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Abstract 
An integrated policy evaluation tool is proposed for assessing the effects of agricultural policy 
measures using all the information available at farm level. The tool combines the positive 
mathematical programming methodology with the cluster analysis technique by using the same panel 
of data. The PMP model proposed here allows to measure the effects of policy in term of agricultural 
supply responses including output market price variations. The novel procedure by which the PMP 
model is articulated permits to recover the set of farm level demand functions for agricultural 
products and the cost function characterizing the given sample of farms. Cluster analysis is useful for 
better appreciating the behaviour of farms before and after the policy scenario analysis by 
considering the transfers of farms among clusters. A decoupling scenario assessment presents the 
responses that the integrated tool can provide for evaluating agricultural policy instruments.      
 
Key words: Positive mathematical programming, Cluster analysis, Integrated tool, Agricultural 
policies, Policy evaluation 
 
 
1. Introduction 
 
Positive Mathematical Programming (PMP) is today widely used for evaluating the effects of the CAP 
instruments on the dynamics of the agricultural processes and farm economic variables, both for ex-
post and ex-ante analysis. The main contribution of this methodology to the agricultural economics is 
due to its capacity to maximize the information contents in the agricultural datasets available at 
European level, as FADN, REGIO, IACS (Arfini et al., 2003; Paris and Howitt, 1998). Thanks to the 
farm decision variable recovering, by the way of the total variable cost estimation, PMP is capable to 
reproduce the exact observed farm allocation plan and the decision variables (total specific variable 
costs) that led farmers to decide for such a production plan.  
Many papers have adopted the PMP methodology for developing models able to assess the impact of 
proposed or already implemented CAP reforms. Also in European research projects, this approach is 
used with micro-based information, like FADN1. In most cases, the PMP is proposed in the so-called 
“classical” form, where the procedure is articulated in three phases: the differential costs recovering, 
the estimation of the non-linear cost function and, finally, the calibration by using a non constrained 
production model with non-linear objective function (Howitt, 1995). Applications of this base version 
are the most diffused, e.g. for evaluating CAP’s reform impacts (Arfini et al., 2005; Judez et al., 
2002). 
One attempt to introduce innovations in the basic approach is due to Heckelei and Wolff (2003) that 
proposed a methodology that overcomes the first phase for calibrating the base situation by directly  
imposing the first order conditions in the cost function estimation phase. This approach was also used 
with cross-section data in order to enhance the consistency of the cost estimation (Heckelei and Britz, 
2000). More advanced extensions of the PMP are due to Paris (2001) that generalizes the method 
adopting an equilibrium model in a static framework and in a dynamic price expectation approach. 
                                                 
1 Several European research projects have developed and applied models based on the Positive Mathematical 
Programming methodology, as CAPRI (Heckelei, 1997; Heckhelei and Britz, 2000) and EUROTOOLS (Paris 
and Arfini, 2000) in the VFP, GENEDEC (contract no. SSPE-CT-2004-502184 and CARERA (contract no. 
SSPE-CT-2005-022653) in the VIFP. 
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The demand for an assessment of agricultural policy measures rose with force during this last decade 
and contributed to the development of a set of economic tools that would respond to such needs using 
all the available information. In this field, the PMP plays a first order role. This methodology can 
provide useful results to policy makers even in the presence of a limited set of information as it 
generally happens when European agricultural databases are adopted. PMP can responds with 
flexibility and in a consistent way to a large spectrum of policy issues, typically concerning the land 
use change, production dynamics, variation in gross margin and in the other main economic variables 
(costs, subsidies, gross saleable production, etc.). However, all these applications are developed 
exploring the supply side of the agricultural sector while avoiding to implement an evaluation of the 
demand side, by measuring the effects on the output market prices. Indeed, the literature about the 
PMP models application seems to indicate that such class of models are just developed for 
investigating the supply side of the agricultural sector, delegating the demand issues side to well-posed 
problems solved by econometric techniques. 
For improving the analysis, some studies integrate PMP models by other approaches, as cluster 
analysis (Buysse et al., 2007; Arfini et al., 2005) and convergence evaluation (Arfini et al., 2005). This 
allows researchers to reach a more readable, comparable and synthetic results by assessments based on 
very detailed information2.  
The objective of this paper is to present a new quantitative tool for assessing the CAP instruments 
effects on the agricultural supply dynamics and on the market price modifications, using a PMP 
approach based on individual farm information. This tool is projected for responding to specific 
demand of policy makers on the issues related to the impact of CAP measures with respect to land 
allocation, production levels, price variations and farm revenue modifications. The PMP model that 
represents the core of such a tool is integrated by a cluster analysis that is incorporated inside the 
mathematical structure of the same tool. The cluster analysis is useful in evaluating the degree of 
homogeneity of agriculture sector before and after the application of policy scenarios, by using the 
same set of farm data adopted for PMP evaluation. 
This work is articulated as follows: the first section presents the organization of the quantitative tool, 
explaining how the PMP methodology is integrated with the cluster analysis; the second section 
focuses on the estimation of the novel PMP approach proposed in this paper, where the calibration of 
the model is obtained considering also the information about the farm level demand functions for 
agricultural products that characterizes the given group of farms; the third section is dedicated to 
describe the cluster analysis technique integrated to the PMP model; the fourth section concerns an 
application of the model on a group of farms collected from the IACS database and integrated by 
FADN information; and the last section concludes with some remarks.     
 
