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Abstract

A constant social discount rate cannot reflect both a reasonable opportunity
cost of public funds and an ethically defensible concern for generations in the
distant future. We use a model of hyperbolic discounting that achieves both
goals. We imbed this discounting model in a simple climate change model to
calculate “constant equivalent discount rates” and plausible levels of expenditure
to control climate change. We compare these results to discounting assumptions
and policy recommendations in the Stern Review on Climate Change.
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1 Introduction

Public projects that provide benefits in the distant future rise or fall on

discounting assumptions. The recent debate on The Stern Review on Cli-

mate Change (Stern 2006) is a case in point. The Review recommends

expenditures on greenhouse gas (GHG) abatement substantially larger than

those suggested by other Integrated Assessment Models (IAMs — numerical

models that combine economic and climate modules). Several commenta-

tors, including Dasgupta (2007a,b), Nordhaus (2006) and Weitzman (2007)

claim that these results are due to unreasonable assumptions about the so-

cial discount rate. We use a model of hyperbolic discounting to assess the

plausibility of both the assumptions and the policy recommendations in the

Stern Review.

The controversy turns on the parameters of the social discount rate. Let

θ (τ) be the present value of a unit of utility τ time periods in the future,

and let u0 (ct+τ) equal marginal utility of consumption at that time. The

discount factor for consumption, θ (τ)u0 (ct+τ), equals the number of dollars

that a social planner would be willing to sacrifice today (time t) in order to

obtain one more unit of consumption at time t+τ . The social discount rate,

r(τ , t+ τ), is the rate of decrease of this quantity:

r (τ , t+ τ) = ρ (τ) + η (ct+τ ) g (ct+τ) , (1)

where ρ = −θ̇/θ is the pure rate of time preference, η = −(u00/u0)c is the
elasticity of marginal utility and g = ċ/c is the growth rate in per-capita

consumption. The baseline Stern parameters are ρ = 0.1%, η = 1 and

g = 1.3%, implying r = 1.4%, which is far lower than rates used in other

IAMs (see, e.g., Nordhaus 1999).

The debate about discounting in the Stern Review has been framed in

a manner that is unlikely to lead to the emergence of a consensus. The

problem is that the standard representation of the social discount rate is

too parsimonious. The social discount rate is a valuable parameter for
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summarizing a model, but a single number (resulting from constant values

of the parameters on the right side of equation (1)) cannot capture both

inter-generational equity over a long time scale and the opportunity cost of

public funds.

Our suggestion for assessing discounting parameters in climate change

models is to begin with a time-varying social discount rate that reflects both

a reasonable degree of inter-generational equity (the long run considerations)

and the opportunity cost of public funds. We imbed this discount function

in a transparent climate change model. This model captures the risk of

climate-related damage and the inertia in the climate system. That inertia

leads to a delayed relation between current actions and future reductions in

risk. This model extends Karp and Tsur (2007) by including exogenous

growth in consumption, g, a necessary feature in order for equation (1) to be

useful.

In some cases it is possible to construct a “constant equivalent discount

rate”, i.e. a single number that, if used as the social discount rate, would lead

to policy prescriptions identical to those obtained under the time-varying

social discount rate. This constant-equivalent discount rate depends on

the time-varying social discount rate, which should be the same function

for all public projects. The constant-equivalent discount rate also depends

on the specifics of the problem, in particular the longevity of the public

project. For example, decisions about climate policy may affect welfare over

many centuries, while a decision about a bridge may affect welfare over a

century. The differing time scale of these two types of public projects means

that the constant-equivalent discount rates corresponding to them may be

very different, even though both are based on the same time-varying social

discount rate. The constant-equivalent discount rate for the climate project

is more sensitive to social discount rates in the distant future. A comparison

of the constant equivalent discount rates with the rates used in IAMs helps
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to assess the reasonableness of the latter.1

There are at least three plausible reasons why the social discount rate

is a decreasing function of time. First, uncertainty about future growth

rates means that the “certainty equivalent” discount rate is likely to fall over

time; therefore, the constant-equivalent discount rate tends to be smaller for

projects that produce benefits at a more distant point in the future (Weitz-

man 1998, 1999). Second, if there is imperfect substitutability between

produced goods and the natural environment, and if the supply of produced

goods increases while the stock of the natural environment falls, the social

discount rate may fall over time (Traeger 2004, Hoel and Sterner 2007).

