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Abstract 

Major environmental indicators require data at a spatial resolution below administrative units as 
found in economic models. The CAPRI-Dynaspat project added spatial results for EU27 to the CAPRI 
model allowing for linkage to bio-physical models and calculation of novel indicators. The layer 
consists of clusters of 1x1 km cells exhausting the agricultural area, uniform in soil parameters, slope 
class, land cover and administrative unit. Crop and irrigation shares, stocking densities and yields are 
estimated per cluster along with intermediate input demand including crop specific fertilizer 
application rates. Those estimates drive statistically estimated meta-models from the bio-physical crop 
growth model DNDC to derive the nitrogen and water cycle. Indicator calculators allow estimating 
further impacts as e.g. different gaseous emissions or economic performance of agriculture. The 
results are available for the base year, for projection or scenario results, thus allowing analyzing 
environmental impacts in a spatial context. 
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1. Background 

Since 2001, the EU directive 2001/42/EC on Strategic Environmental Impact Assessment and the 
subsequent communication COM(2002)/276 as well as the impact assessment guidelines (SEC(2005) 
791) shall ensure that economic, social and environmental consequences of certain plans and 
programmes are identified and assessed during their preparation and before their adoption. More 
specifically, the recent reforms of the Common Agricultural Policy claim to promote the so-called 
multi-functional model of European agriculture linked to the different pillars of sustainability. 
However, it is obvious that data availability often hinders calculation of the necessary agri-
environmental indicators for impact assessment, e.g. those proposed in the Common Evaluation and 
Monitoring Framework for Rural Development. That is especially true for Pan-European forward 
looking analysis of the CAP due to the spatial resolution and result coverage of the available 
agricultural sector models. The EU funded research project CAPRI-Dynaspat aimed therefore at the 
development of down-scaling methodologies for the regional result layer of the economic model 
CAPRI to drive environmental indicator calculators and bio-physical models at an appropriate spatial 
resolution. That seemed necessary as agricultural management and its impact on the environment 
depend on local factors as climate and soil, and the underlying relations are often highly non-linear. 
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Several other research projects or approaches deal with linking economic models and their results for 
larger administrative units to (agricultural) land use at sub-administrative regional scale as e.g. 
SENSOR (Jansson et.al. 2007), EURURALIS (Verburg et.al. 2007), INSEA (Adler et.al. 2007), 
GENEDEC (Chakir 2007) or LUMOCAP (van Delden and Luja 2007). However, the combination of 
Pan-European coverage, the rather dis-aggregated list of crops, inclusion of stocking densities and 
output and input coefficient estimates per activity render the CAPRI-Dynaspat rather unique, along 
with some novel statistical methodologies. 

A spatial down-scaling of CAPRI results was deemed to be especially promising as the data ex-post 
and scenario and projection results ex-ante are available for EU27, Norway and Western Balkans at 
the level of NUTS II regions. Those regional data sets comprise crop areas, animal herds, input and 
output coefficients for a rather detailed list of crop and animal production activities, and are based 
wherever possible on official harmonized data sources. CAPRI has been widely used in policy impact 
analysis and research projects, and already covers environmental indicators at NUTS II level as nitrate 
balances or Green House Gas inventories. The structure of the regional programming models in 
CAPRI which combine a Leontief technology for intermediate inputs with an econometrically 
estimated cost function is a good starting point for model extension allowing scenario analysis of agri-
environmental legislation. Additionally, the transparent link inside CAPRI between the programming 
models and its large-scale global trade model for agricultural products ensures a consistent integration 
of price feedback as well as of market and border policies. 

2. Methodology and data sources 

2.1. Overview on down-scaling process 

The down-scaling process dis-aggregates all major elements of the regional data set from CAPRI, ex-
post or ex-ante to clusters of 1x1 km grid cells for the agricultural area of EU27. The process consists 
of working steps which build onto each other. Each step ensures that the spatial results are consistently 
down-scaled from NUTS II level, and is based on the combination of spatially explicit data as e.g. soil 
or climatic parameters and either statistically estimated or engineering relations. The approach is 
motivated by the assumption that market conditions and the policy implementation for agricultural 
production activities are a rather homogenous inside NUTS II regions, so that the spatial distribution 
of regional characteristics can be derived from local factors as soil type, relief or surrounding land 
cover. The different steps are discussed in detail below. The estimation of cropping shares, yields and 
irrigation shares and stocking densities is based on Highest Posterior Density (HPD) estimators 
(Heckelei et.al. 2005). 

