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A Sequential Rationality and Efficiency Test of U.S. Department of Agriculture 

Program Crop Price Estimates: Rice, Wheat, and Soybeans 
 

Sung C. No and Michael E. Salassi 
 

I. Introduction 

 Commodity price forecasts generated by the USDA provide pivotal information for both 

policy makers in government and people involved in making decisions about marketing and 

investing. Unbiased and efficient forecasting information was demonstrated to maximize social 

welfare and assure efficient allocation of resources (p. 223, Stein, 1981).  

 A number of researchers have closely scrutinized USDA price forecasts in terms of absolute 

accuracy (Elam and Holder, 1985; Kastents, Schroeder, and Plain, 1998), bias and efficiency 

issues (Sanders and Manfredo, 2005), or directional accuracy (No, 2007). While these academic 

researchers have used different forecasting methods, a common approach to evaluating USDA 

price forecast includes a comparison of one step ahead USDA forecast, E(Pt+1|Ωt) with their own 

forecast E(Pt+1|Xt), where Ωt is a quantitative and qualitative information set (p.10, Vogel and 

Bange, 1999) available time t and Xt is a vector of price related time series as well as actual price 

available time t.  

 In an earlier study, Elam and Holder (1985) found that USDA rice forecasts had lower mean 

square forecast errors than random walk model forecasts. Not all researchers and investigators 

were in favor of the USDA model. Kastens, Schroder, and Plain (1998) reported that extension 

forecasts are more accurate than USDA forecasts for livestock. In contrast, Sanders and 

Manfredo (2005) found that USDA forecasts are statistically more accurate than competing times 

series forecasts for fluid milk. No (2007), however, found that USDA hog price forecasts have 

lower accurate forecast ratio and higher worst forecast ratio than the forecasts of time-series 
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model, suggesting weaker directional accuracy in USDA model. In addition, Sanders and 

Manfredo (2007) documented that USDA price forecasts for hogs, turkeys, eggs and milk are 

biased and improperly scaled, and forecast errors tend to be repeated. This may be due to 

unforeseen future random price shocks which are difficult to capture even with a system of 

comprehensive USDA forecasting models. 

 The research from these investigators has focused on commodity price forecasts. However, 

the USDA also provides a commodity price estimate. For instance, the USDA’s monthly Rice 

Outlook on July 13, 2007 released an estimated rice price for the previous month (mid June), as 

opposed to a forecasted mean production for the fourth calendar quarter (October, November, 

and December) released on July 12, 2007 from the USDA’s monthly World Agricultural Supply 

and Demand Estimate (WASDE) report. The estimated rice price, E(Pt-1|Ωt) in its monthly 

outlook reports is essentially an ex post “forecast” in that a rice price of  the previous month, Pt-1 

is estimated using information available time t, Ωt.  Presumably, the estimated rice price reflects 

all information embodied in the past actual prices. Therefore, it is likely that USDA price 

estimates, E(Pt-1|Ωt) are more close to actual prices than its forecasts, E(Pt+1|Ωt). To date, this line 

of research to evaluate USDA program crop price estimates has not been published. 

  The paper has two objectives. First, it is to evaluate U.S. Department of Agriculture program 

crop price estimates: Rice, wheat, and soybeans, using a sequential evaluation procedure. 

Secondly, it investigates whether spot commodity prices reflect price information embodied in 

USDA estimates. The plan of the paper is as follows. The next section gives the description of 

the data followed by a methodology. Next, an empirical analysis of the paper is presented. The 

final section includes a review of findings and conclusions. 
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II. Data 

 Several agencies within USDA are responsible for estimating program crop prices. USDA 

program crops consist of twelve field crops. Peanut price estimates are, for instance, reported 

only October through February during the marketing year. Missing data for several program 

crops results in a complete monthly data set of only rice, soybeans, and wheat for the current 

research. The monthly sample spans December 1997 and April 2007.  

 Rice prices ($/cwt) are average rough rice price received by farmers. The monthly price data 

are obtained from various issues of Rice: Situation and Outlook Yearbook (ERS/USDA). 

