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Price Competition with Particle Swarm Optimization Learning Algorithm: 

An Agent-Based Artificial Model 

Introduction 

In the vertical product supply chain, processors procure from upstream producers and sell 

product to downstream industries or consumers. For example, in the fed-cattle market, packers 

purchase fed cattle from producers and then sell processed boxed beef to retailers. For the past 

decades, the packing industry has consolidated and the four-firm concentration has grown to 

around 80% in 2003 (GIPSA, 2005).  

This high concentration rate in the meat packing industry arouses the concern about market 

power of packers over feeders and numerous studies have been made on it. The empirical results 

of studies do not suggest uncompetitive behavior for packers (Azzam and Anderson, ; Muth, Liu, 

Koontz, and Lawrence, 2007). Koontz and Garcia show that the market power of packers is small 

and decreasing with time. Since most empirical studies are based on the time series data and have 

to consider the effects of technology improvement, demand changing and concentration at the 

same time, it causes difficulty to study the effect of a single variable on market power. To study 

the oligopsony market, the type of behaviors that the participants actually follow play an important 

role. According to game theory, there are two mainly kinds of marketing strategies for oligopsony 

firms, price competition and quantity competition. Under the price competition mechanism, 

agents use price as a strategy and try to procure as many cattle as possible until then reach a 

capacity constraint (Levitan and Shubik, 1972). Under the quantity competition, agents believe 

their purchasing quantity will affect the market price and use quantity as a marketing strategy. 

 1



Once procurement reaches their planned number, they will stop purchasing any more. Xia and 

Sexton (2004) adopt a theoretical duopsony model and assume packers use quantity strategies. 

This model predicts a much larger market power than the empirical estimation. This suggests that 

their assumption may not be the main mechanism of fed cattle market.  

One possible explanation of the discrepancy between empirical and theoretical results is that 

pricing strategy of packers play an important role in this market. Quantity competition assumes 

each producer decides how much to produce and then the total supply determines the price with 

consumers’ aggregate demand (Maskin and Tirole, 1987). Price competition is more like an 

auction market in that the highest bidder gets the supply first until it reaches its capacity. Majerus 

compares quantity vs. price competition in his paper with differentiated products and concludes 

that the latter is harsher than the former (1988).  

For the fed cattle market, if there is more than one packer bidding in a feedlot, the higher 

bidder will get the cattle first. There are 4 large processing firms and many small processors and 

this makes it difficult for a single firm to use quantity as a main strategy. Anderson et al (1999) use 

an experimental method called packer-feeder game to study the trading behaviors of agents. In this 

game people act as packers and feeders, packers have convex cost function and bid cattle from 

feeders. But because of high cost, time limit, and heterogeneous learning ability of people, it is 

costly to test the long run equilibrium. In addition, their study and other packer-feeder games make 

a realistic environment and contain many other features such as quality, feeding time and captive 

supply besides bidding strategy, which makes it difficult to differentiate the effect of one variable 

from the other.  
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Based on the above analysis, we set up a basic artificial price competition market to study the 

trading behavior of packers. This artificial model simulates the dynamic interaction between 

packers and feeders under different economic environments. Under price competition market 

structure, packers make bidding price strategy simultaneously. If feeders have complete 

information about packers’ bidding price, they will only sell products to the current highest bidder. 

In this simulation, we also let packers have learning ability to change their marketing strategy 

based on their history performance and market information.  

Compared to experimental simulation, this agent-based model is easy and economical to test 

effects of each variable by changing the environment conditions, population and 

properties/parameters of participants. Past research using agent-based models in economics have 

used genetic algorithm (GA) (Vriend, J. N., 1998) and reinforcement leaning algorithm (RL) 

(Kutschinski, E., Uthmann, T. and Polani, D., 2003). GA is mainly used in simple quantity 

competition artificial market, like Vriend’s work. But this algorithm has been proved too slow to 

use in the more complex market considered here. When modeling price competition market, the 

RL lets agents increase or decrease prices by a small value, and if the current return is higher than 

the previous one, the agents will replace the last action. Because of this strategy feature, the 

previous market simulations with RL only allow part of the agents to change their strategies at one 

time or agents cannot distinguish the effect of return come from change of its own strategy or the 

environment. This restriction makes RL difficult to model the more realistic market in which all 

agents continually adjust their strategies simultaneously. 

To avoid the above problems of GA and RL , this study adopts Particle Swarm Optimization 
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(PSO) algorithm. PSO is a stochastic optimization technique developed by Eberhart and Kennedy 

(1995) and can be used for a social optimization problem. Each individual agent’s strategy can be 

evaluated by a fitness function and the problem has its own paralleled structures in which each 

individual can learn. The asynchronous best strategies of one agent in every parallel structure are 

called local best solutions and the best fit strategy among all parallel structures at the current 

simulation step is called global best. Every agent continuously uses PSO algorithm searching for 

better solutions in each parallel structure. Movements through the search space are guided by these 

local and global successes, with the population usually converging. 

