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Hedges and Trees: Incorporating Fire
Risk into Optimal Decisions in Forestry
Using a No-Arbitrage Approach

Margaret Insley and Manle Lei

This paper investigates the impact of including the risk of fire in an optimal tree
harvesting model at the stand level, assuming timber prices follow a mean-reverting
stochastic process. The relevant partial differential equation is derived under
different assumptions about hedging the risk of fire. The assumption that fire risk
is fully diversifiable is contrasted with the assumption that it can be hedged with
another asset. It is conjectured that the risk-neutral probability of fire exceeds the
historical probability of fire, which will affect forest land valuation. An empirical
example is presented for two different silvicultural regimes.

Key words: firerisk, forest value, hedging, jumps, no-arbitrage, optimal harvesting,
Poisson process, real options

Introduction

The valuation of forested land is an ongoing topic of research in the academic literature
and is of vital practical concern to those involved in managing timberlands. In the
United States a motivation for improving forest land valuation is the significant
increase in holdings of private forests by institutional investors. Prior to the 1980s,
industrial owners of lumber mills in the United States had typically maintained owner-
ship of forested lands to supply their mills. Recognizing that the value of these lands
was not adequately reflected in share prices, a trend emerged whereby integrated forest
companies sold off timberland assets to willing institutional investors. These investors
were able to manage timberlands more efficiently without the constraint of having to
keep any particular millin operation.” Aronow, Binkley, and Washburn (2004) note that
changes in timberland property values are not well understood owing, in part, to the
lack of a consistent time series of historical data on timberland values.

In the academic literature, the valuation of forested land has been a concern for over
150 years. The work by Faustmann in 1849 introduced the concept of “land expectation
value” and the determination of the optimal harvest age assuming the land remained

Margaret Insley is assistant professor, Department of Economics, University of Waterloo, Waterloo, Ontario; Manle Lei is
aformer Ph.D. student in the Department of Economics, University of Guelph. This work evolved from Lei’s doctoral research
at the University of Guelph.

The authors thank the Social Sciences and Humanities Research Council of Canada for financial support. We gratefully
acknowledge several individuals who provided data used in this paper, including Margaret Penner (Forest Analysis, Ltd.),
Al Stinson, and Paul Krabbe (Tembec, Inc.). Finally, we thank several anonymous referees whose suggestions improved this
paper. Any shortcomings or errors are solely the responsibility of the authors.

Review coordinated by Douglas M. Larson.

1 This shift in the ownership of timberland is discussed in Global Institute of Sustainable Forestry (2002) and Caulfield
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in forestry over an infinite series of future rotations.? Since the publication of Faust-
mann’s paper, much research has been devoted to understanding the classic tree
harvesting problem, and its many variations, whereby the opportunity cost of main-
taining land in standing timber is balanced against the benefit of allowing the trees to
grow for another period. [For a review of this literature, see Newman (2002).]

Over recent decades, one focus of the forest economics literature has been the impact
of uncertainty on forest valuation and optimal harvesting.® Major sources of uncertainty
are volatile prices for timber and production risks such as fire and pests. Although there
are numerous papers dealing with either price or production risk alone, fewer studies
consider the two jointly. The forestry literature has benefited from developments in
finance and real-options theory on the valuation of risky assets, and several papers have
adopted a real-options approach to valuing forestry investments (e.g., see Plantinga,
1998). A brief review of different approaches in the literature to optimal harvesting
under uncertainty is provided in the following section, with a more thorough review
contained in Insley and Rollins (2005).

Much of the existing literature on optimal harvesting under uncertainty estimates
stand value using a constant risk-adjusted discount rate. For a stand subject to fire and
price risk, this discount rate would be chosen to reflect the return required by the
market to induce investors to hold the asset. Dixit and Pindyck (1994) call this the
dynamic programming approach. The problem with this approach is that it is generally
not correct to assume the discount rate will be constant (Trigeorgis, 1996). In the real-
options literature, the preferred approach is touse contingent claims arguments and the
assumption that markets are complete enough to permit an investor to hedge the risk
of an investment. An assumption of the absence of arbitrage opportunities allows the
determination of the fair value of the investment.* Insley and Wirjanto (2006) show that
depending on key parameter assumptions, the dynamic programming approach with
a constant discount rate® can give significantly different results than the contingent
claims approach. The advantage of the latter approach is that it avoids the need to
choose a discount rate and is consistent with modern finance theory.’

To apply contingent claims arguments to a tree harvesting problem, it must be
decided how to handle the risk of destruction by fire or other catastrophe which causes
a sudden jump in the value of the asset. One option is to assume that the risk of
destruction is fully diversifiable. This implies the market will not reward an investor for
holding an asset subject to fire or other production risk. In this case, when valuing a
stand of trees, one would apply normal hedging arguments to eliminate price riskin a
hypothetical hedging portfolio and assume the risk of fire, while not eliminated,
generates no extra return. The assumption that the risk of a jump in asset value is fully
diversifiable has been motivated in the literature by the concern that it is not feasible
to hedge a stochastic process characterized by discrete jumps of random size (see Dixit

2 A translation of Faustmann’s original work in German is contained in Faustmann (1995).

3 Caulfield and Newman (1999) review research on timberland investment risk.

4There are now numerous books that introduce the concepts of real options. Dixit and Pindyck (1994) and Trigeorgis (1996)
are two of the most accessible.

5 Here we generally refer to dynamic programming with a constant risk-adjusted discount rate as just the dynamic
programming approach. In theory, one could choose a nonconstant discount rate with dynamic programming, but this is less
common in practice. This is consistent with the terminology used by Dixit and Pindyck (1994).

6Its disadvantage occurs in situations when it is farfetched to assume the risk of an investment can be adequately hedged.
There is an emerging literature that addresses this issue, such as Henderson (2006), for example. The issue of incomplete
markets is beyond the scope of this paper.
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and Pindyck, 1994, p. 120; and Wilmott, 1998, chap. 26). However, recent research has
shown that jump processes can be adequately hedged with a reasonable number of
hedging assets (see, e.g., Amin, 1993; Meyer, 1998; and D’Halluin, Forsyth, and Labahn,
2004). In addition, assuming the risk of fire is fully diversifiable, while convenient, may
not be correct.

With the increased inclusion of timberland in investment portfolios, we conjecture
that the ability to hedge production risks in forestry investments is increasing. This
raises the question of what impact this may have on the value of timberland. It is
possible that the market’s perception of the risk of destruction from fire will differ from
the historical risk of destruction. This is somewhat analogous to the observation that the
premium demanded in bond markets to compensate for the possibility of defaultis much
higher than the historical risk of default. In the finance literature dealing with credit
risk, this is called the “credit spread puzzle.”

