

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# Working Papers in <br> Agricultural ECONOMICS 

# Economics and the Resumption of Commercial Whaling 

by
Jon M. Conrad and Trond Bjørndal

Deparment of Agriculfural Economics
New York State College of Agriculture and Life Sciences
A statutory College of the State University
$L$ Comell University, thaca, New York, 14853-7801

# Economics and the Resumption of Commercial Whaling 

by<br>Jon Conrad and Trond Bjørndal*

The authors are Professors at Cornell University and the Norwegian School of Economics and Business Administration, respectively. This research was supported in part by the Norwegian Fisheries Research Council. The authors wish to thank Jeffrey Breiwick for comments on an earlier version of this paper.


#### Abstract

There is now strong scientific evidence that several species of baleen whale and possibly the sperm whale, have recovered to levels that would support commercial harvest. The stock of fin whales (Balaenoptera physalus) off the eastern coast of Iceland and the minke whale (Balaenoptera acutorostrata) in the Northeast Atlantic, off the coast of Japan and in the Southern Ocean are prime candidates for commercial harvest. Should commercial whaling be resumed? If so, what role should economics play in determining the level of harvest and management policies?

A bioeconomic model for baleen whales is developed and applied to the stock of minke whales in the Northeast Atlantic. A delaydifference equation is used to model the population dynamics and an exponential production function is estimated relating harvest, to population size and the number of catcher vessels. If whaling is resumed, the optimal stock size and harvest may critically depend on the price-cost ratio and catcher productivity. We identify plausible combinations of price, cost and productivity where whaling is not optimal and the minke whale population in the Northeast Atlantic equilibrates at about 82,000 adult animals. Under a high price-cost ratio and high catcher productivity, the optimal stock ranges from 51,000 to 59,000 whales supporting a harvest of 1,600 to 1,750 whales by 90 to 115 catchers.

The paper examines two economic arguments that might be advanced for prohibition of commercial whaling. The first is utilitarian in nature and the second is based on the extension of rights traditionally reserved for homo sapiens. The paper advocates a tolerant position, where individuals of different countries democratically choose whether they wish to allow or ban whaling and the import of whale products, with the proviso that no stock be threatened with extinction.


Key Words: economics, whaling, minke whale

## Economics and the Resumption of Commercial Whaling

## I. Introduction and Overview

In 1986 the International Whaling Commission (IWC) declared a five-year moratorium on commercial whaling. The moratorium had been adopted for at least three reasons. First, there was scientific evidence that many of the stocks of baleen whales were dangerously depleted and making only slow recovery from the intensive whaling that had taken place between the two World Wars and in the thirty-year period following World War II. ${ }^{1}$ Second, there was a conspicuous lack of information on the status of many stocks, and therefore little basis for making informed decisions on allowable harvest. ${ }^{2}$ Third, and perhaps most important, the whale had become a powerful symbol within the environmental movement. For many, the depleted stocks of baleen whales, in particular the blue whale (Balaenoptera musculus), typified the "tragic" result of man's exploitation of the environment and common property resources.

During the moratorium several countries, including Iceland,
Japan and Norway, continued to harvest a limited number of large
baleen whales for scientific purposes. The beluga or white whale (Delphinapterus leucas) is harvested by both U. S. and Soviet Eskimos. The narwhal (Monodon monoceros) and the beluga are harvested by natives of Canada and Greenland. These whales are classified as "small cetaceans" by the IWC, which has little control over the level of harvest. The bowhead whale is a large cetacean, harvested by the Alaskan Eskimo under the IWC's aboriginal exemption. Quotas on the number of bowhead whales struck and the number actually harvested are used to control the mortality from the Eskimo hunt (see Conrad, 1989).

It was agreed that during the moratorium scientific surveys would be conducted to estimate current stock size and to provide a basis for estimating life-history parameters, important in modeling the dynamics of whale populations. Updated stock estimates were to be presented at the IWC meetings in Reykjavik, Iceland in May of 1991 and the IWC would then determine whether the moratorium should be extended or whether commercial whaling might resume. If commercial whaling were allowed, harvest would presumably come from stocks which the IWC formerly classified as "sustained management" or "initial management." A sustained management stock was one estimated to lie within $10 \%$ below to $20 \%$ above the
stock level supporting maximum sustainable yield ( $\mathrm{X}_{\mathrm{MSY}}$ ), while an initial management stock would have recovered to more than $20 \%$ above $\mathrm{X}_{\text {MSY }}$. Stocks lying more than $10 \%$ below $\mathrm{X}_{\text {MSY }}$ would remain protected under the old IWC classification system (Breiwick 1983). A Revised Management Procedure (RMP) will be used in future stock classification. This is a more complex procedure that it is still being modified by the IWC. Neither the old nor the revised classification scheme incorporates economic considerations.

There is, of course, a more fundamental question. Should whales be harvested at all? Different cultures have answered this question differently at different times. The answer may hinge on the degree to which a society has vested rights traditionally reserved for homo sapiens to other animal species. We will return to this question in Section IV.

If commercial whaling is resumed, how should economic factors, like the cost of harvest, the prices for whale products and the rate of discount affect the optimal stock and rate of harvest? Spence
(1974) was one of the first economists to develop a bioeconomic model and apply it to the stock of blue whales in the Southern Ocean. ${ }^{3}$ While innovative, Spence's model of population dynamics was unrealistic, and led to implausible rates of recovery. ${ }^{4}$

Clark (1976) employs a more realistic delay-difference equation to describe the population dynamics of the fin whale (Balaenoptera physalus), also in the Southern Ocean. His cost function, however, is derived from a Cobb-Douglas production function which is an unrealistic form when harvesting from a stock resource. ${ }^{5}$

Clark and Lamberson (1982) provide an economic history of modern whaling in the Southern Ocean and develop an aggregate model of optimal harvest which draws from the theoretical work of Clark, Clarke and Munro (1979). A simple continuous-time model, employing a symmetric logistic function and a Cobb-Douglas production function, is used to estimate the optimal stock of baleen whales (in blue whale units) and the sustainable harvest it would support.

