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Mixed Unit Roots and Deterministic Trends in Noncausality Tests 
Tao Ran     

 Hector Zapata 

Abstract Using Japanese economic data and a Monte Carlo simulation, this study 
analyzes the consequences of ignoring deterministic trends in mixed unit-root data for 
Granger noncausality tests. Results from an augmented VAR suggest over-rejection in 
certain empirically relevant cases at various sample sizes. 

1. Introduction 

In time series studies, time can be incorporated as an explanatory variable to 

model a deterministic trend. In spite of the role played by the deterministic trend term, 

some empirical studies in economics often proceed by ignoring the trend term, that is, not 

incorporating time into the model as an explanatory variable, even when the presence of a 

deterministic trend is suspected. This might not be a problem in some cases, but in others 

it can cause a distortion in the statistical hypothesis test which might lead to a wrong 

conclusion. This study uses a Monte Carlo simulation experiment to analyze the 

consequence of ignoring the trend term in a lag augmented vector autoregressive (VAR) 

model using a modified Wald test to test for Granger noncausality. The results show that 

ignoring a deterministic trend in a modified Wald test rejects a true null hypothesis more 

often than it should be. 

2. Literature Review 

2.1. Trend 

In time series analysis, “the key feature of a trend is that it has a permanent effect 

on a series” (Enders 2004). If a model consists of a trend term and a stationary1 

component, the sequence will exhibit only temporary departures from the trend. This type 

of model is defined as trend stationary. A linear trend term in a model as an explanatory 

variable is called deterministic trend. Now, if the error term, or shock as it is called in 

time series, has a permanent effect on changing the conditional mean of the series, the 
                                                 
1 Or, covariance stationary. A time series is covariance stationary if its mean and all autocovariances are 
unaffected by a change of time origin, or simply independent of time. For more details, see Enders 2004, 
page 52. 
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sequence is said to have a stochastic trend. A simple example of a stochastic trend model 

is the random walk model which has the simple expression of yt = yt−1 + εt, where εt is 

white noise2. When a process has a deterministic trend, we need to take this into account. 

However, in some time series analyses, people do not make a distinction between the 

model having a trend and the one that does not. Oftentimes, a universal test was used 

whether a deterministic trend existed or not. This study evaluates the impact of ignoring a 

deterministic trend when testing Granger noncausality in time series analysis. 

2.2 Causality 

The majority of time series causality analyses are based on the idea of Granger 

causality. Basically, it is not possible for a cause to come after the effect. If, for example, 

a variable z is affected by a variable x, then the prediction of z should be improved by 

including x in the information set. According to Lütkepohl (2005), suppose Ωt is the 

information set containing all of the relevant information in the universe available up to 

and including period t. Let zt (h|Ωt)3 be the optimal (minimum mean square error or 

MSE) h-step predictor of the process zt at origin t based on the information in Ωt. The 

corresponding forecast MSE will be denoted by Σz(h|Ωt). The process xt is said to cause zt 

in Granger’s sense if  

Σz(h|Ωt) < Σz(h|Ωt\ {xs | s ≤ t})    for some h = 1, 2, …  ,                                     (1) 

where Ωt\ {xs | s ≤ t } is the set containing all of the relevant information in the universe 

except for the information in the past and present of the xt process. In other words, the 

left hand side of the inequality is the MSE based on the whole information set, especially 

information about the past and present values of xt, while the right hand side does not 

include the whole information set, where \ means exclusion. 

If the above holds, xt is said to Granger-cause zt or xt is Granger-causal for zt. 

Alternatively, if zt can be predicted more efficiently when the information in the xt 

                                                 
2 A sequence {εt} is called a white-noise process if each value in the sequence has a mean of zero, a 
constant variance, and is uncorrelated with all other realizations (Enders 2004). 
3 For example, when h = 1, the expression zt (1|Ωt) means the 1 step predictor of the process zt based on the 
information up to and including period t, that is, predicting zt+1 using all of the information available at 
period t. 
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process is taken into account in addition to all other information in the universe, then xt is 

Granger-causal for zt. Note that this definition can be extended to the case where z and x 

are more than a one dimensional process.  

The Granger noncausality test is often used in the economics literature to detect 

the relationship between certain economic variables. For example, there has been a 

debate on the relationship between exports and a country’s economic growth during past 

decades. Some argue that export is the ‘engine’ of economic growth (export-led growth 

hypothesis, ELG hypothesis hereafter) (Keesing 1967, Krueger 1985). Others say that the 

former was just a ‘handmaiden’ (growth-led exports hypothesis, GLE hypothesis 

hereafter) (Bhagwati 1988, Lancaster 1980, Krugman 1984). But the empirical evidence 

continues to be mixed.  One driver of these mixed results could be related to the 

misspecification of deterministic time trends.  

