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Optimal Design of Weather Bonds 

 

Abstract 

This paper investigates the optimal design of weather bonds for reinsurance purposes. The motivation for 

this task comes from an empirical study showing that German farmers are not willing to pay the premiums 

for weather insurance that insurers ask for. Since reinsurance costs constitute a major cost component of 

insurance premiums, minimizing these costs could decrease the observed gap between the willingness to 

pay and the willingness to accept the cost of the insurance. Against this background, we put forth the 

proposal to transfer weather risk directly to the capital market by issuing weather bonds. The structure of 

the weather bond is optimally designed in a utility maximizing framework that involves farmers, insurers, 

and capital market investors. The approach is illustrated by an example of securitizing draught risk in crop 

production in Germany. 

 

Keywords: weather risk, weather bonds, reinsurance, securitisation  

 

 

Agricultural production is highly exposed to weather risk, and in view of the climate changes, it is likely 

that extreme weather events will occur more frequently in the future. In that context, the development of 

weather insurance products plays an important role for farm income stabilization. Actually, the design of 

weather insurance is a subject of current research in agricultural economics (e.g., Turvey 2005). While the 

greater part of the literature on the subject considers the problem from the viewpoint of farmers, we focus 

in our paper on the supply side, i.e., the insurer. It is well known that weather fluctuations constitute a 

systemic risk for private insurance companies (Miranda and Glauber 1997). As a response to systemic risk 

private insurance companies purchase reinsurance contracts.  

However, traditional reinsurance contracts have been criticized as being inefficient. Froot and O’Connell 

(1997) provide evidence for this statement by reporting price-loss-ratios of 1.6 to 1.7 for catastrophe 



 

reinsurance. In this context Doherthy (1997) pinpoints two problems that are inherent to traditional 

reinsurance. First, there is a moral hazard problem since reinsurance makes insures sloppy in their claim 

settlement practice. Second, additional transaction cost may arise from default risk of insurance and 

reinsurance companies. In order to overcome these problems, a direct transfer of weather risks to the 

capital market via weather bonds or catastrophe (CAT) bonds has been proposed as an alternative 

reinsurance tool for private insurance companies underwriting crop insurance (Skees et al. 2007, Mahul 

2001). In brief, the issuer of a weather bond grants an investor an annual return in the form of a coupon 

and principal payments in exchange for paying the bond price. In the case of an unfavourable weather 

event, the issuer retains a certain share of the principal or the coupon as a compensation for his weather 

related losses. Due to high expected returns and a low correlation with stock market returns, weather 

bonds may appear attractive to capital market investors. Some applications of CAT bonds and weather 

bonds do already exist which underpin their potential as risk management tools in agriculture (e.g., 

Vedenov et al. 2006, Turvey 2007). However, these products are frequently specified on an ad hoc basis 

and some theoretical problems still remain unsolved. In particular, the pricing and the optimal design of 

weather bonds deserve further investigation.  

The objective of this paper is to identify the optimal structure of a weather bond from the viewpoint of an 

insurer. This includes the determination of the bond price, the coupon payments and the contingent 

coupon reduction. The task is complicated by the fact that the optimal design of the weather bond depends 

on the risk position of the insurer which, in turn, is affected by offering weather insurance to farmers. 

Hence the securitization transaction and the insurance transaction have to be analyzed simultaneously. 

Our modelling framework is in the sprit of Raviv (1979) who applies variational calculus for determining 

the optimal structure of an insurance contract. Barrieu and El Karoui (2002) extend this approach to three 

agents: a producer, an insurer, and an investor. Formally, their model consists of two interrelated 

constrained optimization problems, each showing the structure of a principal agent model. The first part, 

the insurance transaction, addresses the relation between the producer (farmer) and the insurer. The 

optimal compensation function and the optimal insurance premium are derived by maximizing the 
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expected utility of the producer’s terminal wealth under a participation constraint for the insurer. The 

second part, the securitization transaction, models the relation between the insurer and the investor. 

Herein, the parameters of the weather bond are determined so that the expected utility for the insurer is 

maximized under a participation constraint for the investor and for a given optimal insurance contract. We 

take up this model and generalize it by including idiosyncratic risks (basis risk) on the part of the 

producer.  