 
2. The integrated approach    
 
The core of the tool is represented by a PMP model able to capture the farm decision variables in order 
to simulate the impact of policy instruments as realistically as possible. The PMP model described in 

                                                 
2 The cluster analysis is used when massive information deriving from farm model solutions have to be 
systematized in order to form group of farms similar in relation with the variables assumed as relevant in 
measuring the degree of homogeneity in and among the groups. Two examples of application of such a 
techniques are included in Paris et al. (2000) and Buysse et al. (2007). 
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the next section keep into account the farm level demand functions that characterize the agricultural 
outputs produced by the group of farms under evaluation. The PMP model is suitable for using 
individual farm information and to have a solution at the farm level. To achieve this goal it requires a 
database collecting farm variables at the individual level, as FADN or IACS databases that represent a 
sector or a region. Before using the farm information for the policy analysis, it is important to know 
the characteristics of the sample. A statistical technique that is useful for analysing a cross-section 
panel of data, with respect the degree of homogeneity of the elements (farms) composing the sample, 
is the multivariate analysis and, more specifically, the cluster analysis (CA). A tool performed by 
GAMS integrates such a technique with the PMP.  
This kind of approach was used for analysing the impact of the CAP reform on the state of cohesion in 
EU (Arfini et al., 2005) and, more recently, for evaluating the sugar CMO reform (Buysse, 2007). The 
combined use of the cluster analysis and the PMP approach allow the analyst to portray the situation 
before the modification or the introduction of a policy measures and to infer the likely changes inside 
the groups of farms identified by CA after the application of such measures. When the evaluation 
considers a large number of farm observations, while the PMP can foresee the variation in the main 
agricultural variables, the CA allows to understand the behaviour of the farms with respect to their 
response to agricultural policy. Indeed, the groups identified by this statistical approach represent 
groups of farms characterized by a similarity with respect to the variables under evaluation (land 
allocation, gross margin, gross saleable production, variable costs, etc.). The classification obtained by 
the CA evaluates the degree of  homogeneity among the farms in a dynamic perspective, before and 
after the policy scenarios. 
As we have explained above, the dataset feeds the CA in the first step, before the agricultural policy 
scenario evaluation, and the PMP model. The results generated by the PMP model are the new data for 
a second CA run. This second run carries out a new configuration of the group of farms, highlighting 
how the groups have react to the policy instruments. The integrated tool is, thus, composed by 
different modules that are developed, in a unique modelling environment, using the specific algebraic 
software GAMS (Brooke et al., 2005). 
 
 
3. Revenue and cost functions in PMP model 
 
The PMP approach presented by Howitt and Paris (1995, 1998) is originally articulated in three 
sequences: 1) the recovering of the marginal costs associated with the agricultural processes present in 
a farm allocation plan by solving a linear programming model; 2) the estimation of a non-linear cost 
function able to capture the information about the substitution and complementarity among farm 
processes obtained by a consistent method of estimation (e.g. ME and OLS); 3) calibration of the base 
allocation farm plan using the cost function derived in the previous phase. The idea behind this 
method is to consider that farmers take their decisions not just considering the explicit variable 
accounting costs of the inputs used inside the production process, but also the part of variable costs 
that are connected with the farmers’ knowledge about their own farm system. The PMP approach 
estimates this adding farm costs, the so-called differential costs (Paris and Howitt, 1998), for using 
them inside the calibration phase. Thus, the objective function that is maximized at the last PMP stage 
is the farm gross margin that takes into account those combined costs. In this perspective, the 
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maximized gross margin can be considered the “economic” gross margin, instead of the accounting 
definition of this term. 
The methodology approach proposed in this paper considers the problem of estimating the farm level 
demand functions associated with a group of farms selected for a policy scenarios evaluation inside a 
PMP framework. More specifically, the approach is articulated in four phases: 1) cross-section 
estimation of farm level demand functions using individual data; 2) recovering of the differential 
marginal costs that lead farmers to choose the observed production plan, considering inside the 
objective function a non-linear revenue function; 3) estimation of a quadratic cost function; 4) 
calibration of the base observed situation (the observed production plan) maximizing an objective 
function composed of the non-linear revenue function estimated in the first phase and the non-linear 
cost function derived in the third phase.      
 
Phase I – Estimation of farm level demand functions 
 
The farm level demand functions that we want to estimate have the following linear form: 
(1)      = −p d xD  

or, in a sample formulation                            
'

, , ' , ,
' 1

J

n j j j j n j n j
j

p d D x u
=

= + +∑        

where p, d and x are vectors with dimensions (Jx1) and D a matrix with dimension (JxJ); p, d and x 
are the vectors of agricultural product prices, the vector of intercepts of demand function and the 
vector of production quantities, respectively; D is a symmetric positive semidefinite matrix of quantity 
slopes. J (j=1,…,J) is the number of agricultural processes.  
Economic theory assumes that market prices paid to producers vary in relation with the aggregated 
demand function. Under this assumption, a set of demand functions can be estimated on the basis of a 
sample of N farms. The term ,n ju  in (1) represents the deviation of the n-th farm from the regional j-th 

demand function. If the sample of farms concerns a given geographical region or a sector, it is possible 
to estimate a set of demand functions for the agricultural products of such a region or a sector. The 
objective is thus to obtain the set of demand function (1) using the information of a sample of 
individual farms.  
The relevant information required for estimating (1), consists of prices paid for selling the farm 
products at the farm level and about the of output quantities  introduced into market. Both types of  
information are generally available inside the most used agricultural database, as FADN. The methods 
of estimation that one can - implement- varies from generalized least squares, to maximum likelihood, 
to maximum entropy, etc. In this work, we choose the maximum entropy approach to estimate a well-
posed problem. Furthermore, the choice of ME3 is related  to our empirical experience demonstrating 

