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Multiplicity of investment equilibria
when pollution permits are not tradable

Abstract

We study a model in which the level of environmental regulation depends on
abatement cost, which depend on aggregate levels of investment in abatement
capital. Firms are non-strategic. When emissions quotas are not tradable, there
are multiple competitive equilibria to the investment problem. Allowing trade in
permits leads to a unique socially optimal equilibrium. For a given distribution
of investment, allowing trade in permits has an ambiguous effect on the optimal
level of regulation. Previous results on coordination games with non-atomic
agents are applied to the problem of environmental regulation with endogenous
investment in abatement capital.
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1 Introduction

A non-strategic firm’s belief about future environmental regulation affects its decision to install
equipment that reduces abatement costs. Firms probably understand that future regulations
might depend on industry-wide abatement costs. In a competitive setting, an individual firm
is not able to affect the industry-wide abatement cost and therefore is unable to affect future
regulation. Nevertheless, if the firm’s investment decision depends on its beliefs about future
environmental regulation, then its decision might also depend on its beliefs about aggregate
industry investment. Firms in our setting are too small to affect the market outcome, so they
are always non-strategic. However, following common usage we describe actions as “strategic
substitutes or complements”, depending on the effect that collective actions have on a firm’s
payoff.

If the regulator uses quantity restrictions without tradeable permits, firms’ investment deci-
sions are strategic complements: it is more attractive for an individual firm to invest in pollution-
reducing technology if it believes that a sizeable fraction of the industry is making this invest-
ment. Investment by many firms in a technology that reduces abatement costs makes future
regulation more stringent, thus increasing the profitability of the investment. The fact that ac-
tions are strategic complements can create multiple equilibria. This possibility is transparent
in the two-period binary action (invest or do not invest) model presented in the next section, but
it can also arise when each firm’s investment decision is a continuous variable.

In the binary action setting the two equilibria consist of all (homogeneous) firms or no
firms making the investment. In general, neither outcome is socially optimal. Thus, optimal
ex post regulation does not induce a socially optimal outcome, even in a competitive (non-
strategic) setting. When all firms make the same decision, they all have the same abatement
costs. Consequently, the lack of tradeable permits appears inconsequential. However, in a non-
equilibrium subgame, in which not all firms make the same investment decision, there would
be an incentive for trade. The inability for that trade to occur creates a distortion, causing the
ex post optimal regulation to lead to suboptimal welfare.

When the regulator uses quantity restrictions with tradeable permits (equivalently, a pol-
lution tax), it is still the case that a higher level of aggregate investment causes regulation to
be more stringent. This relation tends to increase the value of the investment, as is the case
without tradeable permits. However, when more firms invest in the pollution abatement tech-
nology, more firms want to sell permits and fewer firms want to buy them. Thus, although



higher investment reduces the aggregate supply of permits (chosen by the regulator), it always
reduces the equilibrium price of permits, making investment less attractive. Therefore, when
the regulator uses tradeable permits (or taxes), the investment decisions are strategic substitutes
and there is always a unique equilibrium to the investment game.

Firms’ ability to trade permits lowers aggregate abatement costs, conditional on an arbitrary
distribution of investment. From this fact, it might seem that the equilibrium pollution standard
would be stricter (fewer pollution permits) when firms are allowed to trade. However, the
optimal regulation depends on a comparison of marginal pollution damages and marginal (not
total) abatement costs. The ability to trade permits can make the optimal level of regulation
either laxer or tighter, for a given distribution of investment.

Jaffe, Newell, and Stavins (2003) survey the literature on pollution control and endogenous
investment. Many papers in this literature, including Biglaiser, Horowitz, and Quiggin (1995),
Kennedy and Laplante (1999), Montero (2002), Fischer, Parry, and Pizer (2003), Moledina,
Polasky, Coggins, and Costello (2003), Tarui and Polasky (2005) and Tarui and Polasky (2006)
assume that firms behave strategically with respect to the regulator: firms believe that their
investment decisions will affect future regulation. Several paper, including Milliman and Prince
(1989), Requate (1998), and Karp and Zhang (2002) treat firms as non-strategic. None of
these papers discuss multiple equilibria, so they do not consider the relation between the policy
instrument and the existence of multiplicity. Multiple equilibria can arise regardless of whether
firms are strategic. The possibility is particularly easy to identify when firms are non-strategic;
this case is also useful because it helps to isolate the strategic incentive from the more general
effect of forward-looking behavior.