The remainder of the paper is organized as follows: The subsequent section introduces an optimization 

model that supports the design of weather derivatives as a means to shift weather risk to the capital 

market. It is followed by an illustrative application of the model. The paper ends with a discussion on the 

potential of weather derivatives for the securitization of weather related risks. 

 

Theoretical framework 

Statement of the problem 

In this section, we will use a modelling framework that was suggested by Barrieu and El Karoui (2002) in 

the spirit of Raviv (1979). Our model economy consists of three risk averse agents: a farm, an insurer, and 

an investor (figure 1Fehler! Verweisquelle konnte nicht gefunden werden.). 

 

part of coupons 

insurance 
premium Farm 

Insurance transaction 

Insurer
weather bond price 
principal & coupons 

compensation 

payment when weather event occurs 
unconditional payment 

Securitization

Investor 

Figure 1. Description of the transaction structure 

The economic relationship between these actors consists of two transactions: an insurance transaction 

between the firm and the insurer and a securitization transaction between the insurer and the investor via 
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the weather bond. In the following, we will describe these transactions in more detail. It is assumed in this 

context that the firm has already decided as to its production. Contingent upon the weather conditions in 

year , the firm suffers production losses t ( )tt eIg , . I  denotes a well-defined weather index, and  

captures other random factors which have an influence on the production loss. The function 

te

( )⋅g  

translates the stochastic factors into an actual loss. In a general setting, we consider a multi-period 

insurance contract where production losses are cumulated over a time period f n  years resulting in a 

total loss 

 o

hΘ . 

(1) ( )∑
=

− ⋅=Θ
n

t
tttnh eIg

1
,β , 

Herein,  represents an accumulation factor with a riskless discount rate ( ) tn
tn r −

− += 1β r . In order to 

cover at least part of the losses, the producer buys an index based insurance for a price π  and receives in 

exchange an indemnity payment , ( )ΘJ ( ) Θ≤Θ≤ J0 . The insured loss Θ  is defined as 

(2) ( )∑
=

− ⋅=Θ
n

t
ttn If

1
β , 

The function f(.) translates the weather index into an insured loss. This specification is very flexible and 

comprises, for example, options-like insurance contracts which pay an indemnity if a predetermined strike 

level for the weather index is exceeded. Note that the indemnity payment solely depends on the weather 

index and not on other stochastic factors . Hence te Θ  and hΘ  differ in general. This discrepancy causes 

a basis risk for the firm. To keep the exposition as simple as possible at the beginning, we subsequently 

assume that no basis risk is present, i.e. Θ  = hΘ . (This assumption is relaxed later on.) The values of the 

cash flows in period  resulting from this transaction are for the producer and the insurer, respectively: n

(3) ( )Θ+Θ−⋅− Jnβπ  

and  
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(4) ( )Θ−⋅ Jnβπ  

At the same time, the insurer issues a weather bond at price Φ . An investor who pays the price Φ  

receives the principal N  in year  and coupon payments  in each year . However, the investor has to 

pay back a certain portion 

n

)

s t

(Θα . Thereby, part of the loss risk that the insurer bears is transferred to the 

investor. The value of the cash flows associated with this transaction from the viewpoint of the investor is: 

(5) ( )Θ−+⋅+⋅Φ− ∑
=

− αββ Ns
n

t
tnn

1
 

The portfolio of the insurer is now 

(6) ( ) ( )Θ+−⋅−⋅Φ+Θ−⋅ ∑
=

− αβββπ NsJ
n

t
tnnn

1
 

Some simplifying assumptions underlie this modelling framework. First, we consider only the financial 

flows that are triggered by the insurance contract and the weather bond. This means that other stochastic 

or non-stochastic portfolio components of the three respective agents and possible diversification effects 

are neglected. Moreover, we suppose that no transaction costs occur. Finally it is assumed that there is no 

liquid secondary market for the insurance contract and the weather bond. Hence, it is not possible for the 

investor to build a replicating strategy. As a result, we cannot apply a risk-neutral pricing approach. 