                                                 
3 After the publishing of the famous book of Golan, Judge and Miller (1996), the maximum entropy approach 
has known a new interest among agricultural economists. The idea is to use a physical concept applied to 
communication technology by Shannon (1948) and in economics by Jaynes (1957) in order to derive parameters 
when the information is poor and where the traditional econometric techniques prefer not to intervene. For a 
complete revision of maximum entropy theory, see Fang et al. (1998). For a detailed discussion about the 
maximum entropy estimator applied to economics see the book of Golan, Judge and Miller (1996), the paper of 
Paris and Howitt (1998), Heckelei and Britz (2000), Lansink (1998), Léon et alt. (1999), Lence and Miller 
(1998). 
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that a maximum entropy estimator seems to obtain parameters that provide very realistic results in a 
simulation phase4. 
The estimation carried out in the present  section consists in recovering the demand functions (1) 
governing the output markets of  a sample of 50 farms. The first group of parameters to estimate is that 
owning to the intercept d , while the second group is related with the matrix D. According to the 
generalized maximum entropy theory of Golan, Judge and Miller, each parameters to recover is equal 
to the product between a set of probabilities and a set support values. The objective of the problem is 
to identify the probability distribution that maximize the maximum entropy function. The support 
values are chosen by the researcher5.  
Thus, the intercept can be written as: 

(2)      
P

j j,p j,p
p=1

= ∑d zd pd  

where, ,j pzd is the vector of support values, while ,j ppd is the vector of the p (p=1,...,P) probabilities. 

We assume that the matrix D  is symmetric, positive semidefinite. The simplest and most efficient way 
to respect those properties is to decompose the matrix D in three components according to the 
Cholesky factorization method (Paris and Howitt, 1998). On the basis of this method the matrix D is 
divided in three matrices as follows: 
(3)      'D = LHL   
where, D  is equal to the product among a unit lower triangular matrix L, a non-negative diagonal 
matrix H and the transposed of L. The decomposition guarantee in every cases to obtain a symmetric, 
positive and semidefinite matrix. This same decomposition can be rewritten in a more compact form, 
so that: 
(4)      ' '= =D LHL RR  

where the matrix 1/ 2=R LH . 
In order to estimate the parameters of L and H, it is required to specify a suitable set of support values 
to associate to an unknown probability distribution, as presented in the following equations: 

(5)     , ' , ', , ',
1

'
P

j j j j p j j p
p

L Zl Pl j j
=

= ∀ ≠∑  

(6)      , ' , ', , ',
1

'
P

j j j j p j j p
p

H Zh Ph j j
=

= ∀ =∑  

Equation (5) states the relation about the unitary triangular matrix , 'j jL and the product between the 

matrix of support values , ',j j pZl  and the matrix of probability distribution , ',j j pPl . The matrix L is a 

triangular matrix with unitary values on the diagonal and null values above the diagonal. In equation 
(6), the matrix , 'j jH  is equal to the product of the support values , ',j j pZh  and the unknown matrix of 

probability distribution , ',j j pPh . H is a non-negative diagonal matrix with null values outside the 

diagonal. 

                                                 
4 The results achieved applying the ME estimator confirm the important role of this estimator in other fields of 
the applied sciences (Paris and Howitt, 1998; Shannon, 1948). 
5 One of the main criticism addressed to the maximum entropy methods concerns the choice of support values 
that are submitted to the subjective decision of the researcher (Lansink, 1997).  
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Keeping into account the statements above, the maximum entropy problem that recover the demand 
function (1) starting from a cross-section panel of individual farms is the following one: 

(7)   

'

, , , ', , ',
( ) 1 1 1 ' 1 1

'

, ', , ', , , , ,
1 ' 1 1 1 1 1

max ( ) log log

log log

J P J J P

j p j p j j p j j p
p j p j j p

J J P N J P

j j p j j p n j p n j p
j j p n j p

Hd p pd pd Pl Pl

Ph Ph pe pe

= = = = =

= = = = = =

= − −

− −

∑∑ ∑∑∑

∑∑∑ ∑∑∑

g

 

Subject to: 

(8)   
'

, , , , , , , , ' , ' ,
1 1 1 ' 1

,
P P K J

n j n j p n j p j p j p j j k j n k
p p k j

pr ze pe zd pd R R x n j
= = = =

= + − ∀ ∀∑ ∑ ∑∑  

(9)   
1/ 2

, ' , , , , , , , ,
1 1 1 1

, '
K P K P

j j j k pp j k pp j k pp j k pp
k p k p

R Zl Pl Zd Pd j j
= = = =

= ∀ ∀
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑∑ ∑∑  

(10)     , , , ,
1 1

0 ,
N P

n j p n j p
n p

ze pe j
= =

= ∀∑∑  

(11)     

,
1

, ',
1

, ',
1

, ,
1

1 ,

1 , '

1 , '

1 ,

P

j p
p

P

j j p
p

P

j j p
p

P

n j p
p

pd j

Pl j j

Pd j j

pe n j

=

=

=

=

= ∀

= ∀ ≠

= ∀ =

= ∀ ∀

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

∑

∑

∑

∑

 

 
The entropic objective function of the problem (7)-(11) is maximized with respect to the unknown 
probability distributions associated with the support values identified by the researcher. Equation (8) 
states that the observed prices ,n jpr  are equal to unique demand function plus a farm deviation, 

, , , ,n j p n j pze pe , that measures the distances between n-th observed farm price and the common/regional 

demand function. Equation (9) performs the Cholesky’s decomposition rule established inside the 
relation (4). The constraint (10) concerns the summation to zero of the farm deviations and the set of 
constraints (11) state the adding-up relations for the probability distributions. This problem estimates 
the demand functions of the agricultural market generating the output prices of each farm.  
 