This research simulates the price competition behavior of packers with an artificial fed cattle 

market and also uses particle swarm optimization algorithm to model the packers learning. We 

examine the effect of processors’ capacity constraint on the equilibrium market price.  

Methods and Data  

 In this study, we deal with the case of packers procuring fed cattle for processing from feeders. 

First we use an artificial market without packers’ capacity constraint to illustrate the market 

mechanism and then consider the effects of adding capacity constraints. 

Market Mechanism without Packers’ Capacity Constraint 

Consider a homogeneous product market with M  packers and  feeders. The number of 

packers is much less than the number of feeders (

N

NM << ). Assume that packers process products 

that will be sold in the retail market and the marginal cost for processing is constant for all 

processors. The marginal value equals the selling price minus the marginal processing cost. To 

focus our research on the games between packers and feeders in this market, we assume the final 
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product boxed beef price, the processing rate and the marginal processing cost for one cattle are 

constant and then the derived price of before processing cattle R is constant, too. Then the 

marginal revenue is constant and equals R . Each buyer uses bidding price ratio as its choice 

variable as equation (1) shows.   

Rpx /=  (1) 

here x is defined as price ratio, is bid price, p R is buyer’s the marginal revenue. At the beginning 

of each simulation step, packers use the price ratio and R to set bid prices simultaneously.  

In this section, we suppose that none of the packers has a capacity constraint and that the 

highest bidder will purchase all available supply and the remaining packers will not buy anything. 

If more than one packer bids the highest price, they split the supply quantity. That is, given , 

if there are l packers that bid the same highest price, the procurement of buyer i is 

Miip ∈)(

l
pS

q i
i

)(
=  if '...

21 iiii pppp
l
>===  for all Mi∈'  (2) 

 We assume all feeders are homogeneous and have the same supply function and assume there 

is a time delay between production and marketing. Then feeders have to make their production 

decision based on the market information of the previous time period and make selling decisions 

based on the current market. Their production function and supply function are 

 and)]1()1([-)1()( −−−−= tqtqtptq s
j

p
j

Hp
j { })(),(min)( tptqtq Hp

j
s
j = , here the subscripts p, s and 

H indicate production, sold and highest respectively. This means after production, the current 

storage is the same as the highest price of last time period. This study assumes feeders have no cost 

or time delay to get the bid price information of all packers. Under this perfect information market 
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for feeders, they will only sell their products to the highest bidders. If the current highest bid price 

is not less than , then seller will sell all its production quantity , else it will 

sell and hold the product left to next time period. Here we assume the storage cost is 

small enough to be neglected.  

)(tpH )1( −tpH )(tq p
j

)()( tqtq p
j

s
j <

Market Mechanism with Packers’ Capacity Constraint 

In the real world, packing firms have processing capacity constraints. The market price 

competition level with firms’ capacity constraint may be different from the level without it. In this 

section, we assume the artificial market structure is the same as the previous one except packers 

have capacity constraints. The highest bidder gets the supply first to its capacity. Then the next 

highest bidder makes the procurement and so on.  

To model the depth of oligopsony market structure caused by packers’ capacity, we define the 

processor’s capacity ratio in equation (3).  

)/( NRK ×=κ  (3) 

here κ is the capacity ratio, K is the processing capacity of the packer, R is the marginal revenue 

of one processor and also the supply level of producers under the perfect competition price level, 

is the total number of feeders. For example, if in perfect competition market all producers 

supply 10000 products and the capacity of processor is 3000, its capacity ratio 

N

i iκ equals 0.3 here. 

Since we assume all processors are homogenous then their capacity ratios are the same. In this 

simulation, we change the packers’ κ and compare the results of them to see how the capacity 

constraint affects the price level. 

Particle Swarm Optimization Algorithm 
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 Schoeman and Engelbrecht (2006) adapt PSO with a niching algorithm for dynamic 

environments. In the fed cattle market, packers face a changing economic environment since all 

packers continuously update their market strategies. In this research, since we assume all agents 

do not have cooperation then we adjust PSO algorithm and only allow each agent to learn from 

their own experience.  

 We set up K parallel markets and each agent has its own clones in every market. We call one 

clone of an agent a particle. If there are 4 agents and 20 parallel markets, each agent has 20 clones 

and there are 80 particles in this simulation structure. Although having the same behavior rules, 

one agent and its K clones may take a different market strategy since the initialized random values 

are different. In the simulation, packers dynamically change their marketing strategy with the PSO 

algorithm but feeders are price takers and simply sell their products to the current highest bidders. 

Then in the following paragraph we only state the PSO algorithm for packers. 