Conrad (1989) develops a model to examine the hunt for the bowhead whale as conducted by the the Alaskan Eskimo. The hunt contributes to the continuity of cultural traditions and the subsistence economy within Eskimo villages. No formal production function was specified; rather the optimal stock and harvest were determined as a function of the discount rate and a relative weight assigned to the stock of bowhead whales.

The purpose of this paper is to develop a more realistic model of commercial whaling: one that is based on a delay-difference equation for growth and an exponential production function. The model is applied to the stock of minke whales (Balaenoptera acutorostrata) in the Northeast Atlantic. This stock was never regarded as endangered and is a candidate for commercial harvest. ${ }^{6}$ We identify economic conditions where the resumption of commercial whaling is optimal and where it is not.

In the next section we present a model of population dynamics for baleen whales. This is followed by a section which develops a bioeconomic model. In both of these sections we will identify plausible functional forms and estimate or assign parameter values thought to be appropriate for the minke whale in the Northeast Atlantic. We then derive rules for optimal escapement, stock, harvest and effort, provide numerical solutions for a range of economic parameters and identify conditions when commercial harvest might be economically justified. The fourth section examines the economic basis of certain animal-rights arguments to prevent the resumption of commercial whaling. The fifth section summarizes our major conclusions.

## II. Population Dynamics

The dynamics of whale populations are frequently modeled using a delay-difference equation (Clark 1976). If the species is not subject to harvest this equation might take the general form

$$
\begin{equation*}
X_{t+1}=(1-M) X_{t}+F\left(X_{t-t}\right) \tag{1}
\end{equation*}
$$

where $X_{i}$ is the stock of adult (sexually mature) whales in year $t, M$ is the annual rate of mortality in adults, and $\mathrm{F}\left(\mathrm{X}_{\mathrm{t}-\mathrm{t}}\right)$ is a recruitment function defining the recruits to the adult population in year $t+1$ as a function of the adult population in year $t-\tau$. The recruitment function is assumed to incorporate certain environmental constraints including the overall availability of food and its effect on the relative rate of population growth.

If the adult population is unchanging over some interval of time, then natural mortality is precisely offset by recruitment and $\mathrm{MX}_{0}=\mathrm{F}\left(\mathrm{X}_{0}\right)$. The equilibrium or fixed point, $\mathrm{X}_{0}$, will be stable if $\left|\mathrm{F}\left(\mathrm{X}_{0}\right)\right|<\mathrm{M}$, where $\mathrm{F}(\cdot)$ is the first derivative of $\mathrm{F}(\cdot)$. This equilibrium is sometimes referred to as the "pristine population," thought to exist prior to the start of commercial exploitation.

With a commercial harvest of $\mathrm{Y}_{t}<\mathrm{X}_{\mathrm{t}}$ adult whales per year it is useful to define escapement as $Z_{t}=X_{t}-Y_{t}>0$. Equation (1) is then modified to become

$$
\begin{equation*}
X_{t+1}=(1-M) Z_{t}+F\left(Z_{t-\tau}\right) \tag{2}
\end{equation*}
$$

Thus, the adult stock in year $t+1$ is determined by the unharvested adults which survive from year $t$, plus recruitment, which is a function of escapement in year $t-\tau$.

The generalized logistic function is often used in modeling whale populations. In this case the recruitment function becomes

$$
\begin{equation*}
F\left(X_{t-\tau}\right)=r X_{t-\tau}\left[1-\left(X_{t-\tau} / K\right)^{\alpha}\right] \tag{3}
\end{equation*}
$$

where $r$ is the intrinsic growth rate and $K$ is a positive parameter, which along with $\mathrm{r}, \mathrm{M}$ and $\alpha$ defines the pristine population. The value of $\alpha$ will affect the symmetry of $F\left(X_{t-\tau}\right)$. If $\alpha>1$, the generalized logistic is skewed to the left and the maximum recruitment level lies above 0.5 K . The IWC believes maximum recruitment occurs at about 0.6 K , which is the case when $\alpha=2.39$. For the generalized logistic the pristine population is given by $X_{0}=\mathrm{K}[(r-M) / r]^{1 / \alpha}$.

In addition to $\alpha$, the parameters, $M, r, K$ and $\tau$ must be estimated if one wishes to simulate population dynamics using the generalized logistic. While specific estimates of all of these parameters for the minke whale population in the Northeast Atlantic are lacking, values are available from studies of other minke whale stocks or from models of other species of baleen whale.

Walløe et al. (1987) use an annual mortality rate of 0.10 in their study of the minke whale in the Northeast Atlantic. The age at sexual maturity appears to vary by sex, with females reaching maturity at about 7 years, and males at about six years of age (Christensen 1981). We set $\tau=7$, a value that is also used by Walløe et al. (1987).

Estimates for r and K are particularly troublesome. We ran several simulations with $\mathrm{M}=0.10, \tau=7$ and various combinations of r and K . The results when $\mathrm{r}=0.15$ and $\mathrm{K}=130,000$ are shown in Table 1. These values imply a pristine population level of $X_{0}=82,093$ adult whales and a 1990 population of 58,742 mature animals. This seems to be a conservative result, given that over 100,000 whales were harvested by Norwegian whalers between 1938 and 1987 and that recent estimates by Ugland (1986) place the current stock between 50,000 and 80,000 whales.

In Table 1, the data on harvest comes from Øien et al. (1987) and Statistisk Sentralbyrå (1989). Data on vessel numbers prior to 1946 were not available. For the period 1946 to 1987 the data on vessel numbers comes from Statistisk Sentralbyra (1978 and 1989).

In simulating the minke whale population it was assumed that the stock was in equilibrium at the pristine population for the years 1931-1938 and that whaling effectively commenced in 1938. According to this simulation the stock of minke whales declines from the pristine population to a low of slightly less than 52,000 whales in 1973, after which it slowly climbs to 58,742 adults in 1990. Our estimates of stock size are plotted in Figure 2, while harvest and vessel numbers are plotted in Figures 1 and 3, respectively.