Phase II  – Recovering of differential marginal costs 
 
The second phase of PMP is devoted to estimating the  the marginal costs borne by farmers in their 
input allocation process. When information about accounting variable costs is available, the estimation 
deals with the differential amount leading to a true economic marginal cost. 
The novelty of the proposed PMP approach consists in defining an objective function that depends on 
the set of farm level demand functions estimated in phase I. 
This revenue functions is derived integrating the demand function with respect the output levels, so: 
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(12)     ( )
0

1 '
2

x

dx− = −∫ d x dx x xD D     

The maximization problem of this phase II is usually improperly call as PMP calibration phase. In 
reality, this stage needs for calibrating the base situation through the differential marginal costs hidden 
inside the observed production quantities. The objective of this phase is to maximize a non-linear 
gross margin function subject to typical farm structural constraints (i.e. land) and to calibrating 
constraints that force the model to reproduce the observed production plan. In algebraic terms, the 
problem for the n-th farm is written as follows:   

(13)   
'

0 , , , , , ' , ' , ,
1 ' 1

1ˆ ˆˆmax ( )
2

J J

n j n j j n j n j j j n j n j n j
x j j

GM x v x d x x D x c x
= =

= + − −∑∑  

subject to: 

(14)     , , , , ,
1

,
J

n j i n j n i n i
j

A x b i y
=

≤ ∀ ⎡ ⎤⎣ ⎦∑  

(15)     , , ,,n j n j n jx x jε λ≤ + ∀ ⎡ ⎤⎣ ⎦  

(16)     , ,0 ,n j n jx j µ⎡ ⎤≥ ∀ ⎣ ⎦  

where ˆ jv  is the deviation of each farm process from the demand function estimated on the sample of 

farms. The vectors of deviations is obtained by the previous phase as: 

(17)     ,, , n jn j n j=v ze pe  

 
cnj  is the explicit accounting variable cost associated with each output unit at n-th farm level; while 

, ,n j iA  and ,n ib  are respectively the matrix of technology, that is the matrix with the coefficients of 

input use for obtaining one unit of product, and the vector of input farm capacity  i (i.e. land  acreage), 

for i=1,…,I.  The coefficients ˆ
jd  and , '

ˆ
j jD  are the estimates of the corresponding parameters obtained 

in phase I. 
Problem (13)-(16) is optimized when the difference between total revenue and total variable cost is 
maximized with respect the level of output x. The solution of this problem is known before solving it, 
because the calibrating constraint (15) imposes that each variable x cannot exceed the observed level 
of those outputs x plus a terms very small ε 6. The tautological problem (13)-(16) leads to obtain the 

dual information linked to the calibrating constraint (15), that is jλ .  jλ  is the differential costs to add 

to the accounting marginal costs jc  in order to obtain a total marginal cost needed for estimating the 

non-linear cost function of the third phase. 
 
 
 
 
 

                                                 
6 The meaning of ε is to avoid the linear dependency between the structural constraint and calibrating constraint. 
For a deeper explanation about the role of e see Howitt (1995), Paris and Howitt (1998) and Gohin and 
Chantreuil (2000). 
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Phase III  – Non-linear cost function estimation 
 
The objective of the third phase is to estimate the farm cost function starting from the vector of 
marginal costs estimated in phase II using the shadow prices associated with the calibration 
constraints.  The chosen functional form of the cost function is:  

(18)     
1

( ) ( ) x '
2

C x = + = +λ c x α x xQ  

where λ  and c  are, respectively, the vector of the dual values identified in the previous phase and the 
vector of the farm accounting costs, x  is the vector of the known production levels and Q  the matrix 

of the non-linear cost function. α  is the vector of intercepts for the marginal cost associated to farms 
processes. In (18) the elements for matrix Q  are still unknown and must be obtained through suitable 

estimation methods. In the literature (see Paris et al., 2000) estimation of cost function through 
application of the principle maximum entropy is preferred. On the basis of these concepts and the 
arrangement given by Paris and Howitt (1998), the parameters of vector α  and matrix Q  can be 

recovered by maximizing the probability distribution associated with an interval of specified support 
values.  The non linear program of maximum entropy is presented here in the form derived by 
Cholesky’s decomposition according to which the matrix ' '= =Q ΓWΓ TT , where Γ  is a triangular 

matrix, W a diagonal matrix and 1/ 2=T WΓ  . The problem can then be solved by maximizing a 
probability distribution for which we know the expected value, which corresponds to the marginal cost 
( )+ cλ determined in the second phase. The objective function of the problem of maximum entropy is 

thus presented as follows:  

(19)  

'

, , , ', , ',
( ) 1 1 1 ' 1 1

'