Each particle chooses a price ratio value x as a strategy parameter, ]1,0[∈x , and each strategy 

parameter is normalized at the beginning of the simulation. Each particle has an evolutionary 

velocity, , which determines the change of the particle. The changes of particles are 

influenced by the location of the best solutions achieved by the particle itself, for  

particle, and by the whole population, . The superscripts l and g indicate local and global, 

the subscripts k and indicate  parallel market and agent respectively. Profit 

function

]1,1[ +−∈v

]1,0[, ∈l
kip thk

]1,0[∈g
ip

i thk thi

)( , kixπ  is used to value the performance of each position x , Table 1 shows the pseudo 

code of the PSO algorithm.  

In every simulation step, the particle of the packer in parallel market can be updated by thi thk
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the following equations:  

)()()1( ,,, tvtxtx kikiki +=+  (4) 

and  

))()(())()(()()()1( ,,22,,11,, txtpuctxtpuctvtwtv ki
g
kiki

l
kikiki −+−+=+  (5) 

where x is the price ratio value, is the velocity vector, v ]1,0[∈u  are uniformly distributed random 

numbers, and are learning factors, is an inertia weight parameter, and are local best 

and global best particles.  

1c 2c w l
kip ,

g
ip

The following equations (6) and (7) indicate how to choose  and among all 

parameters of agent i . The best local chooses from the best performance history parameters , 

as equation (6) shows. 

l
kip ,

g
ip

)'(, tp ki

))(),'((maxarg)( ,,, txtptp kikiki π=  (6) 

here . And the best global parameter is elected from the best local 

parameters.  

10,...,2,1' −−−= tttt

)/))((max(arg)(
1

,, Ktptp
K

k

l
kik

g
ki ∑

=

= π  (7) 

here andKk ,...,2,1= K is the total number of parallel markets. 

 Chatterjee and Siarry (2006) state that the inertia weight w in (4) is critical for the PSO’s 

convergence behavior. A large inertia weight provides a larger exploration but a smaller one 

fine-tuning the current search area. So it is worth making a compromise, e.g. w start with a higher 

value at the beginning and then decreasing with iterations:  
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max

2
4.0)(

t
tt

tw
⋅
−

+=  (8) 

where is the maximum number of iterations and t is the current iteration. and are set 

equal 2 respectively.  

maxt 1c 2c

Simulation Procedure 

Packers select independently the prices they bid for the product simultaneously and can learn 

from their own experiences. With a homogeneous product, supply will go to the current highest 

bidder first. If more than one buyer bids the same price, then a sharing rule must be assumed.  

We set up 20 parallel markets and each market contains the same agents. Each buyer use the 

best fitness bidding in one market as best local and its own best performance in all parallel markets 

as best global. The best global differs by packer.  

(i) There are 20 parallel markets. There are M packers and N feeders act as independent 

agents and trade in each market at the same time. Each buyer may have a different 

trading strategy in each parallel market and evolves according to time respectively 

and chooses the best local parameter as the best global parameter.  

(ii) In each market, randomly initialize and for all . We choose the price 

ratio and

ix iv i

]1,0[, Ux ki ∈ 0=iv for all i and Kk ,...,1= .  

(iii) While the market is not converged, each buyer continuously uses the function (4) 

and (5) to update the new bidding price.  

(iv) Use the history andip g to test the best local parameters following equation (6). In 

this game, all packers change their marketing strategies with time going by. Since 
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the performance of current pricing strategy and the past best local choice are under 

different economic environments, it is reasonable to retest the past locals. Then for 

each buyer, we retest the performance of 10 history local parameters under the 

current market environment, and choose the best fit as the best local parameter of 

this iteration from both these 10 history local parameter and the current parameter. 

(v) To choose the best performance parameter for one buyer, we test each best current 

local parameter in all 20 parallel markets holding other agents’ current strategies 

unchanged and choose the one that gives the highest average return, This means it 

will give the highest expected return and be chosen as the global best parameter, as 

function (7) shows. 

This study introduces a new method to agricultural economics, an agent-based model, which 

can be used to simulate the behavior of participants with different characteristics under a complex 

market environment. The model is programmed with JAVA language and it is easier to test effects 

of different types of contracts, number of market participants, level of market information, etc.   

Results 

The artificial market in this research tests the above theory with a market without packers’ 

capacity constraints and test the effect of processors’ capacity constraint on the price level when 

constraints exist. 