This study extends the work of Insley and Rollins (2005) by including the risk of fire
in a model of optimal harvesting over infinite rotations in which timber prices are
modeled as a mean-reverting stochastic process. A contingent claims approach is used
to derive the appropriate partial differential equation and linear complementarity
problem (LCP) which completely specifies the decision problem. Using an empirical
example, we compare the impact of fire risk on land value and optimal decisions when
prices are stochastic with the case when prices are assumed constant. Two cases are
examined—one in which the trees are allowed to regenerate naturally and one in which
significant planting and other management expenses are incurred.

We derive three different partial differential equations which could be solved, in
conjunction with the LCP, to find the value of a stand of trees. The first uses the
dynamic programming approach and assumes that the asset will earn a constant risk-
adjusted return. In the second, markets are assumed to be complete enough to allow the
investor to hedge both the risks from price volatility and from fire. In the third, it is
assumed that we can hedge the risk due to price volatility, while the risk of fire cannot
be hedged but is fully diversifiable. For our empirical example, we do not pursue the
dynamic programming approach, but rather adopt this third assumption that fire risk
is diversifiable. Due to a lack of data on the perceptions of investors about fire risk, we
are unable to draw definite conclusions about the impact of assuming the risk of fire can
be hedged. However, we are able to observe the significance of any disparity between
historical risks of fire and market perceptions.

The remainder of the paper proceeds as follows. The next section presents a review
of some of the literature addressing optimal harvesting under uncertainty and, in
particular, the previous literature that considers the impact of fire or other production
risk. We then detail the different approaches to estimating the value of the stand under
price and fire risk. A section devoted to the empirical example is then provided,
demonstrating the impact of including the risk of fire in an optimal harvesting problem
at the stand level. Concluding remarks are highlighted in the final section.

Literature Review

Early papers dealing with managing forests under price uncertainty include Hool
(1966), and Lembersky and Johnson (1975). More recent contributions use insights from
the finance literature and real-options theory. Examples of papers that model timber
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prices as a stochastic differential equation include Morck, Schwartz, and Strangeland
(1989); Clarke and Reed (1989); Thomson (1992); and Plantinga (1998). Morck,
Schwartz, and Strangeland (1989), and Insley and Wirjanto (2006) employ no-arbitrage
arguments and a contingent claims approach to determine the value of a stand of trees,
whereas other papers (e.g., Thomson, 1992; and Insley and Rollins, 2005) have esti-
mated expected land value using an exogenously chosen discount rate.

Recent occurrences of very large forest fires in western Canada and the United
States, as well as significant infestations of the pine beetle and other pests, have
increased awareness of the need to consider production risks in valuation models. Two
of the earliest papers to add fire risk to the optimal harvesting problem for an even-aged
stand of trees were Martell (1980) and Routledge (1980). Their general result was to
show a decline in land value as well as optimal rotation age. Reed (1984) derived the
condition for optimal harvesting when the risk of fire or other catastrophe is modeled
as a Poisson process. He observed that when fire risk is independent of stand age and
causes total destruction of a stand of trees, the effect on the optimal harvesting age is
the same as the effect of an increase in the discount rate. Using a stylized tree harvest-
ing example, he found a moderate reduction in the optimal harvest age when fire risk
is included.” These three papers all assume constant prices and costs.

More recent stand-level models have considered optimal actions by forest managers
beyond the choice of the optimal harvest time in response to the risk of destruction by
fire or other event. Thorsen and Helles (1998) present a model of optimal harvesting
where the risk of destruction depends on stand characteristics and thinning treatments
undertaken by the forest manager. In a similar spirit, Amacher, Malik, and Haight
(2005) develop a stand-level model that considers actions such as the level and timing
of fuel management activities, including planting densities and thinnings to remove
surface fuels to reduce the losses once a fire starts. When these fuel management
activities are taken into account, and depending on the function for the fire arrival rate,
the authors found the optimal rotation age may rise or fall in response to an increase
in fire risk. Yoder (2004) also considers optimal actions to control fire, but in his paper
the benefits are from the standing forest rather than from periodic timber harvests.

Another stand-level model is the work of Englin, Boxall, and Hauer (2000) who
consider the effect of amenity value of the standing forest in a Faustmann-type model
in the presence of fire risk. Stollery (2005) examines optimal harvesting in a flammable
forest when the benefits of carbon absorption are explicitly modeled.

Several papers (e.g., Reed and Errico, 1985; and Boychuck and Martell, 1996) have
addressed the impact of fire risk at a forest level. This allows for multiple stands of
different ages and partial harvesting rather than the clear cutting of the Faustmann
model.

All of the papers mentioned so far have assumed nonstochastic costs and prices. Reed
(1993) tackles the optimal harvesting problem for an old growth stand of trees,
assuming the value of the stand follows geometric Brownian motion, given a constant
timber volume. The standing timber provides an uncertain stream of amenity benefits
modeled as simple geometric Brownian motion. In addition, there is a potential risk of

7 For example, for a typical one-acre stand of Douglas Fir in British Columbia and a 3% discount rate, the optimal harvest
age without fire risk is 70 years, while a fire arrival rate of 0.02 (averaging once in every 50 years) implies an optimal harvest
age of 63 years.



496 December 2007 Journal of Agricultural and Resource Economics

catastrophe, modeled as a Poisson process. There are no harvest or planting costs.
Reed’s model permits an analytic solution and presentation of comparative static
results. He solves for an optimal harvest rule, showing that harvesting is optimal if the
ratio of the current value of timber to current amenity benefits exceeds a particular
critical value. The presence of a time-independent risk of destruction lowers the
expected present value of amenity benefits foregone through harvesting and lowers the
critical value of the ratio that determines when harvesting is optimal.

Yin and Newman (1996) incorporate stochastic prices and the risk of fire in a forestry
problem modeled at the forest level. They use a forest-level profit function, abstracting
from the rotational element of the harvesting problem.

Motoh (2004) considers the effect of catastrophic risk on natural resource harvesting
using a stylized model in which the value of the resource stock is assumed to follow
geometric Brownian motion and is subject to periodic catastrophic events modeled as a
Poisson process.® The catastrophic event drastically reduces the resource stock. Asin
Reed (1993), Motoh models stock value as the stochastic variable, rather than consider-
ing resource volume and price separately. He reports that the optimal rate of use of the
resource is increasing in: the initial stock of the resource, resource stock uncertainty as
described by the instantaneous volatility of the diffusion process, and the probability of
catastrophe.