Tradeable permits are a fairly recent innovation. Quantity restrictions without trade are
still the norm. Therefore, the possibility of multiple equilibria and the lack of optimality in
a competitive setting is significant. In our model, the regulator’s decision is conditioned on
industry costs. The equilibrium when the regulator uses tradeable permits (or taxes) equals
the social optimum regardless of whether the regulator commits to a level of permits before
investment occurs. The outcome is subgame perfect when the regulator moves after the firms
invest. Itistime consistent (but not subgame perfect) when the regulator moves before firms. If
the regulator commits to a level of nontradeable permits before investment occurs, the outcome
might be time consistent, but it is typically not subgame perfect. Trade in pollution permits
creates efficiencies at both the abatement stage and the investment stage.



In some cases, regulation and investment coevolve, so a multiperiod alternating moves game
probably provides a more realistic description than the two-period setting. However, as long
as regulation responds to aggregate industry investment decisions and firms understand this,
the effects that we discuss are present. If the regulator expects to learn about the severity of
damages, there is a good reason to delay making the regulatory decisions. The depreciation
of old capital may make it difficult for firms to delay their investment decisions. Although a
two-stage model is unlikely to “get the timing right”, it nevertheless provides insight into the
effect that state-contingent policymaking has on equilibrium outcomes.

Section 2 presents the model and establishes the results described above. Section 3 “im-
ports” previous results on coordination games into the setting with investment and environmen-
tal regulation.

2 The model and equilibria without and with trade

We use a two-period rational expectations equilibrium model. Prior to investment, all firms
are identical. In the first period, each firm makes a binary decision: it does not invest in a new
technology (K = 0) or it does invest (K = 1). If afirm is allowed to emit e units of pollution,
its abatement cost is ¢(e, K'), a function that is decreasing and convex in e and decreasing in K,
with ¢, x > 0. This inequality implies that the business-as-usual (BAU) level of emission, i.e.
the level that satisfies c.(e, K) = 0, is decreasing in K, and also that c.(e, 1) — c.(e,0) > 0.
The fraction of firms that invest is0 < x < 1. The firm’s cost of investmentis ¢. If0 < k < 1,
firms are heterogenous in the second stage, when the regulator decides on the level of pollution
permits.

Each (non-atomic) firm is given an emissions allowance of e, independently of whether it
invested. The mass of firms is normalized to 1, so aggregate emissions are e. The damage
function is D(e), an increasing convex function. If firms who did not invest emit at the rate °
and firms that did invest emit at the rate ¢!, total emissions are (1 — x) ® + ke! = e and social
costs at the emissions stage are (1 — «) c¢(e®, 0) + re(el, 1) + D(e).

2.1 No trade in permits

In the absence of trade (and given the assumption that the allocation of permits does not depend
on whether firms invested), all firms emit at the same rate, so ¢° = e! = e. We use subscripts



to denote partial derivatives and superscripts to indicate the firm’s investment decision. For
example, ¢ = ¢, (¢,i), i = 0,1. Given x, minimization of social costs requires

(1—k)+ret+D = 0 (1)

S

(1—r)c + ke, + D" >0,

The first order condition, equation (1), defines the optimal e* as a function of k. ("«" denotes
an equilibrium, or an optimal level.) The derivative is

de*_cg—cé<0
de S '

When more firms invest (x is larger), marginal abatement costs are lower, so the equilibrium

number of permits is lower.
In the investment stage, a firm’s net benefit of investing (the costs when it does not invest
minus the cost when it does invest) is

which implies
> 0. (2)
The investment decisions are strategic complements.
The necessary and sufficient condition for multiple equilibria are
E = ¢(e(0),1) 4+ ¢ —c(e(0),0) >0 (3
H c(e(1),0) —c(e(1),1) — ¢ > 0. 4)

The net cost of adopting if no other firm adopts is £. Inequality (3) implies that a firm does
not want to invest if it knows that no other firm will invest (x = 0); here the firm knows that the
environmental standards will be lax. The net benefit of adopting if all other firms adopt is H.
Inequality (4) implies that it pays a firm to invest if all other firms do so; here the firm knows
that abatement standards will be strict.

