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1. Introduction

The People’s Republic of China (PRC) has long been seen as the key future participant to an

effective agreement limiting the adverse impacts of climate change. It is currently the number

two emitter of carbon dioxide (CO2) and has long been projected to overtake the United States

as the leading emitter. Further, the United States has long preconditioned its adherence to any

international agreement such as the Kyoto Protocol on China’s formal concurrence that it would

also undertake substantial CO2 reductions. Efforts to reach such an agreement failed in the late

1990’s during the Clinton administration and the Bush administration decided not to pursue poli-

cies that would allow it to sign the treaty and have it ratified by the U.S. Senate. This paper

presents econometric forecasts that strongly suggest that the short to medium term path of Chi-

nese CO2 emissions has increased by a factor of two or more since that time. Our best forecast

has China’s CO2 emissions surpassing the United States by the year 2010 rather than 2020 as

previously anticipated (Intergovernmental Panel on Climate Change, 2000; Siddiqi, Streets, Wu

and He, 1994; Panayotou, Sachs and Zwane, 2002). Our focus in this the paper is on exploring

alternative econometric specifications for forecasting China’s CO2 emissions using a rich new panel

dataset from 1985 to 2004 at the provincial level. The prediction of a dramatic recent increase in

the forecasted path of China’s CO2 emissions over the short to medium term horizon is shown to be

robust to a wide range of alternative specifications. We show, however, that it is possible clearly to

reject both the standard engineering specification that appear in the Intergovernmental Panel on

Climate Change (2000), and the recent Stern Report (2006) as well as the popular environmental

Kuznets curve specification. All of the ”best” models are dynamic in nature employing some type

of lag structure, which is consistent with the nature of an installed durable capital stock.

This paper makes four main contributions to the technical literature on forecasting CO2

emissions. This is the first paper exploring spatial and time series variation in order to provide

out of sample forecasts of China’s aggregate emissions. The literature on forecasting Chinese

CO2 emissions exploits time series variation across countries (e.g., Yang and Schneider, 1998; In-

tergovernmental Panel on Climate Change, 2000), cross sectional variation on industry sectors

(Energy Research Institute, 2004; Sinton and Levine, 1994; Zhang, 1998; Garbaccio, Ho and Jor-

genson, 1999a; Garbaccio, Ho and Jorgenson, 1999b) or adopts a case study approach of the factors
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influencing the performance of specific plants (e.g., Zhang, May and Heller, 2001). Second, we

adopt an explicit forecasting approach to model selection. Instead of choosing a specific reduced

form model a priori (e.g. Schmalensee, Stoker and Judson, 1998; Holtz-Eakin and Selden, 1995),

we conduct a specification search across a large class of static and dynamic reduced form models.

The “best” model is chosen based on out of sample forecast performance and a set of informa-

tion theoretic model selection criteria. Third, we allow for spatial dependence in emissions across

provinces, which has been shown to improve forecasts of aggregate variables if there is sufficient

heterogeneity at lower levels of aggregation (Marcellino, Stock and Watson, 2003; Auffhammer and

Steinhauser, 2007; Carson, Cenesizoglu and Parker, 2005), which we will show is the case here.

Finally, the modeling approach here uses an annually updated and publicly available source of

data, which allows for frequently updateable forecasts and model improvement. This feature is

a main advantage over forecasts using infrequently updated sources of data (Department of En-

ergy, 2006; Intergovernmental Panel on Climate Change, 2001).

Business as usual (BAU) forecasts of Chinese greenhouse gas emissions are of central im-

portance to discussions of climate change for three main reasons. First, the predicted physical

impacts from climate change are calculated using global circulation models, which take emissions

as inputs. Since China is responsible for a large (15%) and growing share of global emissions,

using optimal forecasts of its emissions is an important factor in determining future impacts and

addressing critical issues involving the role of prevention versus mitigation. Second, China and

many other developing countries are adamant about negotiating reductions relative to the level of

emissions that would be projected to occur normally as they industrialize - a baseline emissions

level in the future instead of in the past as under Kyoto.1 Constructing optimal predictions of

the BAU emissions path decreases the probability of overly stringent reductions or the creation of

“hot-air” under such a potential agreement. The costs of additional cutbacks for an agreement with

a baseline in the past (such as Kyoto) depend crucially on what the BAU emissions at the strike

date are (e.g. the first commitment period). Underprediction of emissions may result in a country

not ascending to or withdrawing from an agreement, since it finds itself far above the agreed antici-
1China has justified its policy of “no targets and time-tables” along the same lines of reasoning as Indian Prime

Minister Manmohan Singh (2005) citing common but differentiated responsibility. They argue that the major respon-
sibility of curbing emission rests with the developed countries, which have accumulated emissions over a long period
of time.
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pated emissions path.2 The US has argued that it would not join an agreement, which would put it

at an economic disadvantage. The signing of a possible successor agreement, entailing cutbacks by

the US and China would depend on the expected costs of intentionally reducing emissions relative

to the BAU emissions path. Chinese and US BAU emissions therefore will play a central role in

each country’s decision to participate in a bilateral or multilateral climate agreement.

The remainder of the paper is structured as follows. The next section provides an overview

of the empirical modeling literature and motivates our extensions. Section 3 discusses the data.

Section 4 provides the empirical model and estimation results. Section 5 contains the forecasts and

compares them to historical and current forecasts shown in the literature. Section 6 concludes.