, ', , ', , , , ,
1 ' 1 1 1 1 1

max ( ) log log

log log

J P J J P

j p j p j j p j j p
p j p j j p

J J P N J P

j j p j j p n j p n j p
j j p n j p

Hc p p p P P

Pw Pw pu pu

α α ϕ ϕ
= = = = =

= = = = = =

= − −

− −

∑∑ ∑∑∑

∑∑∑ ∑∑∑

g

 

where ,j ppα  are the unknown probability distributions of the intercepts of the cost function, , ',j j ppϕ  

and , ',j j ppw  are the probability of the distribution associated with elements of the triangular matrix 

Γ  and of the diagonal matrix W respectively. , ,n j ppu  are elements of the probability of errors. The 

objective function (19) is maximized considering the information about the process marginal costs at 
farm level, as follows:   
 
For 0x >  at farm level: 

(20)  ( )
'

, , , , , , ' , , , ,
1 ' 1 1 1

,
P J K P

n j n j j p j p j k k j k n j p n j w
p j k p

c p z T T x pu zu n jλ α α
= = = =

+ = + + ∀ ∀⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑ ∑ ∑  

 
For x not activated at farm level: 

(21)  ( )
'

, , , , , , ' , , , ,
1 ' 1 1 1

,
P J K P

n j n j j p j p j k k j k n j p n j w
p j k p

c p z T T x pu zu n jλ α α
= = = =

+ ≤ + + ∀ ∀⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑ ∑ ∑  
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The equations (20-21) state that the total marginal cost ( ) ( )( )⋅ ⋅+λ c  is equal/less or equal to a new 

marginal cost function common for all the farms sample plus a farm error. ( )⋅T  is an element of the 

matrix T obtained through Cholesky’s decomposition. In fact:   

(22)    ( ) ( )1/ 2

, ' , ', . ', , ', , ',
' 1 1 1

J P P

j j j j w j j w j j p j j p
j p p

T p z pw zwϕ ϕ
= = =

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑ ∑  

The relations inserted in (22) clarify the role of the support values in the process of estimating the cost 
matrix. The components ( )zϕ g  and ( )zw g  are the appropriately selected support values (Paris and 

Howitt, 1998). Associated with the distribution of probability, ( )pϕ g  and  ( )zw g , they define the 

elements of the triangular matrix Γ  and of the diagonal matrix W. It must be pointed out that the 
matrix Q is unique and is derived from the marginal costs. 
All the probability distributions referred to above must meet the following condition:  

(23)     

( )1

( )1

( )1

( )1

1

1

1

1

P

p

P

p

P

p

P

p

p

p

pw

pu

α

ϕ

⋅=

⋅=

⋅=

⋅=

=

=

=

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

∑
∑
∑
∑

 

Problem (19)-(23) provides the probability distribution values for the elements of the triangular matrix 
Γ , the diagonal matrix W and for the vector of the residual marginal variable costs for each farm in 
the sample. The cost function specified according to the above method preserves the technical 
information regarding the calibration constraints.  
 
Phase IV – Calibrating observed situation 
 
Finally, after having estimated the revenue and cost functions, we can develop a problem very similar 
to those in the second phase of the procedure, where a new cost function is inserted and the calibrating 
constraints are not considered. The problem can be build as follows: 

(24)   
{ }
{ }

'

1 , , , , , ' , '
1 ' 1

'

, , , , , ' , '
1 ' 1

1ˆ ˆˆmax ( )
2

1 ˆˆˆ
2

J J

n j n j j n j n j j j n j
x j j

J J

n j n j j n j n j j j n j
j j

GM x v x d x x D x

u x x x Q xα

= =

= =

= + −

− + +

∑∑

∑∑
 

subject to: 
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(26)     , ,0 ,n j n jx j µ≥ ∀ ⎡ ⎤⎣ ⎦  

The error terms ˆ jv  and ˆ ju  are derived from the first and third phase of the procedure respectively, and 

they are specific to each farm. In other terms, they measure the distance between the prices and the 
costs observed at n-th farm level and the prices and costs estimated for the region considered by the 
analyst. 
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Inside the objective function (24) the new quadratic cost function takes the place of the calibrating 
constraints, establishing the economic bound for the activity allocation choice. In other terms, the 
latent decision variables revealed in the second phase enter inside the objective function (24) 
providing an economic calibrating constraint instead of a technical constraint such as the equation  
(15). The gross margin maximized in (24) is less than the gross margin specified in (13), 

0 1GM GM< , because the 1GM  also integrates the dual values associated to the farm activities. For 

this reason, we can say that the objective function (24) should be considered an economic profit in the 
sense of the economic theory. 
The problem (24)-(26) permits to exactly reproduce the base situation without specific calibrating 
constraints. Furthermore, applying policy scenario simulations, the non-linear revenue function 
provide information on the likely variation in agricultural product prices in relation with changes in 
production levels.   
 