We emphasize the third source of time-dependence: hyperbolic discount-

ing due to a decrease in the pure rate of time preference. This rate is positive

if we prefer an increase in utility sooner rather than later; 1 + ρ (τ) is (ap-

proximately) the number of units of utility we would be willing to surrender

at time τ + dτ to obtain one more unit of utility at time τ . If we prefer the

youngest generation currently alive to the next, not-yet-born generation, ρ

should be positive in the near term. We may be less able to distinguish be-

tween two contiguous generations in the distant future — they appear “more

similar” than two contiguous generations in the near future, implying that ρ

falls over time. Arrow (1999) notes that “agent-relative ethics suggests that

each generation will maximize a weighted sum of its own utility and the sum

of utility of all future generations, with less weight on the latter. At the

very least, really distant generations are treated all alike.” Cropper et al.

(1994) find that questionnaire respondents weight returns to people living

1Our approach to evaluating the choice of social discount rates in some respects re-
sembles the approach in Weitzman (1999). Both recognize that the social discount rate
depends on the time scale of the project. There are important differences, however. Weitz-
man emphasizes non-constant discounting arising from uncertain growth rates, whereas we
begin with hyperbolic discounting, and the uncertainty in our model is due to a climate-
related event. In addition, he is interested in the certainty equivalent social discount rate
used to evaluate a payoff at a point in time in the future. We are interested in a constant
equivalent discount rate used to evaluate a trajectory of payoffs.
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100 years from now only slightly more than people living 200 years from, a

result consistent with hyperbolic but not with exponential discounting.

Nordhaus (1999) and Mastrandrea and Schneider (2001) imbed hyper-

bolic discounting in IAMs, in order to show the importance of long run dis-

counting in determining climate change policy. These authors assume that

the decision-maker in the current period can choose the entire policy trajec-

tory, thus solving by assumption the time-inconsistency problem (which is a

consequence of hyperbolic discounting).

The time-inconsistency of optimal programs is a plausible feature of the

policy problem: politicians, like other mortals, tend to procrastinate in solv-

ing difficult problems. Because of the long time scale over which policies

must be implemented, we think that the restriction to Markov perfection

provides a reasonable description of the policy problem. There are multi-

ple equilibria in this setting, but these can be bounded in a simple manner.

We compare this set of equilibria to a benchmark (called “restricted com-

mitment”) in which the policymaker’s set of feasible policies is restricted in

such a way as to cause the resulting optimal choice to be time consistent.

This outcome is not plausible, but it provides a useful comparison to the set

of Markov perfect equilibria (MPE), and because of its optimality and time

consistency it has a simple welfare interpretation.

The next section describes our extension of Karp and Tsur (2007), pro-

viding only enough detail for this paper to be self-contained. The follow-

ing section calibrates the hazard and discounting parameters; the resulting

time-varying social discount rate reflects a reasonable opportunity cost of

public funds and a degree of inter-generational equity. We then calculate

the constant equivalent social discount rates and suggest plausible levels of

expenditure to reduce the risk of climate-related damage.
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2 The model

The model incorporates hyperbolic discounting, exogenous growth, and un-

certainty about the timing of a catastrophic event (Tsur and Zemel 1996,

Alley et al. 2003). We first describe the payoff corresponding to different

actions and states, and then discuss the relation between actions and risk.

The final subsection describes the two types of equilibria corresponding to

the different assumptions about the regulator’s ability to commit to future

actions.

2.1 The payoff

The “catastrophe”occurs abruptly at a random date, reducing income by

the fraction ∆ (the income-at-risk) from the occurrence time onward. At

each point in (continuous) time, society has a choice between two actions:

“business as usual (BAU)” and “stabilization”. The next section describes

the effects of these two actions; here we describe their costs. BAU costs

nothing, and stabilization costs the fraction X∆ of the flow of income. The

parameter X is the fraction of the income-at-risk that we need to spend in

order to stabilize. The control variable, w (t) ∈ {0, 1} is a switch: w (t) = 0
means that at time t society follows BAU, and w (t) = 1 means that at time

t society stabilizes.