Instead, the problem of pricing and designing the optimal insurance contract and the weather bond is 

solved in a utility maximization framework. 

 

The optimization model and its solution 

From the previous description of the two transactions, it is clear that the insurance company plays a 

double role: it offers the insurance contract and issues the weather bond. Both transactions are 

interdependent since the insurance contract influences the risk exposure of the insurer and, thus, the 

willingness to accept the weather bond. This relationship is taken into account by a two step procedure. 

First, the insurer determines the optimal structure of the weather insurance for the farm. Afterwards, the 
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insurer specifies the parameters of the weather bond, conditional on the knowledge of the design of the 

insurance contract. The objective of all agents is to maximize the expected utility of their terminal wealth. 

We follow Barrieu and El Karoui (2002) and assume that the risk preference of the agents is captured by 

exponential utility functions 

(7) ( ) xiexU ⋅−−= γ , IBFi ,,=  

where Fγ , Bγ  and Iγ denote the risk aversion parameters of the farm, the insurer, and the investor, 

respectively. 

In the first part of the transaction (the insurance transaction), it is assumed that the insurer is passive. That 

means the insurance contract is designed such that the expected utility of the farm is maximized subject to 

a participation constraint of the insurer. The design parameters of the insurance contract are the 

compensation function  and the insurance premium ( )⋅J π . The optimization problem can be formally 

stated as: 

(8a) ( )( )( )[ ]Θ+Θ−⋅−−− JE nFJ
βπγ

π
expmax

,
 

 s.t. 

(8b) ( )( )( )[ ] ( )( )[ ] 10expexp −=−−≥Θ−⋅−− BnB EJE γβπγ  

 and 

(8c) ( ) Θ≤Θ≤ J0  

 

(8) constitutes an optimal control problem that can be solved with standard variational calculus 

techniques. For a detailed derivation of the subsequent results we refer the reader to Barrieu and El Karoui 

(2002) and Raviv (1979). The Hamiltonian for this problem is 

(9) ( )( )( ) ( )( )( )Θ−⋅−⋅−Θ+Θ−⋅−−−= JJH nBnF βπγλβπγ expexp  
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where H  denotes the Hamiltonian function and λ  is a time-invariant co-state (a Lagrange multiplier). 

Three necessary conditions for an optimal solution to (8) arise from differentiating (9) with respect to 

: (ΘJ )

10a) ( ) ( )( )( ) ( )( )( ) 0expexp =−−−−−−=
Θ∂

∂ ∗∗∗∗ θβπγλγβπθθγγ JJ
J

H
nBBnFF  for ( ) θθ << *0 J  

10b) ( ) ( )( ) ( )( ) 0expexp ≤−−+=
Θ∂

∂ ∗∗
nBBnFFJ

H βπγλγβπθγγ  for ( ) 0* =θJ  

10c) ( ) ( )( ) ( )( ) 0expexp ≥−−−=
Θ∂

∂ ∗∗ θβπγλγβπγγ nBBnFFJ
H

 for ( ) θθ =*J  

It is possible to confine the analysis to the first FOC if one determines two thresholds  and . 

 can be understood as a deductible. If the damage  the optimal compensation is 

+θ −θ

0≥−θ −<θθ ( ) 0=θJ . 

 can be interpreted as an upper limit for a full compensation, i.e. 0≥+θ ( ) θθ =J  is valid only as long as 

. With these thresholds at hand the optimal coverage between the two extremes +<θθ ( ) 0=θJ  and 

( ) θθ =J  can then be derived from (10a). Differentiating (10a) with respect to θ , substituting λ  from 

(10a) and solving for 
θ∂

∂ *J
 yields: 

(11) 
FB

FJ
γγ

γ
θ +

=
∂
∂ *

 

A solution of this differential equation with a boundary condition ( ) 00 =J  is 

(12) ( ) θ
γγ

γθ ⋅
+

=
FB

FJ *  

Barrieu and El Karoui (2002) show that under the specified assumptions . That means the 

optimal compensation function has no deductible and no upper limit and hence 

0== +− θθ

(9) constitutes the optimal 

compensation function for the whole range of possible losses. (12) can be interpreted as a sharing rule for 
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the realized loss θ . Obviously, the optimal compensation depends on the relation of the risk aversion of 

the farmer and the insurer.  