Soybeans prices ($/bushel) are average price received by farmers obtained from various issues of 

Oil Crops Situation and Outlook Yearbook (ERS/USDA). Wheat prices ($/bushel) are weighted 

average of hard red winter, hard red spring, soft red winter, white, and durum. The price series 

are obtained from various issues of Wheat Situation and Outlook Yearbook (ERS/USDA).   

 The USDA publishes mid-month estimates for rice between the 10th and 16th of each month. 

The monthly estimates are collected from various Rice Outlook reports. Soybeans estimates are 

reported between the 9th and 16th of each month obtained from various Oil Crops Outlook reports. 

For wheat, projected monthly prices are published in various Wheat Outlook reports between the 

10th and 17th of each month and are obtained from the outlook reports. All price series are 

transformed in natural logarithm to reduce heteroskedasticity in the data. 

III. Methodology 

 Numerous studies have examined the predictability of USDA’s forecasting models based on 

several parametric and nonparametric evaluation criteria. Moreover, a recent advance in time-

series analysis adds complexity to a good understanding of empirical literature pertaining to 

 3



USDA forecasts. However, a recent paper by Sanders and Manfredo (2007) provides a unified 

guideline to forecasting practitioners and extension service agents who often find forecasting 

literature intriguing and yet intricate.  

 This paper closely draws on the recent unified methodological guideline to conduct a 

sequential rationality and optimality test of USDA program crop price estimates: Rice, wheat, 

and soybeans. Conventionally, forecasting performance is examined using some variations of a 

linear regression equation as follows:  

(1)  At = b0 + b1Pt + et, 

where At is actual price at time t and Pt is the price estimate for t. For an unbiased estimate, the 

estimated parameter, b0 should be zero; for an optimal estimate, the estimated parameter, b1 

should be one, indicating a long run unitary elasticity of estimates. With the joint hypothesis of  

b0 = 0 and  b1 = 1 being failed to reject, an independent identically distributed error, et indicates 

that a rational estimate does not consistently under- or over- estimate the actual value and 

estimate errors are uncorrelated. Thus, prerequisites for a rational price estimate are unbiasedness, 

optimality, and uncorrelated estimate errors (Cheung and Chinn, 1998; Sanders and Manfredo, 

2007).  

 In accordance with Stein (1981), social welfare loss resulted from rational forecasts 

decreases as R2 in Equation (1) increases. However, modern contemporary time series literature 

demonstrates several statistical issues regarding proper estimation of b0, b1, and hence R2 in 

Equation (1): First, At and Pt are not integrated of the same order, a unbalanced regression results 

in estimation errors (p. 190, Benerjee, 1993). Secondly, differencing I(1) or I(2) in Equation (1) 

may result in unnecessary restrictions on the short-and long-run dynamics between the forecasts 

and realized prices.  
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However, time-series econometricians have offered some remedies for these spurious regression 

models. Engle and Granger representation theorem showed that if At and Pt are I(1) and 

cointegrated and then Equation (1) can be expressed in an error correction form to show the short 

and long run dynamics between the two series (Engle and Granger, 1987; Johansen and Juselius, 

1990) as follows: 

(2) ∆At = γ + λet-1 + β0∆Pt + + ν
1
( )α β−=

Δ + Δ∑ J
j jt j t jj

A P− t,  

where et-1 equals the error-correction term from Equation (1), et-1 = At-1  - b0 – b1Pt-1.  

McKenzie et al. (2002) showed that Equation (2) reduces to Equation (1). By substituting et-1 = 

At-1  -b0 – b1Pt-1 into Equation (2), the specification can be written as follows:  

(3) At = γ - λb0 + (1+λ)At-1 + β0Pt – (λb1 + β0)Pt-1 + 
1
( )α β− −=

Δ + Δ∑ J
j jt j t jj

A P +εt, 

Holding parameters b0 and b1  equal to zero and one, respectively in Equation (1) implies 

that λ = -1, β0 = 1, and γ = 0 in Equations (2) and (3). Further assuming that the estimates are 

orthogonal to past estimates and realization (αj= βj= 0, ∀j ), Equation (3) reduces to Equation (1). 

Therefore, in the ECM shown in Equation (2), λ = -1, β0 = 1, and γ = 0 represent the null 

hypothesis of short-run rationality, where the change in price, ΔAt should equal the change in the 

estimate, ΔPt adjusted for the estimate error in levels from the previous period, et-1. 