Consumption grows at an exogenous constant rate g, and the utility of

consumption is iso-elastic, with the constant elasticity η.2 With initial con-

sumption normalized to 1, the flow of consumption prior to the catastrophe

is egt(1−∆Xwt) and utility is

u (c(t), w(t)) =
(egt (1−∆Xwt))

1−η

1− η
. (2)

2The assumption of exogenous growth in consumption means that there is no distinction
in this model between consumption and income. The model is consistent with a constant
savings rate if all expenditures for climate change mitigation come from consumption
rather than savings.
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After the event occurs, income falls to egt (1−∆) and there is no role for

stabilization.

Conditional on the event occurring at time T , the payoff under policy

w(t) is

R T
0
θ (t)

(egt(1−∆Xw(t)))
1−η

1−η dt+
R∞
T

θ (t)
(egt(1−∆))

1−η

1−η dt =

R T
0
θ (t)

µ
(egt(1−∆Xw(t)))

1−η

1−η − (e
gt(1−∆))

1−η

1−η

¶
dt+ constant

where

constant =
Z ∞

0

θ (t)
(egt (1−∆))

1−η

1− η
dt. (3)

Ignoring the constant term, the conditional payoff can be written asZ T

0

θ(t)e−g(η−1)t

Ã
(1−∆Xw(t))1−η

1− η
− (1−∆)1−η

1− η

!
dt

≡
Z T

0

θ(t)e−g(η−1)tU (w(t)) dt,

where

U (w) ≡ (1−∆Xw)1−η

1− η
− (1−∆)1−η

1− η
. (4)

Prior to the catastrophe, the current generation’s payoff is

ET

Z T

0

θ(t)e−g(η−1)tU(w(t))dt, (5)

where ET denotes expectation with respect to the random occurrence time.

We express the equilibria as a function of x, a parameter proportional to

the utility cost of stabilization:

x ≡ 1− U (1)

U (0)
= 1− (1−∆X)1−η − (1−∆)1−η

1− (1−∆)1−η
.

We invert this relation to write X as a function of x:
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Figure 1: Graph of X(x) for ∆ = 0.2 and η = 4 (solid) and η = 1 (dotted).
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Figure 1 shows the graphs of X(x) for η = 1 and η = 4 when ∆ = 0.2.3

The utility discount factor is the convex combination of exponential func-

tions

θ(t) = βe−γt + (1− β) e−δt, (7)

with 0 < β < 1. This function permits a simple calibration, it allows for

substantial flexibility, and it implies a declining pure rate of time preference.

In view of expression (5), we define the “effective discount factor”, a function

that incorporates both the pure rate of time preference and the effect of η

and g:

θ̃(t) ≡ θ(t)eg(1−η)t = βe−γ̃t + (1− β)e−δ̃t, (8)

where

γ̃ = γ + g (η − 1) (9a)

and

δ̃ = δ + g (η − 1) . (9b)

3For the logarithmic case (η = 1), equation (6) reduces to X = (1− (1−∆)x)/∆.
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The “effective discount rate” is the rate of decrease of θ̃(t).

When η 6= 1 and g 6= 0 this model has one degree of freedom: for given β,
the “effective discount rate” depends on γ̃ and δ̃, determined by two equations

in three unknowns, δ, γ, and g. These parameters, unlike η, do not enter

the function U , defined in equation (4). We normalize by setting γ = 0.4

This normalization implies that the long run pure rate of time preference is

0, i.e. it means that we are unwilling to transfer utility between two agents

living in the infinitely distant future at a rate other than one-to-one. It also

implies that the long run effective discount rate is g (η − 1).