2. Background

The literature on modeling and forecasting CO2 emissions can be split into three strands. The

starting point for the first two is the classic IPAT identity (Ehrlich and Holdren, 1971; Holdren,

2000):

I = P ·A · T (1)

where I stands for impact, typically measured in terms of the emission level of a pollutant, P is

population size, A represents a society’s affluence and T represents a technology index.3 Concep-

tually, this identity has given rise to a large literature in science and engineering on the pollution

generation problem at the country and regional level. The most relevant of these studies are those

underlying most of the Intergovernmental Panel on Climate Change (2000) special report on emis-

sion scenarios (SRES), which are the quasi-official forecasts. The common empirical implication

underlying all of the IPAT family of models is that pollution should be monotonically increasing in

P and A and monotonically decreasing for improvements in T . Yang and Schneider (1998) provide

a decomposition analysis along these dimensions across countries. Zhang (2000) has decomposed

historical aggregate CO2 emissions along the IPAT dimensions. He finds that increasing income

has been the main factor increasing emissions, while the estimated impact of changes in technology

lies between the income and population effects in absolute magnitude.
2In 2002 US CO2 emissions were 13% above 1990 levels.
3In the literature on predicting GHG emissions the IPAT identity is referred to as the Kaya identity.
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The second branch of the literature using the IPAT identity as an organizing framework

uses econometric tools to estimate reduced form models. Economists working on the relationship

between pollution levels and income have frequently found an empirical relationship known as the

environmental Kuznets curve (EKC) that suggests that pollution first rises with income up to some

point and then falls after some threshold level, forming an inverted U-shape relationship (Grossman

and Krueger, 1995; Schmalensee et al., 1998). This possibility of an inverted U-shaped relationship

with negative income elasticity at high levels of income, contradicts the monotonicity in income

assumption underlying the IPAT model. The drawback of this model as Copeland and Taylor

(2004) and Arrow et al. (1995) point out, is that the reduced form specification does not separate

the income effect from other factors driving emissions. The empirical evidence on whether a turning

point for the odorless and invisible gas CO2 exists is mixed. For an excellent review of this sizeable

literature, consult Lieb (2004).

The third relevant branch of the literature explores variation in emissions at the sector level,

making use of nationally aggregated input output matrices. These input output tables are used as a

basis for constructing computable general equilibrium (CGE) models of the national economy, which

are then used for policy simulation exercises. There is a large literature using CGE models to model

carbon emissions for developed and developing countries (Böhringer, Conrad and Löschel, 2003).

This approach to modeling emissions is very useful from a policy perspective, since one can easily

simulate the impacts of different policy instruments and/or shocks on the economy and resulting

changes in emissions. These models, while often used to draw out of sample predictions, are not

forecasting models, since they are not calibrated according to their out of sample predictive ability.

Further, these models require a tremendous amount of data, which in many countries are provided

very infrequently. The CGE models for China are largely based on the 1997 input output tables,

although the 2002 input output table was recently released. The advantages of these models overall

are that they provide a tremendous degree of sectoral detail at the cost of having to make a large

number of parametric and functional form assumptions to construct the model. Due to infrequent

data updates, one further has to make assumptions as to how the composition of the economy is

changing over time. The classic references for CGE modeling in the Chinese context are Garbaccio

et al. (1999a), Garbaccio et al. (1999b) and Ho, Jorgenson and Perkins (1998).

In this paper we will draw on aspects from these three strands of the literature to construct
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a reduced form forecasting model of China’s aggregate CO2 emissions for the next decade. We will

conduct a search over a large space of models with the following features:

First, we will allow for - but not require - a non-linear emission income relationship with the

possibility of income having a non-monotonic effect on CO2 emissions. By using data for a single

country which are collected using consistent definitions and procedures, we avoid the argument that

the potential finding of an EKC may be due to a cross country correlation between data quality and

income. Income and emissions data for China display considerably more variation across provinces

both in per capita emissions (a factor of 50) and income levels (a factor of 8) than there is across

the U.S. states (Carson, Jeon and McCubbin, 1997). We will extend the restrictive second order

polynomial specification first proposed by Grossman and Krueger (1995) by allowing for a flexible

functional form of the pollution income relationship using the semi-parametric Generalized Additive

Model (GAM) framework (Hastie and Tibshirani, 1990).

Second, we will test the frequently made assumption of unitary elasticity of emissions with

respect to population. We allow for the possibility of both overall population scale effects and

population density scale effects, which are measures showing large temporal and spatial variability

in China. If the population elasticity is greater than one, these population effects will have an

amplified impact on aggregate emissions. From a forecasting perspective, this is crucial since

examining differential population growth and migration scenarios is a feature of key interest to

Chinese policy makers and cannot be easily addressed by models based on aggregate national data.

Third, technology in the IPAT models is generally included as an index or in more simple

models as emission intensity in CO2/$. The EKC literature models technological progress in the

form of a time trend or year fixed effects. Further, it hypothesizes a purely contemporaneous

relationship between per capita income and emissions, implicitly assuming that one can adjust per

capita emissions immediately.4 We move away from the simple income-pollution EKC models by

starting to model technology impacts in a more realistic manner. Emissions in the industrial and

power generating sector largely depend on the quality and speed of replacement of the durable

capital stock. In an ideal setting one would like to model and estimate the emission process much

like a dynamic production model, popular in the macroeconomics literature. Such a model would
4Agras and Chapman (1999) allow for a dynamic adjustment process for CO2 using a sample of 34 countries from

1971-1989.The dynamic adjustment process is assumed to be the same for all countries.
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require quality data on capital stock and other inputs to production across time and provinces,

which are not available. We proxy for such a data generating process by using a dynamic model,

which proxies for rates of capital replacement by allowing for lagged emissions to influence current

emissions. In the most general version of the model we allow the nature of this adjustment process

to differ across provinces.

Finally we allow for spatial dependence in per capita emissions across provinces. Maddison

(2006) shows that per capita emissions of criteria pollutants depend on emissions in neighboring

countries. Auffhammer and Steinhauser (2007) show that allowing for dependence in aggregate

CO2 emissions across US states uniformly improves model forecast performance for all specifications

considered. Using spatial lags of emissions is a more restrictive and parsimonious way to model the

adjustment process outlined above. Without deciding on a specific structure a priori, we let the

model selection criterion decide, which model fits the data best.

