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Abstract

We study the competition to operate an infrastructure service by
developing a model where �rms must report a two-dimensional sealed
bid: the price to consumers and the concession fee paid to the gov-
ernment. Two bidding rules are considered in this paper. One rule
consists of awarding the concession to the �rm that reports the lowest
price. The other consists of granting the franchise to the bidder o¤er-
ing the highest fee. We compare the outcome of these rules with refer-
ence to two alternative concession arrangements. The former imposes
the obligation to immediately undertake the investment required to
roll-out the service. The latter allows the concessionaire to optimally
decide the investment timing. The focus is on the e¤ect of bidding
rules and managerial �exibility on expected social welfare. We �nd
that the two bidding rules provide the same outcome only when the
contract does not restrict the autonomy of the franchisee, and we iden-
tify the conditions under which time �exibility can provide a higher
social value.
KEYWORDS: Concessions, Auctions, Bidding Rules, Man-

agerial Flexibility.
JEL: L51, D44, D92

�Financial support from MIUR (Grant no.2002131535-004) is gratefully acknowledged.
yDepartment of Economics, University of Padova, Via del Santo 33, 35100 Padova,

Italy, E-mail: cesare.dosi@unipd.it
zDepartment of Economics, University of Padova, Centro Studi Levi Cases, Fondazione

ENI Enrico Mattei, E-mail: michele.moretto@unipd.it.

1



1 Introduction

One way of bringing competitive forces into natural monopoly industries is
to delineate a monopoly franchise and auction it o¤ to the bidder o¤ering
the best proposal (Desmetz, 1968; Dnes, 1995; Klein and Gray, 1997).
There are a wide variety of concession contracts1and di¤erent types of

competitive bidding rules.
As far as contractual arrangements are concerned, one key di¤erence is

whether the conceding authority imposes speci�c obligations regarding the
means to be used by the operator, namely the amount of required investment.
At one extreme, contracts can eliminate almost all scope for discretion, by
imposing investment plans which rule out any time �exibility. At the other,
contracts can be designed so as to leave a large degree of autonomy to the
winning bidder, by simply assigning the right, as distinct from the obligation,
to supply the market.
Another key issue relates to the bid evaluation process, namely which

speci�cations to include for the technical and �nancial proposals.2 As far as
the �nancial o¤ers are concerned, when the concession does not involve sale
of existing assets, awarding authorities frequently base the bidding on the
highest (one-time or annual) fee paid to the government, or on the lowest
price charged to consumers (World Bank, 1998).
The debate about concession design and award procedures is not new.

For example, Alfred Marshall argued that "[...] the competition for the fran-
chise shall turn on the price or the quality, or both, of the services or the
goods, rather than on the annual sum paid for the lease"3. However, the
modern literature on franchise bidding has not explored in depth the e¤ects
of alternative bidding rules, and how the outcome of the award process is
a¤ected by di¤erent concession arrangements.
The purpose of this paper is twofold. First, we analyse and compare the

outcome of the above-mentioned bidding rules ("highest concession fee" vs

1Throughout the paper we use the term concession broadly to refer to "any arrangement
in which a �rm obtains from the government the right to provide a particular service under
conditions of signi�cant market power" (World Bank, 1998, p.10).

2Conceding authorities often adopt a two-stage process whereby technical proposals are
evaluated before proceeding to the �nancial o¤ers. The winning bidder is then selected
on the basis of the best �nancial proposal from among those who passed the technical
evaluation (World Bank, 1998).

3Quoted in Ekelund and Hebert (1981), p.471.
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"lowest price"), with reference to two alternative concession arrangements.
The former imposes the obligation to immediately undertake the investment
required to roll-out the service. The latter involves investment time �exibility,
by simply assigning the right to supply the market.
Since the two bidding rules involve di¤erent outcomes when the contract

does not restrict the autonomy of the franchisee, the second issue addressed in
the paper is, Which combination (bidding method and contractual arrange-
ment) performs best in terms of expected social welfare?
While this paper focuses on concession contracts, our analysis is related

to the literature on procurement, in particular to the branch of the literature
which considers the question of how to include quality other than sale price in
the procurement process (La¤ont and Tirole, 1987; Che, 1993). In particular,
Che (1993) shows that the optimal buying mechanism distorts the quality
provided by the suppliers downwards relative to the �rst best levels. In
other words, the buyer, acting as if he does not care about the quality,
may reduce the dispersion between suppliers and thus increase the level of
procurement competition. Hence, if we interpret the construction time as
the procured project quality (Herbesman et al., 1995), Che�s result implies
that the government may bene�t from a reduced sale price in exchange for a
project completion delay.
Our paper contributes to this literature in two ways. First, our �ndings

suggest that concessioning an infrastructure service without imposing the
obligation to immediately supply the market (i.e. acting as if "quality" does
not matter) does not increase per se the level of competition. For instance,
if such a contract is awarded to the bidder o¤ering the highest concession
fee, �rms will not exploit the delay option, and will submit the same bids
as those they would have announced to acquire a contract which imposes
the obligation to immediately roll-out the service. Second, similarly to Che
(1993), we �nd that a concession which does not impose such an obligation
may prove to be welfare-improving, provided the franchise is awarded to the
bidder that reports the lowest tari¤.
The rest of the paper is organised as follows. Section 2 outlines the

model and describes the concession value. Section 3 looks at the outcome of
the two bidding rules. Section 4 focuses on the e¤ect of bidding rules and
concession arrangements on expected social welfare. Section 5 concludes and
the Appendix contains the proofs omitted in the text.
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2 The concession value