A common result in the above papers is that including the risk of destruction in an
optimal harvesting model reduces the value of the forest land and reduces the optimal
harvest age (when prices are assumed fixed). For papers where price or value are
stochastic, the inclusion of risk of destruction reduces a critical value so that the
expected harvesting time occurs sooner than when risk is not present. The exception
is in Amacher, Malik, and Haight (2005) where the impact of fire risk on the rotation
age depends on how the fire arrival rate relates to stand age and the extent to which a
stand owner is able to mitigate the effect of fire through various fuel management
activities.

The current paper confirms the qualitative results of the previous literature. We use
a stand-level model where the only choice is whether or not to harvest the entire stand.’
It represents an extension of the model developed in Insley and Rollins (2005) which
uses a realistic stand-level timber growth curve and assumes timber prices are governed
by a stochastic differential equation with a mean-reverting drift term. As such, the
model is richer in certain respects than those of previous papers. The problem is defined
over infinite rotations, and the opportunity cost of land is determined endogenously. The
extension is in incorporating the risk of destruction of the stand and in using no-
arbitrage arguments to determine the appropriate partial differential equation. We do
not consider the effect of fuel management activities, leaving this issue for future work.
However, we do consider the impact of salvaging a portion of the timber from a burned
forest.

8 Willassen (1998) models forest value as a stochastic differential equation as a means of generalizing the Faustmann
formula to stochastic growing forests. Motoh (2004) takes a similar approach but incorporates a Poisson process as well to
capture catastrophic risk.

 We do not attempt a forest-level model in this paper because allowing for partial harvesting as well as stochastic prices
creates many more state variables and adds considerable complexity. Whenever a portion of the forest is harvested, a new
age cohort of trees is created (essentially a new stand of trees) which must be tracked.
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Table 1. Notation for Key Parameters Used in the Model Specification

Symbol Definition

p Price of lumber ($/cubic meter)

n Speed of mean reversion

P Long-run mean of lumber price ($/cubic meter)

o Instantaneous standard deviation of the proportionate change in price
z Standard Wiener process

Q Volume of wood available for harvest (cubic meters/hectare)

o Stand age (years)

) Instantaneous probability of fire

C, Harvest and transport cost to the mill ($/cubic meter)

C., Management costs of maintaining the stand ($/hectare)

V(P,t, ®) Value of the stand of trees under optimal management ($/hectare)
Ap Market price of risk with respect to price

Ap Market price of risk with respect to fire

r Risk-free discount rate

Salvage value from harvesting trees after a fire ($/hectare)

Note: All $ amounts are given in Canadian dollars.

Different Approaches to Estimating Stand Value

In this section we develop our tree harvesting decision model, contrasting the dynamic
programming and contingent claims approaches. For the reader’s convenience, a sum-
mary of symbols used in the model specification is given in table 1. Assuming an even-
aged stand of trees that will be used for commercial forestry, the value of the stand
depends on the price of timber P, the age of the stand o, and time . Denote the value of
this asset as V(P, t, a), or just V for ease of notation.

The price of timber is assumed to follow a known stochastic process:

(1D dP = a(P,t)dt + b(P,t)dz,

where a(P, t) and b(P, t) represent known functions, and dz is the increment of a Wiener
process. Note that a(P, t) is called the expected instantaneous drift rate since E[dP] =
a(P, t)dt, and b*(P, t) is denoted the instantaneous variance rate since Var[dP] =
b%(P,t)dz. Following Insley and Rollins (2005), we adopt a mean-reverting price process
of the form:

(2 dP = n(P - P)dt + oPdz,

which implies a(P, t) = n(P - P), and b(P, ¢) = oP.

The logic for this choice is that a stochastic process whereby the price level tends to
revert to a long-run mean over time should provide a better description of the price path
of commodities such as lumber or oil or copper [see Schwartz (1997) for support of this
view]. This long-run mean would reflect production costs and the cost of substitutes.
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Other authors have appealed to efficient markets to argue that commodity prices would
follow some sort of random walk. However, McGough, Plantinga, and Provencher (2004)
show that an efficient market can produce mean-reverting prices. Unfortunately, it is
difficult to make definitive conclusions based on historical data as to whether mean
reversion or a random walk is more likely the true data-generating process. Further
discussion of this issue as well as statistical tests on the price data used in this paper
are reported in Insley and Rollins (2005). v

The volume of timber (Q) on the stand at any time is a deterministic function of stand
age (a):

3) Q = gla).

However, stand age is a stochastic variable depending on the time of the last harvest
(t,), which depends on P, and on the occurrence of fire. If no fire has occurred, the stand
age can be computed as:

4) o=t-t,

If a fire occurs, the stand age will jump suddenly to zero. We assume for simplicity that
fire will always consume the entire stand, although some timber may be salvaged. The
risk of fire is specified as a Poisson process, which we denote by g, where

5) _Jo with probability 1 - ¢dt,
771 1 with probability ddt.

In equation (5), ¢, the average arrival rate, represents the probability of fire over the
infinitesimal interval dt. It follows that:

(6) do = dt - adq.

Recall that a Poisson probability density function for a discrete random variable Z
may be written as:

d)w Ze—<|>w
@) f2) = z

0 otherwise.

Z=0,1,2,..

Here, Z represents the number of events (in this case the occurrence of fire) in a fixed
interval of time of length w; ¢w represents the average number of occurrences in the
interval w. As noted above, the probability of a fire occurring in the infinitesimal
interval dt is ddt. Using equation (7), the probability that no fire occurs (Z = 0) in the
interval (0, T) is e*”. With a Poisson process, the probability of one event in an interval
is independent of events in other non-overlapping intervals. Hence, the probability that
the first fire occurs in the interval (T, T+dT) is equal to the probability of no fire in
(0, T) times the probability that a fire occurs in dT": ¢dTe *". It follows that the expected
time until the first fire occurs is:"’

10 This is shown in Dixit and Pindyck (1994, p. 170). For a review of the Poisson distribution, see Hogg and Craig (1970).
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8) B(T) = [" Teé"dT - 51)-

In deciding whether or not to harvest, the stand owner will consider the benefits from
harvesting immediately versus delaying until the next period. If harvesting occurs
today, the owner will receive the net revenue from harvesting and selling the timber,
ie., (P - C,)Q(a), where C, refers to harvesting costs per cubic meter, as well as the
value of the bare land, V(P, t, 0). If, instead, harvesting is delayed and the stand is
allowed to grow for another period, the stand owner will experience a capital gain or loss
due to the change in wood volume, change in price, and the possible occurrence of fire.
In addition, the stand owner may have to incur management costs, denoted C,, in $/ha,
to maintain the stand. If a fire does occur, there may be costs of clearing and revenue
from salvaged timber. S denotes the value of salvaged timber net of harvesting costs per
hectare. In this paper, we assume S is some constant proportion of the value of the wood
if it had been harvested immediately before the fire: S = y(P - C;)Q() for some param-
eter y, which we set at either 0 or 0.5 for illustrative purposes.