3. Data Set

We will estimate a set of models using a province-level panel data set for 30 Chinese provincial

entities5 during the period 1985-2004. Unless otherwise noted, the provincial level data used in this

study have been collected from the China Statistical Yearbooks of the corresponding years. For

25 of the provinces we have one observation for every year of the sample period (20 years), while

for a few of the provinces there are only data available for 16, 17 or 18 years. The result is an

unbalanced panel data set with 588 observations.

3.1 Waste Gas Emissions

In a perfect world, one would have access to province level emissions of CO2 over time broken

down by sector. These data do not exist for most developed countries, and even less so for any

developing countries. The reason for this is that measuring emissions of CO2 from a large number

of widely dispersed mobile and stationary sources is prohibitively costly and ultimately inaccurate.

Emissions are therefore calculated using fossil fuel consumption by countries or states. One then
5Beijing, Shanghai and Tianjin are provincial level municipalities; Guangxi, Inner Mongolia, Ningxia, Tibet and

Xinjiang are autonomous regions. Chonqing was elevated to the level of a provincial-level municipality in 1997, but
we still count it as part of Sichuan. We refer to provinces and the entities mentioned in this footnote as provinces.

6



uses multipliers based on the carbon content of fuels to calculate carbon emissions. Marland,

Boden and Andres (2005) are the main source of national level CO2 emissions up until the year

2003. Comparable data at the province level are not available. However, the state environmental

protection administration (SEPA) reports emissions of a composite air pollutant called waste gas

emissions (WGE), which are calculated in a very similar way. As discussed below, we will use this

indicator to proxy for CO2 emissions at the province level.

SEPA uses an estimated engineering relationship, which allows them to convert fuel usage

into waste gas emissions. Since we do not know the exact engineering relationship used by SEPA

we convert WGE into CO2 emissions by aggregating waste gas emissions across provinces by year

and using this variable to predict aggregate CO2 emissions. The well known restructuring of the

China’s coal sector in the late 1990s resulted in the closure of thousands of small mines reducing

the share of worst quality coal. This and the concurrent shutdown of thousands of inefficient state

and privately owned enterprises drastically improved the efficiency of China’s energy producing

and consuming sector (Sinton and Fridley, 2000). In order to obtain a conversion factor for WGE

to CO2, which allows for this major structural change in the late 1990s, we estimate the following

equation:

CO2t = 8.051 WGE1985:1996,t + 5.673 WGE1997:2004,t + ηt (2)

where WGE1997:2004 are aggregate annual WGEs for China if t > 1996 and zero otherwise.

WGE1985:1996 equals aggregate annual WGEs for China if t < 1997 and zero otherwise. The

heteroskedasticity consistent t-statistics are 132.51 and 21.28 respectively. The R2 from this re-

gression is 0.995. This almost perfect linear correlation suggests that WGE is a good proxy for

CO2. For the remainder of this paper, we will conduct our estimations using WGE and then use the

estimated conversion factors above to convert WGE into million metric tons of carbon equivalent

(MMTCE).

One concern raised regarding official statistics from developing countries with often under-

funded data collection agencies is that these indicators may be fabricated. We check for this using

two approaches. First, private communications with SEPA officials lead us to believe that this is

not the case. These indicators are based on surveys of consumption and emissions from the vast
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majority of sources. Waste gas emissions are calculated for fuel burning and industrial activities

covering 85% of emissions in a region (SSB, 2005). Second, we conduct a test for data fabrica-

tion based on Benford’s law (Benford, 1938; Judge and Schechter, 2006). The distribution of the

first digits follows Benford’s law quite closely (ρ̂ = 0.92), which provides some evidence speaking

against fabrication.6 Finally, there is some concern that the data for the year 1998 suffer from bad

reporting. We estimate all models putting zero weight on 1998 and obtain almost identical results.

Figure 1: 1985 & 2004 Per Capita Waste Gas Emissions (and Annual Growth Over Sample Period)
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Estimation using provincial level data promises to improve forecast performance if there

is sufficient heterogeneity in the time series across provinces (Marcellino et al., 2003). WGEs are

heterogeneously distributed across provinces. The coastal provinces7, forming 14% of the area of

the country, account for about 54% of waste gas emissions in 2004. This largely reflects the uneven
6The EPA’s Toxic Release Inventory (TRI), which has been used in hundreds of studies, does not pass this test

(de Marchi and Hamilton, 2006).
7Coastal region provinces (from north to south) are: Liaoning, Hebei, Beijing, Tianjin, Shandong, Jiangsu, Shang-

hai, Zhejiang, Fujian, Hainan, Guangdong, and Guangxi.
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distribution of population and economic activity in China. Per capita waste gas emissions (PWGE)

also display high variability between provinces. Figure 1 shows the ranking of provinces sorted by

per capita waste gas emissions in the first available year. Provinces with higher PWGE tend also

to be the provinces with higher income per capita, which are the coastal provinces. The simple

correlation between the two variables is 0.47. Figure 1 demonstrates the significant heterogeneity in

growth rates of per capita emissions across provinces. On average, the provinces with lower initial

emissions are experiencing the most rapid growth of per capita emissions.

3.2 Socioeconomic Data

Our measure of income, per capita GDP, is calculated by deflating provincial nominal GDP using

the province specific deflators with 1985 as the base year. To get the per capita GDP measure we

divide by the total provincial population at year end. Figure 2 displays per capita income for 1985

and for 2004 in terms of per capita 1985 Yuan. Provinces are ordered by annual growth rate of per

capita income over the fifteen-year period. Two things to note from the figure are: (a) the very

large increases in per capita income over this fifteen-year period, and (b) substantial differences in

the growth rates between provinces. Further note that the many changes in the provincial income

ranking over the fifteen-year period even though the three initially wealthiest provinces, Shanghai,

Beijing, and Tianjin have retained their earlier rankings. China’s per capita wealth is now heavily

concentrated in the coastal provinces, which contain all of the special economic zones (SEZs).