2.3 Granger noncausality Test Approaches 

In applied work, three approaches are frequently used to investigate Granger 

noncausality: formal tests of restrictions, impulse response functions (IRF), and forecast 

error variance decompositions (FEVD). This study is focused on the formal restriction 

test based on the theoretical framework discussed in the above section. In the context of 

the ELG, Granger non-causality is tested via a likelihood ratio, Wald, or F test to check 

the validity of the exclusion restrictions. Often, however, in analyzing economic 

variables, a VAR process may have non-stationary elements such as unit roots and/or 

cointegration4. This will “alter the asymptotic distributional results of the least square 

(LS) estimators of the coefficients which results in Granger non-causality test statistics 

that may not have standard asymptotic null distributions” (Giles and Williams 2000). 

A vector error correction model (VECM) is usually used to test for causality when 

cointegration is suspected. However, when the process has nonstationary structure or a 

mixed-unit-root structure, the testing of these restrictions is not as straightforward as that 

for a stationary process. This may lead to over-rejection of the non-causality null and/or 

wrong conclusions of causality (Giles and Williams 2000b). Further, it requires a pretest 

of unit roots and cointegration which might be sensitive to lag orders. Another issue in 

                                                 
4 In economic analysis, series with unit roots is a special case of the non-stationary process. Cointegration 
is a phenomenon whereby two or more series with unit roots may be related. Detailed discussion is in 
Appendix B.6.  
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using VECM is the specification of the model structure. A common practice in many 

empirical analyses is not to distinguish different model structures via deterministic trends.  

An alternative approach by Toda and Yamamoto (1995) and Dolado and 

Lütkepohl (1996) (TYDL hereafter), which is the focus of this study, does not require a 

pretest of unit root and cointegration, and thus can lead to asymptotically equivalent 

results. Usually a Wald test  is chosen to test for non-causality, which has an asymptotic 

χ2 distribution if the process is stationary. However, if the system is non-stationary, the 

asymptotic covariance matrix of the coefficient estimator is singular. TYDL proposed a 

lag augmented VAR to solve the problem. The basic idea, as discussed in LÜtkepohl 

(2005), is that whenever the elements in at least one of the complete coefficient matrices 

Ai are not restricted under H0, the Wald statistic has its usual asymptotic χ2 distribution. 

In other words, if restrictions are placed on all Ai, i = 1, … , p, as in the non-causality 

hypothesis, we can get a χ2 Wald test by adding an extra lag in estimating the parameters 

of the process. The good news is that we do not have to know the cointegration properties 

of the process to use this testing method. The bad news, however, is that there will be a 

loss of power in this regard. If the dimension K is much smaller than the number of lags 

p, the loss will be small though. Further, if the system is bivariate and cointegrated of 

rank one with both variables being I(1), then no extra lag is needed.  

The test is called a modified Wald test, and it is easy to apply in empirical 

research. The merit of the modified Wald test is that it does not require a pretest of unit 

roots and/or cointegration. Also, it accommodates cases where some series in the system 

are I(1) and others are I(0), that is, when a mixed order of integration is found for the 

individual series. The test is not affected by the order of integration, but it is affected by 

the existence of a deterministic trend term. Unfortunately, in practice, people often ignore 

the trend term and use with the model structure without a trend. An illustration of the 

difference the trend term makes is presented in the following section using Japan’s 

economy data as an example, followed by a Monte Carlo experiment concerning this 

matter.  

3. Empirical Analysis 
3.1 Data  
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We use quarterly data on Japan during the period of 1960-2006 to test the ELG 

hypothesis which is, in essence, a Wald test of Granger noncausality. Five variables were 

chosen to be included in the analysis: GDP, export, terms of trade (export divided by 

import), gross fixed capital formation as a proxy for capital investment, and an industrial 

production index for all the industrialized countries as a proxy for foreign output shock5.  

Although the lag augmented VAR approach does not require a test of unit roots, 

for the sake of the specific question of interest, we would like to know whether the 

individual series are I(1) or I(0) with or without a deterministic trend. In the literature, 

two tests are common to test the existence of unit roots for each individual variable, 

namely, the Dickey-Fuller test and the Philips-Perron test. The former is sensitive to the 

lag order of the variables, while the latter provides an alternative for the heterogeneous or 

weakly dependent unit root process. Plus, the Philips-Perron test does not have reliable 

results for small sample sizes. The results of the tests are in the tables below. 

 

Table1. Unit root test results for exports. 
Statistic Dickey-Fuller p-value (D-F) Phillips-Perron p-value (P-P) Conclusion 
τ   1.71 .98 3.51 .99
τμ -3.37 .01 -3.37 .01 
Ф1  8.12 .001   
ττ -2.35 .41 -1.64 .77 
Ф3  5.91 .07   

I(1) with 
trend 

  
Table2. Unit root test results for terms of trade 
Statistic Dickey-Fuller p-value (D-F) Phillips-Perron p-value (P-P) Conclusion 
τ  -1.51 .12 -2.27 .02
τμ  -2.59 .097 -3.08 .03 
Ф1   3.68 .13   
ττ  -2.32 .42 -3.95 .01 
Ф3   3.72 .43   

I(0) 

 
Table3. Unit root test results for GDP 
Statistic Dickey-Fuller p-value (D-F) Phillips-Perron p-value (P-P) Conclusion 
τ -.21 .61 3.97 .99
τμ -2.78 .06 -7.63 .001 
Ф1  3.88 .096   
ττ -1.42 .85 -.50 .98 
Ф3   .28 .28   