 
4. Non-hierarchical cluster analysis: the k-means procedure 
 
The aim of partitioning methods is to get a single partition of n points in p dimensions into k clusters 
( nk < ), following a optimizing criteria and where k is chosen by the researcher. The k-means 
algorithm is, even if according to various versions, the best-known and applied partitioning method 
(for a review, see Atkinson et al., 2004). This procedure leads to classify the n units into k distinct 
clusters, with k chosen a priori by the analyst, according to an iterative method whose steps can be 
resumed as follows: 
1) k initial cluster centres are selected, that is k p-dimensional points which are the cluster centroids in 
the initial partition. Centres can be detected using different methods, but usually are such that they are 
as much as possible distant each other. The initial k-clusters partition is then built, adding each 
element to the closest cluster. 
2) For each unit the distance to the k cluster’s centroids is computed: if the minimum distance is 
different from that gained by the centroid of the group to which the unit belongs, the unit is moved and 
included to the closest group. When one units is reallocated the new and old cluster’s centroids are re-
estimated.  
3) Step 2 is iterated until to the convergence of the algorithm, that is until clusters and centroids 
remain stable and unchanged with respect to the previous iteration. 
Alternatively, when the computational burden of the procedure is an issue, the stopping rule 
introduced in step 3 can be replaced by less restrictive rules which ends the procedure when one of the 
following events happen: 
a) the algorithm comes to convergence in the previously stated sense; 
b) the distance of each centroid at current iterations to the corresponding centroid at previous iteration  
is not greater than a given threshold; 
c) maximum number of iterations has reached. 

To get a partition with a different number of clusters, for instance *k , all the steps must be repeated, 

starting from the first stage where k is replaced by *k .  
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In order to apply the above suggested procedure, the distance between each unit and the centroids 
must be iteratively computed and a suitable metric must be chosen. The most frequently applied 
metrics is the Euclidean distance, because it usually ensures the convergence of the iterative procedure 
is achieved (Rencher, 1997). Thus, at iteration t, the distance between unit i and the centroid of group l 
(i=1,2, …, n; l=1,2, …, k) is given by: 

(27)                                        ( )∑
=

−=
p

s

t
lsis

t
li xxxxd

1

2)(
,

)( ),(  

where [ ]′= )(
,

)(
2

)(
1

)( ,...,, t
lp

t
l

t
l

t
l xxxx  is the centroid of group l computed at iteration t.  

From a practical point of view, it is not possible to enumerate the whole set of possible partitions of n 
elements in k groups, so that the optimal classification obtained by applying the k-means method can 
actually lead to a local minima of the objective function. As a consequence, the initial choices done by 
the researcher are crucial and must be examined carefully, particularly with reference to: a) choice of 
the number of clusters k; b) selection of the initial cluster centres. 
The choice of the number of clusters k is a primary concern by the researcher. From (27) is clear that 
the main goal of the k-means partitioning method, with Euclidean distance, is to find a partition (with 
k clusters) which satisfies a criteria of internal homogeneity based on the minimization of the within 
deviance. A natural measure of the goodness of fit of the procedure is then given by the following 
index: 

(28)                                              T
B

T
WR =−=12

 

where W, B and T are, respectively, within-groups, between-groups and total deviance and 
BWT += . 

A good partition usually presents a small within-groups deviance. Index introduced by equation (28) is 
contained in the interval [0,1] and can be used to compare partitions with a different number of 

groups. When 2R  is close to 1, the corresponding partition turns out to be homogeneous because 

units belonging to the same cluster are very similar ( 0≈lW , for each kl ,...,2,1= ) and clusters are 

strongly separated ( TB ≈ ). Nevertheless, a trade-off can be observed between the number of clusters 

and the internal homogeneity, because 2R  is not-decreasing for increasing values of k. A good 
compromise between good separation of clusters and reduction of complexity of the partition can be 
achieved selecting the number of clusters k which produce a very high gain in internal cluster 
homogeneity with respect to a partition with k-1 clusters. 
Once the number of clusters has been chosen, the initial cluster centres must be selected. A very 
simple criteria is to select the first k observations of the dataset, while a lightly more sophisticated 
method is to pull out a random sample of size k from the n units of the dataset. 
 
 
5. Policy evaluation 
 
The integrated tool presented in the previous sections is applied to a sample of farms belonging to the 
Emilia-Romagna region. The sample is composed by 50 farms placed in the provinces of Parma, 
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Reggio-Emilia, Modena and Bologna and it is extracted from the IACS database, that is the dataset 
concerning the demand for subsidy payments that farmers must submit every year to the national 
agency charged of the communitarian agricultural subsidies payments7. The IACS information, 
concerning the crop area of each farm, is completed with the information deriving from Italian FADN. 
More specifically, the information concerning the yields, prices and specific variable costs are 
obtained by the national FADN8. 2003 is the reference year. The sample presents a production set of 
ten crops: cereal mix, alfa-alfa, sugarbeet, durum wheat, fodder crops, maize, barley, silage, soya and 
soft wheat. 
 
Table 1. Characteristics of the sample 
Main information  
Number of farms 50 
Incidence of cerelas (in %) 64.5 
Incidence of oilseeds (in %) 4.9 
Incidence of fodder crops (in %) 19.4 
Incidence of sugarbeet (in %) 11.2 
Revenue by ha (in euros) 2,001 
Variable costs by ha (in euros) 1,466 
 
The aims of the analysis is to get a response on the effects of the single farm payment introduced by 
the EU regulation 1782/2003 with respect of farms behaviour. More in detail, the integrated tools is 
applied the policy scenario concerns the total decoupling of the COP crops. The reform of sugarbeet 
support system is not considered.  
 