If equations (3) and (4) hold there is an interior unstable equilibrium that satisfies I1(x,,) =
0, where 0 < k, < 1. At k, a firm is indifferent between investing and not investing. This
equilibrium is unstable; for example, if slightly fewer than the equilibrium number of firms
invest (x < k,), it becomes optimal for all other investors to change their decisions, and decide
not to invest. In summary, we have



Remark 1 Inequalities (3) and (4) are necessary and sufficient for the existence of two stable
boundary equilibria (all firms or no firms invest) and one unstable interior equilibrium. If
either inequality fails, there exists a unique boundary equilibrium.

If ¢ is very small, it is always optimal to invest; it is never optimal to invest if ¢ is very large.
Multiplicity requires that ¢ is neither very large nor very small.

2.2 Trade in permits

Trade in permits equates marginal costs of investors and non-investors, and the price of permits
equals this marginal cost. Let e be each firm’s endowment of permits, and ¢’ the equilibrium
purchases of each non-abater. Since the mass of purchases equals (1 — x) ¢!, each of the «
low cost firms (the investors) must be willing to sell % The equilibrium conditions for
quantity (e*) and price (p) are

ce(e+e,0) = c (e—(l_—ﬁ)et,l) (5)

ce(e+€,0) = —p(e k). (6)

Given &, the planner’s problem is to choose e to minimize

. t
Wiesk)=(1—r)c(e+€,0) + ke (e—%,l)—l—D(e), (7)
leading to the first order condition
. t
(1—k)ce (e + e, 0) + KCe (e — M, 1) + D'(e) = 0. (8)

Because the market allocates permits optimally, the envelope result means that the first order
condition does not involve Cfi—f. We assume that the planner’s problem is convex, so the second
order condition holds:

(9)

2.2.1 Comparison of pollution levels with and without trade, given

Here we compare the equilibrium levels of pollution permits with and without trade in permits,
for a given k. The two levels are equal at x = 0 or x = 1, where there is no incentive to trade.
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The only interesting situation is where 0 < x < 1, as we assume for the rest of this subsection.
For any e, x, total abatement costs are lower when permits are tradeable. This fact might appear
to suggest that the equilibrium level of permits would be lower (i.e., abatement would be higher)
under trade. This relation need not hold, because the optimal level of pollution depends on a
comparison of marginal (not total) abatement costs, and abatement benefits.

The private marginal benefit of emissions equals the negative of private marginal costs.
The social marginal benefit of emissions is G(e; x,j) = — ((1 — k) & + kcl), j = trade, no
trade. With trade, the two types of firms have the same marginal benefits, p, so G(e; k,
trade) = p (e, k). With and without trade, G (-) is a convex combination, with weights equal
to 1 — k, k, of the marginal benefits of emissions for the two types of firms (those who did not
invest and those who did).

Equations (1) and (8) have the same form, but they have different arguments. They are
identical if ¢! = 0. Figure 1 shows the graphs of marginal social benefits and marginal damages
(the solid curves) in the absence of trade, for given . The equilibrium number of permits
without trade is shown as e*. The curves labelled A and B show possible graphs of marginal
emissions benefits under trade, taken from equation (8). If the introduction of trade causes the
industry marginal benefit curve to shift to A, trade reduces the equilibrium number of permits.
If the introduction of trade causes the marginal industry cost curve to shift to B, trade increases
the equilibrium number of permits.

Either of these scenarios can occur. Trade in permits shifts down the industry marginal cost
curve (to a location such as A in Figure 1) if and only if the equilibrium price, under trade, is
lower than the convex combination of marginal abatement costs without trade.

Figure 2 graphs the non-adopter’s and the adopter’s marginal benefit curves as a function
of ¢! (for fixed e and for = 0.5) under two scenarios. These scenarios are shown by the
curves labelled “low” and “high”, corresponding to low and high marginal costs for the firm that
invests. For simplicity, the figure illustrates a case where the intercept of the adopter’s marginal
cost, point b, is the same in the high and the low scenario. The non-adopter’s intercept of
marginal cost is at point a, so the social marginal benefit without trade is “T“’ (for this particular
value of e and for k = 0.5). If the investor’s marginal benefit curve is “low”, the equilibrium
price is lower than “T“’ This possibility corresponds to curve A in Figure 1. Here the volume
of trade is high, and the price is low when permits are tradeable. In this case, trade reduces the
equilibrium level of e, for given . Trade has the opposite effect in the “high” scenario. There



s —((1—K)C§ +KC§)

Figure 1: Comparison of emissions level for given 0 < x < 1, without trade (solid curve) and
with trade (curves labelled A and B).

the volume of trade is low and the price is high; trade increases the equilibrium level of e for
given . A simple argument (see Appendix for details) establishes

Remark 2 Assume that 0 < x < 1. A sufficient condition for trade in permits to decrease the
equilibrium supply of permits (i.e. to lead to stronger environmental regulation) is

A (k,0,8) = cunle + 5,0) — cu (e— @1) -0 (10)

forall ¢, x, s. A sufficient condition for trade to lead to weaker environmental regulation is for
inequality (10) to be reversed for all e, x, s.