I(0) 

                                                 
5 The choice of these variables is based on economic theory and previous literature. 
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Table4. Unit root test results for industrial production index 
Statistic Dickey-Fuller p-value (D-F) Phillips-Perron p-value (P-P) Conclusion 
τ  2.3 .99 4.13 .99
τμ -2.62 .09 -2.77 .07 
Ф1  6.78 .001   
ττ -3.03 .13 -3.08 .12 
Ф3   6.37 .049   

I(1) with 
trend 

 
 
Table5. Unit root test results for capital investment 
Statistic Dickey-Fuller p-value (D-F) Phillips-Perron p-value (P-P) Conclusion 
τ  1.77 .98 4.32 .99
τμ -3.23 .02 -6.56 .001 
Ф1  7.37 .001   
ττ - .80 .96 -1.28 .89 
Ф3  6.17 .06   

I(1) with 
trend 

 
From the results, we conclude that export is I(1) with a deterministic trend, terms 

of trade is I(0) without trend, GDP is I(0) without trend, industrial production is I(1) with 

deterministic trend, and capital investment is I(1) with deterministic trend. Because we 

are interested in whether Japan’s export is leading the country’s economic growth or the 

other way around, GDP and exports are the two main variables of concern. Note that the 

lag order6 for the VAR model is chosen by the corrected Akaike information criterion 

(AIC) when there is no trend in it and the lag order of six has the minimum value. For the 

augmented model, a lag of seven is chosen to get the residual error to calculate the 

modified Wald test. When there is a trend, three criteria were used for the lag order 

selection: AIC, HQ and SC7. The lag order of five has the minimum value for two of the 

criteria.  

3.2 Basic model 

The basic model structure is8 

                                                 
6 The selection of the lag order is to specify the value of p in VAR(p) which is similar to model selection in 
regression. 
7 AIC stands for Akaike’s Information Criterion, HQ stands for the Hannan-Quinn Criterion, and SC is the 
Schwarz Criterion using Bayesian arguments. Details are in Lütkepohl (2005). The order selection is done 
using  PROC IML in SAS, with codes attached in Appendix C.4. 
8 For the model without trend terms, another lag, that is, lag seven is going to be added for the augmented 
model. For the model with trend, a trend term will be added. 
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for all i = 1, 2, …, 6. Here ext stands for export, gdp stands for gross domestic product, 

tot stands for terms of trade, inv stands for capital investment, and prd stands for 

industrial production. To test for the GLE hypothesis, we would like to test whether a12,i 

is zero for all i. If we can not reject that they are all zero, growth is not Granger causing 

export. Similarly, to see whether the ELG hypothesis is true, we would check whether 

a21,i is zero for all i. If we reject the null that they are all zero, export is Granger causing 

growth in Japan during that period of time. We use the seemingly unrelated regression 

(SUR) model9 to estimate this VAR(6) of dimension five. 

Table 6 gives the results of the modified Wald test in two cases: the one with 

deterministic trend terms included in the export, investment, and industrial production 

equations, and the one ignoring the deterministic terms. From the results, we can see that 

ignoring the deterministic trend term affects the modified Wald test result, but just to a 

small degree. Both models conclude that there is no causal effect between export and 

growth in Japan, that is, export is not led by economic growth, and economic growth is 

not led by export.  

The slight difference between the two might be due to the data used and/or the 

true model structure, which is never known by the researcher. To see generally how 

ignoring the deterministic trend would affect the rejection accuracy of the modified Wald 

                                                 
9 It is a set of simultaneous equation model with each equation having different coefficients for the same 
explanatory variables. The model also allows for different explanatory variables. The equations may appear 
uncorrelated, but the correlation across the errors in different equations can provide links that can be 
exploited in estimation. Details about using SUR to calculate a Wald test are in Rambaldi (1996). 
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test, a Monte Carlo experiment was conducted, the merit of which is that the data 

generating process (DGP) is known and can be controlled.  

Table 6.Wald test results for models with and without a trend term 

 

Model with deterministic trend terms 

Hypothesis        Wald test        p-value 

 

Model ignoring deterministic trend 

Hypothesis        Wald test        p-value 

ELG 5.729 .333 ELG 1.934 .858 

GLE 8.809 .117 GLE 8.46 .132 

 

3.3 Monte Carlo Experiment 

For our purpose, we generated 1000 samples of a system of time series of either 

I(1) or I(0) with deterministic trend in some of the series. Also, one series is simulated to 

Granger cause another. Hence, we know the true process has a trend term in it and that 

the two series have a causal relationship between them. Then, we set up a SUR model 

discussed in the previous section, but using the generated data instead. The series in the 

SUR model ignores the deterministic trend term on purpose. A modified Wald test is 

calculated based on the SUR model estimation. Because we know the true model has 

trend but the estimation model ignores the trend, and we know exactly which series is 

Granger causing another, we can tell how much distortion ignoring the trend term causes 

in detecting the causal relationship. 