2.2 The relation between actions and risk

The endogenous hazard rate, h(t), determines the probability distribution of

the occurrence time of the catastrophe. The change in the hazard is

ḣ(t) = μ(a− h(t)) (1− w (t)) ; h(0) given. (10)

This model is a simplified representation of the following situation. The ac-

tions that we take at a point in time (e.g. abatement, levels of consumption)

determine greenhouse gas (GHG) emissions levels at that time. These flows,

and existing GHG stocks, determine the evolution of the stock of GHG. The

risk of a climate-related catastrophe, given by h(t), is a monotonic function

of the stock of GHG. We can invert this function to write the time derivative

of h as a function of h and w, as in equation (10).5

4When η = 1 the equilibrium is always independent of g. For η = 1 or g = 0, γ and δ
equal γ̃ and δ̃. In this case, setting γ = 0 is an assumption, not a normalization.
When g > 0, the constant defined in equation (3) is finite if and only if η > 1. In

contrast, the maximand in expression (5) is defined even for some values of η < 1, because
the hazard has an effect similar to discounting. For η ≤ 1 we can adopt the “overtaking
criterion” to evaluate welfare.

5Let St be the stock of GHG and zt the control variable at time t; Ṡ = q (S, z) is
the equation of motion. Suppose that the hazard associated with the catastrophe is a
monotonic function ht = H (St); define the inverse function S = K(h) ≡ H−1(h), so
ḣ = H 0(S)q(S, z) = H 0 (K (h)) q (K (h) , z) .
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Equation (10) implies that (for h < a, as we assume throughout) the

hazard grows most quickly when h is small. This feature means that society

is willing to spend more (i.e. tolerate a larger value of X) to stabilize when

h is small. For hazards close to the steady state, there is little benefit in

incurring costs in order to prevent the hazard from growing.6

This model implies that the level of the hazard, not simply the occurrence

of the catastrophe, is irreversible. Given the level of inertia in the climate

system, this assumption seems reasonable. It also simplifies the class of

equilibria, because it eliminates the possibility of non-monotonic outcomes

(e.g. allowing the hazard to grow and then causing it to fall).

Defining y(t) =
R t
0
h (τ) dτ , the payoff (expression (5)) is evaluated as

ET

Z T

0

θ(t)e−g(η−1)tU(w(t))dt =

Z ∞

0

θ(t)e−g(η−1)t−y(t)U(w(t))dt. (11)

The simplicity of equation (10) is important. There are conjectures on

the level of risk for different types of events (such as a reversal of the ther-

mohaline circuit or a rapid increase in sea level) corresponding to different

policy trajectories (e.g. BAU or specific abatement trajectories). We can

use these kinds of conjectures to suggest reasonable magnitudes for the pa-

rameters of the risk model (h(0), a and μ). There is little empirical basis

for calibrating a more complicated model.

2.3 Types of equilibria

If the decision-maker at time 0 were able to choose an arbitrary policy tra-

jectory to maximize the payoff in expression (11) subject to the constraint in

equation (10), a typical solution involves procrastination: the decision-maker

decides to begin stabilization at some time in the future. For well-known

reasons, this policy is time-inconsistent.

6The results in a model in which ḣ is non-monotonic in h would change in fairly obvious
ways. For example, if ḣ is small when h is close to both 0 and the steady state level,
stabilization would not be worthwhile either for very small or for very large levels of h.
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We emphasize the situation where the decision-maker at time t can choose

the current policy w ∈ {0, 1}, but not future policies. The decision-maker
understands how this choice affects the evolution of the hazard, and forms

beliefs about how future regulators’ decisions depend on the future level of the

state variable h. The resulting MPE is a Nash equilibrium to the sequential

game played by the succession of regulators. Each regulator chooses the

current decision and wants to maximize the present discounted value of the

stream of future payoffs, given by expression (11). (Each regulator rewinds

the time at which he makes the decision to t = 0.)

There are in general multiple MPE because the optimal decision for the

current regulator depends on his beliefs about the actions of subsequent

regulators. The equilibrium beliefs of the current regulator (i.e. those that

turn out to be correct) depend on his beliefs about the beliefs (and thus the

actions) of successors. There is an infinite sequence of these higher order

beliefs, leading to generic multiplicity of equilibria.

