analysis intended
to give due attention to the risk component. The selected example is
developed from one of the sets of experimental results on rice reported
by Barker, Cordova and Roumasset [4, 37], namely for [RS8 grown at
the Maligaya research station (Philippines) during the wet seasons
1966-71.

Their fitted yield distributions were presented in PDF form. For the
purpose of this analysis, these are required in CDF form and, because
of their varied asymmetric shapes, the linear-segmented approximation
seems useful and appropriate. This interpretation of the distributions
1s presented graphically in figure 14,
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FiGure 14: CDF’s for Rice Yield under five rates of nitrogen fertilizer ( fitted by
Roumasset [37] using the Pearson moment method)
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Analysis of stochastic efficiency again must proceed first by transforming
the yield data to an appropriate argament of the implicit utility. Gross
margin again seems appropriate here in the fertilizer decision as fixed
costs play no role in influencing stochastic efficiency when they are
constant among compared prospects. The only prospect for which this
presumption may not be valid is the “zero N’ action but this possibility
is presently ignored.

Gross margins are computed in the manner described for example 4,
for all the coordinates of the linear-segmented CDF’s assuming -5 pesos/kg
of rough rice and two prices for nitrogen fertilizer, a prevailing
acquisition price of 15 pesos/kg and an inflated price that allows for
cost of credit, opportunity costs, etc., namely 3 pesos/kg.

Three schemes were examined for interpolating distributions for rates
between the five experimental rates of 0, 30, 60, 90 and 120 kg/ha. The
simplest (and worst) was simply to interpolate linearly between the
coordinate fractiles but naturally this leads to kinked relationships
between fractile estimates (like median response) and rate of N. Clearly
such kinked linear segments make for a poor representation of the
response to N and a curvilinear representation seems more intuitively
acceptable—an intuition borne out by graphical doodling.

Quadratic and cubic functions were fitted to each of the twenty-one
sets of fractiles for the five rates as a simple-minded attempt at non-
linear interpolation and both these attempts seemed to work fairly
well. The anticipated problem of interpolated CDF’s being improper
because of inconsistent predictions of fractiles from the regressions
did not arise. There is, however, no guarantee that such interpolations
will be proper and the possibility must always be examined. The
intensity of interpolation is an arbitrary and judgmental matter which
seems properly influenced by considering the precision readily obtainable
in applying fertilizers. The compromise adopted here was to consider
mtervals of 3 kg/ha over the experimental range of 0 to 120 kg/ha.
This amounts to comparing forty-one discrete actions along the continuum
of fertilizer rates. Of course, more intense interpolation over all or
part of the range would be readily possible but does not seem strongly
Jjustified on practical grounds.

Results are summarized in table 15 in the left-hand side. For each
price, the first comparison is only among the actual experimental rates
(i.e. no interpolation). ‘““‘Same” (indicated by two stops) records that
the stochastically efficient set is identical to that reported for the lower
degree of stochastic efficiency appearing to the left. In overview, these
results may be viewed as disappointing in that, especially with the non-
linear interpolations which are believed to be the most accurate
representation of reality, the risk-efficient range of rates of N is quite
wide. (That is, more precise tailoring of N recommendations properly
depends on individuals® attitudes to risk). However, these results also
imply that use of fertilizer N is not as risky as some people may have
presumed—at least in the case of rice production—a conclusion presented
strongly by Roumasset [36] on the basis of an alternative analytical
framework of “safety-first” criteria.
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TABLE 15
Stochastically Efficient Rates of N on Irrigated Rice