Variations in the underlying parameters will result in different stock estimates. By reducing $r$ or increasing $M$ it is possible to reduce the population to significantly lower levels. ${ }^{7}$ The resulting 1990 population, however, is then below the lower bound estimates of recent studies using mark-recapture, line transect or other stock assessment methods. While there is considerable uncertainty over the "true" value of the biological parameters, the values adopted here are plausible, and they collectively lead to estimates of the pristine population and the stock in 1990 which we regard as conservative.

## III. Bioeconomics

If commercial harvest is resumed it will probably be necessary to regulate the hunt in order to avoid the inefficiencies of open access. An optimal quota and fleet size can be calculated for the minke whale stock in the Northeast Atlantic. It will depend, in part, on the efficiency, prices and cost facing the remnants of a fleet which has been idle or regeared for other fisheries.

Suppose that the price per harvested whale is constant, denoted by $p$, and that the cost of harvesting $Y_{t}$ whales from a population of size $X_{t}$ is given by the cost function $C\left(Y_{t}, X_{t}\right)$. Net revenue in year $t$ may then be written as

$$
\begin{equation*}
\pi\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right)=\mathrm{pY} \mathrm{Y}_{\mathrm{t}}-\mathrm{C}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}}\right) \tag{4}
\end{equation*}
$$

Maximization of the present value of net revenue subject to the dynamics of the whale population may be stated as

$$
\begin{aligned}
\text { Maximize } & \sum_{t=0}^{\infty} p^{t} \pi\left(Y_{t}, X_{t}\right) \\
\text { Subject to } & X_{t+1}=(1-M) Z_{t}+F\left(Z_{t-t}\right) \\
& Z_{t}=X_{t}-Y_{t}
\end{aligned}
$$

where $\rho=1 /(1+\delta)$ is a discount factor and $\delta$ is the rate of discount. Conrad (1989) derives the first-order necessary conditions for this problem. When they are evaluated in steady state, optimal escapement will be defined by the equation

$$
\begin{equation*}
\left[\frac{\pi_{\mathrm{X}}+\pi_{\mathrm{Y}}}{\pi_{\mathrm{Y}}}\right]\left[1-\mathrm{M}+\rho^{\tau} \mathrm{F}^{\prime}(Z)\right]=1+\delta \tag{5}
\end{equation*}
$$

where $\pi_{X}$ and $\pi_{Y}$ are the partial derivatives of $\pi(Y, X)$ and $F(Z)$ is the first derivative of the recruitment function.

Suppose the production function, relating harvest to stock size and effort takes the exponential form $Y=X\left(1-e^{-q E}\right)$, where $E$ is the level of effort and the parameter $q>0$ might be referred to as the "catchability coefficient."

If the unit cost of effort is constant, denoted by $c$, then the cost equation is $\mathrm{C}=\mathrm{cE}$. Solving the production function for E as a function of $Y$ and $X$ and substituting into the cost equation one obtains a cost function which takes the form $C=(c / q) \ln [X /(X-Y)]$, where In $[\cdot]$ denotes the natural $\log$ operator. Substituting the cost function into the expression for net revenue results in the partial derivatives $\pi_{X}=c \mathrm{Y} /[\mathrm{qX}(\mathrm{X}-\mathrm{X})]$ and $\pi_{\mathrm{Y}}=[\mathrm{pq}(\mathrm{X}-\mathrm{Y})-\mathrm{c}] /[\mathrm{q}(\mathrm{X}-\mathrm{Y})]$. When these
partial derivatives are substituted into equation (5), and using the definition $Z=X-Y$, it is possible (after quite a bit of algebra) to obtain an expression defining $X$ as a function of $Z$. This takes the form

$$
\begin{equation*}
X=\frac{Z\left[1-M+p^{\tau} r\left(1-(\alpha+1)(Z / K)^{\alpha}\right)\right]}{(p / c) q Z\left[p^{\tau} r\left(1-(\alpha+1)(Z / K)^{\alpha}\right)-(\delta+M)\right]+(1+\delta)} \tag{6}
\end{equation*}
$$

Evaluating the delay-difference equation in steady state, it is possible to obtain an expression defining $Y$ as a function of $Z$. This is less tedious algebraically, and takes the form

$$
\begin{equation*}
Y=\left[\mathrm{r}-\mathrm{M}-\mathrm{r}(\mathrm{Z} / \mathrm{K})^{\alpha}\right] \mathrm{Z} \tag{7}
\end{equation*}
$$

By substituting the last two expressions into the definition of escapement we can obtain a single expression in $Z$. Unfortunately, it is not possible to obtain an explicit expression for optimal escapement, but we can write the implicit form as

$$
\begin{equation*}
\mathrm{G}(\mathrm{Z})=\theta(Z)\{(\mathrm{p} / \mathrm{c}) q Z[\phi(Z)-(\delta+\mathrm{M})]+(1+\delta)\}-[1-\mathrm{M}+\phi(Z)] \tag{8}
\end{equation*}
$$

where $\phi(Z)=p^{\tau} r\left(1-(\alpha+1)(Z / K)^{\alpha}\right)$ and $\theta(Z)=1+r-M-r(Z / K)^{\alpha}$. Optimal
escapement is a root or zero of $G(Z)$. If a root exists, the optimal values of $X$ and $Y$ can be obtained from equations (6) and (7).

The optimal level of escapement depends on the five biological parameters $\alpha, \mathrm{M}, \mathrm{r}, \mathrm{K}$ and $\tau$ and on three economic parameters; $q,(p / c)$ and $\delta$. With our simulated values for the minke whale stock we are in a position to directly estimate a production function. While this stock was harvested commercially until 1988, the fleet of Norwegian vessels came under quota restrictions as early as 1973 (Walløe et al. 1987). We opted for a sample period from 1952 through 1972 and estimated the exponential production function $Y=X\left(1-e^{-q E}\right)$ by regressing $\ln [(X-Y) / X]$ on effort, $E$, measured as the vessel numbers. One would anticipate a negative coefficient on effort and an insignificant constant.