Figure 3 underlines the importance of provincial access to trade as well as the implications of trade

and FDI liberalization.

As additional controls in our most general model, we have collected the following variables

across time and provinces. Population density is calculated as total provincial population divided

by total area in square miles. It might be more desirable to include a measure of urbanization, such

as share of urban population in a province, yet the redefinition of rural versus urban by the state

statistical bureau in the middle of our sample prevents us from constructing consistent time series.

Further, the lack of consistent population times series for a large number of cities across provinces

prevents us from constructing such a measure ourselves.

In order to control for potential province varying trends in fuel mix, we collected provincial

level data on the share of coal used in total energy production. These measures are only available
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for 1990 and then annually from 1995 on. We construct data for the years 1991-1994, by using a

piecewise cubic hermite interpolating polynomial.

Finally China has seen tremendous growth rates in the number of vehicles. Until the late

1990s automobiles were largely owned by state owned enterprizes and government officials. We

have collected the number of privately owned vehicles by province from 1985 until 2004. While the

number of personal cars has grown at roughly 20% per year, the province with the highest number

of cars per person across provinces is Beijing. This number is roughly 12% of the US average, with

traffic congestion approaching US levels. For Shanghai per capita private car ownership is roughly

3% of the US average. While currently private car ownership is growing faster than income, much

of this trend is due to a collapse in car prices and the recent establishment of a car credit system.

Further we have collected province specific indicators with no time variation. We calculate

a measure of industry composition by taking the ratio of value added by heavy industry over total

Figure 2: Provincial Per Capita Income (1985 Yuan) and Annual Growth Over Sample Period
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Figure 3: 2004 Provincial Per Capita Income in 1985 RMB
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value added by heavy and light industry per province. We construct this ratio for 1989, which is

the first year for which we have observations for all provinces and can be regarded as a “starting

point”.8

Finally we have created a set of qualitative variables which include whether a province is

located at the coast, has a special economic zone, and whether it is a net exporter of coal.

4. Empirical Models and Results

In order to select a forecasting model we use a specification search over a large space of models,

similar to Hendry (1985). Within this framework we favor the Bayes/Schwarz Information Crite-

rion (SIC) as our model selection criterion to select between non-nested models and break path

dependence. This selection criterion favors a more parsimonious model specification compared to
8The Chinese Statistical Office has changed its definition of heavy industry in the latter part of our sample, which

makes it impossible to provide a consistent variable.
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the Akaike Information Criterion, adjusted R2 or R2, since it punishes the inclusion of additional

parameters more heavily (Diebold, 2001). Equation 3 below is the most general model.

ln(WGEit) = ηi + γt + f(GDPit) + f(GDPit−1) + πi ln(WGEit−1) +

+ϕi ln(WGEit−2) + ρ
∑k

j=1 wij ln(WGEj,t−1) + Zitδ + εit (3)

where ηi is a province fixed effect, γt is a year fixed effect and εit is a stationary ergodic error

term. πi, ϕi and ρ are scalars and δ is a vector of parameters. WGEit measures per capita waste

gas emissions; GDPit is per capita gross domestic product in real terms (1985 Yuan). f(·) is

a generic flexible functional form allowing for a potentially non-linear non-monotonic emissions

income relationship. We start with a semi parametric Generalized Additive Model and then search

over a variety of parametric specification starting with a fifth order polynomial. We further allow

the parameters on income to vary across provinces and types of provinces to allow for differential

income turning points as suggested by Dasgupta, Laplante, Wang and Wheeler (2002). In order

to capture the potentially heterogeneous speed of adjustment (capital replacement) we include one

and two-period province specific lagged dependent variables in the initial specification. The lags

proxy for differential rates of capital replacement by allowing for lagged emissions to influence

current emissions and by allowing the nature of this adjustment process to differ across provinces.

Zit is a vector of exogenous variables discussed in the previous section, some of which vary across

time and provinces (population density, per capita car ownership rates, fuel mix) and others which

only vary across provinces (initial industry composition, coastal location, coal exporting, SEZs).

The time fixed effects adjust for shocks to preferences and technology common to all

provinces. The province specific fixed effects capture differences in unobservable factors across

provinces. The model is only identified if we include the time invariant characteristics or the

province fixed effects. The fixed effects control for differences in all unobservables, yet take up 30

degrees of freedom. Controlling for time invariant observables in a model without fixed effects may

be beneficial, if these are not correlated with unobservables left in the disturbance.9

Finally we allow for spatial dependence in per capita emissions across provinces to see
9If one introduces fixed effects and lagged dependent variables least squares is no longer unbiased. It is only

consistent if one relies on large T asymptotics, which we can safely do here since the number of provinces can
assumed to be fixed. For a good review of this literature see (e.g., Pesaran and Smith, 1995).
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whether adding information on spatial dependence of CO2 emissions improves out-of-sample fore-

casting performance. Finding evidence in support of this hypothesis, would suggest that incorporat-

ing a more complete characterization of the spatial structure driving the factors causing emissions

may lead to even more efficient forecasts. We base our notion of spatial dependence on the STAR

estimator provided by Giacomini and Granger (2004), who show that if there is spatial dependence

in the series being forecast, failure to account for this correlation across space will result in subop-

timal forecasts. CO2 emissions are strongly correlated with industrial activity, transportation etc.

The well documented non-uniform distribution of each of these factors across China’s provinces is

a likely source of information for potentially improving state level and aggregate forecasts, if we

cannot adequately control for these factors. The approach proposed by Giacomini and Granger

(2004) assumes a known weight matrix. We construct a rook contiguity weight matrix, which is

normalized to unity row sums.10 The wij are the weights given to the previous year’s CO2 emissions

by its k neighboring states.