Probability specification

Pearson moment method Sparse data rule
[37] 11

High N pricei
interpolation | FSE SSE | TSE FSE SSE TSE
None ... 0,60 e | .. 10,30,60,90,120 30,60 |
Linear 0, 3, 6, 602 .. .. 0-120 30-60 ‘
Quadratic 0-840 0-72 .. 0-120 18-72
Cubic 0-69 0-63 .. 0-120 21-72
Low N price ‘
interpolation | FSE SSE | TSE | FSE SSE ¢ TSE
None .. 60, 120 60 .. 0, 30, 60, 90, 120; 30, 60, 90
Linear ..| 60,117, 120 60 .. 0-120 30-90 ..
Quadratic ..| 0-96 0-78 .. 0-120 30-87 33-87
Cubic ..| 0-78, 108-120 | 0-72 | 069 | 0-120 30-87 ;

2 All rates are in kg/ha and, where interpolated, are at intervals of 3 kg/ha over
the experimental range 0(30)120.

¢ A dash separating two rates indicates all the examined intervening rates as well
as the listed extremes. Discrete rates are separated by commas.

¢ Two stops indicate that this set is identical to the set of next lowest degree of
stochastic efficiency.

On the right-hand side of table 15 are presented some analogous results
of an alternative means of specifying the probability distributions.
Roumasset’s [37] specification was based on frequency histograms of
experimental observations with a subsequent smoothing process based
on the notion of a smooth bell-shaped Pearson Type I frequency function.
The alternative estimational process for which the results are now
discussed is based on taking predictions from yearly response functions
and processing and smoothing according to the procedures suggested
by Anderson [1, 40]. The resulting distributions were generally rather
similar to those presented in figure 14, so it comes as no surprise that
the results of analysis of stochastic efficiency are somewhat similar.
Generally, however, the range of risk-efficient rates is somewhat narrower
under this alternative specification of probabilities—although still wider
and higher than this analyst’s a priori anticipation.

3.2.2 THEORETICAL CONTINUOUS DISTRIBUTIONS

Theoretical distributions offer considerable convenience for analysis
of continuous-action decisions because of their economical parametric
structure. The central idea is that the few parameters of a convenient
distribution can be simply related to the continuous decision variables.
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The distributions selected here for discussion and exemplification are
again the Beta and the normal distributions (in examples 7 and 8
respectively).

Example 7. Continuous rates of N and P on wheat

Example 7 iliustrates the use of the Beta distribution and in this instance
the suggested procedure of approximating fitted Beta distributions by
linear-segmented CDF’s for purpose of analysis of stochastic efficiency
is adopted. For convenient access to empirical material, the data of
example 4 are again employed.

Interpolation of distributions is accomplished in two stages: (a) relating
sufficient parameters of the thirty-six estimated distributions to the
decision variables N and P; and (b) fitting (interpolated) distributions
via the parameters predicted for any specified combination of fertilizer
nutrients. The selected equations are reported below: those for the
mean response, E(y) and the variance of response, ¥(y), are metric
versions of those reported elsewhere [1], while those for the lower
bound of yield, A(y) and the upper bound, B(y) are new to this section.
Response, y, and N and P are in kg/ha and numbers in parentheses are
respective standard errors of the regression coefficients.

(3.2.1) E(y) = 1170 + 9-16N + 42-4P — -0T65N* — -695P2 + 146 NP
R*=-994 (19) (-51)  (1-28) (-0040)  (-025)  (-009)
(3.2.2) W(y) = 164200+ 10700N+26500P — 88-6N2—T16P% + 1320NP
R = -943 (67070) (1840)  (4590) (14-5) (90-8)  (31)
(3.2.3) A(y) = 106 — 4:33N — -T6P + -040N? + -357P2
R:=-800 (62) (1-94) (4-8) (016) (-104)
(3.24) B(») = 2,840 + 10-0N + 63:5P — 137N — 1-50P2 + -83INP
R: =938 (162) (445 (11-1) (035)  (220) (-075)