However, due to the binary nature of the problem, and the specific form of

the hazard equation, the equilibrium set has a simple characterization. There

are upper and lower limits of X, which we denote asXU (h) andXL (h), such

that: the unique MPE is perpetual stabilization for X ≤ XL (h); the unique

MPE is perpetual BAU for X ≥ XU (h); and there are MPE with either

perpetual stabilization or perpetual BAU for XL(h) < X < XU(h). For

a subset of
¡
XL(h),XU(h)

¢
there are additional MPE that involve delayed

stabilization, but we do not discuss those here.

We also consider a benchmark equilibrium, called “limited commitment”,

in which the current policymaker decides between perpetual BAU and per-

petual stabilization (i.e. he can commit future generations to one of the two

policies without the possibility to switch between them in the future). This

equilibrium is time-consistent, but it is not particularly plausible. It involves

either an unreasonable amount of commitment, or an arbitrary restriction of

the set of feasible actions. In this equilibrium, the policymaker chooses to
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stabilize if and only if X ≤ XC (h). The equilibrium is useful as a bench-

mark for two reasons: (i) it has the same structure (a critical bound) as the

MPE, and (ii) the fact that it is a constrained optimum means that it has a

simple welfare interpretation.

Our companion paper (Karp and Tsur 2007) gives the formulae for the

boundary functions corresponding to the utility cost of stabilization xU(h),

xL(h), and xC (h). These functions are independent of ∆; they depend on

the growth rate g and the utility parameter η via the discounting parameters

γ + g(η − 1) and δ + g(η − 1). We use those formulae and equation (6) to

obtain the boundaries in terms of consumption, XL(h), XU(h) and XC (h).

These functions depend on all of the parameters of the model.

This model shows the potentially offsetting effects of an increase in η.

This parameter affects the equilibrium by altering the “effective discount

rate” ρ(t)+ g(η− 1) and it also enters the function X(x) defined in equation
(6). For g > 0, an increase in η increases the “effective discount rate”

ρ(t)+g(η−1), which in turn decreases the critical values xU(h) , xL (h), and
xC (h); that is, the change makes the decision-maker less willing to sacrifice

current utility for future reduction in risk. However, the larger value of η

makes the decision-maker more risk averse; it shifts up the graph of X(x), as

shown in Figure 1, so the smaller value of the critical x (resulting from the

increase in η) might correspond to a larger value of the critical X. Thus, in

general the effect of η on X is ambiguous. For our calibration, discussed in

the next section, an increase in η reduces X.

3 Policy bounds and constant equivalent rates

We discuss the calibration of the model and then present the critical values

of X corresponding to the MPE and the limited commitment equilibrium.

We also present the corresponding constant equivalent pure rates of time
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preference; these are the rates that would yield the same policy bounds if ρ

were constant (i.e., if β = 0 or β = 1 or δ = γ).

We obtain an exact constant equivalent discount rate because of the sim-

plicity of the model. The exact equivalence occurs if the decision rules under

both hyperbolic and constant discounting can be characterized by a single

parameter. In our problem, the single parameter is the critical value of X

below which stabilization occurs.7

3.1 Calibration

We choose the hazard parameters h(0), μ and a in order to satisfy: (i) under

stabilization the probability of occurrence within a century is 0.5%; (ii) in

the BAU steady state, where h = a, the probability of occurrence within a

century is 50%; and (iii) under BAU it takes 120 years to travel half way

between the initial and the steady state hazard levels. These assumptions

imply a = 0.00693147, h0 = 0.000100503 and μ = 0.00544875. With these

values, the probability of occurrence within a century is 15.3% under BAU,

compared to 0.5% under stabilization.