In general, there is no reason to suppose that inequality (10) holds. For example, suppose
that we can approximate costs using the function c(e, K) = f(K) — (a(K) - Lf)e) e; f(K)
is a fixed cost of abatement, a(K) is the intercept of the marginal benefit of emissions, and
b(K) > 0 is the slope of marginal benefits. This approximation only makes sense for 0 < e <

Z((Ilg)) (the BAU level of emissions). An increase in K reduces BAU emissions if and only if

d(K) _V(K)

a(K) — b(K)
For this linear-quadratic example, inequality (10) is satisfied if and only if 5(0) — b(1) > 0,
i.e. b'(K) < 0. Inequalities (10) and (11) are mutually consistent, so it is possible that allow-

(11)

ing trade in emissions permits would lead to tightening environmental regulations. However,

7



Figure 2: Marginal benefit of emissions trade and marginal cost under high and low scenarios,
fixed e and k = 0.5.

investment can increase the slope of marginal benefits, so that ¥'(K) > 0. In this case, trade
would lead to weaker environmental standards (given k).

Investment decreases marginal abatement costs, but when b'(K) > 0 investment increases
the slope of the marginal benefit of an additional unit of emission. This situation corresponds
to the “high” scenario in Figure 2, where the equilibrium permit price is higher than the convex
combination of marginal abatement costs without trade, for a given level of emissions.

2.2.2 The equilibrium value of « under tradeable permits

In order to determine the equilibrium value(s) of ~ we need to determine the effect of x on a
firm’s payoff. We totally differentiate equation (8), using the second order condition S* > 0.

The result is i 01 .
€ c..C e

—_— = e < 0. 12

dk kst (/icge +(1—k) cé() (12)

(The appendix shows intermediate steps for the derivations of several equations.) Just as is

the case without trade in permits, an increase in the number of adopters (larger %) causes the
regulator to use stricter environmental standards (smaller ¢).
A larger value of x has an ambiguous effect on the purchases per non-adopter, ¢. Totally



differentiating equation (5), the equilibrium condition for quantity traded, implies

" A (#) + 1
d_e B st \ kO, +(1—k)cl, k1 ¢ (13)
de K+ (1—k)ck, e

This equation shows that a sufficient condition for the purchases per non-adopter to increase
with the number of adopters is A(k, e, e’) > 0. (From Remark 2, this inequality also implies
that trade in permits leads to tighter environmental regulations, given x.) An increase in x
causes the equilibrium price of permits to fall:
0 .1 ,t "
% o (mg:ffc(efe— ) D? <0 (14
The benefit of investing (equal to the cost savings) when trade in permits is allowed is

(k) = (cle +¢1,0) + pe’) — (e (e — 15!, 1) + 6 — plie’) =

t 0y C1l-k,t 1) _ 1t (15)
cle+¢€',0) —c(e— el 1) — ¢+ pie’.

Using the equilibrium conditions (5) and (6) we can write the derivative of the benefit of adop-
tion as
it et dp

Equation (16) implies

Remark 3 When permits are tradeable, investment is a strategic substitute; there always exists
a unique equilibrium. The equilibrium involves the fraction 0 < x < 1 of firms investing if and
only if there is a solution to the equation IT*(x) = 0 for 0 < x < 1. If no solution exists, the
equilibrium is on the boundary. The solution exists if and only if

I1°(0) > 0 > II*(1). (17)

We now find necessary and sufficient conditions to insure that equation (17) holds. The
optimal level of e is continuous in x, and as we noted above, e(x) is the same with and without
trade for r = 0 and x = 1. We cannot mechanically use equation (15) to evaluate the benefit
of adoption at x = 0 because of the terms 1‘T”et and %et. As k — 0, each of the adopters buys
an infinitesimal amount. The clearest way to proceed is to treat the two boundaries (x = 0 and
x = 1) symmetrically, recognizing that the benefit of adoption depends on individual levels of



trade.! For example, if almost all firms adopt (k ~ 1), the aggregate volume of transactions
is approximately 0. Each of the the large mass of adopting firms sells an infinitesimal amount,
and has almost no benefit from trade. However, each of the small mass of non-adopters can
buy a substantial amount, and obtain substantial benefits from trade. This logic enables us to
approximate the benefit of non-adoption in the neighborhood of xk = 0 and k = 1.