Consider a natural monopoly industry facing demand uncertainty which is
beyond the supplier�s control. To operate the service, the �rm must a¤ord
speci�c (sunk) capital costs, without being able to exercise any degree of
discretion with respect to the type of investment to be undertaken.4

The infrastructure service under consideration can be operated only by
acquiring an exclusive right of exercise auctioned o¤ by a public authority
(hereafter "the government"). For the sake of simplicity, we assume that the
franchise term is su¢ ciently long to be approximated by in�nite.5

Depending on the bidding rule, the franchise will be awarded to the bidder
o¤ering the lowest price to consumers, or to the �rm o¤ering the highest up-
front payment (concession fee) to the government.
Before focussing on the e¤ect of bidding rules, let�s describe the value of

the concession, by taking the price as given and by ignoring the fee.
We make the following assumptions.

Assumption 1 The new infrastructure can be built instantly, at a cost I.
The investment is irreversibly sunk, it can neither be changed, nor
temporarily stopped, nor shut down. Operating and maintenance costs
are comparatively small and set to zero.

Assumption 2 The price of the service (p) reported by the winning bidder
is constant over the franchise term.

Assumption 3 At any time t � 0 there is a mass yt of identical consumers,
each of whom has an inelastic demand for one unit of the service up to
some reservation price pmax.

Assumption 4 The dynamics of the demand is as follows. Currently (t = 0)
the demand is y0; but at t = 1 it may either rise to (1 + u)y0 with

4An example is provided by toll roads. Demand for a highway is largely beyond the
franchise holder, tra¢ c forecasts are notoriously imprecise, and it is di¢ cult to make
accurate tra¢ c predictions especially in the long term (Engel, Fisher, and Galetovic,
2001). Moreover, the service is fairly standard, and there is a limited scope for creativity
on the part of an operator.

5For the e¤ect of concession length on the concession value see Engel, Fischer and
Galetovic (2001) and D�Alpaos, Dosi and Moretto (2006).
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probability q , or decrease to (1 � d)y0 with probability 1 � q (u > 0
and 0 < d < 1):

% y+1 = (1 + u)y0 with probability q
y0

& y�1 = (1� d)y0 with probability 1� q

From t > 1; the demand will then rise (decrease) at the constant rate
u (d) forever.

By assumptions 1-4, we �rst derive the concession value at t = 0 when
the franchisee must immediately undertake the investment. Since the �ow
of pro�ts that the �rm will receive once the investment is undertaken is pyt
for all t � 0; provided that � � u > 0; the discounted value of pro�t �ows
from time 1 onward evaluated at time zero is given by py0

P1
t=1

(1+u)t

(1+�)t
�

py0
1+u
��u ; with probability q and py0

P1
t=1

(1�d)t
(1+�)t

� py0
1�d
�+d
;with probability

1� q respectively.

Lemma 1 The expected Net Present Value at t = 0 is :

NPV 0 = (p� ~p)K0 (1)

where:

~p � I

K0

; and K0 �
�
1 + q

1 + u

�� u + (1� q)
1� d
�+ d

�
y0

Proof. See Appendix A
Let�s now consider the case where the contract allows the winning bidder

to keep the option to invest (to operate the service) alive for one period.
In order to make the waiting decision economically signi�cant, we add the
following assumption.

Assumption 5 py0 1�d�+d
< I

1+�
< py0

1+u
��u :

When the contract allows the concessionaire to postpone the investment,
NPV 0 > 0 no longer constitutes a su¢ cient condition for immediately build-
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ing the new infrastructure, insofar as it does not account for the franchisee�s
ability to react to unfavorable market conditions.6

In our setting, a period is su¢ cient for obtaining information on the in-
vestment pro�tability and, in this respect, assumption 5 simply states that
operating the service would become pro�table only under the upward real-
ization of the demand level (y+1 ) (Dixit and Pindyck, 1994).

Lemma 2 The expected Net Present Value at t = 1 as of today is:

NPV 1 = (p� ~p)K0 + (p̂� p)K1 (2)

where:

p̂ � 1 + �� q
1 + �

I

K1

and K1 �
�
1 + (1� q)1� d

�+ d

�
y0

Proof. See Appendix B
By putting together (1) and (2), we get the concession value, which ac-

counts for how much the option to delay the investment is worth.