For the derivation of the optimal insurance premium π , we insert (12) into the constraint (8b) and realize 

that this constraint is binding at the optimum. Solving for π  yields 

(13) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+
⋅⋅

γ B

1
⋅= θ

γγ
γγ

β
π

FB

F
B

n
E expln1*  

Note that the pricing rule (13) differs from the actuarial fair price. Due to the concavity of the utility 

function, the insurance premium exceeds the discounted expected indemnity payments. That means a 

positive risk premium is included in π . The derivation of the pricing rule (13) can be understood as an 

application of the indifference pricing approach. This method became increasingly popular in the context 

of pricing contingent claims in incomplete markets (c.f. Xu, Odening and Mußhoff 2008).What happens in 

the presence of basis risk, i.e., ? It is convenient to introduce the conditional certainty equivalent 

 of the actual farmer’s loss  which is defined as 

hΘ≠Θ

hΘ( )ΘX

(14) ( ) ( )[ ]ΘΘ⋅⋅ ln=Θ hF
F

EX γ
γ

exp1
 

To solve the modified problem we simply replace Θ  by ( )ΘX  in the objective function of the program 

(8a). Carrying out similar steps as before yields the optimal compensation function 

(15) ( )( ) ( )Θ⋅
+

=Θ XXJ
BF

Fb

γγ
γ*  

 

bJ *  stands for the optimal compensation with basis risk. The only difference compared with the solution 

without basis risk is that the insured loss Θ  is replaced by the certainty equivalent of the actual loss given 

a realization of the insured loss. For a better understanding of the implication of this modification we 

assume that the basis risk is additive, i.e. ε+Θ=Θh , ( ) 0=εE , ( ) σε =Var . In other words, the 
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distribution of the actual loss  is a mean preserving spread of the insured loss. It can be easily seen that 

the following relation between  and 

hΘ

Θ ( )ΘX  holds: 

(16) ( ) CX +Θ=Θ  

where C  denotes a constant. The immediate consequence is that the modified compensation function will 

in general not comply with the constraint ( ) Θ≤ΘJ . However, this can be ensured by introducing a 

deductible which amounts to C. Inserting this into eq. (15) reveals that the optimal compensation under 

additive basis risk is the same as without basis risk.  

In the second part of the transaction (the securitization transaction), the insurer plays the active role. That 

means, the parameters of the weather bond (the price Φ , coupon value s , and the share of losses α ) are 

chosen such that the expected utility of the insurer is maximized given his risk exposition from the 

insurance transaction, whereas the investor only has to decide to accept or refuse the contract offer. The 

formal structure of this optimization program is similar to (8a): 

(17a) ( )+ΘJ

1
∑
=

−β
n

t
tn

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
Θ+−⋅−⋅Φ−−− ∑

=
−Φ

αββγ
α

NsE
n

t
tnnnBs 1,,

expmax ⎜
⎝

⎛
⋅π

+⋅ βn

β  

 s.t. 

(17b) ( ) 1exp −≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
Θ−+⋅Φ−−− αγ NsE I  

The Hamiltonian for this problem is 

(18) ( ) ( )( ){ } ( )( )( )Θ−Λ−⋅−ΘΘ⋅⋅−−= − +Λ− αγλαβπγ InBL expexp J

t +−

, 

 

with . From the first order condition, we obtain s
n

t
nn ⋅+⋅Φ−=Λ ∑

=1
ββ N

(19) ( )
B

I

IB
n

IB

B

IB

B J
γ
γλ

γγ
βπ

γγ
γθ

γγ
γα

+
−

+
Λ+⋅

+
= ln1* ⋅⋅−

⋅
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In order to simplify this expression, we impose the restriction that  must be zero if the weather event 

does not occur and, hence, no compensation takes place. It follows that 

*α

(20) 0ln1
=

⋅
+

−⋅⋅
+

−Λ
B

I

IB
n

IB

B

γ
γλ

γγ
βπ

γγ
γ

 

Inserting (12) and (20) into (19) gives the optimal α : 

(21) ( ) ( ) θγγγγ
γγα ⋅

+⋅+
⋅

=
IBFB

FB*  

Obviously the optimal repayment  is proportional to the insured loss and depends on the relation of the 

risk aversion of all involved agents. 