Market without capacity constraint 

In this section we study the optimal pricing strategies of packers under the assumption that 

processors do not have a processing capacity constraint. 
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Figure 1 shows the simulation results with no processing capacity constraints. The result in 

Figure 1 (a) is under the monopoly assumption and there is only one processor in the market. Since 

there is no other competitor, this processor tries to maximize its profit and sets the price at the 

monopoly level. With more processors joining the market, as far as they win cattle with a bid 

lower than the marginal revenue R, they will make a profit. Since the highest bidder gets the entire 

product, these processors continually increase their bidding and drive the market price up to the 

perfect competition level. From Figure 1 (b) to (d), more competitors in the market will cause the 

price to reach the perfect competition level more quickly. If processors number is more than 3, the 

price evolves to perfect competition level nearly immediately. 

Market with capacity constraint   

The results in Figure 2 and Figure 3 show that if all processors have a chance to procure some 

input, which means  and that after the first packer get its entire requirement, there is still 

a probability that there are some cattle left for the other packer in the market. Then the lower 

bidder can earn a profit with a price lower than the perfect competition price level. This causes the 

market price to be lower than the perfect competition price level. If there is any processor left with 

no procurement, the market price will be driven to the perfect competition price level.  

∑
−

=

<
1

1
1

M

i
iκ

The results in Figure 2 come from a duopsony market. In Figure 2(a), when the capacity ratio 

of one packer is 0.9, the competition is not as harsh as Figure 1(b) shows and the market price is 

already lower than the perfect competition level. When capacity constraints tighten, the market 

price gets lower. Figure 3 shows how the equilibrium price level changes after more packers join 
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the market. When four packers compete in the market, the capacity rate is 0.25, as Figure 3 (b) 

shows, the total processing capacity is near to the perfect competition supply level. Figure 3 (c) 

and 3 (d) shows that once each packer’s κ gets lower than 0.25, the market price level becomes 

less than the perfect competition level and the market power gets larger asκ decreases. 

Figure 2 and Figure 3 show how capacity constraints affect the price evolution and the market 

price level. Compared to the results without a capacity constraint, we can see that a capacity 

constraint weakens price competition. If the capacity constraint level is relatively higher, the price 

distortion from the perfect competition level is less than theoretical quantity competition results. 

While if the capacity constraint level is very low, the market power of processors is even more 

severe than with quantity competition market.  

[Place Figure 2 Approximately Here] 

[Place Figure 3 Approximately Here] 

Conclusions  

This research studies the price competition behavior for processors and illustrates how the 

capacity constraint of processors caused market price to be distorted from perfect competition 

level. Market power is a topic of great concern and the results of this research provide potential for 

discussion. In addition, particle swarm simulation is used to simulate market and study the 

learning behavior of economic agents.   

From above discussion, we find that if after 1−N buyers get all their required products and 

some supply is left for the lowest bidder, the price level has the chance to be lower than the perfect 

competition level. Or else in order to make positive profit, the lowest bidder will increase their 
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bidding and compete with the 2nd lowest bidder which drives the market price to the perfect 

competition level. Once the total capacity of 1−N buyers is less than the perfect competition 

supply level, the market price evolves lower than the perfect competition price. And after this 

threshold, with the capacity gets smaller, the market power depth gets deeper.  

In addition, this research assumes that suppliers have zero storage cost and the products are 

imperishable. If there is no capacity constraint, suppliers can always sell out their products and the 

perishable assumption affects the results shown in Figure 1. While if there is capacity constraint 

and products are perishable and only can be stored for short time periods associated with a high 

cost, the products can be looked upon as sunk cost and the market price level may be volatile 

instead of converging to a consistent point. Under extreme situation, if suppliers produce a huge 

quantity that is much more than the requirement of processors in the current time period, buyers 

can purchase these products with a very low price. This problem needs to be studied in future.  
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(c) Price Competition with 3 Processors                                  (d) Price Competition with 4 Processors 
 
 

Figure 1 Processors’ Price Competition Behavior without Capacity Constraint 
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(a) Capacity Rate=0.9                                             (b)  Capacity Rate=0.7 

0. 00%

20. 00%

40. 00%

60. 00%

80. 00%

100. 00%

120. 00%

0
19

0
38

0
57

0
76

0
95

0
11

40
13

30
15

20
17

10
19

00
20

90
22

80
24

70
26

60
28

50
30

40
32

30
34

20
36

10
38

00
39

90

si mul at i on st ep

pr
ic

e
ra

ti
o

  

0. 00%

20. 00%

40. 00%

60. 00%

80. 00%

100. 00%

120. 00%

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

si mul at i on st ep

pr
ic

e
ra

ti
o

 
(c)  Capacity Rate=0.5                                        (d)  Capacity Rate=0.25 

 
 

Figure 2 Two Processors’ Price Competition Behavior with Capacity Constraint 
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(a)  Capacity Rate=0.35                                      (b)  Capacity Rate=0.25 
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(c)  Capacity Rate=0.20                                      (d)  Capacity Rate=0.15 

 
Figure 3 Four Processors’ Price Competition Behavior with Capacity Constraint 
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