The Dynamic Programming Approach

Assuming neither the risks from price changes nor fire can be hedged, then the value
of the stand of trees must be estimated as an expected value with respect to price and
the physical risk of fire. Hence, the dynamic programming approach is sometimes called
the expected value approach. Using Ito’s lemma adjusted for our Poisson process (see
Dixit and Pindyck, 1994, p. 86), dV can be expressed as:

9) dV =uVdt +sVdz - C, dt +[V(P,t,0) -V + Sldq,
where
(10) w= [V, +a@, )V, + V, + Yob*(P, t)vpp]‘_lf ,
s = ég)‘-]’—QVP.
Note that:
1n VP=§X'V ;azv-v=ﬂ-v=iv_

P’ PP gpe’ Ut Y da

We assume that in order to hold this asset, an investor would require a risk-adjusted
return of p. This implies:

(12) E[dV] = pV,

where E [dV] refers to the expectation over dP and dg. Substitute for p and s in equation
(9), take the expectation, and substitute the result into equation (12) to obtain:

(13) pV =V, + V + Vob%(P,t)Vpp + a(P,)Vp
+ o[V(P, 8,0 -V +8]-C,.
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Equation (13) is a partial differential equation which describes the value of the
forested land, V, while it is optimal to refrain from harvesting. The required return on
the asset in order for an investor to hold it willingly is given on the left-hand side as pV.
On the right-hand side we see the sources of return from holding the standing timber.
These include how the value of the land changes with time (V}), with price (Vp and
V,p), and with stand age (V,). In addition, the expected loss from a fire is given by
$IV(P, t, 0) - V + S], which is the probability of fire multiplied by the loss from fire.
Note that after a fire, the investor would lose the value V but would still have the value
of the bare land V(P, t, 0) plus any salvage value S.

Collecting terms in V and rearranging, equation (13) can be rewritten as:

(14) V, + Vob2(P, t)Vpp + a(P, )V, + V, + §[V(P,2,0) + S]
-(p+d)V-C, =0.

As observed from equation (14), including the possibility of fire in the model has the
effect of adding a risk premium () to the risk-adjusted discount rate (p). This is consist-
ent with results reported by Reed (1984).

The difficulty with using the expected value (or dynamic programming approach) is
in determining the appropriate value for p. As discussed by Insley and Wirjanto (2006),
we would not expect p to be constant as it will depend on the ratio V,/V. We therefore
focus on the contingent claims approaches detailed below.

The Contingent Claims Approach: Hedging Price and Fire Risk

We derive a partial differential equation followed by V assuming that asset markets are
rich enough to allow us to hedge the risks due to price volatility and fire. We now denote
the value of our stand of trees by V,. We require one asset that depends on price (and
not fire), which we denote as V,(P, t, &) (or just V,), and another asset whose value
depends on the risk of fire alone, which we denote V;(P, ¢, ) (or just V). V, and V; might
represent shares or a portfolio of shares in forestry firms or ownership in an investment
fund specializing in timberlands. We construct a portfolio with n, of V;, n, of V,, and n,
of V,. The value of our hedging portfolio, =, is then:

(15) T =n,V,+ n,Vy + ngVs.

Over the interval d¢, holding n,, n,, and n, constant, the change in the value of the
portfolio is:

(16) dn =n,dV, + n,dV, + ngdV;.
Using Ito’s lemma, we can express dV;,j = 1,2, 3, as follows:

o)) dV, =n,Vydt +s,Vidz - C,,dt + [V,(P,2,0) - V,(P,t,0) + S, dg,
dV, = p,Vydt +s,V,dz - C,,dt,
dV3 = ]'13V3dt - Cdet + [V3(P7 t, 0) - V3(P, t, 06) + S3]dq,
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where 11, and s; are defined as:

(18) B, = [(V), + a®,OF)p + V), + %bQ(P,t)(Vj)pp]-‘%, j=12
J
S; = iPV’_tl(Vj)pa Jj=12;

J

3 = [(V3)t * (Va)a]_l"'
Vs
C,, and S; refer, respectively, to management costs and salvage value for asset j. For
simplicity, we assume these elements are zero for the two hedging assets, V, and V.
Note that V, depends only on price risk, and V; depends only on the risk of fire." To
eliminate risk in our hedging portfolio, as is reflected in dz and dq, we choosen,, n,, and
ng so that the following equations are satisfied:

(19) n,s,Vy +ny8,Vy, = 0
and
(20) n[Vy(P,£,0) - V, + 8]+ ng[Vy(P,£,0) - V| = 0.

Equation (19) is required to get rid of the dz terms in equation (17), and equation (20)
is required to eliminate the terms with dq in equation (17). With no risk, this portfolio
must earn the risk-free return over dt:

(21) dn = rndt.

Substituting from equations (15) and (16) for = and dr in equation (21) and combining
the result with equations (19) and (20), we get a system of three equations and three
unknowns:

5.V, 5,Vy 0 n, 0
(22) V,(P,¢,0) -V, +S,; 0 Vot,00-V5 || ny|=1] 0
V,x(n, -1 -C,, Vox(my-1) Vex(ug-r) || 1y 0

For a nontrivial solution, the determinant to the 3 x 3 matrix in equation (22) must
vanish, which will occur if the rows of the matrix are linearly dependent. In other words,
there must be two parameters, A, and Az, such that the following will hold:

(23) (1, - PV, - C,, = hpsiVy = A Vi(P,,0) - V, + 5],
(24) (B ~ 1)V, = Aps,Vy,
(25) (1 - PV, = “Ag[V3(t,0) - V).

11 This assumption is for convenience. The same fundamental partial differential equation [equation (28)] is obtained if
each of the hedging assets are assumed to depend on both fire and price risk.



502 December 2007 Journal of Agricultural and Resource Economics

Solving for A, and A in equations (24) and (25) gives:

26) Ap=t2t
Sg

and

@7 a

Ap = ,
"’ [V3(t’ 0) - Vs]/V3

where A, is known as the market price of P-risk and A as the market price of fire risk.'

As can be seen from equations (26) and (27), the market price of risk for either price
or fire reflects the extra return over the risk-free rate per unit of variability. That
variability is measured by s, for price, which is the instantaneous standard deviation
for V,(P, t). For fire risk, the variability is measured by - [V;(¢, 0) - V,1/V,, which is the
proportionate loss in asset value if a fire occurs. In theory, both A, and Az could be esti-
mated using historical data on log prices and timberland sales. This issue is discussed
in appendix B.