For a given combination of N and P within the experimental range,
these equations predict with a fairly high degree of accuracy the mean
and variance of response and the upper bounds of response. The
lower bound equation (3.2.3) is unfortunately not so precise reflecting
the less consistent pattern of the zero fractile with respect to N and P.
These features of yield distributions are readily transformed (as
elaborated in example 4, and using the same prices) into the corresponding
mean, variance and bounds of the relevant net revenue distribution,
which for the moment shall be denoted respectively as m, v, a and b.
To fit a Beta distribution by the moment method, which presently
seems convenient, it is first necessary to compute the mean and variance
of the corresponding standard Beta distribution (range 0 to 1), denoted
by m* and v* respectively. Hence, m* = (m — a)/(b — a) and
v¥ = y/(b — a)* from which the shape parameters [27] can be found
directly as ¢ + d = [m*(1-0 — m*)/v*] — 1-0 and ¢ = (¢ + d)m*.

If the Beta distribution could be readily integrated to the CDF and
successive SD functions, the analysis of stochastic efficiency could now
proceed in a precise and direct manner. However, because such
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integrations are not feasible, the linear-segmented CDF approximation
is suggested as an adequate and expedient approach to completing the
analysis. Unfortunately, a difficulty with using the rather flexible Beta
distribution is that tabulations of the percentiles are only readily
available for integer values of ¢ and ¢ + d, and for fractiles 05, ‘10,
. . ., 95 [24]. The latter restriction conveniently fits the use of
20 linear CDF segments of equal probability span but, for non-integer
values of ¢ and d, the fractiles, f; must be interpolated (linearly seems
adequate) from the fractiles of the four embracing standard Beta
distributions with interger shape parameters. This done, fractiles for
the respective fitted distribution are then found through the trans-
formation [fs (b — @) + a].

This procedure is demonstrated by reviewing stochastic efficiency first
among 40 factorial combinations of N and P involving N = 0, 20,

., 80 kg/haand P = 0,5, . . ., 35 kg/ha. The results are
summarized in table 16.

TABLE 16
Stochastically Efficient® Fertilizers of a Relatively Coarse Grid
(based on interpolated Beta distributions)

P(kglha)

0(5)15 20 25 30 35

o 0 1 3 3 3

‘ 20 0 0 3 3 3

N(kg/ha) 40 0 0 1 1 1
‘ 60 0 0 0 1 1

| 80 o 0 0 1 1

i

a Degree of stochastic efficiency is indicated as described for table 11.
® The shorthand x(y)z means all rates , * + p, = +2y,. . ., 2

The results shown in table 16 reveal that, given all the assumptions
made, the combinations of fertilizers that are risk-efficient are in the
region of low rates of N and high rates of P. Should more precise
information be required, this can be obtained by interpolation on a
grid finer than that used for table 16, in the determined region of
interest. The results of such a more intensive and more localized
analysis are reported in table 17 wherein the risk-efficient fertilizer
policy is described in greater detail. Such a procedure could be carried
out to any desired intensity of interpolation to approach a continuous
analysis but, with due regard to the accuracy of the whole specification
and procedure, could clearly be taken to nonsensical limits. Hopefully,
such limits have not been too far transcended here.

Example 8. Continuous rates of N and P on wheat (continued)

In the limited number of empirical studies of risky response analysis
[1, 2, 4, 9, 36] it has been assumed that risk is confined to the physical
yield of the process and that all prices, including that of the product
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TABLE 17
Stochastically Efficient Fertilizers of a Relatively Fine Grid
’ 20 1 25 30 ! 35 40
! |
|
0 ‘ 1 3 3 ! 3 3
5 0 1] 1 3 3
10 0 ] QO 1 1 1
N(kg/ha) 15 0 3 3 3 1
20 0 3 ' 3 3 3
25 0 3 ! 3 1 3
30 0 3 3 1 1
35 0 3 3 1 1
|

are known with certainty. This assumption, which has also been made
in the foregoing examples, has been rationalized on empirical grounds—-
firstly because of yields wsually being relatively much more variable than
prices and, relatedly, the frequent existence of price stabilization schemes
for key crops such as cereals.