For crop shares and stocking densities, the Farm Structure Survey (FSS) is used in addition to the 
CAPRI NUTS II data during the generation of the spatial base year layer. FSS provides data at NUTS 
III resolution in countries where NUTS II regions are rather large. The resulting estimates at 1x1 km 
resolution for the base year are then used as anchor for dis-aggregation of ex-ante results at NUTS II 
level. 
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Figure 1: Overview on dis-aggregation process 
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2.2. Definition of the sub-regional processing unit 

The processing units are sub-regional geo-referenced entities to which the regional results are dis-
aggregated. They are defined as to produce a manageable number of sites which are as far as possible 
uniform. The latter refers to those characteristics deemed most important from a point of view of 
environmental impact analysis: soil, climate, slope and land cover. For soil, the publicly available 
European Soil Map was used, climate data were provided by MARS, slope and elevation data by DEM 
250 and CORINE 2000 provided land cover information. All the input data were first rastered to 1x1 
km grid cells. Grid cells of the same soil type, in the same slope class, CORINE Land Cover class and 
administrative units were then combined to pixel clusters building so-called Homogenous Soil 
Mapping Units (HSMU). Climate was not used as a delineation factor given the 50x50 km resolution 
for the daily weather time series. Each HSMU may consist of several polygons not necessarily 
connected, and feature an area between an individual 1x1 km cell to several thousand square 
kilometres, depending on the spatial variability of the delineation factors. Additional data beyond the 
delineation features, as climate or soil parameters, were defined per HSMU and stored in data base. 
Those processing steps were handled by the Climate Change Unit of the JRC (for details on data 
sources and methodology see: Leip et.al. 2007). 
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2.3. Crop shares 

Unfortunately, there exists no publicly available land use/cover map at European scale which 
identifies in sufficient detail crop shares at a resolution below rather large administrative units. 
Therefore, an estimation framework was developed which is able to break-down land uses classes 
from the Pan-European publicly available CORINE land cover (CLC) map to individual crop shares. 
CLC shows pre-dominant land cover distinguishing a few agricultural classes only, where e.g. all 
arable crops are aggregated. CLC is based on photo interpretation of satellite images where the 
resolution did not allow distinguishing features smaller then 25 ha. Accordingly, shares of agricultural 
cover are systematically found in other land use classes, and agricultural classes often comprise 
sizeable shares of non-agricultural cover (see Gallego 2007). Further on, it is almost impossible from 
photo interpretation to distinguish between certain extensive forms of grassland and certain types of 
natural vegetation. The same holds quite clearly for stationary and to lesser extent for rotational set-
aside. And last but not least, the Utilizable Agricultural Area as used in CAPRI to define agricultural 
areas is linked to private ownership to farm land as defined by the FSS, so that e.g. common grazings 
are not comprised in the CAPRI definition, but clearly found in CLC. The combination of those 
factors can lead to differences in the range of 20% for NUTS II or III regions between CLC and the 
FSS even with all types of agricultural land cover aggregated in one class. As environmental impacts 
depend heavily on the crop mix even inside arable crops, it was deemed necessary to build an 
agricultural land cover map for single crops consistent to the FSS and further regional agricultural 
statistics and to develop a methodology which would allow updates based on projections and scenario 
results. Similar efforts for a base year are e.g. undertaken by the FATE project (Grizetti etl.al.2007). 

In Land Use Cover Change (LUCC) models, land 
use as in CLC is typically expressed as pre-
dominant land cover per raster cell (Verburg et.al. 
2006). If that representation is used to map and 
store the results of a dis-aggregation procedure, a 
rounding error is introduced, depending on the 
number of cover classes and the grid resolution. 
As arable cropping is for its largest part 
characterized by crop rotations, and the spatial 
result layer was set up as to have the same level 
of detail as the regional one in the CAPRI data 
base, a pre-dominant land cover presentation was 
therefore not deemed advisable. Instead, a 
cropping shares representation was chosen. This 
allows consistency in downscaling according to 
numerical machine accuracy combined with a 
number of processing units determined by the 
spatial accuracy of the delineation features used. 