*α

The optimal value of the net cash flow for the investor, Λ , is independent of the weather event and can be 

determined using similar arguments as in the case of the calculation of the optimal insurance premium π . 

Inserting (21) into the binding participation constraint in (17b) yields 

(22) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅+
⋅⋅

⋅=+⋅+⋅Φ−=Λ ∑
=

− θ
γγγγ

γγγ
γ

ββ
IBFB

FBI

I

n

t
tnn ENs expln1

1

***  

The optimal bond price is then given by 

(23) ( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅+
⋅⋅

⋅−+⋅⋅=Φ ∑
=

− θ
γγγγ

γγγ
γ

β
β IBFB

FBI

I

n

t
tn

n
ENs expln11

1

**  

(23) reveals an interesting feature of the optimal bond price. Recalling that the “fair price,” , of a 

contingent claim is defined as the expected value of its discounted net cash flow, we find that 

*
fairΦ

(24) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⋅
+⋅+

⋅
−+⋅⋅=Φ ∑

=
− θ

γγγγ
γγβ

β
ENs

IBFB

FB
n

t
tn

n
fair

1

** 1
 

A comparison of (23) and (24) shows that the weather bond can be offered at a price which is lower than 

the “fair price.” 

Note that there is an indeterminacy concerning the optimal bond structure. The optimal repayment  

determines the optimal net cash flow  uniquely, but the relation between the optimal bond price 

*α

**Λ Φ  
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and the optimal coupon  can be chosen arbitrarily. We consider two common cases. In the first case, the 

bond is offered at a discount, i.e., the discounted principal payment is equal to the bond price, 

. In the second case, the bond is offered at par, i.e., the principal payment is equal to the 

bond price, . 

*s

1* −⋅=Φ nN β

Φ* N=

The optimal coupon payments for the two cases are then given by 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅+
⋅⋅

⋅⋅⎟⎟
⎠

⎞
γ I

1
⎜⎜
⎝

⎛
∑
=

−β
n

t
n1

1
= θ

γγγγ
γγγ

IBFB

FBI
t Es expln*1  (25) 

and 

(26) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+⋅+
⋅⋅

⋅+−⋅Φ=∑
=

−β
n

tn
1

⋅ θ
γγγγ

γγγ
γ IBFB

FBI

It
Es expln11*2 βn  

In the exposition so far, the principal payment N was considered as an exogenous parameter. From a 

marketing viewpoint, however, it might be desirable to offer a certain return  (before stochastic 

repayments) to the investor which should clearly exceed the riskless interest rate 

bondr

r . The definition 

= *srbond Φ  then implies the bond price. 

(27) 
bond

s*

r
=Φ  

 

Securitization of weather risk in northeast Germany 

Weber et al. (2008) conduct a survey among 249 farmers in northeast Germany on the economic 

consequences of draught risk and the willingness to pay for weather insurance. The poll held among the 

farmers revealed that every single one of the polled farmers had been affected by drought at least once 

during the previous decade: 50% of those polled indicated that they had been affected more than three 

times; 88% of the cases reported as high as between two and five occurrences, and only 3% of those 

polled stated that they had never been affected by drought. The farmers also estimated that the harvest risk 
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due to drought was of corresponding importance. It represented the most important harvest-relevant 

weather event for 80% of those polled, followed by hail (55%), temperature (49%), and storms (25%). 

69% of the farmers suffered harvest losses between 20% and 40%, and 10% indicated damages of 40-60% 

in the event of drought. Against that background it is not surprising that farmers indicated considerable 

interest in drought insurance. However, another finding from this survey was that farmers are less willing 

to pay than the insurers are willing to accept the insurance arrangement. Hence under the prevailing 

conditions, it is unlikely that a market for weather insurances will emerge in this region. Reinsurance costs 

constitute a major component of insurance premiums. This is the motivation for designing a weather bond 

which reduces those costs and, thereby, makes it possible to offer weather insurance at lower prices. In the 

following, we will apply the theoretical model of the previous section to the specific situation in northeast 

Germany.  