Substituting for p and s from equation (18) into equation (23) (and dropping the sub-
script for j = 1), we obtain the partial differential equation (PDE) that holds while it is
optimal to refrain from harvesting the trees:

(28) V. + ob2(P, )Vpp + [a(P, 1) - Apb(P, 1) [V - (r + Ap)V + V,
+ A V(P,2,0) + 8] - C,, = 0.

Equation (28) is the partial differential equation which must be satisfied by the value
of the stand of trees when it is not optimal to harvest and assuming that both the risk
of fire and the risk due to price volatility can be hedged. This may be contrasted with
equation (14) which was derived assuming these risks could not be hedged, but that the
asset in question (V) would earn a risk-adjusted return of p. Comparing these two
equations, we observe that in equation (28) the risk-free rate (r) has replaced the risk-
adjusted discount rate (p), and Ay has replaced the probability of fire ($). In addition, the
term associated with V, is [a(P, t) - Ab(P, ¢)], rather than just a(P, ). This demon-
strates the principle of risk-neutral valuation, which is discussed in the subsection below.

Alternatively, it may be assumed that it is possible to hedge price risk but not fire
risk. With stochastic changes in V due to fire risk uncorrelated with changes in the
market portfolio, an investor would not be rewarded with extra return for taking on fire
risk. Under these assumptions, the stand of trees in question could be valued by
creating a hypothetical portfolio of V; and a hedging asset V,, whereby price risk is
eliminated. This portfolio should earn the risk-free return. Using similar steps to those
used to derive equation (28), the following partial differential equation can be derived
which describes V:

(29) V, + Vob%(P,t)Vpp + TPVp - (r + §IV(P, 1, ) + V,
+$[V(P,¢t,0)+S]-C, = 0.

12 Note that we use a negative sign before A in equation (25). The determinant vanishes whether this sign is negative or
positive. Using a negative sign allows us to define A, as a positive number, which makes sense intuitively. As will be seen
in equation (28), A is added to r as a risk premium.
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This is the same as equation (28) except that the true probability of fire (¢) appears
instead of A. Recall that in equation (14) the true probability of fire was added as arisk
premium to the risk-adjusted discount rate. Here we observe that the probability of fire
is added to the risk-free rate, due to the assumption that we are able to hedge the risk
from price volatility.

The Historical Probability of Fire versus the Risk-Neutral Probability

Under the principle of risk-neutral valuation, a risky asset is valued assuming that
investors require no extra return for bearing risk. When done correctly, risk-neutral
valuation gives the appropriate value for the asset even when investors are risk averse.
As shown by Cox, Ingersoll, and Ross (1985), “the equilibrium price of a claim is given
by its expected discounted value, with discounting done at the risk-free rate, when the
expectation is taken with respect to a risk-adjusted process for wealth and the state
variables” (p. 380). This is accomplished by reducing the expected growth rate of each
of the stochastic underlying variables by an appropriate factor risk premium. In our
case, the instantaneous drift rate, a(P, ¢), is reduced by the risk premium A,b(P, t). The
term [a(P, t) - A,b(P, t)] is often referred to as the risk-neutral drift rate. If we assume
the stochastic underlying variable (P) exhibits this risk-neutral drift rate, and we use
the risk-free interest rate in our key partial differential equation [equation (28)], we will
obtain the correct asset value for the “real world” where investors are risk averse and
the true drift rate is a(P, t).

Similarly, if we were able to hedge the risk of jumps, we could use risk-neutral valua-
tion by finding the expected value of the asset with respect toa risk-adjusted probability
of fire. In our case, this risk-adjusted probability of fire is just Ap, which, as seen in
equation (28), is the appropriate probability of fire to use to calculate the asset’s value
either if fire risk can be hedged or if investors are indeed risk neutral. Hence, A may
be called the risk-neutral probability of fire. The assumption of whether the risk of
losses due to fire can be hedged or whether it is a diversifiable risk may have an
important impact on V depending on the relative size of ¢ versus A. For intuition about
this, we turn to the literature on credit risk for corporate bonds.

In the finance literature, a popular way of modeling credit risk is to assume that the
risk of default on corporate bonds follows a Poisson jump process.” It is possible to
estimate the market’s perception of the probability of default from bond prices and
compare this with the actual historical risk of corporate defaults. It has been found that
the risk of default calculated from bond prices is much larger than the historical risk of
default. As a consequence, the spread of the yield on corporate bonds over the risk-free
rate is greater than is justified by historical default rates (Amato and Remolona, 2003).
This is called the “credit spread puzzle.”

As an example, Hull (2006) compares the default intensity calculated from bond
prices to the historical default intensity for bond yields published by Merrill Lynch
averaged over a seven-year period from 1996. The difference in estimated probabilities
of default ranges from 0.63% for the highest quality bonds to 4.40% for lower quality
bonds. This translates into a small but significant excess return for corporate bonds
above what can be accounted for by expected default rates based on historical data. Hull

13 See Wilmott (2006, chap. 40) and Hull (2008, chap. 20) for discussions of modeling credit risk.
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notes some reasons for the difference between the risk of default implied by bond prices
and actual default rates. These include the low liquidity of some corporate bonds, the
possibility that bond traders may be allowing for future depression scenarios, the fact
that bonds do not default independently of each other giving rise to systematic risk, and
finally the fact that bond returns are highly skewed in the downward direction which
makes it difficult to diversify risks.

There is a parallel between the modeling of bond default risk and the risk of destruc-
tion of a forest by some catastrophe. We might expect Ap > ¢ for some of the same
reasons cited to explain the credit risk puzzle—i.e., lack of liquidity and difficulty in
diversifying risks. In our empirical example, we estimate stand value for various
different fire probabilities. This allows us to see the sensitivity of land value to this
parameter. A discussion of the estimation of both A, and A is provided in appendix B.

The Linear Complementarity Problem (LCP)

Equations (13), (28), and (29) are partial differential equations that will hold when it is
optimal not to harvest the stand of trees (the continuation region). To specify the
complete harvesting problem, including when it is optimal to harvest the stand, we
formulate a linear complementarity problem (LCP) as in Insley and Rollins (2005).*

We set up the LCP under the assumption that we can hedge price risk, but not fire
risk. The LCP for the other cases can be expressed in a parallel fashion. Let T denote
the terminal time when the option to harvest expires. Let be defined as time remain-
ing in the option’s life, i.e., 1= T - ¢. Rearranging equation (29) and substituting © for
¢, an expression, HV, is defined as follows:

(30) HY = 1V - [V40?P?Vy, + [a(P, 1) - 4pb(P, D]V, - C,,
LV, -V, + [V, 0) -V + S]],

where 7V represents the opportunity cost of not harvesting the stand. The expression
within large square brackets represents the return over the infinitesimal time interval
dt due to the time change, price change, and the expected loss due to fire. This latter
component is given by $[V(P, 7,0) - V + S] and includes the loss in V for the stand prior
to the fire which is offset by the value of the bare land V(P, 1, 0) and any salvage value
S.