However, even where such price support or stabilization schemes are
operative, it is not uncommon for farmers to experience variation (and
consequently to face risk) in product prices and so it is useful to explore
the possible impact of such risk on input decisions.

The only apposite theoretical work is a brief mention by Magnusson
[25, section 5.11] in his analysis of risky decision-making in terms of
mean and variance of profits. He concludes that the crucial influence
in this case is the covariance between price per unit of output and
marginal physical product.  This covariance is neither easily
conceptualized nor readily estimated.

A covariance that is more readily conceptualized and is probably
easier to estimate is that between price, py, and yield, y. The sign and
magnitude of the correlation between price and yield will depend on the
degree of climatic homogeneity in the producing areas of each crop.
One might argue that there is unlikely to be any stochastic dependence
between the volume an individual farmer produces and the price ke
receives, in which case the correlation would be zero. Alternatively,
if the great majority of producers in a country tends to experience
exceptionally good or exceptionally bad conditions during the same
season, then we might argue convincingly for a negative correlation
between price and yield for each individual. Irrespective of correlation,
it seems reasonable to assume that the marginal distribution for price
will not be influenced by the decisions of individual farmers.

There are three broad methods of approaching the analysis of the joint
distribution of price and yield: (a) To obtain data on both prices and
yields over time and thus estimate directly marginal distributions of
revenue and relate the parameters of these distributions to the decision
variables. (b) To attempt to estimate the joint distribution for price
and yield and incorporate the influence of the decision variables on the
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joint distribution. (c¢) To specify the marginal distributions of price and
yield in such a way that the dependence in their joint distribution can
be readily parameterized in a sensitivity analysis.

None of these methods is entirely satisfactory. Method (a) suffers
from likely obsolescence of the historical price data especially. (New
varieties may also make the yield data obsolete.) The estimational
task in method (b) seems beyond the present data and analytical
resources, Method (c) circumnavigates the task of specifying empirical
price variability and is chosen as the method to be illustrated. With
historical data available that seem pertinent to present decisions, method
(a), or some variant of it, appears to offer the most generally practicable
alternative.

In general, the distribution of a product (p,Y) will not be of the same
family as those random variables entering the product (p, and Y).
However, formulae for the mean and variance of the product (in terms
of the means, variances and correlation) are available [5, 13} and do not
depend on the distributional forms. Analysis of stochastic efficiency
requires specification of the distribution and the arbitrary assumption
made here for illustrative purposes is that the distribution of the revenue,
pyY, 1s normal. There do not seem to be any guidelines available as
to the conditions under which such an assumption would be reasonable
excepting for the work of Hayya and Ferrara [21]} which indicates how
closely the normal may approximate the non-normal distribution of
Py Y when each of py and Y is normally distributed.

Again to economize on the introduction of new empirical material,
the example considered is the wheat-N-P fertilizer problem of example
7. As the analysis is to be couched in terms of only mean and variance,
it is necessary to recall only equations (3.2.1) and (3.2.2) which describe
the mean and variance of response of wheat to nitrogen and phosphorus.
All price assumptions are as were previously introduced in example 4
(namely, p, = $.22/kg, pp = $.308/kg) excepting that whereas the
price of output was assumed certain (p, = $.0385/kg), the mean of the
price distribution is now given this value (E(p,) = $.0385/kg). The
price variance and the correlation with output are arbitrarily varied to
explore the sensitivity of risk-efficient rate with respect to these
parameters.