In order to be able to compare the damage estimates under our cali-

bration with those used by IAMs, we define PB (t) ≡ Pr{T ≤ t|BAU}
as the probability that the catastrophe occurs by time t under BAU, and

PS (t) ≡ Pr{T ≤ t|Stabilization} as the corresponding probability under
stabilization. The future (time t) expected increase in damages from fol-

lowing BAU rather than stabilization, as a percentage of future income,

is D (t) =
¡
PB (t)− P S (t)

¢
100∆%. For all calibrations where h(0) > 0,

7Barro (1999) also obtains a constant equivalent discount rate, because the single pa-
rameter in his logarithmic model is the slope of the decision rule. When the decision rules
cannot be described by a single parameter, it is possible only to obtain an approximate
constant equivalent discount rate. For example, in the linear-quadratic model there exists
a linear equilibrium control rule under both constant and hyperbolic discounting. Because
this control rule involves two parameters — the slope and the intercept — it is in general
not possible to find a constant equivalent discount rate for the hyperbolic model (Karp
2005).
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Figure 2: Percentage expected increased loss of income under BAU: ∆ =
0.05 = dashed; ∆ = 0.1 = solid;∆ = 0.2 = dotted.

limt→∞D(t) = 0, because both probabilities converge to 1.8 Figure 2 shows

the graphs of D(t) over the next millennium for ∆ = 0.05, 0.1 and 0.2. The

corresponding damages after 100 and 200 years areD(100) = {0.72, 1.43, 2.88}
and D(200) = {2.03, 4.01, 8.11}.
The Stern Review provides a range of damage estimates. Their second-

lowest damage scenario (“market impacts + risk of catastrophe”) assumes

that climate-related damages equal about 1% in one century, and 5% after

two centuries. Our calibration with ∆ = 0.05 implies significantly lower

damages over the next two centuries. The Stern Review also describes

scenarios in which damages might be as high as 15-20% of income, a level

considerably above our scenario with ∆ = 0.2 (for the next two centuries).

The Stern Review assumes that climate-related damages are zero after

200 years, whereas in our calibration damages continue to rise for 800 years

and then decrease asymptotically to 0. The maximum level of D(t) equals

91∆%, i.e. 4.5%, 9.1% and 18.2% for the three values of ∆. In view of the

different profiles of damages in the Stern Review and in our calibration, exact

8Using equation (10), PB(t) = 1 − e−at+(a−h(0))(1−e
−μt)/μ and PS(t) = 1 − e−h(0)t.

For h0 = 0, D(t) = PB (t) 100∆, which converges to 100∆%.
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matching is not possible. However, our case ∆ = 0.2 approximates one of

the high (but not the highest) Stern damage scenarios; the value ∆ = 0.1

approximates the Stern “market impacts + risk of catastrophe” scenario, and

the value ∆ = 0.05 corresponds to a much lower damage scenario.

Using equation (7), the pure rate of time preference is

ρ(t) ≡ −θ̇(t)
θ(t)

=
βγe−γt + δe−δt(1− β)

βe−γt + e−δt(1− β)
. (12)

We set γ = 0, so that the long-run pure rate of time preference is 0, and

choose β and δ in order to satisfy

ρ (0) = 0.03 and ρ(30) = 0.01.

Our value of ρ (30) is ten times greater than the Stern Review’s constant

pure rate of time preference.

3.2 Results

For a variety of parametric and equilibrium assumptions, we calculated upper

and lower bounds onX — the fraction of income-at-risk that society spends to

stabilize risk. These values were insensitive to choices of ∆ over the interval

(0.1, 0.2), so the tables below report only results for ∆ = 0.2. We also report

the corresponding constant equivalent discount rates. We discuss results for

g ∈ [1%, 2%] and η ∈ [1, 4]. As we noted above, when η = 1 the long run

effective discount rate is 0 and the integral in equation (3) (which plays no

role in determining the equilibrium) does not converge; moreover, the results

are extremely sensitive in the neighborhood of η = 1. This value is therefore

a special case. Consequently, we emphasize the case where 1.1 ≤ η ≤ 4 and
consider the case η = 1 separately.

Tables 1 — 3 show the (X) policy bounds and constant-equivalent ρ values

for the 6 cases corresponding to η ∈ {1.1, 2, 4} and g ∈ {0.01, 0.02}. In
each case the constant equivalent social discount rate (not shown) equals
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the constant equivalent value of ρ plus ηg. We emphasize the case where

η = 2 and compare the results for g = 1% and g = 2% across the different

equilibria.