4.1 Specification Search and Estimation Results

The specification search was conducted by estimating all identified models nested by the most

general model from the previous section. The algorithm estimates each model using all available

data and calculates the R2, Akaike and Bayes Information Criterion for each run. We avoid path

dependence of model search by calculating these information criteria for all models. While the AIC

and BIC are generally thought to be more appropriate model selection criteria when the goal is to

forecast out of sample, they are calculated purely based on in sample fit of each model. In order to

overcome this shortcoming, we conduct an out of sample forecast experiment for the best models

and a few benchmark specifications. We sequentially construct five one step ahead forecasts for

the last 5 years in the sample and calculate the root mean square forecast error to get a limited

indication of out of sample forecast ability.

Table 1 below lists estimation results from a set of benchmark models as well as the “best

models” according to out three model selection criteria - AIC/BIC and MSFE. This table represents

a very small subset of the estimated models, but for space constraints listing more estimation results
10We checked the results against a nearest neighbor weight matrix (three, four and five nearest neighbors). The

rook contiguity matrix provided the best out-of-sample forecasts.
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is not feasible. Models (1), (2) and (3) are static benchmark models. Model (1) is the classic

Grossman and Krueger (1995) specification, which is a quadratic in income with year and province

specific fixed effects. Model (2) augments this specification by including population density. Model

(3) adds per capita car ownership to model (1). The model performance measures are listed at the

bottom of the table. Including population density slightly improves fit, while the car ownership

measure adds no explanatory power. Model (4) augments the first model by adding a pooled lag

of emissions. Unsurprisingly, the fit improves tremendously. If we used the AIC as our model

selection criterion, this model is the preferred model in the entire model selection space. It also has

the lowest RMSFE out of all models considered and an R2 close to 1.

Table 1: Selected Estimation Results from Specification Search
(1) (2) (3) (4) (5) (6) (7)

log(GDP) .361 .399 .347 .065 .205 .157
(.069)∗∗∗ (.070)∗∗∗ (.072)∗∗∗ (.041) (.026)∗∗∗ (.026)∗∗∗

log(GDP)2 -.082 -.096 -.085 -.020 -.009
(.017)∗∗∗ (.017)∗∗∗ (.019)∗∗∗ (.010)∗∗ (.010)

Population Density .924 .106
(.305)∗∗∗ (.044)∗∗

Cars Per Capita .011
(.025)

log(CO2t−1) .795 .820 .817
(.026)∗∗∗ (.025)∗∗∗ (.025)∗∗∗

log(time) -.079 -.063 -.064
(.019)∗∗∗ (.016)∗∗∗ (.017)∗∗∗

Initial Industry Comp. .834
(.390)∗∗∑k

j=1
wij ln(CO2j,t−1) .104 .118

(.034)∗∗∗ (.034)∗∗∗

Income Spline: Low .147
(.040)∗∗∗

Income Spline: Medium .174
(.028)∗∗∗

Income Spline: High .094
(.041)∗∗

Time Fixed Effects Yes Yes Yes Yes No No No

Province Fixed Effects Yes Yes Yes Yes No Yes Yes

Province Specific Lags No No No No Yes No No

Obs. 588 588 588 558 558 558 558

Provinces 30 30 30 30 30 30 30

R2 .262 .261 .260 .995 .984 .985 .985

AIC -330.49 -338.49 -328.96 -970.20 -899.26 -953.64 -953.93

SIC -234.05 -237.82 -228.34 -875.07 -743.58 -932.02 -923.67

RMSFE 1-Step 108.56 122.70 107.29 59.07 71.00 62.94 68.47
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Models (1) - (4) in table 1, use time specific fixed effects in order to capture exogenous

technological change common across all provinces (Schmalensee et al., 1998; Grossman and Krueger,

1995). Time specific fixed effects capture unobservable in sample shocks common to all provinces.

Using time fixed effects in a forecasting model raises two issues. First, when constructing out of

sample predictions, one needs to predict the fixed effects. This is done by regressing them on

time trends or splines and using these estimated relationships to predict what they will be out of

sample. Second, of particular relevance in small samples, each fixed effect is an additional estimated

parameter, which forecasting model selection criteria punish quite heavily. An alternate modeling

strategy is to include a linear or non-linear deterministic time trend.

In order to “save” 48 degrees of freedom, we restrict the class of models to the ones with

a common intercept and time trend. Model (5) minimizes the BIC given these restrictions on the

model universe and our current sample. This specification essentially fixes starting point emissions

by the industry composition variable, indicating that provinces with higher initial heavy industry

concentrations have higher per capita emissions. Further the model indicates that coastal provinces

have lower emissions. It also has a negative logarithmic time trend, which one might interpret

as changes in per capita emissions due to carbon intensity decreasing technological change. A

logarithmic time trend suggests that the magnitude of technological change has decreasing impact

on emissions the longer the forecasting horizon. It is widely believed that technological progress

was very rapid in the years following the 1979 economic reforms. Replacing the least efficient

old capital was often cost effective and produced relatively large reductions in emissions initially.

Improvements in more energy efficient and cleaner technology will become more costly at the margin

over time. This “best” model given these restrictions includes province specific lagged emissions,

proxying for heterogeneous rates of capital replacement. Figure 4 below displays the variability in

the lags.

There is considerable variation in individual provinces’ elasticities with respect to the pre-

vious period’s emissions, as indicated by the parameters on the province specific lagged emissions.

A smaller parameter estimate on a province’s lagged per capita waste gas emissions indicates faster

speed of adjustment. Correspondingly, a larger (closer to one) parameter estimate would indicate a

relatively slower rate of adjustment. Upon casual inspection, the provinces with lagged parameter

values that are substantially below the average tend to be the coastal provinces that have received
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Figure 4: Lag Parameter Estimates for Model 5 (Deviation from Mean)
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Mean Lag Parameter = 0.79
(normalized as 0)

substantial FDI, whereas the provinces with substantially higher lagged parameter values tend to

be provinces which are large coal producers with substantial concentrations of heavy industry. The

estimates are consistent with current efforts to decrease emissions of air pollutants in provinces

hosting Olympic events as well as provinces which are attracting the majority of foreign tourists,

which are largely the coastal provinces with lower estimated lag parameters.