The results are shown in Table 2 for OLS regressions with and without correction for first-order autocorrelation. The estimate for q is $2.7045 \mathrm{E}-4$ without correction and $2.4465 \mathrm{E}-4$ with correction and both are significant at the $1 \%$ level. The constant is not significant at the $5 \%$ level in either regression and is dropped from the equation. In the numerical analysis that follows $q$ will be set at 2.0E-4, 2.5E-4 and 3.OE-4.

The relative price-cost ratio ( $p / c$ ) was calculated for the years 1980-1987. Table 3 contains data on the total number of whales taken by vessels in the small-whale fleet and the total revenue (in nominal Norwegian Kroner) obtained from meat and blubber. Dividing total revenue by the number of whales we obtain a price per whale. Table 3 also contains estimates of the operating cost of a small-whale vessel for an entire season of approximately 36 weeks. During each season vessels would typically participate in other fisheries. It was estimated that during this period approximately 35 to 41 percent of operating time was spent whaling. The $\mathrm{p} / \mathrm{c}$ ratios in the right-most column of Table 3 are calculated by dividing price per whale by cost per vessel. If it were appropriate to prorate costs to different fisheries by their percentage of time during a full season, then the $(\mathrm{p} / \mathrm{c})$ ratios might increase by a factor of $1 /(0.38)=2.63$. We set $(\mathrm{p} / \mathrm{c})$ at $0.05,0.07$ and 0.09 , which, as it turns out, covers a critical range of operating behavior and resource management.

The final economic parameter needed to calculate optimal escapement is $\delta$, the discount rate. In our sensitivity analysis, we set $\delta$ at $0.02,0.04$ and 0.06 . A simple interactive algorithm was developed to find the zero of $G(Z)$ in equation (8) which proved to be unique and stable. The results are displayed in Table 4.

There are three blocks to Table 4 corresponding to the basecase $q=2.5 E-4$ and then a less productive fleet $(q=2.0 \mathrm{E}-4)$ and a more productive fleet $(\mathrm{q}=3.0 \mathrm{E}-4)$. Within each block the price-cost ratio is varied vertically and the discount rate horizontally. For the base-case $q$ and the median values of $(\mathrm{p} / \mathrm{c})$ and $\delta$, the optimal stock is 68,142 adult whales supporting a harvest of 1,297 adults taken by 77 catcher boats. Within the base-case q block, the optimal stock ranges from a high level 81,052 whales $[$ at $(\mathrm{p} / \mathrm{c})=0.05$ and $\delta=0.02]$ to a low of 57,770 whales $[$ at $(p / c)=0.09$ and $\delta=0.06]$. The high stock was associated with a harvest of 137 whales taken by 7 catcher boats, while the low stock was associated with a harvest 1.675 whales taken by 118 vessels.

When the catchability coefficient is reduced to $q=2.0 \mathrm{E}-4$, we observe that whaling becomes unprofitable at the low price-cost ratio. In the long run the stock returns to $X_{0}=82,093$ whales. In general, the reduction in $q$ causes an increase in the optimal stock and a decrease in harvest and fleet size, ceteris paribus.

The case where whaling becomes unprofitable due to a low price-cost ratio may be of relevance if commercial whaling is resumed. In 1981, when a total of 1.890 whales were harvested from Northeast and Central stocks (see Table 3), the adjusted price-cost
ratio would have been $(2.63) \cdot(0.02)=0.0526$. At this ratio whaling would have been unprofitable for vessels with a catchability coefficient of $q=2.0 \mathrm{E}-4$.

It is not possible to estimate $q$ for later years, since the catchers were constrained by quota. It is believed that as newer catchers replaced older vessels, $q$ increased. The five-year moratorium, however, may have had the effect of reducing the efficiency of both catchers, that have been idle or regeared for other fisheries, and their crews.

It is not known what the price elasticity for whale meat will be in the primary fish markets of Japan. It is also not known if Japan will commence whaling from a stock of minke whales which migrates through their coastal waters, nor the number of whales they might harvest. If markets are slow to expand and demand is inelastic, the resumption of commercial whaling may be short-lived for purely economic reasons.

The final block in Table 4 corresponds to the high productivity case. Here the optimal stock may fall as low as 51,538 whales; slightly below the minimum of our simulation in Table 1.

This stock would be optimal under a high price-cost ratio and a high discount rate. In this case 1.736 whales are harvested by 114 vessels.

At the other extreme, $\mathrm{a}(\mathrm{p} / \mathrm{c})=0.05$ and $\delta=0.02$, the optimal stock is 74,353 , supporting a harvest of 853 whales by 38 vessels.

These results seem plausible in light of the historical
landings listed in Table 1. Annual harvests that exceeded 2,000 whales during the 1950 s and 1960 s caused the stock to decline to about 52,000 whales by the mid-1960s. Harvests around 1,500 during the 1970 s appear, in our simulation, to have been sustainable.

The regulation of fisheries by individual transferable quotas (ITQs) is gaining acceptance. Muse and Schelle (1989) describe programs in the United States, New Zealand, Canada and Iceland. If the Norwegian government allows the resumption of whaling, the distribution of transferable quota to some initial number of catchers might be considered. If whaling proves profitable there is likely to be new investment. More efficient, lower-cost catchers could enter the fleet as existing quota holders upgrade their vessels or as prospective entrants purchase or rent quota from less efficient operators.

Management of commercial whaling under a system of ITQs might also allow individuals opposed to whaling to purchase quota. retire it, and thereby allow the stock to increase to levels that would perhaps reflect existence or other "nonconsumptive" values.

## IV. Externalities and Animal-Rights

The analysis of the previous section would imply that a sustainable harvest of minke whales from the stock in the Northeast Atlantic is feasible and, under certain bioeconomic conditions, profitable. ${ }^{8}$ Should it be resumed?

There are two economic arguments which might be advanced for making the current moratorium permanent. The first relates to the neoclassical notion of externality, while the second is based on the notion of property, specifically the evolution of common property to private property and, in the case of marine mammals, to the extension of rights traditionally reserved for the species homo sapiens.