Proposition 1 For any given p, the concession value is:

V (p) = max
�
NPV 0; NPV 1

�
(3)

� (p� ~p)K0 +max [(p̂� p)K1; 0]

which provides the following optimal investment rule:

if p > p̂ it is optimal to invest at t = 0 provided that p > ~p
if p < p̂ it is optimal to invest at t = 1 even if p > ~p.

Proof. Straightforward from Lemma 1 and 2.
The second term on the r.h.s. of (3) represents the option value embedded

in a contract which does not impose the obligation to immediately a¤ord

6"In 1993 Argentina�s national freight rail network was partitioned and concessioned
under 30-year contracts. As part of the concession agreements, winning bidders agreed to
invest about $1.2 billion in the rail network over 15 years [...] Despite substantial e¢ ciency
gain in service, however, tra¢ c levels have fallen short of expectations, reaching only 60
to 70 percent of projected tra¢ c [...] Given the lower-than-expected tra¢ c levels, the
investment amounts agreed in the contracts are likely to be unnecessary and uneconomic"
(World Bank, 1998, p.75).
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sunk capital costs. Since K0 �K1 > 0, by de�ning �p � �~p+ (1� �)p̂; where
� � K0

K0�K1
> 1 and (1� �) � � K1

K0�K1
< 07; (3) can be rewritten as follows:

V (p) = max[(p� ~p)K0; (p� �p)(K0 �K1)]: (4)

Finally, to make the comparison between NPV 0 and NPV 1 interesting,
for the rest of the paper we add the next assumption that ensures that
0 < �p < ~p < p̂ (See Figure 1):

Assumption 6 1+��q
1+�

K0

K1
> 1 and q

1+�
K0

K0�K1
< 1:

Figure 1
7It is easy to see that �p � I

1+�
q

K0�K1
> 0
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3 Auction formats and contract design

Two alternative sealed-auction formats are considered in this paper:

� The concession is awarded to the bidder o¤ering the lowest price.
Should two or more �rms report the same tari¤, the franchise will be
awarded to the bidder o¤ering the highest fee (LPHF auction format).

� The concession is awarded to the bidder o¤ering the highest fee. Should
two or more �rms report the same payment, the franchise will be
awarded to the bidder o¤ering the lowest price (HFLP auction for-
mat).

In both cases a �rm can operate the service only after submitting a two-
dimensional successful bid. In particular, each �rm must report the price
at which the franchisee commits itself to supply the market (p), and the
up-front (t = 0) payment to the government (R).
In order to compare the e¤ects of these bidding rules, we consider the

following alternative concession contracts:

� The winning bidder is not allowed to delay the investment, i.e. the
investment must be carried out at t = 0 (Case 1 ).

� The winning bidder is allowed to keep the option to invest (to operate
the service) alive for one period (Case 2 ).

We conclude the model set-up by adding the following assumptions:

Assumption 7 There are N competing �rms.

Assumption 8 Each bidder i (i = 1; 2; :::N) observes y0 and the multi-
plicative parameters (u; d), knows the distribution (q; 1 � q) and the
realization of the investment cost Ii;and only knows that Ij; j 6= i are
independent random variables, with the same absolutely continuous
distribution G; with positive density g over the interval I = [I l; Iu]
� R. For the sake of simplicity, we assume that capital costs are uni-
formly distributed on I with I l = 0.8

8None of the results depend on the assumption that G(I) is a uniform distribution as
long as I + G(I)

g(I) is a monotone increasing function.
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Assumption 9 pmax � ~pu � Iu

K0
, i.e. the consumers�reservation price is such

that even the most ine¢ cient �rm would be interested in operating the
service.

Assumption 10 Bidders are not subject to any liquidity or budget con-
straint, so that each �rm i has su¢ cient resources to pay the up-front
fee after winning the auction.

3.1 Case 1

Let�s �rst consider the outcome of the two auction formats when the contract
imposes the obligation to immediately undertake the investment required to
operate the service.
Since bidders will play so as to avoid being involved in ties with a positive

probability, under the LPHF format the �rms�optimal strategy is to choose
�rst the lowest price that maximizes their probability of winning and then,
conditional on this tari¤, report the highest fee.
This is indeed an application of the invariance result established by Jack-

son and Swinkels (2004) which states that if a "strategy pro�le forms an
equilibrium for one omniscient tie-breaking rule, it remains an equilibrium
for any other trade-maximizing omniscient tie-breaking rule" (p.2). In other
words, how bidders behave in the event of a tie and the tie-breaking then
used are irrelevant for the existence of a pure strategy equilibrium.9