We begin with the limited commitment equilibrium, which is both time

consistent and constrained optimal. For η = 2, the maximum fraction of the

income at risk that society would forgo in order to stabilize ranges between

6% and 17% as g changes from 2% to 1%. For these experiments, where

∆ = 0.2, these bounds imply expenditures of between 1.2% and 3.4% of

GWP. If ∆ = 0.1, the corresponding values of XC are 5.4% and 15.5%,

implying an expenditure of between 0.54% and 1.5% of GWP. These values

bracket the Stern recommendation to spend 1% of GWP annually on climate

change policy. For ∆ = 0.2, the constant equivalent values of ρ range

from 0.13% and 0.32%, so the constant equivalent social discount rate ranges

between 2.13% and 4.32%.

Table 1: Limited commitment upper bounds XC and constant-equivalent ρ
values for η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XC (%) Cons-equiv ρ (%) XC (%) Cons-equiv ρ (%)
1.1 76.22 0.01 60.71 0.02
2 17.1 0.13 6.07 0.32
4 3.78 0.53 1.06 1.09

For g = 1% and η = 2 the upper and lower bounds of X in a MPE are

17.8% and 9.9%, with corresponding constant equivalent values of ρ of 0.1%

and 0.7% (Tables 2 and 3). In this case, for 17% < X < 17.8% of the value

at risk, the optimal policy is to follow BAU, but there are MPE that result

in excessive stabilization. For 9.9% < X < 17% the optimal policy is to

stabilize, but there are MPE that result in BAU. Thus, a MPE may result in

either excessive or insufficient stabilization (although, in a sense, the latter
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is more likely). The broad range of values for which there are multiple MPE

indicates the importance of establishing commitment devices that enable the

current generation to lock in the desired policy trajectory.

Table 2: MPE upper bounds XU and constant-equivalent ρ values for
η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XU (%) Cons-equiv ρ (%) XU (%) Cons-equiv ρ (%)
1.1 94.15 -0.08 81.55 -0.12
2 17.80 0.1 5.44 0.49
4 3.33 0.8 0.98 1.4

For g = 2% the upper and lower bounds (5.4% and 4%) are much closer

(compared to when g = 1%), and both lie below the upper bound under

restricted commitment. In this case, for any X such that stabilization is

a MPE, stabilization also maximizes welfare. For 5.4% < X < 6.1% all

MPE involve BAU even though stabilization is optimal. With g = 2% the

constant equivalent ρ in a MPE ranges from 0.5% to 1%. As expected, the

bounds are lower under the higher (g = 2%) growth rate, since the current

generation is less willing to sacrifice for the sake of much wealthier future

generations.

Table 3: MPE lower bounds XL and constant-equivalent ρ values for
η × g = {1.1, 2, 4} × {0.01, 0.02}.

g = 1% g = 2%
η XL (%) Cons-equiv ρ (%) XL (%) Cons-equiv ρ (%)
1.1 38.3 0.37 30.86 0.41
2 9.89 0.69 3.98 1.00
4 2.73 1.25 0.9 1.76
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Table 4 in the appendix shows that in the neighborhood of η = 1 society

is willing to spend nearly all of the value at risk simply in order to reduce

the future risk. However, the case η = 1 and neighboring cases are actually

not informative. Recall that our model contains one free parameter when

η 6= 1, and we used this degree of freedom to set γ = 0. Had we chosen a

positive value of γ, we could have adjusted the values of g in all the previous

tables (where η 6= 1) without changing the results. However, the positive

value of γ would have caused a significant change in the results for η = 1.

Table 5 reports some bounds when we change the discounting calibration

so that ρ (30) = 2% (rather than 1% as above). This rather modest change

in discounting assumptions leads to large percentage changes in the bounds

on X. This experiment reinforces the point that policy prescriptions can be

quite sensitive to assumptions about discount rates.

4 Conclusion

A constant discount rate cannot reflect both a reasonable opportunity cost

of public funds and an ethically defensible concern for distant future gener-

ations. One way to reconcile these two goals is to let the social discount

rate vary over time. There are several reasons why the social discount rate

might be a function of time. We emphasized the role of a declining pure

rate of time preference (hyperbolic discounting), which gives rise to time

inconsistency and a tendency to defer difficult decisions.