 A sequential rationality and efficiency test of USDA program crop price estimates can be 

summarized in orderly steps below:  

Step 1: Test if At and Pt are the same order of integrations. If At and Pt does not share the same  
order of integration, proceed no further and conclude that Pt is not rational. If both series 
are stationary in levels, estimate Equation (1), test the null of b0 = 0, b1 = 1, and et ~ i.i.d., 
and conclude Pt is a rational estimate of At only if failed to reject the null. Otherwise, 
conclude that Pt is not rational. 
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Step 2: If At and Pt  are both stationary in first differences, proceed to test if both series are  
   
 
  cointegrated. Retest the null of b0 = 0, b1 = 1, and et ~ i.i.d. and conclude Pt is rational in  
  the long run only if failed to reject the hypotheses. If two series are not cointegrated,  
  conclude that Pt is not rational, indicating that the two series drift apart through time with  
  no long-run relationship holding them together.  

 

Step 3: If At and Pt are indeed cointegrated, an additional condition for price estimate to be  
  rational should be met. In other words, test the null of γ = 0, β0 = 1 and λ = -1 in the error- 
  correction model in Equation 2. Conclude that Pt is rational in short run as well as in  

long run only if failed to reject the null. Otherwise, the nonstationary price estimate is not 
rational both in the short and long run. 

 

Step 4:  For an informational efficiency, test the null of βj = 0, ∀j. If failed to reject, conclude that  
  actual price reflects all past information embodied in USDA price estimates. Conduct  
  forecast error variance decomposition as additional confirmation.  
 

IV. Empirical Results 

Visual inspection of the time-series in Figure 1 suggests that actual values and USDA 

estimates for rice, soybeans, and wheat display trends or smooth patterns with big swings, a 

characteristic of time series with unit roots. To formally characterize time-series properties of 

actual values and estimates for the selected commodities, the unit root tests of the augmented 

Dickey-Fuller (ADF) and Phillips-Perron (PP) are used.  

The ADF test statistics in Table 1 are 2.05, 1.86, 2.06, 2.49, 1.20, and 1.64 in absolute 

value for rice estimate and actual, soybeans estimate and actual, and wheat estimate and actual in 

levels, respectively. Given a MacKinnon 90 percent critical value of 2.57, this study fails to 

reject the null hypothesis of a unit root for all the time series. Each series was then first 

differenced and the ADF regressions were re-estimated. In each case, the ADF test statistics rose 

considerably, indicating that all the time-series are integrated of order one I(1). The PP results 

were supportive of the nonstationarity of all the variables.  
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This suffices to proceed to the second step described above: A cointegration test. A 

typical Johansen maximum-likelihood cointegration test (pp. 80-84, 1995) invokes two-step 

identification: Identification of optimal leg length and appropriate specification of cointegration 

equation. The guiding principal for lag length selection is that the lag length must be sufficiently 

large so that a vector of the error terms is white noise. AIC and SBC (Enders, 2004) choose lag 

lengths, 5, 3, and 4 as an optimal for the bivariate models of rice, soybeans, and wheat, 

respectively.  

Johansen and Juselius (1990) Johansen (1995) identify five specifications1 so as to 

appropriately model deterministic trends in cointegration equation. Each of the specifications 

was estimated using EViews and CATS in RATS. The sequential results in details below are 

reported only for rice due to space limitations.  

The lambda max test (Johansen and Juselius, 1990; Johansen, 1992) in Table 2 indicates 

that there exists one co-integrating equation in the system based on Models 2, 3 and 5, but no co-

integrating equation based on Model 1. In practice, Model 1 is rarely used because of an 

implausible assumption that the level data have no deterministic trends and the co-integrating 

equations do not have an intercept. The lambda trace test result is consistent with the result for 

the max test except Model 4. Therefore, the paper concludes that actual rice price and USDA 

price estimate are indeed cointegrated. Similarly, the study found cointegrating vector for 

soybeans and wheat (not reported here). 