The LCP is given as:

(31a) HV >0,
(31b) VP, 1,0) - [(P - C,)Q@) + V(P,7,0)] 2 0,
(310) HV[V(P,7,0) - [(P - C)Q(@) + V(P,7,0)]| = 0.

14 The optimal harvesting problem we have posed is an optimal stopping problem. Jaillet, Lamberton, and Lapeyre (1990)
have shown that the option value determined by the linear complementarity problem is the solution to the full optimal
stopping problem under certain conditions, which hold for our problem. Wilmott, Dewynne, and Howison (1993) and Tavella
(2002) provide further discussion on the linear complementarity problem. Note also, with a constant price assumption, it can
be shown that the LCP is consistent with the decision rule developed by Reed (1984).
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Table 2. Silviculture Costs Under a Basic Regime

Age at Age at
Cost Which Cost Cost Which Cost
Ttem ($/ha) Incurred Item ($/ha) Incurred
Site Preparation $200 1 First Tending $120 5
Nursery Stock $360 1 Monitoring $10 35
Planting $360 2

The LCP specifies the optimal actions of a forest owner seeking to maximize the net
present value of a stand of trees. With appropriate boundary conditions, the LCP is
solved numerically which involves discretizing the relevant partial differential equation
including a penalty term that enforces the American constraint [equation (31b)].”* We
are left with a series of nonlinear algebraic equations which must be solved iteratively.
We use a fully implicit finite difference method, as detailed by Insley and Rollins (2005).
The boundary conditions are the same as those in Insley and Rollins and are described
in appendix A.

Empirical Example

This section demonstrates the impact of including the risk of fire in an optimal
harvesting problem at the stand level. We use data for a hypothetical stand of Jack Pine
trees in Ontario’s boreal forest. Ontario’s forests are largely publicly owned, and private
companies acquire harvesting rights through long-term lease agreements. The perspec-
tive of this analysis is the forest owner, i.e., the public, so we ignore taxes and stumpage
payments made by firms to the government. All dollar amounts given in the paper are
expressed in Canadian dollars.

Volume and silviculture cost data were kindly provided by Tembec, Inc. The estimated
volumes used for our example reflect “extensive” and “basic” levels of forestry manage-
ment. The extensive regime involves essentially no management, as trees are allowed
to regenerate naturally and nothing is spent on silvicultural treatments. Under basic
management, $1,040 per hectare are spent within the first five years on site prepara-
tion, planting, and tending. These costs are detailed in table 2. Note that in the Canadian
context, these basic silviculture expenses are mandated by government regulation for
certain stands.

Volumes, estimated by product, are shown in figure 1 for the extensive and basic
regimes.' It is interesting to note the different products that make up the net merchant-
able volume of wood. SPF refers to spruce-pine-fir logs. SPF1 and SPF2 are defined as
being greater than 12 centimeters at the small end, SPF3 is less than 12 centimeters,
and “other” refers to other less valuable species (poplar and birch). SPF1 receives the

15 The American constraint is a restriction on American-type options, defined as an option which can be exercised at any
time before the expiry date. The constraint restricts the value of the option to being no less than the payout. If the value of
an American option drifted below the payout for an instant, it would immediately be exercised. This contrasts with a
European option which can only be exercised on the expiry date. Prior to the expiry date, the value of a European option could
conceivably drop below the payout. The option to harvest a stand of trees is typically modeled as an American option in that
harvesting can occur at any time.

16 The yield curves were estimated by Margaret Penner of Forest Analysis, Ltd., Huntsville, Ontario, for Tembec, Inc.,and
are available from the authors on request.
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Figure 1. Volumes by product for hypothetical Jack Pine stands in
Ontario’s boreal forest under extensive and basic management

highest price and, in an extensively managed stand, does not appear until after 70
years. In a stand with basic management, SPF1 appears much earlier (at around age
40) in response to the silvicultural treatments.

The parameters of the price process [equation (2)] are adopted from Insley and
Wirjanto (2006). Their paper used weekly data from January 1980 to June 2005 for the
price of softwood lumber delivered to Toronto and applied ordinary least squares to a
discrete approximation of the continuous-time stochastic process."” Parameter estimates
are given in table 3.® We also use the estimate of the market price of price risk (Ap) from

Y Insley and Wirjanto derived their data from Madison’s Canadian Lumber Reporter.

18 Note that the estimated value for P was $230 per cubic meter in Toronto. This had to be translated into a price at the
millgate. Since the mean price of $230 was close to the Toronto price for 2003, we adopted our estimated 2003 millgate price
of $60 per cubic meter for SPF1 logs as P at the millgate.
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Table 3. Parameter Estimates for Price Table 4. Assumed Values for Log Prices
Process and Market Price of Risk and Cost of Delivering Logs to the Mill
Parameter Estimate Description Cost ($/cu. meter)
Speed of mean reversion, n 0.80 Harvest and transportation cost $47
Long-run equilibrium price, P ($/m?) $60 Price of SPF1 $60
Volatility of price, o 0.27 Price of SPF2 $55
Market price of risk for price, Ap 0.01 Price of SPF3 $30

Price of poplar/birch $20

Note: The relevant price process is dP = n(P - P)dt + oPdz.

Insley and Wirjanto which is based on the approach of Hull (2006). The Ap value is
reported in table 3, and details on the estimation approach are provided in appendix B.

Assumptions for harvesting costs and log prices are given in table 4. These prices are
considered representative for 2003 prices at the millgate in Ontario’s boreal forest.
Average delivered wood costs to the mill for 2003 are reported as $55 per cubic meter
in a recent Ontario government report (Ontario Ministry of Natural Resources, 2005).
From this is subtracted $8 per cubic meter as an average stumpage charge in 2003,
giving $47 per cubic meter.® It will be noted the lower valued items (SPF3 and poplar/
birch) are harvested at a loss. These items must be harvested according to Ontario
government regulation. Because the price for poplar/birch is at roadside, there is no
transportation cost to the mill.

We examine a range of fire arrival rates in our example. According to the Ontario
Ministry of Natural Resources (2001), in the boreal forest, estimates of fire return inter-
vals vary considerably from 20 to 300 years. The risk of fire is the reciprocal of the fire
return interval, so this implies ¢ ranges from 0.003 to 0.05. For this paper, we consider
¢ values from 0 to 0.06.