From the perspective of neoclassical economics, the killing of wildlife or the slaughter of domestically-raised animals may negatively affect the utility of individuals who place a value on animal life as opposed to a value based on the products which might be derived from that animal. The animal's welfare, defined from a human perspective, enters positively into the individual's utility function. Such individuals would oppose the killing of animals unless they could be convinced that some more valuable purpose was being
served. If meat and blubber are not sufficiently important to warrant the killing of a whale, perhaps medical research or some other purpose might be of high enough value to offset the negative utility from taking an animal's life. ${ }^{9}$

In the past thirty years a number of charter boats have specialized in cruises to observe whales. One would expect that individuals paying for such a cruise might be opposed to the resumption of commercial whaling, either because of the negative utility from their death or because whales from populations at their pristine equilibria would be more frequently encountered. Should commercial whalers compensate would-be watchers or should whale watchers compensate (bribe) whalers not to whale? This appears to be a classic externality problem, although the likelihood of internalization by Coasian negotiation seems remote.

This utilitarian philosophy, while allowing animal life to have value beyond the products they might provide, is conceptually distinct from a strict animal-rights perspective. Under this perspective all animals are seen as having the same rights to life as homo sapiens. Here there is no human-derived value to animal life, rather other species are equal in their right to a full and "natural" life. Stone (1974) discusses the historical evolution and ultimately the
extension of basic human rights to all races of mankind and asks whether such rights should be extended to natural objects. Humans can no longer be regarded as private property, although this was not the case as recently as 150 years ago in the United States.

In the great American novel Moby Dick, Chapter 89, is entitled Fast-fish and Loose-fish, and Melville (1851) puts forth perhaps the earliest discussion on the distinction between common property and private property. In the heyday of American whaling "a fast-fish belongs to the party fast to it," while "a loose-fish is fair game for anybody who can soonest catch it." Such rules were important in regulating the conduct on crowded whaling grounds when boats from different ships might have the opportunity to strike a whale which was already harpooned. Melville saw the notion as applicable to human behavior as well, specifically the economic relationships between landlord and renter and creditor and debtor. ("And what are you, reader, but a Loose-Fish and a Fast-Fish, too?")

Have whales evolved from being regarded as common property to having full and equal rights to man? Do the products currently derived from baleen whales justify their harvest?

The answers to these questions will vary within and across cultures. We advocate a tolerant position, where individuals of
different countries are allowed to democratically choose whether they wish to allow or ban whaling and the import of whale products.

The recommendations of the IWC are not binding on
individual countries, but they do carry significant weight in the international community. If the IWC should approve whaling from stocks regarded as abundant, it would give a stamp of legitimacy to countries such as Japan, Iceland and Norway who wish to resume whaling. If the IWC recommends an extension of the moratorium, individual countries could defy that recommendation and unilaterally resume whaling, especially for stocks within their territorial waters. The risk of such unilateral action is that a large, nonwhaling country may impose economic sanctions.

Iceland and Norway are small countries that export a large volume of fish, such as cod and salmon, to the United States. If the IWC does not rescind the moratorium, and if Iceland, Norway and even Japan were to resume whaling, conservation groups within the United States and possibly Europe are likely to lobby for a ban on all imports from whaling countries. If the IWC approves the resumption of whaling, the ability of such groups to successfully lobby for trade restrictions may be diminished.

## V. Conclusions

The core of this paper is a bioeconomic model that might be used to evaluate the long run net economic value from the resumption of commercial whaling. This is a contentious issue, one which the IWC seems ill-equipped to handle. The limited number of bioeconomic models that have been developed to examine the optimal management of baleen whales have not been presented at the IWC meetings, nor have they appeared in its published reports. These studies, while well-founded in the economics of dynamic optimization, have often suffered from unrealistic assumptions about growth and production. The delay-difference equation and exponential production function have strong intuitive appeal and seem to fit the historical data for the minke whale in the Northeast Atlantic. These functional forms lead to an optimal escapement rule which depends on eight bioeconomic parameters and which is readily solved by basic numerical methods. The minke whale is abundant in both the Pacific and Southern Oceans and is a prime candidate for harvest in these areas as well. As better estimates of the bioeconomic parameters become available our model can be updated and the long-run optimum recalculated.

Analysis of the minke whale in the Northeast Atlantic is based on what we regard as a conservative set of biological parameters. The stock declines from about 82,000 adult whales in 1938 to just under 52,000 whales in 1973. Under a strict quota, beginning in 1984, and the limited scientific harvest in 1988 and 1989, the stock slowly recovers to just under 59,000 whales in 1990. Our analysis identified a critical combination for the pricecost ratio and catchability coefficient. Commercial harvest will not be optimal for low productivity vessels $(\mathrm{q}=2.0 \mathrm{E}-4)$ facing a low pricecost ratio ( $\mathrm{p} / \mathrm{c}=0.05$ ). This is true for $0.02 \leq \delta \leq 0.06$. At the other extreme, a highly productive fleet $(\mathrm{q}=3.0 \mathrm{E}-4)$ facing a high pricecost ratio $(\mathrm{p} / \mathrm{c}=0.09)$ will harvest 1,736 whales from an optimal stock of 51,538 whales using 114 catchers. Given the moratorium, there is little current information on the likely productivity of vessels or the price elasticity for meat and blubber. Large volumes of meat being supplied to limited markets in Japan may make large scale whaling unprofitable on purely economic grounds.

Should commercial whaling be resumed? The answer will vary within and across cultures. It is perhaps appropriate for each country to choose whether to allow or prohibit whaling subject to the proviso that no stock be threatened with extinction.