An analysis was made with the extreme possibilities that the correlation,
r, is —1, 0 or +1, and with three alternative levels of variability,
namely that the standard deviation of price, s, in $/kg is 0, .00367 or
00733,

Under the assumption of normally distributed revenues, R = p, ¥ —
paN — ppP, the revenue distributions are completely specified by their-
means and variances which are computed from the standard formulae:
as:

E(R) = E(py) E(Y) + ropsy — paN — ppP,

V(R) = V(P) V(Y) + E(py)* V(Y) + E(Y)* V(py) -+ r® [rV(py) V(Y)
+ 2E(py) E(Y)opsy],

where

V(py) = sp? and oy = +V(y).
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Analysis of stochastic efficiency must again be made in terms of discrete
rates of N and P, according to a desired intensity of interpolation as
indicated in example 7. In the present example we choose to employ
neither the approximate FSD for normal distributions nor the method
of approximating normal CDF’s with linear segments. Instead we
identify only a set of fertilizer combinations efficient in the sense of
SSD which, as shown in section 3.1.3, is identical with the mean-
variance efficient set.’* For each of the parameterizations of op and r,
the grid of 144 combinations of fertilizers examined consists of a

complete factorial arrangement of N = 0, 11-2, 224, . . ., 1232
kg/ha (i.e. approx. N = 0, 11, 22, 34, 45, 56, 67, 78, 90, 101, 112, 123
kg/ha) and (approx.) P = 0, 4:5,9, . . ., 49-5. The relatively fine

grid was selected to provide a reasonable chance of detecting sensitivity
that would be of practical consequence.

TABLE 18
Risk-Efficients Fertilizer Combinations with Risky Yield and Price

| P (kg/ha)

|
! : ‘
0(4-5)18 [22:5| 27 31'5i 36 |49:5| 45 | 495
|
0 0 0o 212 |21121]2/ 2
1 0 0o | 22120010
L2 0 0l 2| 2]0/]07(01/0
N (kg/ha) 34 0 2% 2 | 2 0ol o] o]0
45 0 0 | 2*| 2] 0 0] 0| 0
56 0 0, 0i 2.0/ 0] 0,0
67(11)123 0 0o/ 0 0] 0|lo0o] o] o0

The zero clements of the table denote “not in the mean-variance eﬂicie_nt set”
and integer “2”" values indicate members of the mean-variance or SSD efficient set.

® Asterisked elements are additional members of the SSE set under alternative
parameter settings discussed in the text.

The results are summarized in table 18 and consist of two sets of risk-
efficient combinations (broadly similar to that displayed in table 11).
Combinations identified by a *“2” without an asterisk are those that
are SSE under the “riskless price” assumption, o, = 0. This was
identical with the SSE set for o, = 00367 and r = 0. For all the other
parameterizations explored, namely o, = -00367, r = +1, and o, =
00733, r = —1, 0, +1, the risk-efficient set consisted of the previously
identified set and the two additional combinations identified by “2*”,
Clearly the risk-efficient set is not very sensitive to assumptions about
uncertainty in output price—at least in this particular example based
on the normal distribution.’? A very tentative conclusion from these

' With normal distributions, it seems intuitively likely that the SSE and TSE set
are identical.

12 Restricting adjustments of the parameters to r = —-5, 0, +-5 and cp = 00184,
*00367 caused no changes from the SSE set for ¢, = 0.
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few results is that the slight effect of varying correlation from zero is.
seemingly independent of the sign of correlation coefficient and is
equivalent in its impact to an increase in the variance of price. More:
generally, these results tempt one to speculate that analysts who have
simply ignored price variability in response analysis have committed
no grave sin.

4 CONCLUSIONS

While well-known procedures are at hand for formulating recom-
mendations destined for farmers concerned solely with (average) profits,
such is not the case for farmers concerned with risks as well as with
average profits. The author believes that farmers are generally influenced
in their decisions by aspects of profit distributions other than the
averages, in a way that can be described as risk aversion®. This is not
to say that farmers don’t take risks—they must do so continually—but
rather that they can take into account variability of profits as well as.
the average. A second, widely-agreed belief is that farming generally
is risky and new technology in particular is perceived as risky. This
study then is predicated on the notions that (a) research, extension and
new technology will be more effective and successful if proper account
is taken of risk and (b) it is impossible to account individually for the
attitudes to risk of the millions of farmers who feed the world.