In our binary action model, a reduction in current consumption (“sta-

bilization”) reduces the future hazard rate of a random event that causes

permanent loss of utility. There are multiple Markov Perfect equilibria

(MPE) for an interval of stabilization costs. The upper bound of this inter-

val is the maximum cost consistent with a MPE involving stabilization; the

lower bound is the maximum cost consistent with a MPE involving BAU.

For each of these bounds we calculate a constant equivalent discount rate,
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i.e. a constant discount rate that leads to the same decision rule as the time-

varying discount rate. We compared the set of MPE to a time-consistent

(constrained optimal) reference equilibrium. The MPE equilibrium set in-

dicates how much society would be willing to spend to stabilize the risk,

if it managed to solve the intragenerational collective action problem; the

reference equilibrium indicates how much society should be willing to spend.

Our risk and damage calibration includes the moderate and the high

damage estimates in the Stern Review. If the catastrophe reduces income

by 10-20%, the calibration implies a range of expected damages (under BAU)

of 1.4 - 2.9% after 100 years and 4 - 8% after 200 years. Our discounting

calibration assumes that the pure rate of time preference begins at 3%, falls

to 1% over the first 30 years, and then asymptotically declines to 0. As η

(the elasticity of marginal utility) ranges between 2 and 4 and g (the growth

rate) ranges between 1% and 2%, the constant equivalent pure rate of time

preference ranges between 0.1% and 1.8% (depending on the equilibrium

assumption). For η = 2 and g = 2%, society is willing to spend between

0.5%− 1% of GWP per year to reduce the risk in a MPE; society is willing

to spend between 0.6% − 1.2% under limited commitment. A lower η or

lower g implies higher expenditures.

As the Stern Review emphasizes, quantitative models are valuable in pro-

viding a reality check for policy prescriptions only when used in conjunction

with other qualitative and quantitative information. The limited empirical

basis for these models, and the fact that they inevitably incorporate value

judgements, means that they are unlikely to resolve policy disagreements.

Our model incorporates two important aspects of the policy problem: the

risk of abrupt events, and hyperbolic discounting (in order to reflect both

the opportunity costs of public funds and a concern for future generations).

Moreover, it does so in a simple framework, making it easy to see the relation

between the policy conclusions presented above and our choice of parameters,

and to explore the effects of other parameter choices.
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Appendix: Additional sensitivity results

Table 4: Additional runs to illustrate the senstivity of results in the neigh-
borhood of η = 1. Policy bounds and constant-equivalent ρ values when
η × g = {1.01, 1.001, 1} × {0.01, 0.02}.

X-bound (%) Cons-equiv ρ (%)
η = 1.01, g = 1%
Limited commitment upper bound 94.96 0.00
MPE upper bound 99.79 -0.02
MPE lower bound 47.15 0.34
η = 1.001, g = 1%
Limited commitment upper bound 97.18 0.00
MPE upper bound 99.94 -0.01
MPE lower bound 48.19 0.336609
η = 1.01, g = 2%
Limited commitment upper bound 92.57 0.00235185
MPE upper bound 99.53 -0.0281171
MPE lower bound 45.99 0.343802
η = 1.001, g = 2%
Limited commitment upper bound 96.92 0.00
MPE upper bound 99.92 -0.01
MPE lower bound 48.07 0.34
η = 1
Limited commitment upper bound 97.43 0.00
MPE upper bound 99.95 -0.01
MPE lower bound 48.31 0.34
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Table 5: Sample of results when ρ(30) = 2%.

X-bound (%) Cons-equiv ρ (%)
1. η = 2, g = 2%
Limited commitment upper bound 4.22 0.90
MPE upper bound 3.52 1.22
MPE lower bound 2.68 1.77
2. η = 2, g = 1%
Limited commitment upper bound 12.53 0.43
MPE upper bound 10.60 0.61
MPE lower bound 5.93157 1.35916
7. η = 4, g = 1%
Limited commitment upper bound 2.70 1.28
MPE upper bound 2.38 1.58
MPE lower bound 2.02 2.03

22