Model (6) has the lowest BIC in the considered model universe. This model has a linear

positive income elasticity of 0.157, which is significant at the 1% level. It further includes the lagged

pooled emissions as well as lagged weighted emissions of its first order neighboring provinces.

While it includes province fixed effects to control for differences in time invariant unobservable

characteristics, it favors a logarithmic time trend over time fixed effects. Out of the eight presented

models, it has the second best out of sample predictive ability as measured by one step ahead

MSFE. The monotonic linear income effect is opposite to the non-linear EKC type emissions income

relationship found in model (4). To test for potential non-linearities in income we follow two

strategies. First, we include a spline in income. We consider 3, 5 and 7-knot splines and the one
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in model (7) minimizes the BIC. We see a slightly decreasing marginal income elasticity, yet no

evidence of a negative propensity to emit at high levels of income. This model has very low AIC,

and BIC as well as the third best MSFE.

Figure 5: Predicted PWGE from Income using GAM
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Second, to step away from this parametric rigidity, we estimate the model (4) using the GAM

framework (Hastie and Tibshirani, 1990) with a smoothing spline on income, which allows for a

fully flexible relationship. The smoother will give us an indication of the functional form without

any ex ante imposed restrictions. The shape of the pollution income relationship is depicted in

Figure 5, which suggests a linear functional form - not one resembling the rising slope of an EKC

type relationship near a turning point. The shape below is not inconsistent with the rising section

of an EKC relationship, but even if one believes in a non-linear pollution income relationship,

even the highest income provincial entities are very far away from a potential turning point level

of income. Because the GAM requires a larger number of parameters to be estimated, the BIC

prefers the parsimonious model (4). We further conduct a set of in-sample encompassing tests and

model (4) encompasses the other two “best” models (6) and (7).
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5. Forecasting CO2 Emissions

In this section we construct forecasts of aggregate CO2 emissions for the PRC. While other studies

have focused on constructing forecasts to the year 2100 (IPCC, 2001) or 2050 (Schmalensee et al.,

1998) we limit our forecasting horizon to 11 years out of sample and we even consider that horizon

to be quite ambitious. In order to construct aggregate forecasts given our province level model, two

issues arise given the “best” models in table 1. First, we need to make assumptions about the time

paths of the predictor variables in each model. The independent variables, whose future values are

unknown, are provincial per capita GDP and population. Second, since one of our “best” models

contains time fixed effects, the issue arises as to how on should predict the fixed effects. We now

take each of these issues up in turn.

The IPCC SRES provides a large set of scenarios containing assumptions regarding aggre-

gate GDP and population growth. As Schmalensee et al. (1998) correctly note, the assumptions

regarding GDP growth tend to be conservative given the recent record of explosive economic growth

in the PRC. The assumed GDP growth scenarios are centered around IPCC scenario IS92a assump-

tions. The three alternative growth rates we assume are a slow growth case (3.04%), a medium

growth case (5.04%), and a high growth case (7.04%). Given China’s recent explosive growth these

scenarios are likely still conservative.

To make use of our model for forecasting purposes we require province level population

projections. Official estimates of population are only available at a national level, so we rely on

Chesnais and Sun (1998) who provide province population growth forecasts through the year 2050.

We use the provincial population growth rates from 2000 on and calculate predicted population

for each province using the 2000 Census population data as a starting point. Four scenarios are

considered that incorporate internal migration and natural population growth. The four scenarios

can be characterized as follows: Scenario A is characterized by constant natural birth and mortality

rates across provinces. Scenario B is characterized by decreasing natural birth rates and constant

mortality rates. Scenario C is characterized by decreasing mortality and constant birth rates.

Scenario D is characterized by decreasing birth and mortality rates. Chesnais and Sun (1998)

provide a very detailed account regarding the assumptions underlying the population model. The

model incorporates the current and future age structure of the single provinces, which indirectly
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incorporate migration patterns within China. Big differences in aggregate population only start to

be detectable after 2020, which leads to small differences in the aggregate population forecasts over

our forecasting horizon.

Rather than be inclusive about all possible sets of assumptions, we will attempt to illustrate

the impact of the range of assumptions typically made concerning Chinese GDP and population

growth rates. We limit our analysis to only three GDP and four population growth scenarios to

demonstrate the sensitivity of our forecasts to changes in population and GDP growth.

We assume that the GDP growth rate (ξt) and population growth rate (φt) are jointly

distributed as f(ξt, φt) ∼ N2[µξ, µφ, σ2
ξ , σ

2
φ, ρ] and that in and out of sample population and GDP

growth rates can be characterized by this bivariate normal distribution. The distribution is param-

eterized by using the in sample mean and standard deviation of the population growth rate as well

as its correlation coefficient with aggregate GDP growth for µφ, σφ and ρ respectively.

Table 2: Assumptions Concerning GDP and Population Growth Rates
A-Slow B-Slow C-Slow D-Slow

Mortality Rate Constant Constant Decreasing Decreasing
Birth Rate Constant Decreasing Constant Decreasing

GDP Growth Mean 3.02% 3.02% 3.02% 3.02%

A-Medium B-Medium C-Medium D-Medium
Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing
GDP Growth Mean 5.02% 5.02% 5.02% 5.02%

A-Fast B-Fast C-Fast D-Fast
Mortality Rate Constant Constant Decreasing Decreasing

Birth Rate Constant Decreasing Constant Decreasing
GDP Growth Mean 7.02% 7.02% 7.02% 7.02%

We do not forecast the population growth rate directly, as the four scenarios provided by

Chesnais and Sun (1998) are used. We calculate φt ∀ t ε [2005, 2015] from these forecasts and

use the expected value of the conditional distribution g(ξt|φt) = N [α + βφt, σ
2
ξ (1 − ρ)2], where

α = µξ − βµφ and β = ρσξσφ

σ2
φ

to obtain realizations of the aggregate GDP growth rate. We then

allocate the GDP growth to provinces according to their share in aggregate growth over the last

decade of our sample. Table 2 summarizes the twelve different population/GDP scenarios for
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forecasting purposes considered.