A key question, and one to which the answer has not been obvious,
18 “Can proper account of risk be taken in research and extension?”’
It is the author’s hope that this study has contributed to an affirmative
answer. The principles of stochastic dominance permit orderings of”
risky prospects that are as complete as is theoretically possible without
knowing more (and much more) about the attitudes to risk of millions
of farmers than will ever be possible. The question we must then ask
is whether it is feasible to exploit these principles in interpreting practical
research and extension programmes.

An affirmative answer hinges on two considerations: (1) the ability to-
specify probability distributions in data situations that are often sketchy
or of questionable applicability; and, (2) the ability to undertake the-
numerical task involved in applying the principles. The methods
developed and presented herein suggest that these considerations now
present no sericus obstacle to the exploitation of stochastic dominance:
in practical research and extension in agriculture. This conclusion is
a necessary but not sufficient condition for the validity of the following.
implications.

5 IMPLICATIONS

Increasingly over recent years, lip service has been paid to the notion
that risk is an important aspect of agricultural technology. While this
recognition is valuable in itself, a machinery that deals analytically with
risk in the absence of knowledge of farmers individual attitudes to risk
has not hitherto been exploited in agriculture. Following the conclusion

13 More precisely, for farmers in general, the certainty equivalent of a risky prospect
is believed to be less than the corresponding subjective expected money value.
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that a satisfactory machinery is now available, what are the implications
for agriculture generally? Speculation on this question can be made
under several distinct headings.

5.1 For AGRICULTURAL RESEARCH

{a) Rather than focus only on estimation of treatment means, whole
probability distributions should be explored and estimated to complement
conventional “average-oriented” research, if risk-averse consumers are
to be well served.

{b) This implies that “risk-oriented” research will be generally more
demanding and more expensive than ‘‘average-oriented” research.
Seemingly this is the price one pays for work that is potentially relevant
in this context.

{c) More particularly, appraisal of stochastic efficiency in the absence
of knowledge of individuals risk attitudes demands pinning down the
lower tails of probability distributions. This estimational task suggests
that agricultural innovations need to be evaluated and reported under
bad as well as typical or average environmental conditions that potential
adopters face (e.g. with respect to moisture stress, disease exposure,
nutrient suboptimization, etc.).

(d) To the extent that identifiable groups of potentially adopting farmers
face different “‘worst” conditions (if not also different “average” or
“good” conditions), technological packages that are stochastically
efficient may differ between groups. This implies that risk-oriented
research should deliberately span an appropriate range of both
-environments and environmental conditions, which will usually mean
replication over space and time.

(e) In the short run especially, there seems to be much unexploited
scope for formal documentation of research agronomists considerable
experience of and largely unpublished knowledge of the tails, especially
the left, of relevant probability distributions.

5.2 FOR. AGRICULTURAL EXTENSION

{a) Extension of technological advice in risky agricultures will probably
be more effective if due recognition is given to the impact of risk and
the importance of technologically induced risk.

(b) Such extension will be simplified by dealing with farmers grouped
according to the worst environmental conditions faced and its success
will be enhanced by promoting practices that are tailored to be
stochastically efficient (at least of degree two) for the identified groups.

{(¢) When an extension effort is mounted on such a scale and intensity
that it is possible for extensionists to elicit and account for individual
farmers attitudes to risk and perceived probability distributions (risks),
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then the analysis of stochastic efficiency as elaborated herein becomes
redundant. As of 1974, such a situation has apparently not been
attained anywhere and nowhere secems to be an imminent prospect.

(d) In judging extension efforts, recognition that a recommendation
efficient in terms of average profit may not be risk-efficient should
temper appraisal of programmes.

{e) Probabilistically based educational programmes can provide farmers
with valuable information on what situations they face under various
seasonal conditions and thereby appropriately modify their perceptions
of risk inherent in various technologies.