The criteria in designing the GDP are model dimension, direction of causality, 

stability, and error structure. Bivariate processes are included first in the experiment due 

to its simplicity and their frequent appearance in economic empirical work. Higher 

dimensional models are considered also. However, in a Monte Carlo experiment, higher 

dimensional models are hard to manage and to interpret, so we include models with at 

most three variables. In all models there is a causality from series a to series b in the true 

process. There are mainly three scenarios to be considered. For example, in the bivariate 

case, we have both series are I(1) and one has a deterministic trend term; both are I(1) 

and both have trend terms; and one is I(1) without trend and the other is I(0) with trend.  

The trivariate case is similar but adds one more series c, which is I(1) with a trend term. 
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For each scenario, we have one lag, two lags, and four lags specified in the true model as 

three different cases to accommodate the real life data that are either yearly or quarterly. 

Also, three error structure forms are considered: identity covariance matrix, which is the 

simplest case; heterogeneous but contemporaneously uncorrelated variance-covariance 

matrix; and the most general one, heterogeneous and contemporaneously correlated 

variance-covariance matrix. Further, because in real practice the true lag order is never 

known and has to be selected using certain criteria, we might have the selected lag order 

less than the true order (short lag) or more than the true order (long lag). Usually the short 

lag is one lag less than the true lag and the long lag is one lag more than the true. This is 

also taken into consideration in the experiment. In all cases 1000 samples of size T + 50 

are generated with the first 50 observations discarded10. For each DGP, five sample sizes 

were included: T = 25, 50, 100, 200, and 300. 

The tabulated results of the experiment are listed in Tables 7 and 8. Table 7 

contains the outcome for the bivariate models, while Table 8 presents the results for the 

trivariate models. Recall that the true causality is a is causing b, so we wanted to reject 

the null of a not causing b often (close to 100%), and reject the null of b not causing 

rarely (close to 5%). In all cases the numbers in the body of the tables are the percentage 

of rejections at the 5 percent significance level.  

From Table 7 we can see that ignoring the deterministic trend term is not 

problematic in detecting the true direction of causality. As the right block of Table 7 

indicates, when the true relationship is “a causes b,” we do not have much trouble 

rejecting the null that a is not causing b, especially when the sample size is large. This is 

true for all the scenarios. However, ignoring the deterministic trend will cause over-

rejection of the hypothesis that is true, as shown in the left block of the table. We know b 

is not causing a in the true DGP, and expect the null of b is not causing a to be “accepted” 

as often as possible. Unfortunately, if we do not specify the trend term in the estimating 

model, we will have lower power for the modified Wald test. The problem worsens when 

both “a and b” have a trend term which are ignored by the estimated model. As shown in 

scenario 2 of the table, the null of b not causing a is often rejected even though it is true. 

                                                 
10 This is to eliminate the influence of the different initial values of the sequence. 
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Moreover, increasing the sample size will not correct the problem but make it worse. The 

problem is less obvious when only one series has trend, whether it is I(0) or I(1).  

If the true error structure is heterogeneous with a correlated variance-covariance, 

more over-rejection will occur. This makes sense because the Wald test based on a lag 

augmented VAR assumes a white noise structure for the error term. If the lag order in the 

true model is four, the problem is a little bit worse overall. In general but not always, 

selecting a short lag will have less over-rejection than finding the true lag or selecting a 

long lag. The trivariate case has similar results except that when one more series having a 

trend is included in the model that are composed of two series with trend also, the over-

rejection problem is less serious than the bivariate one. This is from the comparison of 

scenario 2 in the bivariate and trivariate cases. However, for scenario 1 and 3, adding one 

more series with trend will cause more over-rejection



 

 11

Table 7. Percent Rejection of Non-causality Using Modified Wald test, 5 percent level, 1000 samples (two series) 
H0: b is NOT causing a H0: a is NOT causing b  

 
 
 
 
Scenario 1 

Lag Order Error Structure Lag 
Selection Sample size 

 