The crop shares were estimated in a two stages 
process (see for details: Kempen at.al. 2005). The 
LUCAS data provided geo-referenced point 

Figure 1: Arable crop share [%] 
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observations for a large observation sample where single crops had been identified per location based 
on field visits and photo interpretation. Those data were input into a binary Maximum Likelihood 
estimator per crop, using a spatially widened regression, to derive probability density functions per 
crop and HSMU as the first step in the process. The second step then scales the crop areas at 
administrative level consistently down to the cluster of grid cells. For each FSS Region, a HPD 
estimator chooses the combination of crop shares for each HSMU which simultaneously exhaust the 
given regional crop area and maximizes the joint probability density given the density functions 
estimated from LUCAS. The resulting crop share map at Pan-European level alone was already an 
important outcome of the project, and is used in different EU funded research projects. It has been 
successfully evaluated with out-of-sample observations (see e.g. Elbersen et.al. 2006, Leip et.al. 
2007). 

2.4. Crop yield and economic indicators for crops 

The crop yield estimation combines three different types of a priori information in a HPD estimation 
framework to derive simultaneously spatially explicit yield estimates and irrigation shares per crop. A 
first input data set in the estimation process is the irrigation map from FAO used to provide per HSMU 
an estimate of the share of irrigated agriculture. Secondly, the FSS delivers data for irrigated areas for 
certain crops at administrative level and, thirdly, MARS offered potential yields for rainfed and fully 
irrigated agriculture. The FSS data about irrigated hectares at regional scale had been used via 
regressions to find some basic relations between soil properties and climatic parameters and the 
irrigated share per crop or crop group. From those regression models, forecasts are derived at the level 
of single HSMUs about the irrigated share per crop. The HDP framework minimizes simultaneously 
deviations from the estimated crop specific irrigation shares per HSMU, from the irrigation shares per 
HSMU derived from the FAO map and from the potential yields. Constraints ensure that firstly the 
area weighed average of the yields per HSMU is equal to the one found in regional statistics, and 
secondly that the irrigated area per HSMU exhaust the irrigated area at regional level found in the 
FSS. 

The crop yields are used as explained below as explanatory factor in the estimation of animal stocking 
densities and drive as well the estimate of crop specific fertilizer application rates. Using simple linear 
input demand function per crop activity for the different inputs (plant protection, repair costs etc.) and 
assuming uniform prices for output and inputs insides the administrative units, the crop yields at 
HSMU level are also used to derive economic indicators per crop (revenues, variable costs, gross 
value added, gross value added plus CAP pillar I premiums). It is planned to add soon estimates about 
CAP pillar II payments. 

2.5. Animal stocking densities 

Unfortunately, in opposite to the LUCAS sample for crops, no high resolution observation sample for 
animal stocking densities at Pan-European level is available. Additionally, especially for area 
independent animal production activities as pigs and poultry, a weak relation between local natural 
factors as soil and climate and stocking densities can be expected. Therefore, the estimation of 
stocking densities builds on a cross-sectional estimation from the Farm Structure Survey for a mix of 
NUTS II and NUTS III administrative units with overall about 500 observations for EU27 per animal 
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category. Regression models for the different animal activities in CAPRI as well as aggregates for 
ruminant and non-ruminants were estimated, using crop and land cover shares (forest, shrubs, total 
UAA, non-agricultural land cover, cereals, grassland, fodder maize, all type of fodder production), 
fodder maize and cereals yields as well as revenues and GVA plus premiums per ha for Grandes 
Cultures and cereals, altitude and slope along with climate data (annual rain fall, temperature sum, 
length of the vegetation period) as explanatory variables. All variables were offered untransformed, as 
squares and square roots to the estimator. The estimators then used a backward elimination, removing 
explanatory variables as long as the adjusted R squared was increasing or a variable was not 
significantly different from zero at the 5% level. In order to account for specific national legislation 
and market conditions, either the FSS regions of a country were estimated separately (France, Italy) or 
national dummies we used in the estimation for group of countries (Group 1: Germany, The 
Netherlands, Belgium; Group 2: Spain, Portual and Greece; Group 3: Denmark, Sweden, Finland, UK, 
Irland and Austria; Group 4: EU12). Such grouping ensured sufficient degrees of freedom during 
estimation. Not surprisingly, the explained variance for the ruminants was general high in the range of 
80% and above, whereas for pigs and poultry, R2 were in some instances as low as 40%. 