5.1. PMP outcomes 
 
Thanks to the reconstruction of the revenue function and the cost function, the PMP model is able to 
provides dynamics about the supply side and demand side of the considered sample. The first aspect 
concerns the changes of land allocation operated by the farms in relation with the decoupling. The 
table 2 presents the variation of each crops after the decoupling implementation. The separation 
between payments and quantity of agricultural product seems to lead farms to abandon part of the 
cereal acreage for investing on fodder crops, oilseeds and sugarbeet.  
The variation in land use has consequences on the production levels and, thus, on market prices. This 
PMP approach is capable to capture the price signals in relation to the output variations. This is the 
second relevant aspect of the model: the simulation can provide variation about market prices of each 
product. From table 2, it is possible to note the negative variation in the hectares of cereals that leads 
to an increase in market prices for such products. For example, maize reduces of around 15% its 
acreage, while its prices improve of 19%. Similarly, the fodder crops see a strong increasing in the 
number of hectares (+48%), while the prices is foreseen to dramatically decrease (-40%).    
 
 
 
 

                                                 
7 The Italian agency charged of EU payments is AGEA (AGenzia per le Erogazioni in Agricoltura). 
8 For further details on the method of merging IACS with FADN database, see Arfini et al. (2005). 
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Table 2. PMP simulation results – Land allocation and Prices 
Land use Prices 

Activities† Baseline 
(ha) 

Scenario 
(Var. %)

Baseline 
(euros/ton) 

Scenario 
(var. %) 

SoftWheat 503.9 -16.5 145.4 +8.2
Durum Wheat 10.1 -26.2 204.5 +4.5
Maize 386.3 -14.8 149.6 +18.9
Barley 130.1 -24.5 131.9 +9.6
Cereals Mix 49.6 -34.8 144.1 +4.5
Silage 58.2 -9.9 40.2 +11.4
Soya 86.5 +11.5 231.7 -7.2
Alfa Alfa 338.4 +0.5 100.9 -9.9
Other fodder 3.7 +48.4 12.4 -39.9
Sugarbeet 197.7 +6.5 43.1 -10.0
† The model considers also the possibility to activate agricultural area submitted to good practices. The model 
results indicates that around 10% of the agricultural area would be dedicated to such non-productive activity. 
 
The new production plan due to decoupling has effects on the main farm economics variables. The 
table 3 presents a situation where the decreasing in revenues and costs leads to improve the farm gross 
margin (+2%). This is due to a much more intensive reduction of the variable costs (-8.8%) that the 
farm revenues (-5,9%). The farm strategy within decoupling seems addressed to minimize as much as 
possible the production costs. 
 
Table 3.  PMP simulation results – Main economic variables 

Economic variables Baseline 
(euros/ha) 

Scenario 
(var. %) 

Revenues (gsp+subs.) 2,001 -5.9
Costs 1,466 -8.8
Gross Margin 536 +2.1
 
The responses of the model in term of quantities, prices  and economic variable dynamics depend in 

large part to the estimated matrices Q̂  and D̂  (see Appendix), that integrate the information about the 

degree of substitution and complementarity among activities.  
 
5.2. Cluster analysis 
 
The k-means approach for the cluster analysis carried out to identify three groups of farms, internally 
homogeneous with respect the following variables: the incidence of each type of crop on the total 
agricultural surface, the yields for each type of crop, the revenue per hectare and the total variable cost 
per hectare. The first clusterization developed in the base situation, before the policy scenario 
implementation, is presented by the table 4. The first cluster is composed by 7 farms with the least 
average surface, if compared with the others clusters, with a low revenue by hectare and low average 
cost by hectare. The difference between the unitary revenue and the unitary cost is the lowest among 
the groups. The presence of an important incidence of fodder crops is significant for explaining the 
low level of farming intensity inside such a group. 
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The second group composed by 18 farms highlights an average acreage of 35 higher than the previous 
group and the revenue by hectare and the variable cost per hectare are much higher than every other 
group. This group present the largest difference between the revenue per hectare and the cost per 
hectare, demonstrating that the farms belonging to such group are more intensive in producing cereals, 
that represent the major incidence, and with a relevant quota (15%) of land invested in harvesting 
sugarbeet. 
The last group is very similar to the second one, but with a lower economic margin per hectare. Those 
farms are specialized in producing cereals (68% of the total acreage). The quota of land dedicated to 
sugarbeet is not so large as in the second group, but it represents a non marginal investment (10.4%).   
 
Table 4. Cluster analysis – Base situation  

Clusters No. Farms 
Average 
acreage 

(ha) 

Average 
revenue 

(euros/ha)

Average 
Costs 

(euros/ha)
Cereals (%) Oilseeds 

(%) 
Fodder 

crops (%) 
Sugarbeet 

(%) 

1 7 21 1215 959 48.4 1.9 48.3 1.4 

2 18 35 2126 1538 62.6 7.0 15.6 14.8 

3 25 40 2039 1495 68.1 4.0 17.5 10.4 

 
Table 5. Cluster analysis – Policy scenario  

Clusters No. Farms 
Average 
acreage 

(ha) 

Average 
revenue 

(euros/ha)

Average 
Costs 

(euros/ha)

Cereals 
(%) 

Oilseeds 
(%) 

Fodder 
crops (%) 

Sugarbeet 
(%) 

1 7 21 1117 848 40.7 2.2 53.7 3.4 

2 27 42 1967 1356 63.8 5.2 18.3 12.7 

3 16 30 1920 1444 53.7 9.2 19.4 17.7 

 
The impact of decoupling has been relevant for every farms. As we can observe in table 5, the 
decoupling has produced an increase of the economic margin by hectares (revenues/ha – variables 
costs/ha) in every group, but he most relevant effect concerns the third group. Indeed, 9 farms that in 
the base situation belonged in the third group move toward the second group when the decoupling is 
applied. This means that for such farms, the decoupling amplifies the gross margin per hectare in 
relation to the process of minimization of the costs explained above. Only the farms of the first group 
don’t move their place: the decoupling improve significantly their economic results but the gap with 
respect the other clusters is too high for transfers. 
 