Consider x ~ 1, where almost all firms adopt the new technology, so the mass of buyers
is small. Denote the socially optimal level of permits when x = 1 as e*! = ¢(1). A firm
that wants to buy permits can do so at (approximately) the price p(1) = —c. (e*!,1); each
adopter sells an infinitesimal quantity and each non-adopter buys the amount ¢! that satisfies
ce (e + €', 0) = ¢ (e*!,1). Thus, in the neighborhood of x = 1, we have

ITI'(k) &~ (c(e* +€',0) + pe') — (c (e — Lt 1) + ¢ — pLtiel) =
(c(e*t 4+ €',0) + pe') — (c (e, 1) + ¢) = (18)
H-B

where
B=c(e?,0) —c(e +¢,0) —pe'and H = ¢ (*,0) —c (e, 1) — ¢

The term denoted B is the consumer surplus that the non-adopters obtain by buying permits
from the adopters. The term denoted H (previously defined in equation (4)) is net benefit of
adoption when all other firms adopt and trade is not permitted. In view of the continuity of all
functions, IT(1) = H — B.

We now consider the other extreme, where almost no firms adopt, i.e. in the neighborhood
of x = 0. Denote the socially optimal level of permits when x = 0 as e¢*® = ¢(0). When
there are very few sellers (x = 0) each buyer purchases an infinitesimal amount, so the price
is determined by buyer’s marginal cost. Thus, p(0) = —c. (e*°, 0) and an adopter is willing to
sell s permits, a level that satisfies —c, (e*! — s, 1) = p(0). In the neighborhood of x = 0 the
benefit of adopting is

IT'(k) ~ (c(e* + €', 0) 4 pe') — (c (e — =2t 1) + ¢ — ptiel) =

c(e*,0) — (c(e®® —s5,1) + ¢ — ps) = (19)
F-E,

11t may seem that the two boundaries, x = 0 and x = 1 are asymmetric, since we can mechanically use
equation (15) to study the neighborhood of x = 1, but not to study the neighborhood of x = 0. This asymmetry
is not real; for example, it is “reversed” if we write the payoff as a function of the measure of firms who do not
invest, k = 1 — k.
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where
F=ps+c (e*o, 1) —c (e*o —s,1) and E=c (6*0, 1) +¢— c(e*,0).

The term F' is the producer surplus that each adopter receives, when almost all firms do not
adopt. The term E (previously defined in equation (3)) is the loss due to adoption when no
other firms adopt. when trade is not permitted.

As a consequence of Remark 3 and equations (18) and (19) we have

Remark 4 With tradeable permits there is an interior (unique) equilibrium if and only if
F—-FE>0>H-B. (20)

There may be multiple (boundary) equilibria without trade, but a unique interior equilibrium
with trade. This possibility requires that the private benefits that arise from trade, measured by
the consumer and producer surplus (B and F') are sufficiently large.

The following linear quadratic example shows that for some parameterizations there are
two boundary equilibria without trade (equations (3) and (4) are both satisfied) and a unique
interior equilibrium with trade (equation (17) is satisfied). We define xy = ¢(0,0) — ¢(0,1) — ¢,
the benefit of adopting the technology if emissions are restricted to 0. In order for adoption to
be optimal in some circumstances, it must be the case that x > 0, as we hereafter assume.

Example 1 Let (e, K) = f(K) — (a(K) - L;%) e with b(0) = b(1) = band D(e) = 2.

Here we have xy = f(0) — f(1) — ¢. For this example,

1 a— A
EZECL b

2
a—A B:le(a—A).

1
X H=x—gd—— 2 b

Inequalities (3), (4) and (17) are all satisfied if and only if %a% >y > %A“;A. When trade
in permits is not allowed, there are multiple boundary equilibria under circumstances where
there would be a unique interior equilibrium with trade. These circumstances require that the

cost of adoption is neither very large nor very small.