As own produced fodder and organic 
fertilizer may be transported easily even over 
several kilometres, it was decided to base the 
estimation of local stocking densities not on 
the explanatory variables per HSMU, but 
rather on a distance and area weighted 
average of the area around each pixel cluster. 
Those locally weighted averages per HMSU 
were then used to estimate the expected mean 
and its forecast error for each animal 
category, and livestock unit aggregates for 
ruminants, non-ruminants and all types of 
animals, providing a priori distribution for 
the stocking densities per HSMU. A HPD 
estimator chooses then those combinations of 
stocking densities per HSMU which exhaust 
the regional herd sizes. During estimation, 
bounds prevent the generation of very large 
stocking densities. In order to stabilize the 
results, the estimation included also the 
mentioned aggregates for ruminants, non-
ruminants and all type of animals expressed 
in livestock units. 

The resulting data set was evaluated against out-of-sample from France showing stocking densities for 
35.000 single communes based on the FSS. The comparison revealed that the estimation was doing 
significantly better compared to a solution assigning average regional stocking densities per fodder 
area for ruminants and average stocking densities per ha for the non-ruminants (Leip et.al. 2007). 

Figure 2: Livestock Density [LU/ha] 
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The stocking densities allow is also to include economic performance indicators for animal activities 
in the calculation at sub-regional level. 

2.6. Crop specific fertilizer application rates 

Organic and mineral fertilizer application 
rates are a highly relevant factor for 
environmental impacts of agricultural 
production as they dive realized crop yields 
and nutrient surpluses, and consequently the 
whole nutrient and carbon cycle in 
agriculture. Unfortunately, even at Member 
State level, data on typical organic and 
inorganic fertiliser application rates for crops 
are not available from harmonized European 
statistics. However, the International 
Fertilizer Manufacturer Association (IFMA) 
kindly agreed to let the project team access 
the results of expert surveys on inorganic 
application rates for crops or group of crops at 
Member State level. Those data are used in 
the process of building the regional data base 
of CAPRI to define regional fertilizer 
application rates per crop, taking into account 
regional yields, manure availability, average 
regional soil parameters and emission factors 
lined up with the MITERRA and RAINS 
models (Oenema et.al. 2007). 

At sub-regional level, the organic and inorganic application rates per crop are defined as to recover in 
average the ones at regional level. Firstly, organic application rates per crop and HSMU are estimated 
by increasing and decreasing the organic application rate for the crop at regional level depending on 
two factors. The first factor is the estimated local crop nutrient uptake in relation to the regional one, 
derived from the crop yield. Crop uptakes are derived from yields. A second factor increase or 
decreases the rate according to the estimated organic nutrient availability derived from stocking 
densities and manure excretion coefficients. Here again, as in the case of the estimation of the stocking 
densities, distance and size weighted averages of the organic nutrient availability around the HSMU 
are used rather than spot observations. The resulting estimated organic application rates per crop are 
then scaled in order to recover as the area weighted mean the given regional rate per crop. In a similar 
manner, inputs from crop residues, biological fixation and atmospheric deposition are calculated. 
Finally, the estimated mineral rate are based on the difference between the crop nutrient need and all 
non mineral sources, corrected by typical loss rate, and a factor based on soil properties. Those 
estimates per crop are then again scaled to deliver in average the regional mineral application rates. 

Figure 3: Estimated Mineral Nitrogen Fertilizer 
Input [kg/ha Nitrogen] 
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2.7. Meta-model of DNDC 

DNDC (Liu et. al. 2006) for denitrification 
and decomposition is a bio-physical model for 
crop growth with a focus on the nitrate and 
carbon cycle. As often with bio-physical 
models, many processes in DNDC are 
simulated with a daily or even sub-daily time 
resolution, and runs cover several decades, 
yielding tremendous processing times for 
Pan-European applications requiring many 
site-crop combinations. In order to keep 
processing time and storage needs in a 
manageable range, there are two tactics to 
derive a manageable system layout for large-
scale applications of bio-physical models: 
either simulation of selected crops for larger 
processing units – e.g. in FATE were the five 
dominant crops for 10x10 km grid cells are 
simulated with EPIC – or the development of 
a statistical response surface from the bio-
physical model for the results of interest as 
e.g. average yearly leaching. The latter does 
not only reduce dramatically processing time, 
but also eases the integration into another IT 

structure. Many bio-physical models communicate with other applications by input and output files in 
specific formats, requiring then software to generate and read those files in order to interface with e.g. 
an economic model. A meta-model however can be easily integrated in the reporting part of an 
economic model, or if necessary, even linked into its equation system. 