The bidders� pricing problem reduces to a Bertrand game where each
agent picks up the lowest price p that maximizes the expected net present
value NPV 0 as de�ned in (1). Further, as the bidder reporting the lowest
tari¤ is the one with the highest NPV 0, he will also be able to o¤er the
highest fee. Formally, we �rst determine the pricing rule by maximizing:

max
pi
NPV 0(pi; ~pi) Pr

�
min
j 6=i

pj � pi
�

(5)

9Jackson and Swinkels�s approach is to show that an equilibrium exists in an auxiliary
game in which tie-breaking is endogenously chosen and then to show that the sharing
rule is, in fact, irrelevant. See also Simon and Zame (1990) for a full formal analysis of
endogenous sharing rule in discontinuous games. In the spirit of Simon and Zame we can
think of the LPHF auction format as a two-stage game where bidders choose the price
in the �rst stage and then the fee in the second stage in order to prevent tie (the reverse
holds for the HFLP format).
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and then, conditionally on pi(~pi); we obtain the concession fee by maximizing:

max
R0i

�
NPV 0(p(~pi); ~pi)�R0i

�
Pr

�
max
j 6=i

R0j � R0i
�

(6)

The equilibrium strategy for the LPHF auction rule is summarized in the
following Lemma.

Lemma 3 When the concessionaire is not allowed to delay the investment,
the LPHF auction involves the following unique equilibrium strategy rules:

pi = p(~pi) � (1�
1

N
)~pi +

1

N
~pu � ~pu (7)

R0i =
N � 1
N

NPV 0i �
N � 1
N

�
1

N
(~pu � ~pi)K0

�
(8)

Proof. See Appendix C
Going back to the de�nition of NPV 0, since by assumption 8 the thresh-

old levels ~pi are distributed uniformly within the support �P= [0; ~pu]; equa-
tion (7) implies that also NPV 0i are uniformly distributed over the interval
[0; NPV 0u ], with interim pro�ts positive for all types but the weakest �rm,
which never wins and whose NPV 0l is equal to zero even if it does win.
By substituting back (7) in the NPV 0i , (1) can be rewritten as a function

of the reported price:

NPV 0i �
1

N � 1(~p
u � p(~pi))K0

In other words, the bidder reporting the lowest price is indeed the one with
the highest NPV 0. Then, besides the fact that the concession is awarded
to the bidder that reports the lowest tari¤, it is a dominant strategy for all
�rms to o¤er the highest fee in order not to increase the rivals�probability
of winning.
The same line of reasoning applies for the HFLP auction.

Proposition 2 When the concessionaire is not allowed to delay the invest-
ment, the two auction formats involve the same outcome: the concession will
be awarded to the most e¢ cient �rm which will report the two-dimensional
bid (pi; R0) de�ned by (7) and (8).
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Proof. See Appendix D.
The above result is not surprising. In fact, as long as the contract imposes

the obligation to immediately invest, the same outcome can be replicated by
a third auction format, where the government selects the winning bidder
according to a scoring rule (a �rst-score auction). More speci�cally let�s
assume that the government is committed to awarding the franchise to the
�rm that obtains the highest score s0(pi; R0i ); de�ned as:

s0i = R
0
i ��(pi) (9)

where �(pi) �
R pi
0
(N � 1) (x�p

�1(x))
(~pu�x) K0dx and p(:) is the optimal pricing rule

de�ned as in (7). Since 1
N�1(x�p

�1(x))K0 is the NPV 0 evaluated under the
optimal price of the service, the term �(pi) is increasing in pi; and the score
increases as the concession fee increases and/or the price reduces.

Proposition 3 A unique symmetric equilibrium of the �rst-score auction is
one in which each �rm o¤ers the two-dimensional bid (pi; R0) de�ned by (7)
and (8).

Proof. See Appendix E
Similarly to Che (1993), we �nd that the scoring rule (9) involves system-

atic distortion against the concession fee. In other words, since in order to
win the auction the bidders must compete both in the price and in the fee,
an optimal scoring rule should reduce the fee below the level that the �rm
would have reported if the price had been imposed by the government. In
fact, letting:

s00(~pi) = max
pi

�
NPV 0(pi; ~pi)��(pi)

�
(10)

the problem can be seen as one in which each �rm, indexed by its adjusted
expected project value s00(~pi); proposes to meet the level of score s

0
i ; i.e.:�

s00(~pi)� s0i
�
Pr(max

j 6=i
s0j � s0i )

or substituting (10) and (9)

�
NPV 0(p(~pi); ~pi)�R0i

�
Pr

�
max
j 6=i

R0j � R0i
�

which is equivalent to (6).
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3.2 Case 2

In the previous section we have shown that when the contract imposes the
obligation to immediately invest, the two auction formats involve identical
outcomes in terms of price to consumers and concession fee. Does this equiv-
alence still hold when the franchisee is allowed to postpone the investment?
We begin by identifying the equilibrium strategy under the LPHF auc-

tion. As in section 3.1, by the Jackson and Swinkels�invariance result, bid-
ders�optimal strategy is to choose �rst the lowest price and then report the
fee. The �rms�pricing problem is still a Bertrand game where the project
value to be maximized is given by V (pi) as in (4). Further, as the bidder
reporting the lowest tari¤ is also the one with the highest V (pi), he will o¤er
the highest fee.
The equilibrium strategy for the LPHF auction is summarized in the

following Lemma.