2.2.3 A graphical treatment

Figure 3 shows the optimal levels of emissions if all firms or no firms adopt, ¢! and ¢ respec-
tively. (The linearity and equal slopes in the figure are of no consequence for this graphical

11
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Figure 3: No trade in permits. Benefit of mimicing non-adopters = B; Benefit of mimicing

adopters = H.
D'
u
Po
pl ¢ < —Cg
_Ci
el @ emissions

Figure 4: Permits are tradable, x ~ 1 Purchases per non-adopter = vw. Consumer surplus is
B = area uvw

analysis.) When permits are not tradeable, the advantage of not adopting if no other firms adopt
is £ = area dmnh — y; the advantage of adopting when all other firms adopt is H = y— area
dgkh.

When almost all firms adopt, any adopter is willing to sell a unit of permits for the price
p1. Figure 4 shows the level of purchases per non-adopter when almost all firms adopt (vw)
and the corresponding level of consumer surplus (area vvw). When almost no firms adopt, any
non-adopter is willing to buy a unit of permits at the price p,. Figure 5 shows the level of sales
per adopter when almost no firms adopt (zy) and the corresponding level of producer surplus
(zy2).

12



Figure 5: Permits are tradable; x =~ 0. Sales per adopter = xy, producer surplus per adopter is
F =areaxzyz

In summary, there are two boundary equilibria in the absence of trade if area dmnh > y >
area dgkh. There is a unique interior equilibrium with tradeable permits if area dmnh— area
xyzx < x < area dgkh+ area uvw < 0.

2.3 Social optimality and the timing of actions

(1) When permits are tradeable, the outcome produces the social optimum regardless of whether
the planner announces the quota before or after firms decide on investment. (ii) When permits
are not tradeable, the outcome may depend on whether the planner announces the quota before
or after firms decide on investment; in general the outcome is not socially optimal.

In order to establish the first claim, note that the social planner who can choose  and e,
allowing trade, wants to minimize environmental damages plus abatement and investment costs,
W (e; k) + ko. (See equation (7).) The first order condition for this problem is

W +¢ = —II'(k) = 0. (21)

The first order condition for an interior value of x is identical to the condition for an interior

dITt (k)
dk

identical to the condition that an interior competitive equilibrium is stable. The announcement

competitive equilibrium. The second order condition for an interior equilibrium, < 0,Is

e*(k*) is time consistent, but it is not subgame perfect: if a positive measure of firms deviate
from equilibrium, the planner wants to change the level of quotas.

To establish the second claim, consider the constrained social optimum, where there is
no trade in permits. Suppose that this optimum requires an interior solution, 0 < * < 1,

13



with e = e*(k*). The assumption that the solution is interior implies (using the first order
condition to the planner’s choice of k) that II(x*, e*(k*)) = c(e*,0) — c¢(e*,1) — ¢ = 0. In
view of inequality (2) x*, e* is unstable when the regulator chooses quotas conditional on the
distribution of investment. A regulator who chooses quotas prior to the investment decision
can announce e*(x*). At this value of the quota, firms are indifferent between investing and
not investing, so any value « € [0, 1] is an equilibrium value to the investment game. Clearly,
the announcement e*(x*) is not subgame perfect, and for most outcomes it is not even time-
consistent.

If the social optimum (when trade is allowed) involves a boundary equilibrium, it is easy
to show that the competitive equilibrium reproduces the socially optimal outcome regardless of
whether permits are tradeable. Not surprisingly, allowing trade in permits is significant only if
the optimal outcome involves heterogeneous firms.

3 Investment as a coordination game

The last fifteen years has seen an explosion of literature on coordination games, but there have
been few applications in environmental economics of the results from this literature. Here
we sketch some of the insights from coordination games that are applicable to the problem of
regulating emissions when investment is endogenous.

Our starting point is the observation that restricting emissions, without trade in permits, is
a common policy instrument; in some cases it is reasonable to think that the regulator adjusts
pollution targets in response to changing abatement costs. Therefore, it is at least worth con-
sidering the possibility that non-strategic firms’ investment problem is a coordination game,
with multiple equilibria. The multiplicity of equilibria has obvious implications for policy and
welfare analysis. We discuss some of the possible resolutions of the question of multiplicity.