There is also a further more subtle argument to use a meta-model. In the application presented in the 
paper, fertilizer rates from the economic model and ex-post consistent to statistical data are used to 
drive the bio-physical model. Those fertilizer application rates are inter alia derived from the observed 
yields at NUTS II and, as explained above, from differences in yield potentials at sub-regional scale. 
Unfortunately, there is no guarantee that the simulated yields from a bio-physical model even in 
average over all sites in a region would match the regional average. But as the input of nutrients at 
regional level in the system is fixed via the fertilizer application rates per crop, an error in average 
simulated crop yields will hence lead to an error in the average estimated nutrient balance, and in 
nutrient fate (leaching, gas emissions, change in soil stocks). Already a 10% error in crop yields will 
lead to a substantial percentage error in nutrient balance positions. 

It is deemed hence important to ensure as far as possible a match between the simulated yields and the 
ones used to determine the fertilizer application rates. The meta model offers an elegant way to 
achieve that by adding both plant specific and other parameters typically used to calibrate the bio-
physical model as additional explanatory variable in the regressions. The yield egression equation can 

Figure 3: Estimated N2O output [kg/ha Nitrogen] 
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may now determine those values for the calibration parameters which lead to an exact estimate of the 
yield at the inputted fertilizer application rates and other farm management parameters. That solution 
should naturally be combined with a careful calibration of the crop growth model, in which case has 
then the potential to reduce possible errors from coupling the different data layers to its minimum. 

For the linkage to DNDC, first a large observation sample per crop was generated, by systematically 
changing the organic and mineral application rates for typical crop-site combination across Europe. 
That observation sample was then used to estimate per crop independent linear regression models for 
crop yield expressed in N removal, different gas losses, leaching and the elements of a water balance 
as percolation and transpiration. The map above shows the estimated output of N2O per ha of land, 
which given its CO2 equivalent of 310 is an important source of Green House Gases emissions from 
agriculture. The very high values in some cases as e.g. in Finland are however questionable as the soil 
map may over-estimates the soil organic carbon content for agricultural land cover in those locations, 
albeit arable cropping on peat lands is common in Finland (for details: Leip et.al. 2007). 

3. Indicators derived from the results 

The combination of crop shares, animal stocking densities, and activity specific input and output 
coefficients including application rates of mineral and organic fertilizer can be linked to many 
different indicator calculators. The following table lists the indicators currently implemented and the 
results from the different steps stored in the final data set at 1x1 km resolution at EU27 scale. Those 
data can be exploited e.g. as interactive maps. 

Table 1: Results stored and Indicators 

Topic Results and Indicators 
Economic performance 
(expressed per ha of UAA) 

Agricultural revenues 
Intermediate input cost 
Gross value added at market prices plus CAP pillar I premiums 

Driving forces Livestock densities (total, ruminants, non-ruminants) 
Crop shares (about 30 crops, and aggregates of those) 
Mineral fertilizer consumption (per ha, crop specific and for UAA) 
Irrigation water use per ha UAA 
Intensity index for High Nature Value Farmland characterization 

Pressures and benefits 
(per ha UAA) 

Nitrogen balance 
Phosphor balance 
Ammonia Emissions 
Green House Gas emissions in CO2 equivalents 

Nitrogen Fate 
(based on DNDC meta- 
model, in kg N per ha UAA) 

Change in soil content 
Emission of N2O, of NO, of N2 
Leaching 

Water balance 
(based on DNDC meta- 
model, in l per ha UAA) 