We have not made any attempt to estimate the risk-neutral probability of fire (Ap).
However, through observing the impact of different levels of ¢, we can observe the
impact of a risk-neutral probability of fire that exceeds the true probability of fire.

Empirical Results

Using the parameters described above, we solve the optimal harvesting model to deter-
mine the value of the stand at the beginning of the rotation when the land is bare (. = 0)
under both extensive and basic silvicultural regimes, assuming zero salvage value. We
also solve for critical harvesting prices for various stand ages. For a stand of a particular
age, if the current price equals or surpasses the critical price, then the stand should be
harvested. For comparison, we calculate the value of an extensively managed stand
using a Faustmann-type model with a constant price of P = P(= $60) and a range of
values for the probability of fire. Faustmann values for the basic regime are not
reported, as these values are negative for all levels of p when P = P.

The results are presented in table 5 and figure 2.”° The estimates of land value are
found to be much larger under the assumption that log prices are stochastic, implying

9This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation. Average stumpage charges
are available from the Canadian Council of Forest Ministers (2007).

2 Richardson extrapolation was employed to increase the accuracy of the results. [See Wilmott (1998) for an explanation
of Richardson extrapolation.] The numerical results are considered accurate to within approximately $5 per hectare.
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Table 5. Land Values for Different Fire Arrival Rates

Faustmann Land Value* Bare Land Value, Stochastic Price
($/ha) ($/ha)

Fire Arrival Rate (¢) Extensive Regime Extensive Regime Basic Regime
0.00 60 663 1,630
0.005 44 534 1,365
0.01 32 432 1,145
0.02 16 285 808
0.03 7 190 572
0.04 2 126 406
0.05 0 85 288
0.06 0 57 205

* Faustmann values for the basic regime are not reported as these values are negative for all levels of ¢ when
P=P.
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Figure 2. Value of land at the beginning of the first rotation for
Faustmann (constant price) and stochastic price cases for various
fire arrival rates

that incorrectly ignoring stochasticity can have a very large effect on the estimated land
value. Our model assumes the stand owner is free to react optimally to changing lumber
prices. The owner can therefore increase the value of the stand by delaying harvesting
when prices are low and harvesting immediately to take advantage of any price spikes.
This is a standard real-options result. To the extent the forest owner is unable to freely
choose the harvesting date due to regulation, weather, or some other factor, the bare land
values calculated using the real-options approach will overestimate the true stand value.

The relatively low values for the Faustmann result are a reflection of the high costs of
harvesting and delivering wood to the mill in Ontario’s boreal forests, combined with the
assumption that the price at the time of harvest will equal the long-run average of $60
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per cubic meter. We would need to assume a significantly higher price in the Faustmann
model to achieve a land value anywhere close to that obtained under the stochastic price
assumption. For example, at a price of $90 per cubic meter, the Faustmann result for
the extensive regime (with no fire risk) is around $660 per hectare, which is close to the
land value with a stochastic price. For the basic regime, a price of around $112 per cubic
meter is required to obtain a value that is close to the bare land value under stochastic
prices.

We also observe from table 5 that land value falls sharply as the risk of fire increases.
First consider the extensively managed stand. When price is stochastic, land value for
the extensive regime at ¢ = 0 is about four times the value at ¢ = 0.04. Using the
Faustmann model with price fixed at the long-run mean, land value at ¢ =01is 30 times
the value at ¢ = 0.04. Because of the low land values under the Faustmann rule when
P = P,increases in the probability of fire have a larger relative effect under the Faust-
mann rule and the estimated value of land reaches zero sooner as the fire arrival rate
is increased.

Comparing the basic and extensive regimes, at ¢ = 0, the basic land value is more
than double the extensive land value (table 5). Although silviculture costs are much
higher under basic management, this is offset by the earlier appearance and greater
magnitude of the most valuable wood products, SPF1 and SPF2. The absolute difference
in value between the two regimes is observed to fall as the fire arrival rate increases.
Specifically, under the basic regime, every time the stand is destroyed by fire (or
harvesting), large planting and management expenses (relative to the extensive regime)
must be incurred.

Also of interest is the timing of the harvesting decision. For the Faustmann case, the
optimal harvest age in an extensively managed stand is 85 years for ¢ = 0, falling to 75
years for ¢ = 0.04. The long rotation ages reflect the fact that the highest value product
does not begin to appear until age 70.

For the stochastic price cases, we are interested in critical harvest prices, and these
are plotted in figure 3 for basic and extensive regimes and for ¢ = 0 and ¢ = 0.05. First,
we observe that prior to about age 75, the critical prices for the extensive cases are
higher than for the basic cases. The valuable products take longer to appear in the
extensive case, so it is reasonable that we expect to wait longer before harvesting. In
addition, the critical harvesting price for ¢ = 0 is higher than for ¢ = 0.05 in both exten-
sive and basic cases, indicating the stand will likely be harvested earlier when fire risk
is positive. This is consistent with results found by other authors surveyed in the
literature. At age 60 for both the extensive and basic regimes, the critical harvesting
price with ¢ = 0 exceeds the value with ¢ = 0.05 by $8 to $10/m°.

Overall, critical prices decline with stand age, reflecting falling tree growth rates in
a maturing stand. However, as shown in figure 3, at several points critical prices jump
up with stand age. This follows from using specific yield curves for different product
types, rather than a homogeneous net merchantable volume. An increase in critical
price occurs when a new higher valued product makes an appearance, making it worth-
while delaying the harvest to give the more valuable product time to grow—e.g., under
the extensive regime, critical prices increase at age 40 when SPF2 makes an appearance
and again at age 70 when SPF1 appears. '

Even if a decision maker is using a Faustmann decision rule, we would expect her to
update her price forecast as time passes. For example, if at the time the stand is planted
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Figure 3. Critical harvesting prices, extensive and basic
management (¢ = 0 and ¢ = 0.05)

the Faustmann rule says that the optimal harvest date is 70 years of age, it would not
be surprising to see the stand harvested earlier if price rises above what had been
expected, or later if prices fall below previous expectations. Compared to Faustmann,
the real-options approach gives a larger estimate of today’s land value because it
explicitly takes account of the ability of managers to react optimally to price changes in
the future. Additionally, the real-options approach accounts for price volatility, so that
an increase in the variance of price would typically result in a higher critical price and
a later harvest date (Insley and Rollins, 2005). This is because a higher variance means
there is more likelihood that a very high price might be reached in the future, which
makes it desirable to wait a bit longer for harvesting. The impact of volatility on stand
value and optimal harvest timing is ignored in the Faustmann rule.