## Endnotes

${ }^{1}$ Baleen whales, of the suborder mysticeti, are equipped with baleen plates that hang from the upper jaw and are used like a sieve or strainer as the whale swims through swarms of plankton or schools of small fish. The other living suborder is odontoceti, or toothed whales. Members of this suborder, such as the sperm whale, Physeter macrocephalus, feed on squid, larger fish and, in the case of the killer whale, Orcinus orca, squid, fish, seals and porpoise.
${ }^{2}$ In a special issue of the Marine Fisheries Review, devoted to the status of whales, Braham (1984) lists eight endangered species. Seven are baleen whales and the other is the sperm whale. Each species had two or more "unit stocks," thought to be relatively independent groups that might be managed as a separate unit. At that time, eight stocks were thought to be less than $10 \%$ of their pre-exploitation level, 13 stocks were listed as having no reliable population estimate, and only two stocks were thought to have recovered; those being the gray whale, Eschrichtius robustus, in the Eastern North Pacific, and the humpback, Megaptera novaeangliae, in the Western North Atlantic.
${ }^{3}$ The Southern Ocean refers to the southern portions of the Atlantic, Pacific and Indian Oceans surrounding Antarctica.
${ }^{4}$ In Spence's model the dynamics of the blue whale stock was characterized by the first-order difference equation $X_{t+1}=a X_{t}^{b}-Y_{t}$, where $X_{t}$ is the stock of blue whales, and $Y_{t}$ is annual harvest. For his estimates of $\mathrm{a}=8.356$ and $\mathrm{b}=0.8204$, an initial stock of $\mathrm{X}_{0}=1.639$ whales would grow to a population of 120,000 whales in 17 years with zero harvest ( $Y_{t}=0$ ). Harvest of the blue whale was banned by the IWC in 1967 and the most recent estimates of the blue whale population in all oceans is about 10,000 (Darling 1988).
${ }^{5}$ Clark's analysis of the fin whale assumes a production function of the form $Y_{t}=q X_{t} E_{t}$, where $E_{t}$ is a measure of effort, say the number of factory vessels or catcher boats. For a given estimate of the catchability coefficient, $q>0$, and a finite stock level $X_{t}$, there are finite levels of effort for which $Y_{t}>X_{t}$. A more plausible form for the production function, one used by Spence and one which will be used in the application in this paper, is $Y_{t}=X_{t}\left(1-e^{-q E_{t}}\right)$.
${ }^{6}$ The minke whale is the smallest of the rorquals; a group that includes the blue, fin and sei (Balaenoptera borealis) whale. Being the smallest, it was the last whale to be intensively harvested by whalers working the Southern Ocean in the early and mid-twentieth century (Clark and Lamberson 1982). The population in the northern hemisphere is generally thought to be separate from the population in the southern hemisphere. The delineation of separate (noninteracting) stocks in the north Atlantic is subject to debate, but the International Whaling Commission (IWC) recognizes four stocks defined by area as (1) the Canadian East Coast Stock, (2) the West Greenland Stock, (3) the Central North Atlantic Stock and (4) the Northeast Atlantic Stock. This latter stock migrates along the Norwegian coast into the Barents Sea.
${ }^{7} \mathrm{~A}$ key relationship is ( $\mathrm{r}-\mathrm{M}$ ), sometimes referred to as the maximum rate of net recruitment. When $\mathrm{r}=0.13$, and all other parameters are the same, $\mathrm{X}_{0}=70,386$ and the population declines to a low of 24,226 in 1984 before rising to 26,687 in 1990. When $r=0.14, X_{0}=76,966$ and the population declines to 39,309 , also in 1984, increasing to 43,794 by 1990. In each case, the simulated stock level for 1990 falls below the lower limit of 50,000 estimated by Ugland (1986).
${ }^{8}$ If the price per whale is $50,000 \mathrm{NK}$ and the prorated cost of whaling is $714,286 \mathrm{NK}$, so that $(\mathrm{p} / \mathrm{c})=0.07$, and if $\mathrm{q}=2.5 \mathrm{E}-4$ and $\delta=0.04$. then, given the other biological parameters, the optimal (base-case) stock is $\mathrm{X}=68,142$ with a harvest of $\mathrm{Y}=1,297$ adult whales. The annual net revenue is $\pi(\mathrm{X}, \mathrm{Y})=\mathrm{pY}-(\mathrm{c} / \mathrm{q}) \ln (\mathrm{X} /(\mathrm{X}-\mathrm{Y}))=9,943,386 \mathrm{NK}$ with a present value of $\pi=\pi(\mathrm{X}, \mathrm{Y})(1+\delta) / \delta=258,528,043 \mathrm{NK}$. At an exchange rate of $6.5 \mathrm{NK}=1$ USD these values translate to $\$ 1,529,751$ and $\$ 39,773,545$, respectively.
${ }^{9}$ Rabbits have been used in testing the level of irritation and the health risk from using certain chemicals in making eyeliner and mascara. The animals undoubtedly suffered, and many were euthanized. Individuals concerned with animal welfare may not view the production of eye make-up as a sufficiently compelling reason for the suffering and premature death of any animal. For some, however, there might be medical research, say cancer research, where the suffering and premature death of an animal might be justified on an expected-utility basis.

## References

Breiwick, J. M. 1983. "Methods and Data Required for Whale Stock Assessments." Reports of the International Whaling Commission (Special Issue No. 5):19-22.

Budsjettnemnda for Fiskenæringen. 1981-1988.
Lonnsomhetsundersøkelser (for the years 1980-1987), Bergen.

Christensen, I. 1981. "Age Determination of Minke Whales, Balaenoptera acutorostrata, from Laminated Structures in the Tympanic Bullae." Reports of the International Whaling Commission 31:245-253.

Clark, C. W. 1976. "A Delayed-Recruitment Model of Population Dynamics, with an Application to Baleen Whale Populations." Journal of Mathematical Biology 3:381-391.

Clark, C. W., F. H. Clarke, and G. R. Munro. 1979. "The Optimal Exploitation of Renewable Stocks: Problems of Irreversible Investment." Econometrica 47:25-49.

Clark, C. W. and R. Lamberson. 1982. "An Economic History and Analysis of Pelagic Whaling." Marine Policy (April):103-120.

Conrad, J. M. 1989. "Bioeconomics and the Bowhead Whale." Journal of Political Economy 97(4):974-987.

Darling. J. D. 1988. "Whales, An Era of Discovery." National Geographic (December):872-909.

Melville, H. 1851. Moby Dick or, The Whale. Reprinted in Penguin Classics, 1986, Penguin Books, Great Britain.