 

Data and model assumptions 

In our application, we focus on wheat production which is a major crop in northeast Germany, particularly 

in Brandenburg. Wheat yield data (in € per hectare) was collected from a representative cash crop farm 

during a period of time between 1993 and 2007. For the specification of the relationship between weather 

and revenues, we followed Vedenov and Barnett (2004) who suggest a model which is quadratic in 

deviations of temperature and rainfall. The weather variables are derived from the daily temperature and 

daily precipitation data recorded at the weather station in Berlin-Tempelhof. Significant parameter 

estimates were made for the following model specification: 

(28) ttt IY ε+=  

with 

(29) 
( ) ( )

June
tt

April
ttt

April
t

June
tt

TR

TRRTTI

Δ⋅Δ⋅+

Δ⋅Δ⋅+Δ⋅+Δ⋅+Δ⋅+=

5

4
2

3
2

210

      β

βββββ
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Herein,  denotes wheat production revenues,  is a weather index at time t , tY tI tε [ ε ]σ,0~ N

tR

 is a 

normally distributed error term, and Δ  measures the deviation of a weather variable from its long-term 

average.  and  represent the average monthly temperatures for April and June.  represents 

the cumulated precipitation in the period April 1 until June 30. The estimated parameters (p-values) are 

April
tT

73.65

June
tT

0 =β  ( ), 0000.0 97.31 −=β  ( ), 0176.0 09.32 −=β  ( ), 0134.0 0017.03 =β  ( ), 0039.0

14.04 −=β  ( ) and 0052.0 14.05 =β  ( ). An 0023.0 2R  of 0.85 indicates that the selected weather 

index can effectively explain the wheat yield in Brandenburg. The model specification is also supported 

by the corrected Akaike information criterion.  

Subsequent to the estimation of the model (29), we fit a parametric distribution for the weather index 

using standard test procedures. The best fit is attained by a Weibull distribution which is shown in 

Figure 3. The expected value for the weather index amounts to 62.6 points, and the standard deviation is 

11.8 points. According to (28), this distribution may also be interpreted as a yield distribution. Multiplying 

the stochastic yield with a constant wheat prices of 11.22 €/dt gives the wheat production revenues,  

Rev (It). 
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Figure 2. Cumulative probability distribution of the weather index 
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In our model, we assume that the farmer can buy the insurance contract on July 1 and will receive an  

indemnity payment on June 30 next year if unfavourable weather occurs. That is, we consider a two-date 

insurance contract with a contract period of 1 year ( 1=n ). A contract refers to one hectare. 

Next, we have to specify the indemnity trigger (strike-level) I . We assume that the farmer will receive an 

insurance payoff if the weather index falls below its expected value which amounts 62.6 points. This 

corresponds to revenues of € 701 per hectare. In a second scenario, we define another trigger level which 

equals a 30% percentile of the weather index distribution and amounts to 56.5 points (€ 634 per ha). This 

is equivalent to introducing a deductible amount of € 67 per ha.  

The revenue loss θ  equals the positive difference between the actual revenues and the revenues at the 

predetermined indemnity trigger I  (see eq. (2)): 

(30) ( ) ( ))()(,0max IevRIevRIf tt −==θ  

Figure 4 depicts the insured revenue losses in accordance with the predetermined indemnity triggers for 

the observation period 1993 – 2007. Apparently, in some years considerable losses occurred that could 

jeopardize the farmers’ liquidity. 
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Figure 3. Insured revenue losses for different indemnity triggers. 
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The optimal risk transfer structure depends on the risk aversion of the involved contract partners and 

hence, we have to make assumptions about those parameters. In accordance with Xu, Odening, and 

Mußhoff (2007), we assume an absolute risk aversion parameter of  for the base scenario. Since 

the risk aversion is a crucial parameter, we carry out different calculations with alternative values. 