Model 1 (Adapted from Matsuyama (1991).) Suppose that each firm’s capital wears
out and must be replaced at random times; alternatively, a firm fails at a random time and is
replaced by a new firm that chooses whether to incur the fixed cost to install the technology
that reduces abatement costs. The environmental standard adjusts according to the fraction
of firms that have installed the technology. If the failure rate is high, so that firms replace
their capital at short intervals (or old firms are replaced by new firms at short intervals), the
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model approximates a repeated version of our model in Section 2.1, and there are two boundary
equilibria. However, if the failure rate is low, there is a unique equilibrium. In this case, firms
that replace their capital have a dominant strategy; their optimal action depends on the fraction
of firms that currently have low abatement costs. With a low failure rate, the equilibrium
depends on market fundamentals, not beliefs about future actions. (Herrendorf, Valentinyi,
and Waldman (2000) show that if firms are sufficiently heterogenous before investment, there
is a unique equilibrium to this model.)

Model 2 (Adapted from Frankel and Pauzner (2000).) Consider a variation of Model
1, in which the damage of emissions (equivalently, the regulator’s beliefs about the damage
of emissions) changes randomly and exogenously; future damage parameters depend on the
current damage parameter. In this case, the optimal level of emissions depends on the current
fraction of firms that have the efficient technology, and also on (the regulator’s current belief
about) the damage parameter. Suppose also that there are “dominance regions”: if the damage
parameter exceeds a critical threshold, the regulator chooses such strict regulation that invest-
ment is optimal regardless of the level of «; if the damage parameter is lower than a (different)
critical threshold, the regulator chooses such lax regulation that it is not optimal to make the
investment, regardless of the level of x. Using an argument of iterated deletion of dominated
strategies, the equilibrium is again unique. Here the optimal investment decision depends on
x and the current value of the damage parameter, but not on beliefs about future investment
decisions.

Model 3 (Adapted from Morris and Shin (1998).) Consider the two period model in
Section 2.1, but suppose that the damage parameter, ¢, is unknown at the investment stage.
Moreover, there are dominance regions; if the realization of ¢ falls in a dominance region, the
second period regulation is either so weak or so stringent that the optimal investment decision
— had firms been able to predict the regulation — is independent of . Before making the
investment decision firm 7 observes a private signal x; that is correlated with §. In some
examples, as we assume here, the signal is distributed uniformly, z; ~ U (§ — €, +¢€). For
small ¢, a firm almost knows the truth about 4, it almost knows what signals other firms received,
it almost knows what other firms know about other firms, and so on. However, these higher
order beliefs become less precise, as the order of the belief increases, so that there remains
substantial “strategic uncertainty” (i.e. uncertainty about what other agents will do). For e =0
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there is common knowledge and multiple equilibria, but for € arbitrarily small, there is “almost
common knowledge” and a unique equilibrium. The unique equilibrium involves threshold
strategies: each firm’s decision depends on whether its signal is greater or less than a threshold
level.

Model 4 (Adapted from Karp and Paul (2007).)> Consider a variation of Model 1 above,
but suppose that the environmental regulation adjusts with a lag. For example, if the conditional
steady state environmental regulation (the optimal level of permits for a fixed value of k) is e(k),
and the actual level at time ¢ is ¢, then the level adjusts according to % = « (e(x;) — e;); here
« is a speed of adjustment parameter. As o — oo adjustment becomes instantaneous, and
we are back in Model 1. With instantaneous adjustment of e, we noted that multiplicity is
likely to occur when firm turnover is rapid, because in this case we are close to a repeated
version of the static model. However, if firm turnover is rapid but the regulation does not adjust
instantaneously (« is finite) multiplicity of equilibria is very unlikely. The explanation is that
firms are able to choose their investment to track the changing level of regulation, so that they
have a dominant strategy.

4 Conclusion

When a regulator chooses the level of non-tradeable emissions conditioned on the industry
marginal cost, the firms’ investment decisions are typically strategic complements. In this
case, firms play a coordination game (with non-atomic agents) at the investment stage, typically
leading to multiple equilibria. The introduction of a market for tradeable permits fundamentally
alters the investment game. With tradeable permits, the equilibrium is unique; it equals the first
best outcome, regardless of whether the regulator announces the level of permits before or after
firms invest.

The market for permits reduces the cost of achieving any target level of abatement, when-
ever firms are heterogenous. However, for a fixed distribution of investment, introducing a
market for permits has an ambiguous effect on the equilibrium level of regulation.