 
6. Conclusions 
 
The integrated tool proposed in this paper combines the PMP methodology with the cluster analysis 
technique. The aim of the first approach is to recover the hidden decision variables of farmers in order 
to estimate their behaviour in presence of agricultural policy changes. The implemented PMP model 
introduces a generalization of the traditional methodology. Indeed, the model is able to derive both the 
demand function that characterizes the agricultural market product of the sample of farms considered 
and the cost function kept in account by farmers during the production plan definition. The unknown 
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parameters of the revenue and cost functions are recovered by adopting the maximum entropy 
approach. The last calibration phase maximizes the difference between the farm revenue and cost 
functions derived by a procedure articulated on four phases.  
The results achieved by using the PMP model in assessing policy scenarios can give responses on the 
supply side, providing the likely modification of the land use and the production level, and on the 
demand side, providing information about the dynamics of prices. This is why this method can be 
considered a generalization of the method firstly proposed by Howitt and Paris (1995, 1998). 
The use of the cluster analysis for evaluating the behaviour of farms with respect a new policy 
scenario is useful in order to better understand the driving forces leading farmers to adopt a given 
strategy to respond to new policy measures. Indeed, the cluster analysis groups farms according to a 
homogeneity criteria with respect to variables assumed to be relevant for explaining the main 
characteristics of the considered farms. The picture given by the cluster analysis in the base situation 
can change  when a simulation is carried out. The cluster analysis is important to portray the 
movement of farms among clusters. 
So, when the analysis is developed using a sample of individual farms, the cluster analysis became a 
natural policy analysis component to integrate with the PMP model. In our work, the PMP model and 
the cluster analysis technique have been used in a same policy evaluation environment, using a 
common algebraic language package (GAMS). 
The policy assessment presented in this paper shows the added value that an integrated tool can give to 
policy makers in order to evaluate the effects of the policy measures using farm database information 
at the maximum degree of extension. All the information used inside the PMP model and the CA 
technique concerns individual farms: the policy scenario simulation and the evaluation of the degree of 
homogeneity among farms are carried out with respect of each individual farm.  
This work highlights that the PMP approach is not just a calibration techniques, as frequently is 
affirmed, but it is an efficient methodology able to reveal relevant information about the farm decision 
process in order to evaluate the farm behaviour when changes in base observed variables intervene. 
Moreover, the information generated by the PMP model can be enhanced and increased by using in an 
integrated way the CA technique. The tool proposed is consistent because uses all the available 
information, explicit and implicit, included in a dataset and also because it is capable to respond in a 
very complete and detailed level of analysis to the agricultural policy evaluation needs.   
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Appendix 
Revenue and cost function matrices 
 
 
Demand function matrix D̂  
  J' 

  Cereals 
Mix 

Alfa-
alfa Sugarbeet Durum 

Wheat 
Fodder 
crops Maize Barley Silage Soya SoftWheat

Cereals Mix 0.7296 0.0378 0.0002 0.0791 0.1206 -0.0742 -0.0402 -0.0028 -0.2774 -0.0195 
FodderCrops   0.1171 0.0098 -0.0157 0.0228 -0.0592 -0.0325 -0.0165 0.0140 -0.0151 

Sugarbeet    0.0199 0.0014 -0.0004 -0.0167 0.0110 -0.0039 -0.0126 -0.0158 
DurumWheat     2.0305 -0.0244 0.0034 -0.0251 -0.0170 -0.1762 0.0032 

AlfaAlfa      1.7535 0.0114 -0.0423 -0.0516 -0.1563 -0.0155 
Maize       0.2615 0.0302 -0.0013 -0.0442 -0.0750 
Barley        0.7192 0.0079 -0.0107 -0.1155 
Silage         0.0961 0.0289 0.0028 
Soya          1.4435 -0.0061 

J 

SoftWheat                   0.2184 
 
Cost function matrix Q̂  
  J' 

  Cereals Alfa-
alfa Sugarbeet Durum 

Wheat 
Fodder 
crops Maize Barley Silage Soya SoftWheat

Cereals 0.0526 4.87E-5 -0.0006 4.96E-6 -5.85E-6 -0.0001 2.74E-8 -0.0002 -4.21E-5 -2.59E-6
FodderCrops   0.0043 -5.57E-7 -4.94E-9 -6.00E-9 -6.16E-8 4.21E-9 -1.60E-7 -4.26E-8 -4.15E-9

Sugarbeet    0.0006 5.44E-8 6.44E-8 7.87E-8 -3.0E-10 1.93E-6 4.63E-7 -2.85E-8
DurumWheat     0.5185 0.0543 -0.0034 0.0282 0.0028 0.0105 0.0012 

AlfaAlfa      0.0287 -0.0004 0.0030 0.0003 0.0011 0.0001 
Maize       0.0072 -0.0002 -1.84E-5 -0.0001 -7.91E-6
Barley        0.0309 0.0002 0.0006 0.0001 
Silage         0.0025 0.0001 6.37E-6 
Soya          0.1042 -0.0029 

J 

SoftWheat                   0.0074 
 