Sample size 

   25 50 100 200 300 25 50 100 200 300 
1 LAG IDENTITY  TRUE 0.092 0.088 0.079 0.1 0.308 0.675 0.923 1 1 1 
   LONG 0.12 0.101 0.105 0.094 0.396 0.98 0.999 1 1 1 
 HETEROGENEOUS TRUE 0.068 0.05 0.052 0.057 0.061 0.89 0.923 0.973 1 1 
  LONG 0.085 0.06 0.057 0.057 0.06 0.972 0.996 1 1 1 
 MOST GENERAL TRUE 0.203 0.148 0.414 0.954 0.998 0.884 0.902 0.952 1 1 
  LONG 0.207 0.174 0.573 0.995 1 0.982 0.996 1 1 1 
2 LAGS IDENTITY  SHORT 0.061 0.067 0.084 0.109 0.134 0.81 0.99 1 1 1 
  TRUE  0.074 0.071 0.07 0.065 0.089 0.991 1 1 1 1 
  LONG 0.095 0.06 0.069 0.059 0.072 0.985 1 1 1 1 
 HETEROGENEOUS SHORT 0.066 0.059 0.077 0.065 0.065 0.829 0.919 0.981 1 1 
  TRUE  0.081 0.055 0.065 0.041 0.057 0.965 0.998 1 1 1 
  LONG 0.101 0.063 0.064 0.052 0.056 0.966 0.996 1 1 1 
 MOST GENERAL SHORT 0.159 0.216 0.38 0.66 0.814 0.853 0.936 0.981 0.999 1 
  TRUE  0.18 0.252 0.419 0.744 0.903 0.966 0.995 1 1 1 
  LONG 0.161 0.194 0.329 0.654 0.857 0.971 0.995 1 1 1 
4 LAGS IDENTITY  SHORT 0.102 0.05 0.054 0.044 0.035 0.975 0.999 1 1 1 
  TRUE  0.125 0.057 0.052 0.041 0.041 0.965 0.999 1 1 1 
  LONG 0.153 0.068 0.054 0.039 0.041 0.942 0.999 1 1 1 
 HETEROGENEOUS SHORT 0.101 0.053 0.068 0.069 0.076 0.996 1 1 1 1 
  TRUE  0.115 0.061 0.073 0.051 0.063 0.997 1 1 1 1 
  LONG 0.145 0.056 0.058 0.05 0.05 0.992 1 1 1 1 
 MOST GENERAL SHORT 0.134 0.094 0.109 0.201 0.28 0.943 0.988 1 1 1 
  TRUE  0.16 0.098 0.141 0.3 0.455 0.941 0.989 0.999 1 1 

Both  
series  
are I(1)  
and  
one of  
the series 
has  
trend 

  LONG 0.195 0.114 0.154 0.289 0.462

 

0.939 0.992 1 1 1 
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Table 7---continued 
H0: b is NOT causing a 
 

H0: a is NOT causing b  
 
 
 
 
Scenario 2 

Lag 
Order 

Error Structure Lag 
Selection 

Sample size 

 

Sample size 

   25 50 100 200 300 25 50 100 200 300 

1 LAG IDENTITY  TRUE 0.105 0.075 0.205 0.995 1 0.665 0.898 0.996 1 1 
   LONG 0.129 0.103 0.3 0.99 1 0.985 0.997 1 1 1 
 HETEROGENEOUS TRUE 0.071 0.049 0.046 0.116 0.416 0.87 0.907 0.965 0.999 1 
  LONG 0.084 0.061 0.053 0.159 0.45 0.975 0.995 1 1 1 
 MOST GENERAL TRUE 0.15 0.147 0.401 0.951 0.995 0.869 0.899 0.939 0.991 1 
  LONG 0.204 0.175 0.568 0.998 1 0.982 0.995 1 1 1 
2 LAGS IDENTITY  SHORT 0.117 0.179 0.332 0.637 0.786 0.608 0.915 0.999 1 1 
  TRUE  0.126 0.177 0.298 0.588 0.789 0.97 1 1 1 1 
  LONG 0.116 0.139 0.224 0.495 0.721 0.978 1 1 1 1 
 HETEROGENEOUS SHORT 0.082 0.085 0.137 0.236 0.325 0.759 0.855 0.925 0.981 0.997 
  TRUE  0.072 0.078 0.124 0.192 0.314 0.803 0.956 0.998 1 1 
  LONG 0.088 0.075 0.084 0.127 0.178 0.944 0.99 1 1 1 
 MOST GENERAL SHORT 0.245 0.42 0.706 0.953 0.996 0.729 0.807 0.901 0.973 0.995 
  TRUE  0.261 0.463 0.755 0.987 0.998 0.94 0.987 1 1 1 
  LONG 0.219 0.356 0.668 0.961 0.999 0.953 0.992 1 1 1 
4 LAGS IDENTITY  SHORT 0.384 0.785 0.998 1 1 0.834 0.986 1 1 1 
  TRUE  0.4 0.709 0.989 1 1 0.724 0.929 1 1 1 
  LONG 0.311 0.408 0.823 0.998 1 0.736 0.928 1 1 1 
 HETEROGENEOUS SHORT 0.239 0.611 0.978 1 1 0.966 1 1 1 1 
  TRUE  0.25 0.571 0.983 1 1 0.924 0.999 1 1 1 
  LONG 0.218 0.298 0.785 0.999 1 0.938 1 1 1 1 
 MOST GENERAL SHORT 0.33 0.756 0.996 1 1 0.82 0.848 0.905 1 0.996 
  TRUE  0.325 0.711 0.988 1 1 0.833 0.836 0.906 1 0.999 

Both  
series  
are I(1)  
and  
both 
have 
trend 

  LONG 0.354 0.588 0.929 1 1 

 

0.838 0.805 0.873 1 0.97 
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Table 7---continued 
H0: b is NOT causing a 
 

H0: a is NOT causing b  
 
 
 