Lemma 4 When the concessionaire is allowed to delay the investment, the
LPHF auction involves the following unique equilibrium strategy rules:

p(�pi) = (1�
1

N
)�pi +

1

N
�pu � �pu (11)

R1i =
N � 1
N

NPV 1i �
N � 1
N

�
1

N
(�pu � �pi)(K0 �K1)

�
(12)

Proof. See Appendix F
By direct inspection of (7) and (11), it is easy to show that:

p(�pi) � p(~pi); for all i: (13)

and then:

R1i � R0i ; for all i (14)

Disequality (13) implies that competing by maximizing NPV 1i is a dom-
inant strategy when the price plays a key role in winning the auction, as
occurs under the LPHF format. For instance, by exploiting the investment
time �exibility, bidders are able to submit a price (p(�pi)) lower than the one
they would be able to announce if they adopted NPV 0i as a reference, as
occurs when agents compete to acquire a contract which transfers all risks
to the concessionaire, by ruling out time �exibility.
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By contrast, (14) suggests that bidders will not �nd it pro�table to ex-
ploit time �exibility when the concession fee plays a key role in the auction
(HFLP). For instance, by referring to NPV 0i , bidders will report a fee (R

0
i )

higher than the payment they would have reported if they referred to NPV 1i .

Proposition 4 When the concessionaire is allowed to delay the investment,
the HFLP and LPHF auction formats involve di¤erent outcomes:

� Under HFLP the concession will be awarded to the most e¢ cient �rm
that reports the two-dimensional bid (p(~pi); R0i )

� Under LPHF the concession will be awarded to the most e¢ cient �rm
that reports the two-dimensional bid (p(�pi); R1i )

Proof. Straightforward from Lemma 3 and 4

4 Welfare comparison

4.1 The welfare function

We found that the two auction formats involve the same outcome in terms of
price to consumers and concession fee when the contract rules out investment
time �exibility. Moreover, this outcome is equal to the one which would
emerge if the government awarded a contract which does not impose the
obligation to invest immediately by using the HFLP auction.
Consequently, the government�s choice reduces to the following alterna-

tives: i) impose the obligation to invest immediately (in this case the bid-
ding rule is irrelevant), ii) allow the winning bidder to delay the investment,
awarding the concession by using the LPHF format.
In order to provide a decision rule, we assume that from the government�s

point of view a euro in the pocket of consumers and a euro in the hand of
a public authority are equally valuable. Moreover, by assuming that the
government�s objective function does not include the winning bidder�s net
pro�ts, we get the following ex-ante welfare function:10

10Since the fee is a constant fraction of the concession value, in qualitative terms the
results of the comparative welfare analysis would not change if the welfare were de�ned
as the sum of the consumer surplus and the (�rm�s) project value.
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W = E(S) + E(R)

where E(S) and E(R) are the expected discounted consumer surplus and the
expected government�s revenue respectively. In particular, for the former, we
need to distinguish between the consumer surplus if the winning �rm invests
at t = 0 (S0) from the consumer surplus if the concessionare invests at t = 1
(S1):

S0 =

1X
t=0

1

(1 + �)t

Z pmax

pi(~pi)

E0(yt)dp ; and S1 = q

( 1X
t=1

1

(1 + �)t

Z pmax

pi(�pi)

y+t dp

)

where S1 is evaluated at t = 1 as of today and only for y+t .
The following Lemma gives the values of the consumer surplus and the

concession fee under the two auction formats with and without investment
time �exibility.

Lemma 5 i) LPHF (without investment time �exibility) and HFLP (with
or without �exibility) provide the following expected consumer surplus and
concession fee:

E(S0) =

�
pmax � 1

2

N + 1

N
~pu
�
K0

E(R0) =
N � 1

N(N + 1)
~puK0

ii) LPHF (with investment time �exibility) provides the following expected
consumer surplus and concession fee:

E(S1) =

�
pmax � 1

2

N + 1

N
�pu
�
(K0 �K1)

E(R1) =
N � 1

N(N + 1)
�pu(K0 �K1)

Proof. See Appendix G
From Lemma 5 it is easy to show that:

E(R1)� E(R0) � � N � 1
N(N + 1)

1 + �� q
1 + �

Iu < 0
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and:

E(S1)� E(S0) � �pmaxK1 +
1

2

N + 1

N

1 + �� q
1 + �

Iu

Thus, investment time �exibility, by inducing the bidders to reduce the price,
raises the consumer surplus but has a detrimental e¤ect on the government�s
revenue. Then, by de�ning �W 1;0 as:

�W 1;0 = [E(S1) + E(R1)]� [E(S0) + E(R0)] (15)

� �pmaxK1 +
1 + �� q
1 + �

N2 + 1

2N(N + 1)
Iu

we get the following proposition.