Muse, B. and K. Schelle. 1989. "Individual Fisherman's Quotas: A Preliminary Review of Some Recent Programs." Alaska Commercial Fisheries Entry Commission, Juneau, Alaska.

Spence, A. M. 1974. "Blue Whales and Applied Control Theory." in C.
L. Zadeh et al., editors, Systems Approaches for Solving Environmental Problems, in the series Mathematical Studies in the Social and Behavioral Sciences, Vandenhoeck and Ruprecht, Gottingen and Zurich.

Statistisk Sentralbyrå. 1989. Fiskeristatistikk 1987. Oslo.

Statistisk Sentralbyrå. 1978. Historisk Statistikk 1978. Oslo.

Stone, C. D. 1974. Should Trees have Standing? Toward Legal Rights for Natural Objects W Kaufmann, Los Altos, California.

Ugland, K. I. 1986. "Simulation of the Minke Whales in the Barents Sea." Document SC/38 Mi24, to the Scientific Committee, IWC. 23pp.

Walløe, L., Anderson, R. M., Beverton, R. J. H. and A. SembJohansson. 1987. "The State of the Northeast Atlantic Minke Whale Stock." Økoforsk: the applied ecology research programme, Oslo.

Øien, N, Jørgensen, T. and T. Øritsland. 1987. "A Stock Assessment for Northeast Atlantic Minke Whales." Reports of the International Whaling Commission 37: 225-236.

Figure 1. Harvest of Minke Whales from the Northeast Atlantic Stock


Figure 2. Estimated Population of Minke Whales in the Northeast Atlantic Stock


Figure 3. Number of Norwegian Vessels Harvesting Minke Whales


Table 1. Hargest, Number of Norwegian Vessels and the Estimated Stock of Minke Whales in the Northeast Atlantic

| Year | Harvest | Vessels | Stock |
| :---: | :---: | :---: | :---: |
| 1938 | 1345 | na | 82093 |
| 1939 | 915 | na | 80882 |
| 1940 | 539 | na | 80180 |
| 1941 | 2109 | na | 79886 |
| 1942 | 2133 | na | 78209 |
| 1943 | 1612 | na | 76667 |
| 1944 | 1348 | na | 75768 |
| 1945 | 1782 | na | 75188 |
| 1946 | 1833 | 268 | 74296 |
| 1947 | 2556 | 264 | 73412 |
| 1948 | 3487 | 300 | 72013 |
| 1949 | 3840 | 350 | 69922 |
| 1950 | 1990 | 198 | 67714 |
| 1951 | 2751 | 236 | 67381 |
| 1952 | 3324 | 225 | 66387 |
| 1953 | 2433 | 169 | 64958 |
| 1954 | 3499 | 186 | 64452 |
| 1955 | 4309 | 193 | 62994 |
| 1956 | 3654 | 198 | 60870 |
| 1957 | 3624 | 197 | 59440 |
| 1958 | 4338 | 192 | 58162 |
| 1959 | 3062 | 185 | 56311 |
| 1960 | 3233 | 183 | 55705 |
| 1961 | 3092 | 178 | 54973 |
| 1962 | 2975 | 168 | 54340 |
| 1963 | 3059 | 156 | 53715 |
| 1964 | 2463 | 144 | 52966 |
| 1965 | 2114 | 139 | 52715 |
| 1966 | 1902 | 115 | 52633 |
| 1967 | 1758 | 119 | 52700 |
| 1968 | 1986 | 126 | 52818 |
| 1969 | 2014 | 115 | 52665 |
| 1970 | 1890 | 118 | 52453 |
| 1971 | 1799 | 114 | 52306 |
| 1972 | 2172 | 96 | 52241 |
| 1973 | 1558 | 99 | 51857 |
| 1974 | 1410 | 84 | 52076 |
| 1975 | 1426 | 80 | 52426 |
| 1976 | 1884 | 83 | 52717 |
| 1977 | 1698 | 87 | 52548 |
| 1978 | 1383 | 87 | 52556 |
| 1979 | 1786 | 84 | 52841 |
| 1980 | 1807 | 89 | 52692 |
| 1981 | 1770 | 89 | 52561 |
| 1982 | 1782 | 80 | 52512 |
| 1983 | 1688 | 79 | 52490 |
| 1984 | 630 | 55 | 52538 |
| 1985 | 634 | 53 | 53536 |
| 1986 | 298 | 53 | 54461 |
| 1987 | 279 | 50 | 55584 |
| 1988 | 29 | scientific | 56596 |
| 1989 | 17 | scientific | 57723 |
| 1990 | na | scientific | 58742 |

Table 2. Estimation of the Catchability Coefficient for the Exponential Production Function $Y=X\left(1-e^{-q E}\right)$ for the period 1952-1972, where $Y$ is Harvest, $X$ is the Estimated Stock and $E$ is the number of Vessels
A. OLS: No Correction for Autocorrelation, Dependent Variable: $\ln ((\mathrm{X}-\mathrm{Y}) / \mathrm{X})$

| Variable | Coefficient | Standard Error | $\mathbf{t}$-ratio |
| :---: | :---: | :---: | :---: |
| E | $-2.7045 \mathrm{E}-4$ | $0.49360 \mathrm{E}-4$ | -5.4790 |
| constant | $-7.6683 \mathrm{E}-3$ | $7.99220 \mathrm{E}-3$ | -0.9595 |

R-Square $=0.6124 \quad$ R-Square Adjusted $=0.5920 \quad \mathrm{~F}=30.02$
Durbin-Watson $=1.1562$
B. OLS: Correction for First-Order Autocorrelation Dependent Variable: $\ln ((X-Y) / X)$

| Variable | Coefficient | Standard Error | $\mathbf{t}$-ratio |
| :---: | :---: | :---: | ---: |
| E | $-2.4465 \mathrm{E}-4$ | $0.61141 \mathrm{E}-4$ | -4.0014 |
| constant | $-1.1557 \mathrm{E}-2$ | $9.96360 \mathrm{E}-3$ | -1.1599 |
| rho | 0.33145 | 0.20588 | 1.6099 |