 
Scenario 3 

Lag 
Order 

Error Structure Lag 
Selection 

Sample size Sample size  

   25 50 100 200 300 25 50 100 200 300 
1 LAG IDENTITY  TRUE 0.11 0.089 0.087 0.093 0.091 0.329 0.618 0.923 0.998 1 
   LONG 0.13 0.118 0.105 0.095 0.092 0.363 0.692 0.973 1 1 
 HETEROGENEOUS TRUE 0.078 0.058 0.053 0.048 0.048 0.833 0.83 0.888 0.982 0.986 
  LONG 0.096 0.069 0.053 0.059 0.063 0.81 0.818 0.911 0.992 1 
 MOST GENERAL TRUE 0.161 0.175 0.397 0.695 0.841 0.848 0.871 0.921 0.975 0.99 
  LONG 0.212 0.215 0.428 0.711 0.849 0.847 0.871 0.953 0.994 0.999 
2 LAGS IDENTITY  SHORT 0.046 0.043 0.084 0.092 0.14 0.765 0.98 1 1 1 
  TRUE  0.073 0.054 0.062 0.076 0.094 0.967 1 1 1 1 
  LONG 0.094 0.057 0.063 0.056 0.081 0.948 1 1 1 1 
 HETEROGENEOUS SHORT 0.059 0.087 0.13 0.154 0.215 0.838 0.926 0.987 0.999 1 
  TRUE  0.071 0.062 0.073 0.076 0.097 0.935 0.993 1 1 1 
  LONG 0.085 0.068 0.067 0.058 0.069 0.927 0.985 1 1 1 
 MOST GENERAL SHORT 0.101 0.135 0.271 0.514 0.699 0.856 0.953 0.997 1 1 
  TRUE  0.191 0.309 0.55 0.908 0.983 0.965 0.998 1 1 1 
  LONG 0.186 0.244 0.458 0.815 0.964 0.934 0.996 1 1 1 
4 LAGS IDENTITY  SHORT 0.108 0.059 0.055 0.064 0.06 0.891 0.999 1 1 1 
  TRUE  0.12 0.068 0.05 0.052 0.055 0.851 0.995 1 1 1 
  LONG 0.137 0.062 0.056 0.053 0.052 0.818 0.989 1 1 1 
 HETEROGENEOUS SHORT 0.073 0.056 0.057 0.057 0.06 0.996 1 1 1 1 
  TRUE  0.107 0.055 0.053 0.045 0.067 0.995 1 1 1 1 
  LONG 0.126 0.057 0.05 0.055 0.049 0.993 1 1 1 1 
 MOST GENERAL SHORT 0.141 0.102 0.175 0.421 0.637 0.852 0.969 0.999 1 1 
  TRUE  0.14 0.122 0.198 0.519 0.704 0.879 0.968 0.997 1 1 

One 
series is  I(0) with  
trend 
and the other is 
I(1) without 
trend 
 
 
 
 
 
 
 
 
 

  LONG 0.181 0.135 0.206 0.459 0.66 

 

0.871 0.966 0.996 1 1 
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Table 8. Percent Rejection of Non-causality Using Modified Wald test, 5 percent level, 1000 samples (three series) 
H0: b is NOT causing a H0: a is NOT causing b  

 
 
 
 
Scenario 1 

Lag Order Error Structure Lag 
Selection Sample size 

 

Sample size 

   25 50 100 200 300 25 50 100 200 300 
1 LAG IDENTITY  TRUE 0.067 0.06 0.051 0.041 0.054 0.589 0.906 0.996 1 1 
   LONG 0.077 0.068 0.056 0.054 0.055 0.527 0.88 0.999 1 1 
 HETEROGENEOUS TRUE 0.085 0.063 0.056 0.04 0.322 0 0 0 0.07 0.898 
  LONG 0.115 0.072 0.06 0.05 0.304 0.435 0.386 0.419 0.344 0.048 
 MOST GENERAL TRUE 0.399 0.385 0.34 0.274 0.32 0.923 0.925 0.968 0.985 0.99 
  LONG 0.48 0.454 0.409 0.486 0.378 0.921 0.933 0.977 0.988 0.994 
2 LAGS IDENTITY  SHORT 0.076 0.074 0.059 0.053 0.062 0.703 0.972 1 1 1 
  TRUE  0.102 0.066 0.044 0.046 0.06 0.868 0.999 1 1 1 
  LONG 0.126 0.087 0.048 0.054 0.058 0.863 0.999 1 1 1 
 HETEROGENEOUS SHORT 0.077 0.055 0.062 0.072 0.076 0.419 0.999 1 1 1 
  TRUE  0.089 0.068 0.048 0.053 0.067 0.995 1 1 1 1 
  LONG 0.121 0.082 0.055 0.053 0.059 0.992 1 1 1 1 
 MOST GENERAL SHORT 0.268 0.243 0.253 0.249 0.263 0.871 0.894 0.962 0.986 0.996 
  TRUE  0.386 0.348 0.323 0.352 0.345 0.896 0.933 0.983 0.998 1 
  LONG 0.434 0.335 0.314 0.344 0.322 0.905 0.937 0.984 0.999 1 
4 LAGS IDENTITY  SHORT 0.135 0.084 0.068 0.066 0.061 0.857 0.999 1 1 1 
  TRUE  0.183 0.087 0.057 0.049 0.058 0.811 0.995 1 1 1 
  LONG 0.288 0.081 0.058 0.035 0.061 0.782 0.977 1 1 1 
 HETEROGENEOUS SHORT 0.142 0.072 0.063 0.065 0.069 0.982 1 1 1 1 
  TRUE  0.169 0.091 0.07 0.054 0.063 0.977 0.999 1 1 1 
  LONG 0.277 0.076 0.073 0.05 0.056 0.962 0.999 1 1 1 
 MOST GENERAL SHORT 0.405 0.348 0.339 0.394 0.408 0.883 0.964 0.999 1 1 
  TRUE  0.486 0.3888 0.324 0.369 0.372 0.914 0.953 0.998 1 1 