Proposition 5 i) If �W 1;0 > 0, a contract which allows the concessionaire
to optimally decide the investment timing involves the highest expected welfare
value, provided the franchise is awarded according to the LPHF bidding rule.
ii) If �W 1;0 < 0, investment time �exibility does not provide any higher

welfare value.
Proof. Straightforward from Lemma 5.

The second part of the proposition deserves some comments. Since�W 1;0 <
0 means that allowing the winner bidder to decide the investment time does
not increase the welfare value, from the government�s point of view, impos-
ing the obligation to invest immediately or allowing the franchise holder to
decide when to roll-out the service becomes irrelevant. However, whereas in
the former case the overall welfare value is not a¤ected by the bidding rule,
in the latter case it becomes more socially pro�table to award the concession
through the HFLP format.

4.2 Comparative statics analysis

Comparative statics analysis provides insights into the e¤ect of some key pa-
rameters upon the payo¤ of alternative concession arrangements and bidding
rules. In particular, let�s consider how�W 1;0 is a¤ected by demand volatility
(d), the number of bidders (N) and the upper boundary of the investment
cost (Iu).

@�W 1;0

@d
> 0 (16)
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@�W 1;0

@N
> 0 (17)

@�W 1;0

@Iu
> 0 (18)

The interpretation of (16) is straightforward if we refer to the Real Option
Theory. For instance, an increase in demand volatility makes the option of
waiting for new information to arrive before undertaking irreversible invest-
ments more valuable; this, in turn, increases the value of a contract which
does not impose the obligation to immediately invest. Under the LPHF for-
mat, bidders will exploit this option value by further reducing the price. This
involves an increase in consumer surplus which more than compensates for
the fall in expected government revenue.
As for the number of competitors, an increase in N tends to make a �ex-

ible contract and, consequently, the LPHF auction more socially appealing.
We get a similar result when the upper boundary of the investment cost
(Iu) increases. This is because the LPHF auction allows a larger number of
ine¢ cient �rms to report relatively low prices which still assure a positive
expected net present value. In e¤ect, since the upper boundary Iu plays the
role of "reserve price", regardless of the auction format, an increase in Iu,
although it reduces the government revenue, involves an increase in the ex-
pected consumer surplus. However, since the LPHF format induces a level of
competition on the price that is higher than the level of competition induced
by the HFLP auction, the expected consumer surplus gain E(S1) � E(S0)
exceeds the fall in expected government revenue E(R1)� E(R0).

Remark 1 If the volatility of the demand increases, the level of competition
increases, or �rms�heterogeneity increases, the LPHF auction format tends
to outperform the HFLP format, provided the concessionaire is allowed to
optimally decide the investment timing.

4.3 Demand elasticity

Since infrastructure services often exhibit a very low demand elasticity, our
analysis has been carried out by assuming an inelastic demand. With a
downward sloping demand curve, it seems plausible that the expected welfare
bene�ts arising from a contract which gives the franchisee the right to decide
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when (and whether) to operate the service tend to drop as the elasticity of
demand increases.
For instance, since an increase in elasticity makes the pro�t function

"more concave" in the price, �rms will become more risk-averse (Spulberg,
1995). This causes an increase in equilibrium bids (Krishna, 2002) which,
under the LPHF auction, takes on the form of a decrease in equilibrium
prices involving an increase in the expected consumer surplus which is likely
to more than compensate for the fall in public revenue.
Although the price competition generated by a downward sloping de-

mand curve is present whether the contract allows or rules out investment
time �exibility, it is reasonable logical to expect the price reduction to be
more marked in the second case since the �exibility lessens the e¤ects of
risk aversion. Put another way, if the contract rules out any time �exibility,
agents will be induced to bid more aggressively in order to "buy" insurance
against the possibility of losing the franchise.

Remark 2 An increase in demand elasticity tends to reduce the potential
welfare gains arising from awarding a concession which allows the winning
bidder to optimally decide the investment timing.

5 Final remarks

Concession arrangements and award procedures can take di¤erent forms and
entail various legal and economic issues.
In this paper we have focussed on the e¤ects of bidding rules, by com-

paring the outcome of two sealed-auction formats which approximate actual
practices:

� the concession is awarded to the bidder o¤ering the lowest price charged
to consumers; should two or more �rms report the same price, the
franchise will be awarded to the bidder o¤ering the highest fee for the
lease (LPHF format)

� the concession is awarded to the bidder o¤ering the highest fee; should
two or more �rms report the same payment, the franchise will be
awarded to the bidder o¤ering the lowest price (HFLP format).