5.3 For TRAINING IN RESEARCH AND EXTENSION

{a) Perceptive practitioners of the arts of agricultural research and
extension inevitably develop a keen intuition for the importance of risk
in most agricultural production. However, their formal training has
usually done little or nothing to equip them with an analytic apparatus
with which to deal directly with this aspect of their work. Clearly,
educational programmes should do more to sensitize intending
practitioners to the impact of risk in farming, and consequently in
research and extension. Particular attention needs to be drawn to the
fact that espoused experimental methodology is addressed to estimating
only average effects, responses, etc. and accordingly is only directly
applicable to risk-indifferent farmer-users.

5.4 For AGRICULTURAL PoLICY

(a) Formulators of agricultural policy will generally suffer fewer
“surprises” in programme results if their economic models of farmer
behaviour include an adequate recognition of farming risks and farmers
attitudes to them.

(b) The main pertinent policy instruments in dealing with risk have been
crop insurance schemes and minimal price supports for agricultural
products. Our discussion of the stochastic dominance orderings places
a new slant on such schemes. By focussing on values in the lower
tails of distributions of yields and prices rather than on values near
the averages, relatively low premiums may still exert significant
adjustments to actions of farmers,

(c) More specifically, for example, a crop “insurance” scheme which
effectively truncates yield distributions below a cross-over point in the
lower tails of two varietal distributions makes the variety that yields
higher on average stochastically dominant in the sense of FSD. Ensuant
adoption by farmers of the now FSE new variety would doubtless,
ceferis paribus, be in the national interest. Typically, a recommended
technological practice will dominate (FSD) traditional practices if it
can be “insured” to the extent that under really poor eventualities,
farmers are not disadvantaged by adoption.
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(d) Again, effective truncation of the lower tails of market price
distributions through minimal (but low) price and income supports
may effectively “take the risk out of”” a programme under governmental
sponsorship.l4

5.5 FoR METHODOLOGICAL RESEARCH

The tone of the foregoing implications may have conveyed the impression
of a complacent or self-satisfied attitude to the methodology developed
herein. Any such impression should be immediately corrected by
reiterating some perceived methodological shortcomings. However, it
is salutary to recall first that the SD ordering rules do represent the
theoretical limit to risk analysis in the absence of either knowledge of
individuals attitudes to risk or probably unjustified and indefensible
presumptions about these.

(a) Analysis of stochastic efficiency can only be as good as the specification
of the respective probability distributions. There will always be scope
for methodological improvement in such specification which is an
intrinsically risky procedure itself. If the “ideal” is accurate represent-
ation of farmers’ perceptions, we need to recognize that information
gained only from experiments on experiment stations or small plots
may be of very distant pertinence.

(b) Present understanding of the risks perceived and experienced in
farming generally and in adoption of new technology particularly, is
insufficient. Careful and imaginative farm-level research is called for
in a cross-section of countries of diverse cultural traditions.

5.6 For THE EcoONOMICS OF RESEARCH

(a) Applied agricultural research can be judged as potentially successful
and economical when it leads to new farming practices that are
stochastically efficient. If the new practices are also stochastically
dominant (minimally of degree three and most desirably of degree one)
then the chance of the research being positively beneficial is corres-
pondingly greater. Of course, the cost of the research should enter
the economic evaluation.

(b) Conversely if, after a research programme has been completed and
extended to the farming community, farmers prior (competing) practices
fall in the risk-efficient set then returns from the research must be highly
uncertain and may well be negative.

(¢) From a methodological point of view, research planning in the
context of stochastic efficiency appears to be intrinsically difficult in
the sense that only retrospective analysis of efficiency is in any way
straightforward. However, if research is directed towards the develop-
ment of stochastically efficient new technologies, research planners
necessarily must aim to identify technologies that are not only more
profitable on average but are also less prone to low outcomes under
unfavourable conditions.

1 See [39] for a discussion of stochastic dominance in taxation policy.
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