Both  
series  
are I(1)  
and  
one of  
the series 
has  
trend 

  LONG 0.582 0.351 0.337 0.348 0.324

 

0.938 0.94 0.99 1 1 
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Table 8---continued 
H0: b is NOT causing a 
 

H0: a is NOT causing b  
 
 
 
 
Scenario 2 

Lag 
Order 

Error Structure Lag 
Selection 

Sample size 

 

Sample size 

   25 50 100 200 300 25 50 100 200 300 

1 LAG IDENTITY  TRUE 0.065 0.065 0.053 0.052 0.085 0.549 0.883 0.995 1 1 
   LONG 0.079 0.063 0.064 0.062 0.07 0.487 0.835 0.998 1 1 
 HETEROGENEOUS TRUE 0.109 0.078 0.067 0.048 0.341 0 0 0 0.21 0.986 
  LONG 0.125 0.078 0.066 0.057 0.345 0.389 0.327 0.377 0.426 0.144 
 MOST GENERAL TRUE 0.394 0.356 0.319 0.273 0.307 0.917 0.924 0.971 0.994 0.995 
  LONG 0.482 0.436 0.401 0.379 0.369 0.919 0.936 0.98 0.992 0.999 
2 LAGS IDENTITY  SHORT 0.085 0.073 0.066 0.067 0.086 0.687 0.965 1 1 1 
  TRUE  0.104 0.064 0.055 0.062 0.094 0.839 0.999 1 1 1 
  LONG 0.133 0.076 0.048 0.067 0.083 0.825 0.998 1 1 1 
 HETEROGENEOUS SHORT 0.107 0.097 0.179 0.323 0.473 0.579 0.994 1 1 1 
  TRUE  0.177 0.187 0.314 0.062 0.783 0.554 0.741 1 1 1 
  LONG 0.203 0.153 0.249 0.463 0.658 0.796 0.989 1 1 1 
 MOST GENERAL SHORT 0.259 0.238 0.252 0.244 0.255 0.876 0.91 0.97 0.996 0.998 
  TRUE  0.382 0.344 0.319 0.344 0.336 0.904 0.94 0.988 1 1 
  LONG 0.43 0.33 0.309 0.337 0.317 0.895 0.945 0.993 1 1 
4 LAGS IDENTITY  SHORT 0.157 0.095 0.118 0.169 0.22 0.773 0.996 1 1 1 
  TRUE  0.21 0.097 0.097 0.109 0.136 0.712 0.975 1 1 1 
  LONG 0.299 0.089 0.087 0.083 0.11 0.722 0.939 1 1 1 
 HETEROGENEOUS SHORT 0.124 0.063 0.078 0.127 0.17 0.895 0.992 1 1 1 
  TRUE  0.173 0.086 0.081 0.084 0.12 0.875 0.987 1 1 1 
  LONG 0.283 0.076 0.07 0.073 0.095 0.9 0.987 1 1 1 
 MOST GENERAL SHORT 0.357 0.305 0.29 0.329 0.358 0.922 0.986 1 1 1 
  TRUE  0.457 0.358 0.3 0.352 0.331 0.943 0.977 0.999 1 1 

Both  
series  
are I(1)  
and  
both 
have 
trend 

  LONG 0.572 0.343 0.311 0.341 0.318

 

0.954 0.974 0.998 1 1 
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Table 8---continued 
H0: b is NOT causing a 
 

H0: a is NOT causing b  
 
 
 