Rainfall and Irrigation 
Leaching 
Transpiration 
Evaporation 
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There is a growing concern about loosing the 
so-called High Nature Value (HNV) farmland 
(Hoogeveen et.al. 2004) and HNV in 
combination with biodiversity is one of the 
priorities in axis 2 of the rural development 
programs until 2013. JRC and EEA have 
produced in the period 2005-2007 a Pan-
European HNV farmland map on the basis of a 
regional stratification of CORINE land cover 
data, biodiversity data (NATURA 2000, 
Important Bird Areas, Prime Butterfly Area) 
and national data sets where available. 
(Paracchini et.al. 2006). A complementary 
approach discussed here is based on deriving 
an index characterizing the probability of HNV 
presence. The index is an area weighted 
average of sub-indices for arable crops, fodder 
areas, olive groves and other permanent crops. 
The sub-index for arable crops is based on the 
average application rates of mineral and 
organic nitrogen per ha and a Shannon index 
characterizing simultaneously the number of 
crops grown and their distribution. The index 

for fodder areas uses a potential yield estimate for fodder under rainfed agriculture in combination 
with stocking densities to characterize the intensity of fodder production. For olive groves, remote 
sensing based characterization of the intensity of cultivation could be used (Weinsteiner et.al. 2007), 
whereas for the rest of permanent cultures, again mineral and organic nitrogen input characterize the 
intensity. The different elements were all mapped into 0-10 indexes, and then aggregated into the final 
index. 

4. Technical implementation 

ArcGIS was used to host the spatial data base with soil, climate, land cover, relief data and 
administrative borders, to generate 1x1 km raster from thje layers and to define the pixel clusters. As 
the economic core model of CAPRI and the module building up its data base are realized in GAMS, it 
seemed natural to realize the down-scaling modules in GAMS as well. That especially allowed basing 
the core down-scaling steps (crop shares, yields, animal stocking densities) on HPD estimators which 
are most easily represented as an explicit optimization problem under constraints. In order to keep the 
IT structure rather simple, it was decided to store all input and output data in the generic GDX-format 
of GAMS, and use an Application Programming Interface (API) provided by GAMS to access the 
GDX files from the CAPRI graphical user interface (GUI) which is realized in Java. The GUI allows 
visualizing the results from the spatial layer as maps, and was used to produce the maps shown above. 

Figure 4: Intensity index [0-10] 
to characterize HNV probability 
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Figure 5: Technical implementation of the Spatial Dis-Aggregation 
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5. Summary and outlook 

Given the increasing need for integrated policy impact analysis building on economic, social and 
environmental indicators, economic models need interfaces to indicators calculators, to bio-physical 
models and/or land use models at an appropriate geographical resolution below their typical 
administrative simulation units. The CAPRI-Dynaspat project has proven that the necessary data 
bases, methodologies and IT structures are available or can be developed to down-scale results from 
economic models to a sufficiently high geographic resolution on a large scale. Taking into account 
soil, relief, climate and land cover data, robust estimates for cropping shares, stocking densities and 
input use in agriculture can be generated from CAPRI results, allowing for environmental analysis and 
linkage to bio-physical models. This clearly offers the chance to improve the understanding of the 
environmental consequences of current or simulated farming practices on the environment, and opens 
up the way to novel indicators as the one presented to characterize the probability for High Nature 
Value Farmland. 

A challenge remains the low amount of publicly available high resolution data on agriculture which 
could improve down-scaled results or replacing estimates by real world observations. The FSS, to 
name a prominent example, offers data on crop shares and stocking densities even at the level of single 
municipalities based on a harmonized methodology at Pan-European scale, but is currently only 
available aggregated to rather high administrative units (NUTS II/III). Here, new distribution layers 
(e.g. 10x10 km grid cells instead of administrative boundaries) could be developed by the statistical 
offices to overcome confidentiality issues currently hindering the usage of such data sources in 
research projects. 
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What are possible new research avenues? Firstly the project did not take into consideration how the 
indicators calculated at a 1x1 km resolution could be up-scaled to a regional scale and/or integrated 
into indices to ease their application in policy impact analysis. Here, SENSOR (Kristensen et.al. 2006) 
may provide guidelines. Secondly, the project was dealing with agricultural land use, only, and an 
integration with a land use model and linkage with economic models dealing with other sectors would 
be promising, as e.g. in EURURALIS (Verburg et.al. 2006). And thirdly, quite clearly, further 
comparison between downscaled results and real world observations is necessary to improve the 
methodology and develop uncertainty estimates. 

References 

Adler et.al. (2007), INSEA (Integrated Sink Enhancement Assessment), Final Report, IASSA 

Chakir R. (2007): Spatial downscaling of Agricultural Land Use Data: An econometric approach using 
cross-entropy method. Toulouse: Inra. 