 Confirming a cointegration after a battery of tests, the paper estimates a long-run relationship 

between actual price and USDA estimate. The results are listed in Table 3. The null hypothesis  

                                                 
1 Model 1 specifies that the level data have no deterministic trends and the co-integrating equations do not have an 
intercept;  Model 2 specifies that the level data  have no deterministic trends and the co-integrating equations have 
an intercept; Model 3 indicates that the level data have linear trends but the co-integrating equations have only 
intercepts; Model 4 assumes that the level data and co-integrating equations include linear trends; lastly Model 5 
assumes that the level data have quadratic trends and the co-integrating equations have linear trends. 
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that b1= 1 is rejected for each commodity, indicating that USDA price estimates are not optimal 

in long run. Looking first at rice, the long-run elasticity is statistically less than unity at 0.96. 

This suggests that the USDA estimates are consistently overpredicting actual rice prices. This 

result is implied by a descriptive statistic in Table 4, showing that average mean absolute 

percentage error for rice is 3.75 with mean positive and negative percentage error (error = At – 

Pt) being 3.62 and -4.01, respectively (pp. 143-45, Ferris, 1997). The negative percentage error 

dominates positive percentage error. Table 3 also shows that the USDA rice estimates are biased 

upward with the intercept statistically greater than zero at the 1% level. Comparisons of monthly 

mean absolute percentage errors (MAPE) in Figure 2 provide an interesting observation that 

USDA estimate error is distinctive in September and declines as the harvesting season progresses. 

This result is not surprising because price uncertainty reduces as rice production become more 

accurate.  

 The results for soybeans have some similarities to those of rice, but there are also important 

differences. The long-run elasticity is statistically less than unity at 0.97 and the null hypothesis 

on b0 is rejected. Thus, the unbiasedness and long-run optimality for USDA soybeans estimates 

are rejected. Average MAPE is much smaller than that of rice, and errors are asymmetric with 

the negative percentage error and the positive percentage error, -1.80 and 1.48, respectively. The 

USDA estimate error in September is the greatest, seemingly contradictory to an early study2 

(Egelkraut et al. 2003) reported that the USDA’s September production forecast is most accurate. 

Table 3 also shows that the USDA soybean estimates are biased upward in the long run. 

 Regarding wheat, the test results in Table 5 indicate that the USDA estimate is neither 

unbiased nor optimal in the long run. Although the joint hypothesis of b0 = 0 and b1 = 1 is failed  

                                                 
2 Although comparison of USDA soybean production forecast and soybean price estimate is not direct, USDA 
soybean price estimate is most accurate in February and USDA soybean production forecast error is the smallest in 
September (Egelkraut et al. 2003). 
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to reject at the conventional significance level, the parameters, b0 and b1 are significantly 

different from zero and one, respectively, suggesting that USDA wheat price estimates need to 

be adjusted downward, especially in September (in Figure 2).  

 Following Sanders and Manfredo (2007), the paper proceeds to examine whether or not the 

forecasts are rational in the short run. The estimates of Equation (2) are summarized in Table 5. 

Looking first at rice, the short-run elasticity (β0) is significantly different from one and the error 

correction term (λ) is significantly different from negative one. Surprisingly, given a long-run 

biasedness, the ECM shows that USDA rice estimates are not biased (γ=0) in the short run. 

Qualitatively similar results for soybeans and wheat are confirmed. In other words, the USDA 

soybeans and wheat price estimates are unbiased, but are not optimal (β0≠1) in the short run. 

 Lastly, it is interesting to see if actual price reflects the information embodied in USDA past 

price estimates (βj = 0). Rejection of the null hypothesis indicates that actual prices do not 

incorporate all of the information in past USDA estimates. Both rice and wheat actual price 

marginally incorporate the information embodied in USDA past price estimates.  

 Interestingly, soybeans actual price by no means incorporate the past USDA estimates. This 

observation becomes apparent by looking into forecast error variance decompositions (FEVD) 

generated by the ECM model in Equation (3). Notice that the FEVD tells us the proportion of the 

actual price changes in a sequence due to its own shock and shock to USDA price estimate or 

vice versa (p.64, Lutkepohl, 2005).  