As mentioned in the previous section, while time fixed effects are appealing from an in

sample perspective, they pose challenges when attempting to forecast out of sample. Holtz-Eakin

and Selden (1995) set the time fixed effect equal to the last in sample year, while Schmalensee

et al. (1998) attempt to forecast them out of sample. Following the latter approach, we examined

a variety of specifications to forecast the time fixed effects out of sample. We estimate a model,

which allows for a breaking point in the time trend:

γt = α<B
0 + α>=B

1 + α2 · t<B + α3 · t>=B (4)

which is a regression of the in sample time fixed effects on an intercept and linear time trend, both

of which are allowed to break at year B. We estimated the models and produced forecasts using

our five 1-step ahead out of sample prediction experiment and calculate the MSFE. We let the

breaking point vary between 1992 and 1998, and find that a break in 1996, which coincides with

the year of coal reforms, minimizes the MSFE. We further experiment with specifying t as a log of

time and find that a linear trend produces a smaller MSFE. We therefore predict the fixed effects

out of sample using the equation above with a breaking point in year 1996.

5.1 Sensitivity To Alternative Scenarios

In this section we produce forecasts for the three best models (Models 4, 6 and 7) as well as the

traditional Kuznets curve specification (Model 1). For each model we produce point forecasts for

the 12 different scenarios defined in Table 2. Figure 6 displays aggregate forecasts of Chinese CO2

emissions based models 4, the dynamic EKC specification, and figure 7 those for model 7, which

is the spatial lag income spline specification. In each figure, the solid and dashed lines show the

point forecasts for the four population scenarios assuming the medium income growth scenario.

The gray shaded area represents the upper and lower bound of the high and low GDP growth

forecast scenario across the four population models. As expected, the population scenarios do not

have a great impact on aggregate emissions over the 10 year forecasting horizon, since the degree of

variability in population levels across the four scenarios is small.11 If one were to use these models
11If one considers forecasts over a longer horizon, such as in Auffhammer, Carson and Garin-Muñoz (2002), popu-

lation is the dominant influence over the emission trajectory.
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to construct long range forecasts, the assumed path of population has a drastic impact on aggregate

emissions. Further, since we assume the imperfect correlation between the aggregate population

growth rate and aggregate GDP growth rate to continue, we in a sense allocate “a little bit less”

GDP to a much smaller number of people for a given GDP growth scenario, contributing to the

similarity of forecasts across population scenarios.12 Compared to the forecasts from model 8, the

model 4 forecasts are more income sensitive, due to the non-linearity in income. The estimated

turning point income level is roughly three times Shanghai’s current per capita income.13

Figure 8 displays the forecasts using model (6), which is linear and income and contains own

and spatial lagged emissions. Figure 9 displays the forecasts from the static Environmental Kuznets

Curve model (1). The predictions from the dynamic model again display little variability due to

the income and population assumptions. The level predictions are very similar to the predictions

to the previous figure. The predictions from the EKC model in the bottom panel, which one

may consider as a benchmark specification, are drastically lower and display little variation. The

predicted mean emissions across all scenarios for 2010 from the EKC model are 1,713 million metric

tons of carbon equivalent, whereas the same figure for model (7) is 2,462 MMTCE. The small degree

of variability in the EKC model is due to its static nature. The temporally lagged emissions in

model (4) introduce greater variability across scenarios due to their inherent sensitivity to shocks

in the past.

The picture emerging from these four panels is that the dynamic “best” models result in

significantly higher forecasts than the benchmark EKC model, which has been the main forecasting

tool in the economics literature. The forecasts from the three best models provide out of sample

predictions, which differ by less than 200 MMTCE, whereas the EKC model predicts emissions 700

MMTCE lower than the lowest predicting “best” model 7. Since all of these forecasts rely on the

data including 2004, it is an obvious concern, whether these predictive patterns persist, if we use a

different forecasting horizon. Table 3 below shows the predicted emissions for the year 2010 for all

seven considered models if we cut off the sample starting in the year 1999 and each year thereafter.

Two points emerge. First, the rankings of models persist across forecasting horizons, which is

reassuring. The second point, which is disconcerting from a global climate change perspective, is
12We constructed forecast scenarios assuming a per capita GDP growth rate, which drives the point forecasts

slightly apart, but does not change the picture significantly.
13It should be noted that the turning points have large confidence intervals, since their distribution is fat tailed.
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Figure 6: Aggregate Forecasts of China’s CO2 Emissions - Model 4
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Figure 7: Aggregate Forecasts of China’s CO2 Emissions - Model 7
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Figure 8: Aggregate Forecasts of China’s CO2 Emissions - Model 6

19
85

19
90

19
95

20
00

20
05

20
10

20
15

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

T
im

e

MMTCE

 

 
Sc

en
ar

io
 A

Sc
en

ar
io

 B
Sc

en
ar

io
 C

Sc
en

ar
io

 D

24



Figure 9: Aggregate Forecasts of China’s CO2 Emissions - Model 1
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that the forecasts have increased monotonically for each model since 1999. China’s abandonment

of energy efficiency programs in favor of economic growth has resulted in an unprecedented increase

in emissions of local air pollutants and correspondingly GHG emissions. The dynamic models show

more dramatic increases in predicted emissions than the static model(s), which is not surprising due

to their previously mentioned sensitivity to past shocks. From a physical perspective, the increase

in predicted emissions is due to an increase of in-sample emissions annually from 1999 to 2004. As

a result, all of the “best” forecasts are higher than the currently accepted Department of Energy

(2006) forecast for the U.S. for the year 2010 suggesting that China is likely to surpass the U.S. as

the world’s largest emitter by that time.