Elbersen, B., Kempen, M., van Diepen, K., Andersen, E., Hazeu, G. and Verhoog, D. (2006): 
Protocols for spatial allocation of farm types. SEAMLESS report no. 19 

Gallego, J. and Bamps, K. (2007). Using CORINE Land Cover and the point survey LUCAS for area 
estimation. International Journal of Applied Earth Observation and Geoinformation, in print 

Grizzetti, B., Bouraoui, F. and Aloe (2007), F. Spatialised European Nutient Balance. Ispra: European 
Commission Joint Research Centre, Institute for Environment and Sustainability EUR 22692 EN. 

Heckelei, T, Mittelhammer, R.C. and Britz W. (2005). A Bayesian Alternative to Generalized Cross 
Entropy - Solutions to Underdetermined Models. Contributed paper presented at the 89th EAAE 
Symposium "Modelling agricultural policies: state of the art and new challanges", February 3-5, 
Parma, Italy. 

Hoogeveen, Y., Petersen, J.E., Balazs, K, and Higuero I. (2004). High nature value farmland - 
Characteristics, trends and policy challenges. EAA-Report 1/2004. 

Jansson, T., Bakker, M., Hasler, B., Helming, J., Kaae, B., Neye, S., Ortiz, R., Sick Nielsen, T., 
Verhoog, D. and Verkerk H. (2007). Description of the modelling chain. SENSOR Deliverable 2.2.1. 
In: Helming K , Wiggering H, (eds.): SENSOR Report Series 2006/5, http://zalf.de/home_ip-
sensor/products/sensor_report_series.htm, ZALF, Germany 

Kempen, M., Heckelei, T. and Britz, W. (2005). A Statistical Approach for Spatial Disaggregation of 
Crop Production in the EU. In Arfini F. (ed), Modelling Aricultural Policies: State of the Art and New 
Challenges”. Parma: Monte Universita: 810-831 

Kristensen, P., Frederiksen, P., Briquel, V. and Parachini, M.L. (2006). SENSOR indicator 
framework, and methods for aggregation/dis-aggregation – a guideline. In: Helming K , Wiggering H, 
(eds.): SENSOR Report Series 2006/5, http://zalf.de/home_ip-
sensor/products/sensor_report_series.htm, ZALF, Germany 



 14 

Leip, G., Marchi, R., Koeble1, M., Kempen, W., Britz, W. and Li, C. (2007). Linking an economic 
model for European agriculture with a mechanistic model to estimate nitrogen losses from cropland 
soil in Europe. In: Freibauer, A., Valentini, R., Dolman, H. and Janssen I. (eds). Greenhouse gases in 
the northern hemisphere. Biogeosciences. Special Issue 

Liu, Y., Yu, Z., Chen, J., Zhang, F., Doluschitz, R., and Axmacher, J. C. (2006). Changes of soil 
organic carbon in an intensively cultivated agricultural region: A denitrification-decomposition 
(DNDC) modelling approach. Sci. Total Environ., 372, 203–214 

Oenema, O., Oudendag, D.A., Witzke, H.P., Monteny, G.J., Velthof, G.L., Pietrzak, S., Pinto, M., 
Britz, W., Schwaiger, E. , Erisman, J.W., de Vries, W. , van Grinsven J.J.M.  and Sutton M. (2007). 
Integrated measures in agriculture to reduce ammonia emissions. Final summary report. Wageningen: 
Alterra 

Paracchini, M.L., Terres, J.M., Petersen, J.E. and Hoogeveen, Y., (2006). Background document on 
the methodology for mapping High Nature Value farmland in EU27. European Commission 
Directorate General Joint Research Centre and the European Environment Agency. 

Van Delden, H. and Luja P. (2007). Integration of multi-scale dynamic spatial models for land use 
change analysis and assessment of land degration and socio-eonomic processes. In: Proceeding from 
the conference on Soil protection strategy - needs and approaches for policy support, Polawy, Poland 
9-11th March 2006. 

Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice 
and research priorities. Geojournal 61:309–324 

Verburg, P.H., Schulp, C.J.E., Witte, N. and Veldkamp A (2006). Downscaling of land use change 
scenarios to assess the dynamics of European landscapes. Agriculture, Ecosystems & Environment: 
Volume 114, Issue 1, 39-56 

Weissteiner, C. J., Sommer, S., and Strobl, P. (2007). Time series analysis of NOAA AVHRR derived 
vegetation cover as a means to extract proportions of permanent and seasonal components at pixel 
level. EARSeL eProceedings, in press. 