As noted earlier, we do not have an estimate for the risk-neutral probability of fire.
However, if it exceeds the actual probability of fire by a significant degree, it will affect
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the valuation of the stand and optimal harvest time. This finding is made clear by our
observations of the impact of an increase in ¢. The likelihood that actual timberland
returns will reflect this unknown risk-neutral probability of fire is something to keep
in mind in any analysis of returns to timberlands.

In the results so far presented, we have assumed zero salvage value after a fire. In
North America, salvage logging is increasingly being considered as a means of reducing
the economic losses due to fire. It has been highly controversial in the United States,
where there are fears it may delay forest recovery and change the ecology of an area.

Accordingly, we examined the effect on our results of assuming 50% of the volumes
are salvageable once the stand is at least 45 years old. The value of the amount salvaged
will depend on timber prices after the fire has occurred. It was found that the value of
the bare land stayed basically the same for the extensive regime, and increased from $4
to $10 per hectare for the basic regime. The ability to salvage a portion of merchantable
timber increased the critical price at which the stand should be harvested by $1 to $3
for both regimes. The presence of salvageable timber does not have a large effect on the
timing of the harvest in our example.

Concluding Remarks

We have demonstrated the inclusion of catastrophic risk in a stand-level model of
optimal tree harvesting under stochastic prices which exhibit mean reversion in the
drift term. Our findings reveal that as the probability of fire increases the critical
harvesting price falls; consequently, the stand would be expected to be harvested sooner
with a larger probability of fire. In our empirical example, the probability of fire had a
larger impact on the value of a stand where significant silvicultural expenses are
mandated, compared to one left to regenerate naturally.

We compared land values calculated using a Faustmann rule with price set at the
long-run expected value. In our example, Faustmann values were found to be consider-
ably lower than those calculated in the real-options model with stochastic prices. The
risk of fire had a much larger relative effect in the Faustmann model because of its very
low land values.

The conventional way to treat the presence of a Poisson jump process is to assume it
is a diversifiable risk and hence commands no return above the risk-free rate. We
demonstrated the alternative assumption that markets are complete enough so that fire
risk can be hedged. Under this assumption, we must be concerned about the probability
of fire in the risk-neutral world compared to estimated physical probability of fire. Based
on the credit risk literature on the likelihood of bond default, we conjecture that the
risk-neutral probability of fire may exceed the estimated physical or historical
probability of fire. While we do not currently have adequate data to explore this further,
we can observe the effect of a higher risk-neutral probability of fire by observing the
sensitivity of land value and critical harvesting prices to changes in the probability of
fire. We have found in our empirical example that land value is very sensitive to the
assumed probability of fire. It follows that exploring the estimation of the risk-neutral
probability of fire would increase our ability to evaluate potential investments in forest
land. This is one avenue for future research. Another would be to investigate hedging
in a model where fire size is itself a random variable.
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This paper confirms the results of previous literature in terms of the qualitative
impact of fire risk on land value and expected harvesting dates. However, by demon-
strating the inclusion of catastrophic risk in a real-options model of optimal harvesting,
new insight has been gained. In particular, our results show that catastrophic risk
should not be considered in isolation, but rather should be examined in conjunction with
price volatility, which is the other major risk faced by forest owners and investors.

[Received September 2006, final revision received August 2007.]
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Appendix A: Boundary Conditions

The boundary conditions for solving the linear complementarity problem [text equation (31)] are given as
follows:

m As P - 0, we observe from text equation (2) no special boundary conditions are needed to prevent
negative prices.

m As P — =, we follow Wilmott (1998) and set Vy, = 0. This implies that for very large prices the value of
the option is approximately linear with price.

® As o — 0, we require no boundary condition since the PDE is first-order hyperbolic in the « direction,
with outgoing characteristic in the negative « direction.

® As o - ~, we assume V, — 0. This means that as stand age gets very large, the value of the option to
harvest (V) does not change with a. In essence, we are presuming the wood volume in the stand has
reached some sort of steady state.

# Terminal condition. As T gets large, it is assumed that V = 0. T is made large enough that this
assumption has a negligible effect on V today.

Appendix B: Estimating the Market Price of Risk

We postulate a hypothetical contract that depends linearly on the underlying stochastic variable P. Using the
Capital Asset Pricing Model, we assume the expected return of this hypothetical asset (n") is described as:
(A1) p =r+[EQr,) -rlB,

where r,, refers to the return on the market portfolio and p is a parameter. For any asset dependent on one
stochastic variable, P, we know text equation (26) will hold such that u* = 7 + Aps. Combining these two
specifications for p*, A, can be expressed as:

_ [EGr,) -T1B

s

(A2) Ap

We need estimates for the components of equation (A2). Assume the value of our hypothetical asset, v,
depends linearly on P: V" = g x P for some constant g. From the definition of s in text equation (18), we know
that s = 6 = 0.27. The estimated value for p is determined by an OLS regression of u" - r on r,, - r. Historical
values for " are the percentage change in P. The estimated f is 0.09, as detailed in Insley and Wirjanto (2006).
We assume a real risk-free interest rate of 3% and a real return to the market portfolio of 6%. Using these
parameters, the market price of risk is estimated as:

_ [EG,) -rIB _ (0.06 - 0.03)0.09 _
o 0.27

Note that a more satisfactory way of estimating the market price of price risk would be to make use of futures
prices. However, lumber futures contracts are only available for dates up to a year, and it is questionable
whether these would be helpful for our harvesting problem with harvesting intervals upwards of 50 years.

While we did not attempt to estimate the market price of fire risk, A, it could in theory be estimated from
a historical time series of timberland prices. This would involve a calibration exercise in which data on
timberland values would be used in the full model to back out implied values for A, given an estimate of A,.
The data on timberland value would also need to contain information on location of the land so that the
average historical risk of fire could also be determined. At the moment, time-series data on timberland values
are lacking.?! Although it would be interesting to consider a cross-section of data on timberland prices in
regions subject to different fire risk, this task is beyond the scope of the current paper.” Without an estimate
of Ay, we can at the very least observe the sensitivity of our results to this factor.

(A3) A 0.01.

21 Aronow, Binkley, and Washburn (2004) discuss some of the problems associated with one available time series—the
National Council of Real Estate Investment Fiduciaries (NCREIF) Timberland Property Index. These include the fact that
values are based largely on appraisals rather than market transactions, all properties are not revalued each quarter, the
sample of properties in the index changes from quarter to quarter, and timber inventory changes on each property over time.
The authors describe in detail their approach to addressing these shortcomings in the data.

22 Before undertaking a calibration exercise, further enhancements to the model used in this paper would be desirable,
one of which would be to add the price of pulp as an additional stochastic factor.