 The proportions of forecast error variances of soybeans price accounted for by own 

innovations are 99.06% and 98.72%, at six and twenty-four months ahead, whereas the 

proportions of forecast error of actual soybeans explained by USDA estimates are minimal for 

the entire time horizon. In contrast, forecast error variances of USDA estimates are almost  

 9



entirely explained by actual soybean price shock at twenty-four months ahead, suggesting that 

soybean price is a leading variable and USDA soybean price estimate is a lagging variable, not 

the other around. On the contrary, the proportions of forecast error variances of rice price 

accounted for by shocks to USDA estimates minimally increase as time horizon gets longer. For 

wheat, qualitatively similar observations are obtained in Table 6. 

V. Summary and Conclusions 

 Along with an advance in time-series analysis, researchers have examined forecasting 

performance of the USDA model by offering their own forecasting models for crop prices. Their 

focus on USDA price forecasts may preclude a scrutiny into another important service of USDA: 

Providing monthly estimates. Hence, this paper extends a unified forecasting evaluation 

technique of Sanders and Manfredo to evaluate USDA price estimates of rice, soybeans, and 

wheat. Specifically, the paper tests a rationality of the price estimate. Rationality requires 

unbiasedness, optimality, and uncorrelated estimate errors in USDA price estimates.  

 A battery of testing procedures is implemented. In the first sequence of tests that focuses on 

determining the order of integration of the estimates and actual prices, the paper finds that rice, 

soybeans, and wheat prices and estimates are integrated order of one. Thus, the long-run 

cointegrating relationship and error-correction mechanism must be estimated to provide valid 

statistical tests. The estimated and actual prices for rice, soybeans, and wheat are indeed 

cointegrated.  

 Traditional regression (i.e., super-consistent estimator with cointegrated variables, Enders, 

2004) of actual prices on USDA estimates indicates that rice, soybeans, wheat estimates are 

neither unbiased nor rational in the long run. Error correction models show that USDA soybean 

estimates are neither unbiased nor optimal in the short run. Interestingly enough, rice and wheat  
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are unbiased in the short run, although they are not optimal in the short run. To sum, monthly 

USDA estimates of rice, soybeans, and wheat are failed to meet a rationality condition, 

suggesting that USDA price estimates tend to be biased and overpredicted, especially in the long 

run.  

 Despite comparative advantage in informational contexts, USDA price estimates exhibit 

qualitatively similar performance to USDA crop forecasts. Thus, several points emerge from this 

research. Market participants are advised to adjust these USDA price estimates correctly for bias 

and scale, especially for long-run projections. At the same time, the USDA may want to review 

its estimation method for improvements.   

 Nevertheless, the USDA rice, soybeans, and wheat price estimates still have economic value 

to market participants because many of them lack the expertise or resources to generate their 

own estimates and because the estimates significantly reduce price uncertainty prevailing in 

making decisions about marketing and investing.  
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TABLE 1 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) Unit Root Tests 
      Test (ADF)  Test (PP)   Critical 
      Statistic  Statistic   Values  
Time Series (Annual)    τ    τ   90%  
 
Level Data (in log) 
 Rice Forecast (RPt)  -2.05   -0.66   -2.57 

Rice Actual   (RAt)  -1.86   -0.81   -3.13 
 Soybeans Forecast (SPt)  -2.06   -1.90   -2.57 

Soybeans Actual   (SAt)  -2.49   -1.73   -3.13 
 Wheat Forecast (WPt)  -1.20   -1.36   -2.57 

Wheat Actual   (WAt)  -1.64   -1.24   -3.13 
 
First Differences (in log) 
 Rice Forecast (∆RPt)  -43.69*   -40.90*   -2.57 

Rice Actual   (∆RAt)  -43.19*   -37.77*   -3.13 
 Soybeans Forecast (∆SPt)  -29.41*   -28.17*   -2.57 

Soybeans Actual   (∆SAt)  -34.69*   -29.77*   -3.13 
 Wheat Forecast (∆WPt)  -25.40*   -24.28*   -2.57 
 Wheat Actual (∆WAt)  -27.79*   -25.22*   -2.57 

 Note: the asterisk, * indicates the null hypothesis of a unit root is rejected at the 10 percent. 
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TABLE 2 

Summary of Johansen Cointegration Tests and Number of Co-integration 
Relations Based on λtrace and λmax. 