2This paper is based on an extension of Krugman (1991) which is similar — but much easier to work with —
than Matsuyama’s model. Key results in the paper rely on numerical examples. Karp and Paul (2005) contains a
simple two period version of this model that leads to analytic results.
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Using previous results from coordination games, we sketched several modifications of the
model that would eliminate multiplicity (without trade). For example, different firms might
make their investment decision at different times; firms might be heterogenous prior to invest-
ment; the optimal level of regulation might adjust slowly, tracking changing beliefs about a
damage parameter; firms might receive private signals about a payoff-relevant state, leading to
strategic uncertainty.
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Appendix: Details of derivations

Proof of Remark 2 \We define
Gle, k,s) = — ((1 — k) ce(e+5,0)+ ke <e — M,l)) ,
K

the social marginal benefit of emissions given ¢, x and permit purchases of level s (per non-
investing firm).  Using this definition, G(e,s,s) = G(e, x, trade) for s = ¢’ (e, x), and

G(e, k,s) = G(e, K, no trade) for s = 0. Thus,
G(e; K, no trade) — G(e; v, trade) = G(e, 5,0) — G(e, K, €') =
(22)
_ f;t %ds =(1-k) foet (cee(e +8,0) — Cee (e — @7 1)) ds.
If the integrand in equation (22) is positive (respectively, negative), then trade causes the social
marginal benefit of emissions curve in Figure 1 to shift down to curve A (respectively, shift up
to curve B) leading to a reduction (respectively, increase) in emissions.

Derivation of equation (12) (the effect of £ on the equilibrium level of emissions with
trade): We begin by showing how « affects the volume of trade for given e. Differentiating
equation (5) with respect to e and «, holding e fixed, implies®

det ck et

— = — — : 23

ok /@cge+(1—m)cée</@>>0 (23)
If there are more adopters (larger ) then each non-adopter buys more permits, holding fixed

the aggregate supply of permits, e. Hereafter we use the definition of A = A (k, e, e') from
equation (10), i.e. we set s = ¢'. Differentiating the planner’s first order condition, equation

(8) implies
de |- R)AL (- c)+ 2l
s St
— (1= k) A%—i + %cie}
= — St

The second equality uses equation (5). Using equation (23) to eliminate %—i and simplifying
produces equation (12).

3Recall the meaning of superscripts. These indicate that the function is evaluated at arguments corresponding

K

to the type of firm (non-investor or investor). For example c., = cc. (e — M, 1).
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Derivation of equation (13) (the effect of £ on equilibrium purchases per non-adopter)
We begin by totally differentiating equation (5), again setting s = ¢! and using the definition of
A (k, e, ') from equation (10).

de 1 et
det - <AE - Cee?)

0 1 1=k
dk Coe T Coe ™"

0 .1 t t
Ceecee € 1 e_
(A st <Hcge+(1—n)cée> *t Cee ,{2>

0 1 1—k
Cee + Cee K

The second equality uses equation (12). We obtain equation (13) from simplification.

The effect of investment on the equilibrium price of permits We begin with an intermedi-
ate result. Differentiating equation (5) (holding ~ fixed) implies

det KA

de kD +(1—r)c,

Substituting this result into the expression for 2, — S? yields

2 —St:A</<;—(1—/€)Cg—e;>—D”=

ee

(24)
A(I{—I—(l—li)inA )—D"

ncge+(17’{)cée



With slight abuse of notation, we write p = p(k) = p(e(k), k). Totally differentiating equation
(6) and using equations (12), (13), and (24) implies

dp _ 0 (de | det _
ak Cee(dn+dn>_

A ng +l
0 [ ek et p AT RO ) 7)) 1ot | =
ee ke, +(1—k)ck, ee a

rst (ke@et(1=r)cte)

Cee

0 Céeet C(e)e Cge st —
St(kc,+(1—kr)cl,) <T - (A <ncge+(1—n)cée> + 3 o
0 .1 .t 0

(25)
CeeCee® KA Cee —
sttt (¢ 8 (74 0 =0 mttgr) = 0] - A (st ) =

0 .1 0

Ceecee et A Cee D” —_—
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ee

C(e)eclaeet (A <1 - ncgfk(lfri)c}i‘) . D_”) _

St(’icge+(17&)cée) NCgeak(]'fﬁ)cée K

_ Cgecéeet D_” 0
St(kcQe+(1-k)ce) K