R-Square $=0.6559 \quad$ R-Square Adjusted $=0.6378$
Durbin-Watson $=1.6454$

Table 3. The Relative Price-Cost Ratio for the Period 1980-1987

| Year | Number of <br> Whales $^{1}$ | Value of all <br> Products $^{2}$ | Price per <br> Whale (p) $^{3}$ | Cost per <br> Vessel (c) | p/c |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 2,054 | $39,660,000$ | 19,308 | 756,805 | 0.0255 |
| 1981 | 1,890 | $35,719,000$ | 18,899 | 945,557 | 0.0200 |
| 1982 | 1,963 | $39,837,000$ | 20,293 | 952,142 | 0.0213 |
| 1983 | 1,869 | $45,617,000$ | 24,407 | 940,714 | 0.0259 |
| 1984 | 804 | $32,681,000$ | 40,648 | 802,423 | 0.0510 |
| 1985 | 771 | $34,626,000$ | 44,910 | $1,007,118$ | 0.0450 |
| 1986 | 383 | $20,489,000$ | 53,496 | 846,068 | 0.0632 |
| 1987 | 375 | $21,294,000$ | 56,784 | 944,670 | 0.0601 |

${ }^{1}$ The number of whales listed in this table is larger than the number listed in Table 1 because it includes the harvest of minke whales from the Central Atlantic stock. Source: Fiskeristatistikk 1987.
${ }^{2}$ The primary products from the minke whale are meat and blubber which are consumed by Norwegians or exported to Japan for human consumption. A very small fraction (less than one percent by weight) is processed into animal feed. This value is given in nominal Norwegian Kroner. Source: Fiskeristatistikk 1987.
${ }^{3}$ The price per whale, $p$, is calculated by dividing the value of whale products by the number of whales harvested.
${ }^{4}$ During the period 1980-1987 vessels in the Norwegian coastal fleet operated approximately 36 weeks per year. The cost estimates listed here are operating costs for the entire 36 -week season. During such a season a vessel would typically spend 35 to 41 percent of its time whaling. The rest of the time was spent harvesting cod, haddock, herring and other species. The distribution of costs between these fishing activities is problematic. If it were appropriate to calculate whaling cost as season cost times the proportion of time spent whaling, it would more than double the $p / c$ ratios listed in the rightmost column. Source: Lonnsomhetsundersøkelser for the years 1980-1987.

Table 4. The Optimal Stock, X, Harvest, $X$, and Effort, $E$, in the Norwegian Minke Whale Industry for the Bioeconomic Model with $\alpha=2.39, \mathrm{r}=0.15, \mathrm{~K}=130,000, \mathrm{M}=0.10$. $\tau=7$ and alternative values of $q, \delta$ and $p / c$

|  | $=0.02$ |  |
| :--- | :--- | ---: |
| $\mathrm{X}=81,052$ |  |  |
| $\mathrm{p} / \mathrm{c}=0.05$ | $\mathrm{Y}=$ | 137 |
|  | $\mathrm{E}=$ | 7 |
| $\mathrm{p} / \mathrm{c}=0.07$ | $\mathrm{X}=69,472$ |  |
|  | $\mathrm{Y}=$ | 1.217 |
|  | $\mathrm{E}=$ | 71 |
|  |  |  |
| $\mathrm{p} / \mathrm{c}=0.09$ | $\mathrm{X}=62,735$ |  |
|  | $\mathrm{Y}=$ | 1,543 |
|  | $\mathrm{E}=$ | 100 |

With $\mathrm{q}=2.5 \mathrm{E}-4$

| $\delta=0.04$ |  | $\delta=0.06$ |
| ---: | ---: | ---: |
| $\mathrm{X}=80,995$ | $\mathrm{X}=80.941$ |  |
| $\mathrm{Y}=145$ | $\mathrm{Y}=151$ |  |
| $\mathrm{E}=\quad 7$ | $\mathrm{E}=8$ |  |

$X=68,142$
$X=67,041$
$\mathrm{Y}=1,297 \quad \mathrm{Y}=1.356$
$\mathrm{E}=77 \quad \mathrm{E}=82$
$\begin{array}{ll}\mathrm{X}=59,977 & \mathrm{X}=57.770 \\ \mathrm{Y}=1,627 & \mathrm{Y}=1,675 \\ \mathrm{E}=110 & \mathrm{E}=118\end{array}$

With $\mathrm{q}=2.0 \mathrm{E}-4$

$$
\begin{array}{cc}
\delta=0.02 \\
X=82.093 \\
Y= & 0 \\
E= & 0
\end{array}
$$

$\delta=0,04$
$\delta=0.06$
$X=82,093$
$\mathrm{X}=82,093$
$\mathrm{p} / \mathrm{c}=0.05$
$\mathrm{X}=76.760$
$\mathrm{p} / \mathrm{c}=0.07$
$\mathrm{Y}=627$
$\mathrm{E}=41$
$X=68,648$
$\mathrm{p} / \mathrm{c}=0.09$
$\mathrm{Y}=1.268$
$X=67,175$
$\mathrm{X}=65,960$
$\mathrm{E}=93$
$X=76,376$
$\mathrm{X}=76,043$
$\mathrm{Y}=666 \quad \mathrm{Y}=698$
$E=44 \quad E=46$
$Y=1,410$
$Y=1,350$
$\mathrm{E}=108$

With $\mathrm{q}=3.0 \mathrm{E}-4$
$\delta=0.02$
$x=74,353$
$\mathrm{p} / \mathrm{c}=0.05$
$\mathrm{Y}=853$
$\mathrm{E}=38$
$\delta=0.04$
$X=73,713$
$\delta=0.06$
$\mathrm{X}=73,713$
$\mathrm{X}=73,172$
$\mathrm{Y}=908 \quad \mathrm{Y}=952$
$E=41 \quad E=44$
$X=64.453$
$X=62,120$
$X=60,236$
$\mathrm{p} / \mathrm{c}=0.07$

$$
E=77
$$

$p / c=0.09$

$$
Y=1.478
$$

$Y=1,565$
$Y=1,621$
$\mathrm{E}=85$
$E=91$