Furthermore, we assume a risk free interest rate r  of 3.12% (the four year average of the return on 

German state bonds). The return for the investor without damage occurrence (

6108 −⋅

Φ= /s ) should exceed the 

risk free interest and is fixed at 5%.  

 

Results and Discussion 

Table 1 presents the optimal risk transfer structure. The results are based on a stochastic simulation with 

10,000 random draws from the estimated Weibull distribution of the weather index. The columns in 

Table 2 represent different degrees of the three agents’ risk aversion. In case 1, all the market participants 

have the same absolute risk aversion. In that case, the compensation ratio ( θJ ) amounts to 50%. That 

means that the insurer is willing to compensate for half of the actual (discounted) loss of the farmer 

(26.30 €). It is interesting to note that the insurance premium π  is only slightly higher than the discounted 

expected loss , which can be interpreted as the actuarially fair price. In other words, the risk 

loading is negligible. This can be explained by the fact that 25% of the insured losses, i.e., €13.15 per 

contract, are transferred to the investor. In order to define the cash flow structure between the insurer and 

investor, one has to decide whether the bond is offered at a discount or at par. First, we consider the 

former case in which the principal payment  equals the compound bond price 

( ) 1
1
−⋅ βJE

N 1β⋅Φ  at the end of the 

contract period. The bond price Φ  amounts to €271.57 which is virtually the same as the actuarially fair 

price. The coupon, , is determined according to eq. 1s (25) and amounts to €13.58. One can easily verify 

the fact that the return without repayments matches the desired value of 5%. The investor’s expected net 

return (i.e., the return after a correction for the repayment α ) is only 0.16%. For the interpretation of this 

return, one should recall the fact that the bond was sold at a discount and, hence, the 0.16% represents an 
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(expected) return above the risk free interest rate of 3.12%. On the average, the coupon payments are 

sufficient to cover the investor’s repayment. However, in the (unlikely) event of a total loss, the investor 

has to repay €175.25 and is left with a negative return of -0.60% 

Next, we consider the case in which the bond is offered at par, i.e., the principal N  at the time of 

expiration equals the bond price Φ . Compared with the previous case, the principal payment, the bond 

price, and the coupon are about 2.5 times higher. According to eq. (26), the coupon  is equal to  plus 2s 1s

r⋅Φ . Hence,  must be higher in order to satisfy the constraint in 2s (17a). The resulting expected net 

return for the investor is 3.27%.  

In case 2, the risk aversion parameters of all market participants are increased by a factor of one thousand. 

Compared to the base case, both the losses that are transferred from the farmer to the insurer and from the 

insurer to the investor remain unchanged. However, the insurance premium π  is significantly higher than 

in case 1 due to the increased risk aversion of the insurer. For the securitization part, we observe an 

increase in the coupon  and a decrease in the cover rate. In view of the higher risk aversion of the  1s
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Table 1. Optimal risk transfer structure of yield losses* 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Indemnity trigger (index points) 62.6 56.5 

Risk aversion of producer Fγ  6108 −⋅ 6108 −⋅  6108 −⋅ 6108 −⋅

Risk aversion of insurer Bγ  8108 −⋅ 6108 −⋅  8108 −⋅ 8108 −⋅V
ar

ie
d 

pa
ra

m
et

er
s 

Risk aversion of investor Iγ  

6108 −⋅ 3108 −⋅

6108 −⋅ 8108 −⋅  8108 −⋅ 8108 −⋅

Compensation ratio θJ  (%) 50 50 99 50 99 99
Discounted expected loss 

 (€) ( ) 1
1
−⋅ βθE 52.59 23.57

Discounted expected 
compensation  (€) ( ) 1

1
−⋅ βJE 26.30 26.30 52.07 26.30 52.07 23.34In

su
ra

nc
e 

Insurance premium π  (€) 26.30 31.17 52.07 26.30 52.07 23.34

Risk transfer ratio θα  (%) 25 25 1 50 50 50
Discounted expected repayment of 
investor  (€) ( ) 1