 
Model Assumption Model 1 Model 2 Model 3 Model 4 Model 5 
 
No Trend in Data No  No  Linear  Linear  Quadratic 
Intercept in CEa No  Yes  Yes  Yes  Yes 
Trend in CEa    No  No  No  Yes  Yes 
 
The Number of Co-integrating Relations 
 
λtrace Test  0  1  1  0  1 
λmax Test  0  1  1  1  1 
Note: CEa stands for co-integrating equation. 
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TABLE 3 

Long-run Rationality Tests for I(1) Estimate Series: At = b0 + b1Pt + et
 

   Coefficient Estimates    Tested Restriction P-values 
 
   b0    b1    b0 = 0, b1 = 1  b0 = 0   b1 = 1
   
Rice  0.096  0.960   10.359b  3.095b  -2.56b

   (3.10)a   (61.05)a   (0.000)c  (0.002)c                  (.011)c

 
Soybeans 0.055  0.970   5.539   3.041  -2.87  

   (3.04)  (94.94)   (0.005)   (0.003)  (.005) 

 
 
Wheat  0.026  0.978   2.537   4.617  4.98 

   (2.15)  (100.3)    (0.083)   (0.033)  (.027)  

 
Note:  a denotes t-statistics in parenthesis. 
      b denotes F-statistics.  
  c denotes p-values in parenthesis. 
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TABLE 4 
Root Mean Square Error, Mean Absolute Percent Error, Mean Negative Percent Error, and Mean 

Positive Percent Error: 1997:12 – 2007:04  
       Rice   Soybeans  Wheat 
Root Mean Square Error    0.40    0.16    0.09 
Mean Absolute Percent Error    3.75    1.61    1.72 
Mean Negative Percent Error   -4.01   -1.80   -2.13 
Mean Positive Percent Error     3.62     1.48    1.40 
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TABLE 5 
Long – and Short Run Rationality and Efficiency Tests for I(1) Forecast Series, Error-Correction 

Model: ∆At = γ + λet-1 + β0∆Pt + 
1
( )α β− −=

Δ + Δ∑ J
j jt j t jj

A P + νt

 
   Coefficient Estimates    Tested Restriction P-values 
            λ = -1  
   γ    λ   β0  λ = -1  β0 = 1  β0 = 1  βj = 0 
   
Rice  -0.000  -0.287  0.583  45.32b 19.45b  26.21b   2.53b

   (-0.15)a  (-2.71)a (6.17)a  (0.00)c (0.00)c  (0.00)c (0.04) c

 
Soybeans 0.000  -0.652  0.692  10.56 105.9  54.71  0.02 
   (0.22)   (-6.08)  (23.11)  (0.00) (0.00)  (0.00) (0.98) 
 
Wheat  0.000  -0.476  0.835  18.25 18.22  16.67 2.99 
   (0.11)  (-3.88)   (21.65)  (0.00) (0.00)  (0.00) (0.03) 

 
Note:  a denotes t-statistics in parenthesis. 
      b denotes F-statistics.  
  c denotes p-values in parenthesis. 
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TABLE 6 
Decompositions of Forecast Error Variance Generated by ECM Model 

% of Forecast Error Explained by 
    Rice    Soybeans     Wheat 

           Period     At         Pt   At Pt        At Pt      .. 
At      1  100.0 0.00   100.0 0.00   100.0 0.00 

     6  97.44 2.56   99.06 0.94   98.79 1.21 
      12  95.21 4.79   98.82 1.18   97.91 2.09 

     18  93.45 6.55   98.75 1.25   97.49 2.51 
      24  92.34 7.66   98.72 1.28   97.26 2.74 
 
Pt               1  23.32 76.68   47.53 20.44   77.52 22.48 

     6  90.21 9.78   56.83 3.03   95.30 4.70 
      12  92.39 7.61   62.57 2.16   95.92 4.08 

     18  91.82 8.18   68.23 1.89   96.14 3.86 
.           24  91.17 8.83   72.48 1.76   96.25 3.75   . 
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FIGURE 1 
Selected Commodity Prices and USDA Estimates: 1997:12 – 2007:04 
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FIGURE 2 
USDA Mean Absolute Percentage Errors in Month: 1997-2007 
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