 
Scenario 3 

Lag 
Order 

Error Structure Lag 
Selection 

Sample size Sample size  

   25 50 100 200 300 25 50 100 200 300 
1 LAG IDENTITY  TRUE 0.068 0.068 0.047 0.042 0.051 0.597 0.909 0.996 1 1 
   LONG 0.086 0.077 0.056 0.055 0.052 0.489 0.824 0.993 1 1 
 HETEROGENEOUS TRUE 0.068 0.068 0.047 0.042 0.05 0.597 0.909 0.996 1 1 
  LONG 0.105 0.06 0.061 0.05 0.051 0.41 0.343 0.348 0.474 0.633 
 MOST GENERAL TRUE 0.308 0.246 0.283 0.257 0.271 0.862 0.902 0.953 0.98 0.986 
  LONG 0.422 0.345 0.346 0.345 0.35 0.873 0.898 0.947 0.974 0.987 
2 LAGS IDENTITY  SHORT 0.079 0.078 0.049 0.038 0.061 0.667 0.97 1 1 1 
  TRUE  0.111 0.067 0.051 0.052 0.054 0.776 0.996 1 1 1 
  LONG 0.114 0.075 0.062 0.05 0.057 0.703 0.984 1 1 1 
 HETEROGENEOUS SHORT 0.077 0.058 0.059 0.048 0.047 0.165 0.936 1 1 1 
  TRUE  0.093 0.067 0.043 0.045 0.052 0.996 1 1 1 1 
  LONG 0.127 0.078 0.051 0.056 0.07 0.985 1 1 1 1 
 MOST GENERAL SHORT 0.259 0.239 0.232 0.237 0.243 0.855 0.892 0.961 0.988 0.997 
  TRUE  0.392 0.341 0.338 0.336 0.34 0.867 0.907 0.964 0.995 1 
  LONG 0.42 0.319 0.278 0.322 0.317 0.89 0.908 0.952 0.983 0.996 
4 LAGS IDENTITY  SHORT 0.142 0.075 0.074 0.06 0.062 0.697 0.986 1 1 1 
  TRUE  0.204 0.087 0.058 0.049 0.059 0.642 0.95 1 1 1 
  LONG 0.265 0.09 0.056 0.049 0.066 0.67 0.911 1 1 1 
 HETEROGENEOUS SHORT 0.135 0.049 0.05 0.066 0.063 0.983 1 1 1 1 
  TRUE  0.176 0.085 0.59 0.046 0.058 0.973 1 1 1 1 
  LONG 0.265 0.083 0.05 0.049 0.049 0.95 1 1 1 1 
 MOST GENERAL SHORT 0.342 0.316 0.299 0.353 0.394 0.853 0.904 0.978 0.998 1 
  TRUE  0.444 0.374 0.325 0.354 0.349 0.883 0.9 0.955 0.988 0.999 

One 
series is  I(0) with  
trend 
and the other is 
I(1) without 
trend 
 
 
 
 
 
 
 
 
 

  LONG 0.552 0.352 0.319 0.329 0.329

 

0.907 0.901 0.948 0.988 0.996 
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4. Summary and Conclusion 

This study focuses on the difference that a deterministic trend term makes in 

detecting a causal relationship between two series. A Granger noncausality test is 

commonly used to identify the relation between series. As an alternative to the VECM 

structure, modified Wald test is more general and flexible. Further, it allows for mixed 

unit roots in the VAR model. Often in empirical work, however, models are specified 

using lagged explanatory variables and a Wald test applied. This simple approach may 

not always work well. Using a specific real life data set and a Monte Carlo experiment, 

we find that ignoring the trend term causes over-rejection of a true hypothesis using a 

modified Wald test. In other words, the test can mislead people in concluding that 

causality exists between certain series when there is none in reality, due to not 

incorporating the deterministic trend term. The problem is more serious in the bivariate 

case when the errors of the two series have heterogeneous variances and are 

contemporaneously correlated. Moreover, the over-rejection problem cannot be corrected 

when the sample size gets larger, say over 200. As indicated in scenario 2 of Table 7 and 

8, when the sample size is big and the error structure is most general, over 95 percent of 

the time we are going to reject the true null. In summary, care should be taken in 

constructing time series models that have deterministic trend, especially in a VAR mixed 

unit roots context. A parsimonious lagged variable specification might draw the modeled 

structure too far away from the true data generating process. Phillips and Ploberger 

(1996) and Phillips (1996) discuss in detail the criteria for choosing the representations 

for trending time series.  

Recent work by Phillips (2002) showed that a stochastic trend can be explained 

by deterministic functions and/or lagged variables. There is indeed a competition between 

the two. If the modeling of a stochastic trend by deterministic function is designed 

seriously and carefully, it will be very close to the true model. On the other hand, from 

the parsimony and forecasting perspectives, lagged variable models are simpler. The best 

way is to carefully inspect the data and design the trend model such that it is 

parsimonious yet still capture the essential features of the trending behavior. If we simply 

use the lagged terms, it might be parsimonious, but some characteristics of the trending 

behavior is neglected and one of the consequences is the inaccuracy of the relevant tests. 
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Robinson and Iacone (2005) develop the properties of estimates of the cointegrating 

coefficient in a bivariate model that  either ignore or incorporate additive deterministic 

trends. 

There are at least two aspects that need to be further analyzed in the future work 

of this paper. First, a comparison of the cointegrating test performance with VECM 

specification and TYDL Wald test should be done using Monte Carlo experiment in a 

mixed unit root context. It would be of theoretical and practical interest to assess Phillips 

(2002) findings in the context of mixed unit roots and expand this work by comparing 

VECMs with augmented VARs as done in the Monte Carlo simulation in this study. 

Further work is also needed in post-sample evaluations of alternative specifications of 

mixed unit roots and deterministic trends as suggested by Phillips (2002). The findings in 

this study provide initial evidence that much caution is needed in the specification of 

deterministic trends for samples of size commonly found in empirical work when some 

series are I(1) and others are I(0). One approach that holds significant merits in this 

context, yet for the most part has been ignored in agricultural economic applications, is 

the adoption of fully modified multivariate regressions. Work in progress addresses such 

issues. 
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