1
−⋅ βαE 13.15 13.15 0.52 26.04 26.04 11.67

Specification 1: N=⋅Φ 1β  

Principal  (€) N 280.44 304.43 11.00 555.29 555.29 248.90

Bond price  (€) Φ 271.57 294.81 10.65 537.73 537.73 241.03

“Fair bond price”  (€) *
fairΦ 271.71 296.08 10.65 538.00 538.00 241.15

Coupon  (€) 1s 13.58 14.74 0.53 26.89 26.89 12.05
Expected net return of the investor 

( )( ) Φ⋅− −1
1

1 βαEs (%) 0.16 0.54 0.16 0.16 0.16 0.16

Cover rate ( ) 11
1 sE −⋅ βα  (%) 97 89 97 97 97 97

Specification 2: N=Φ  

Principal  (€) N 760.28 825.32 29.81 1505.39 1505.39 674.77

Bond price  (€) Φ 760.28 825.32 29.81 1505.39 1505.39 674.77

“Fair bond price”  (€) *
fairΦ 760.28 826.45 29.81 1505.39 1505.39 674.77

Coupon  (€) 2s 38.01 41.27 1.49 75.27 75.27 33.74
Expected net return of the investor 

( )( ) Φ⋅− −1
1

2 βαEs  (%) 3.27 3.41 3.27 3.27 3.27 3.27

Se
cu

ri
tiz

at
io

n 

Cover rate ( ) 21
1 sE −⋅ βα  (%) 35 32 35 35 35 35

* Constant parameters: risk free interest rate r = 3.12%, and return for an investor without damage 
occurrence = 5%. Φ/s
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investor, the insurer has to pay a higher coupon and receives on the average only 89% of the coupon back 

from the investor as a compensation for the losses from the insurance transaction. The wedge between the 

optimal bond price and the fair price becomes visible now, but it is still rather small. 

In scenarios 3 to 5, we change the relations of the risk aversion parameters of the market participants. 

More precisely, the risk aversion parameters of the insurer (case 3), of the investor (case 4), and of both 

(case 5) are reduced. In case 3, the production losses are almost completely compensated for by the 

insurer, while only 1% of production losses are transferred to the capital market. In case 4, the farmer’s 

compensation ratio as well as the risk transfer ration of the insurer amount to 50%. That means that the 

insurer completely transfers the weather risk to the capital market. In case 5, almost all of the farmer’s 

revenue losses are transferred to the insurer.  

Finally, we reduce the indemnity trigger from 62.6 index points to 56.5 index points (case 6). The risk 

aversion parameters are the same as in scenario 5. Accordingly, the compensation ratio θJ  and the risk 

transfer ratio θα  are unchanged. However, due to the lower indemnity trigger, we observe a lower 

discounted, expected loss of €23.57 per ha. All other values change proportionally. 

 

Conclusions 

In this paper we look for the optimal structure of a weather bond in which the production weather risk is 

transferred to the capital market, and three representative market participants (producer, insurer, and 

investor) are involved. We show that the indemnity payments made to the farmers are a linear function of 

the insured loss which depends on the stochastic weather event. The cost of insurance is a non-linear 

function of the indemnity payments capturing a risk premium for the insurer. The size of the risk premium 

depends on the risk aversion of the insurer and the farmer. These findings are in line with previous work 

on optimal risk sharing rules. Moreover, it is shown that the optimal price of the weather bond is lower 

than its actuarially fair price which is defined as the expected value of the bond’s discounted cash flows. 

This surprising finding is important from a marketing perspective. However, in our application the 
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difference is not very pronounced. Another finding is that the determination of the structure of the weather 

bond is ambiguous since there is an infinite amount of optimal combinations of coupon levels and bond 

prices. This fact can also be exploited for marketing purposes. 

Apart from these theoretical insights, our paper is relevant for the ongoing discussion on how to hedge 

weather related risks. We argue that weather derivatives constitute efficient instruments for transferring 

risks to the capital market. This has two implications. First of all, the existence of systemic weather risk 

does not provide a justification for governmental intervention in insurance markets. Second, since 

reinsurance costs are a major component of insurance premiums, a reduction of those costs might help to 

reduce the frequently observed gap between the willingness to pay and the willingness to accept weather 

insurance. 
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