Table 3: Forecasts of Aggregate Year 2010 CO2 Emissions by Information Set

Cutoff Year 1999 2000 2001 2002 2003 2004
Model 1 1,095.21 1,165.73 1,388.50 1,531.32 1,601.10 1,712.85
Model 2 1,047.22 1,065.87 1,264.75 1,445.79 1,516.57 1,632.64
Model 4 1,361.30 1,495.84 2,240.22 2,316.80 2,226.59 2,651.02
Model 5 1,666.37 1,889.89 2,856.08 2,658.01 2,457.09 2,933.81
Model 6 1,234.38 1,382.59 1,816.64 1,936.46 1,979.62 2,536.83
Model 7 1,031.91 1,161.87 1,844.29 1,935.15 1,914.54 2,462.37

The forecasts presented in this section assume that China’s provincial economy develops as

it has over the in-sample period with respect to factors driving carbon emissions relative to income

and population growth. Additional or renewed policy measures driving down the carbon intensity

of China’s economy present a unique opportunity to deviate from the high growth emissions path

presented here.

The projections of CO2 emissions from this study are subject to a great deal of uncertainty,

as are any economic forecasts over a ten year horizon. In table 4 below we compare our forecasts to

the experienced in-sample growth and forecasts from three most recent studies projecting China’s

CO2 emissions into the future.

There are a large number of studies forecasting China’s CO2 emissions, yet most of them

are based on data from almost a decade ago (Yang and Schneider, 1998; Intergovernmental Panel

on Climate Change, 2001) during which China’s economic and technological growth has accelerated

beyond anticipation. The quasi-official IPCC forecasts are not broken down by country, but for the

region ASIA, provide a range of emission growth with an upper bound of 4.82%. The Yang and
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Table 4: Historical and 2010 Projected Emissions Growth Rates

Time Horizon
Begin End Annual Growth Rate

Marland et al. (2005) 2000 2003 14.40%
This Study* 2000 2004 14.53%
This Study* 1995 2004 9.50%
This Study*** 2000 2010 11.05 - 11.88%
Yang & Schneider (1998) 2000 2025 1.93 - 3.10%
IPCC (2000)** 2000 2010 2.58 - 4.82%
ERI (2004) 2000 2010 4.18%
Fridley (2006) 2000 2010 5.00-5.02%
Jiang & Hu (2006) 2000 2010 4.12%

Note: * Based on our WGE measure, which is almost identical to Marland et al. (2005). ** The figures reported

here are taken from the Illustrative Marker/Scenarios from SRES. These include A1B, A2, B1, B2, A1F1 and A1T.

We report growth rates for the region ASIA. *** The range provided here uses models 4, 6 and 7.

Schneider (1998) forecasts provide an even lower range of growth. The three most recent studies are

Energy Research Institute (2004), Fridley (2006) and Jiang and Hu (2006). The first two studies

use a detailed sectoral partial equilibrium model of China’s economy using data up to 2002 and

2004 respectively. For the first model we cite the anticipated growth to 2010 using the baseline

scenario. For the Fridley (2006) study, table 4 shows the range for the seven scenarios presented

in the study. Our forecasts differ from these two studies in the sense that we do not make any

assumptions regarding departures from in-sample trends. Both of the engineering studies assume

a slowdown of growth due to policy intervention. Jiang and Hu (2006) use the Integrated Policy

Assessment Model for China (IPAC) to arrive at predictions. We cite the baseline scenario, which

assumes no explicit policy intervention.

Table 4 shows clearly that the best performing econometric models from this study, which

assume no policy intervention, predict drastically higher aggregate growth of emissions compared to

the other studies cited here. The forecasts from these alternate studies are closest to those from the

model 1, the EKC specification, which we have shown above is outperformed on all dimensions by

the dynamic models. This leads us to believe that existing models are most likely underpredicting

the status quo emissions path of the PRC.

It is illustrative what this means relative to the currently agreed to reductions during the

first commitment period of the Kyoto protocol. The EIA predicts that all emissions reductions

from current Annex I countries, who have ratified the Kyoto protocol, in the year 2010 relative to
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the predicted level in the absence of the agreement amount to 422 million metric tons of CO2 or

115.90 million metric tons of carbon (Department of Energy, 2006). Even the most conservative

forecasts cited here indicate an increase of over 600 million metric tons of carbon over year 2000

emissions by 2010. The best model forecasts cited here predict gains more than twice that number.

The current forecasting models employed in the literature and the IPCC are very likely significantly

underpredicting short run emissions increases by the PRC.

6. Conclusion

Five years ago, it was hard to tell whether China’s CO2 per capita emission path was going steadily

upward or whether it was flattening out with a strong hint of a future downward trajectory as

income in China increased. Now the results are unequivocal. Over the next ten year time horizon,

we believe a downturn is now highly unlikely unless there are substantial changes in China’s energy

policies. Our conclusion is based upon an extensive econometric exercise that examined a large

suite of models. This exercise clearly rejects the static environmental Kuznets curve specification.

Each new year of data over the last five years further increases the anticipated emissions path.

While there are some substantial differences between estimates from the set of models that appear

to have the best forecasting ability, they agree that the magnitude of the increase is quite large

relative to existing forecast of Chinese CO2 emissions. To put the size of the increase in emissions

in sharp perspective, it is several times larger than the decrease in emissions that is embodied in

the Kyoto protocol. That is, the disagreement between the models is over how many times larger

the increase is likely to be.

Our data source and modeling approach have two strong advantages. First, we are able to

exploit much shorter time series dynamics than are possible in a single national time series. Second,

we are able exploit the considerable heterogeneity that exists across China’s provinces, each of which

is generally large compared to most countries. A key feature of all of the better models is the strong

influence of the lag structure, which is consistent with the nature of persistent capital investments

in energy technology. The open question is whether there are now policy options available that can

influence the current trajectory of capital investments in a meaningful way.
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