Our �ndings suggest that the choice between these auction formats can
have a de�nitive e¤ect on the price charged to consumers and the concession
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fee when the conceding authority gives the winning bidder the right to under-
take the investment required to roll-out the service at a date of his choosing.
By contrast, when the concession imposes the obligation to immediately op-
erate the service, the outcome of the award process is not a¤ected by the
bidding rule.
Another issue addressed in this paper is the e¤ect of time �exibility on the

expected social value. Although the e¤ect is not univocal, the analysis has
shown that when the volatility of the demand increases, the number of com-
petitors increases, or the �rms�heterogenity increases, a concession allowing
the franchisee to optimally decide the investment timing tends to outper-
form concession arrangements which transfer all risks to the concessionaire,
by ruling out investment time �exibility.
However, in order to capture these potential welfare bene�ts, the con-

tracts which give the option to delay the investment should be awarded by
using a bidding rule which emphasizes the price charged to consumers rather
than the fee paid to the government (LPHF auction). For instance, if the
option-to-delay were awarded via the HFLP auction, �rms would report the
same two-dimensional bid which they would have reported if the conceding
authority had imposed the obligation to immediately operate the service. In
other words, the HFLP auction would annul the e¤ects of the greater com-
petitive pressure deriving from the awarding of a contract which does not
restrict the managerial autonomy of the franchisee.
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Appendix

A Proof of Lemma 1

Assumptions 3 and 4 allow us to write the time evolution of demand as:

% y+t = (1 + u)
ty0 with probability q

yt
& y�t = (1� d)ty0 with probability 1� q

for all t � 0 (19)

The �ow of pro�ts that the concessionaire will receive once the investment is
undertaken is simply:

�(yt) = pyt for all t � 0 (20)

Substituting (19) into (20), we are able to write the instantaneous pro�t
function as:

% �+t = (1 + u)
tpy0 with probability q

�t
& ��t = (1� d)tpy0 with probability 1� q

(21)

and the discounted value of pro�t �ows from time 1 evaluated at time zero
becomes:

%
P1

t=1
�+t

(1+�)t
= 1+u

��upy0 with probability qP1
t=1

�t
(1+�)t

&
P1

t=1
��t

(1+�)t
= 1�d

�+d
py0 with probability 1� q

for all t � 0

(22)
with �� u > 0. Referring to (21) and (22), the project�s Net Present Value
(NPV 0) is given by:

NPV 0 =

�
1 + q

1 + u

�� u + (1� q)
1� d
�+ d

�
py0 � I (23)

from which it is easy to get the expression in the text:

NPV 0 = (p� ~p)K0

where ~p � I
K0
and K0 �

h
1 + q 1+u

��u + (1� q)
1�d
�+d

i
y0. This concludes the

proof.
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B Proof of Lemma 2

As stated in the text, if the �rm is able to postpone the investment decision,
NPV 0 > 0 no longer constitutes a su¢ cient condition for immediately build-
ing the new infrastructure. In particular, by Assumption 5, after a period the
investment becomes pro�table only if the demand goes up to y+1 :As a result,
in evaluating the NPV at time zero the �rm has to consider this option value
that must be included as part of the total cost of the investment.
Operatively, the �rm will compare the NPV 0 with the NPV 1 at t = 1

as of today, evaluated only for �+t :

NPV 1 = q

" 1X
t=1

�+t
(1 + �)t

� I

1 + �

#
� q

�
1 + u

�� upy0 �
I

1 + �

�
(24)

The overall project value is then given by:

max
�
NPV 0; NPV 1

�
(25)

Further, by (25), it is possible to calculate the value of the �rm�s i option to
wait as:

OP 0 = max
�
NPV 0; NPV 1

�
�NPV 0 = max

�
NPV 1 �NPV 0; 0

�
(26)

If NPV 1�NPV 0 > 0 it is optimal to wait one period and decide to invest at
t = 1 only in the case of good news. If, on the contrary, NPV 1�NPV 0 < 0
it is optimal to invest at t = 0. Then, by imposing NPV 0(p̂) = NPV 1(p̂);
(26) can be rewritten as follows:

OP 0 = max [(p̂� p)K1; 0] (27)

where p̂ � 1+��q
1+�

I
K1
and K1 �

h
1 + (1� q)1�d

�+d

i
y0. Substituting (27) back

into (26) and solving for NPV 1 we get:

NPV 1 = NPV 0 +OP 0 � (p� ~p)K0 +max [(p̂� p)K1; 0]

This concludes the proof.
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C Proof of Lemma 3

Before proving the Lemma let�s formally set the problem. Consider the bid-
ding decision of the �rm i and suppose that all other �rms use the symmetric
strategy (p(~pj) R0(~pj)) 8j 6= i that speci�es every bidder�s willingness to pay.
Further, let Hi(pi; R0i ) denote the probability that �rm i will win the auc-
tion with the two-dimensional bid (pi; R0i ) and the speci�ed tie-breaking rule:
Formally:

Hi(pi; R
0
i ) = Pr

�
min
j 6=i

p(~pj) � pi
�
+ Pr

�
min
j 6=i

p(~pj) = pi

�
� (28)

�
�
Pr

�
max
j 6=i

R0(~pj) � R0i
�
+

1

1 + k
Pr

�
max
j 6=i

R0(~pj) = R
0
i

��
where k is the number of other bidders that bid exactly (pi; R0i ): The �rst
term on the r.h.s. of (28) comes from events in which the �rm i is the
outright winner. The second term comes from events in which there is more
than one �rm that bids pi and ties are resolved according to a second bid on
the concession fee. Then, according to the tie-breaking rule, the �rm i is the
winner if it reports the highest fee R0i : Finally, if there is still more than one
�rm that bids the same (pi; R0i ); the winner is determined randomly from
among those with the highest bid.
A bid (pi; R0i ) is a best response at ~pi (i.e. Ii) by the �rm i if it maximizes

its expected payo¤ against the rivals�strategies (p(~pj); R0(~pj);8j 6= i), that
is, if for any feasible bid (p;R0) we get:�

NPV 0(pi; ~pi)�R0i
�
Hi(pi; R

0
i ) �

�
NPV 0(p; ~pi)�R0i

�
Hi(p;R

0)

Note that if p(~pj) is a strictly monotone increasing function and R0(~pj) a
strictly monotone decreasing function, then Hi(pi; R0i ) is strictly increasing
in the two arguments.
The above problem can solved referring to the invariance result estab-

lished by Jackson and Swinkels (2004). The invariance result states that: 1)
if a bidding strategy forms an equilibrium for one "omniscient" tie-breaking
rule, it remains an equilibrium for any other trade-maximizing "omniscient"
tie-breaking rule; 2) if a player has an improving deviation relative to some
bidding strategy and tie-breaking rule, then there is a slight modi�cation of
the deviation strategy which is still improving but which in addition allows
the player to avoid ties (Theorem 3 p. 24).
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By the invariance result, we can split the above problem into two sub-
problems. First we can determine the pricing rule as:

pi = argmaxNPV
0(pi; ~pi) Pr

�
min
j 6=i

p(~pj) � pi
�

(29)

and then, conditionally on pi(~pi); derive the concession fee as:

R0i = argmax
�
NPV 0(p(~pi); ~pi)�R0i

�
Pr

�
max
j 6=i

R0(~pj) � R0i
�

(30)

The �rst sub-problem comes from the fact that, regardless of the tie-breaking
rule, the �rms will prefer to avoid ties. Further, since replacing one tie-
breaking with another does not alter the best response of �rm i at the equi-
librium, the second minimizes the probability that the rivals will win in the
event of ties occurring. Note that the invariance theorem applies also in the
event of a tie on both p and R, and a random tie-breaking rule is in place.
Let�s begin with (29). We show that a price strategy for �rm i is a

symmetric function p(~pi)mapping from the set of �rm types �P = [0; ~pu] to the
set of possible prices P � R+:Yet, for each �rm i this function is continuously
di¤erentiable and strictly increasing with the property that p0(~pi) < 1 and
p(~pu) = ~pu.
Let�s assume that each bidder makes rational conjectures about the dis-

tribution of the rivals�prices represented by a common distribution function
F (p); which is strictly increasing on the interval P � R+, and the hazard
rate h(p) � f(p)

1�F (p) is increasing in p. This assumption allows de�nition of

F (N�1)(pi) � 1� (1�F (pi))N�1 as the cumulative distribution (with density
f (N�1)(pi)) of the minimum of the N � 1 rivals�price, i.e. the probability
that all the other bidders set lower tari¤s than i on the same support P. We
can then write the �rm i �s expected payo¤ (29) as:

(pi � ~pi)K0(1� F (pi))N�1 (31)

Maximizing (31) with respect to pi yields the necessary condition:

(1� F (pi))N�1[1� (N � 1)(pi � ~pi)h(pi)] = 0
from which we get:

pi = ~pi +
1

(N � 1)h(pi)
(32)
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By the assumption h0(pi) > 0 the second order condition is always satis�ed,
i.e.: �(pi � ~pi)h0(pi)� h(pi) < 0:
Since the costs are uniformly distributed on I = [0; Iu]; also ~pi are distrib-

uted uniformly within the support �P = [0; ~pu]: Furthermore, the less e¢ cient
�rm knows for certain that it will lose the auction, then h(p)!1 and from
(32) we get pi ! ~pu : i.e. the �rm has a project value that is too low to win
and then �xes as price p = ~pu. Finally, dpi

d~pi
= � �1

1+
h0(pi)

(N�1)h(pi)2
> 0 and < 1:

So far we have assumed that Ii (i.e. ~pi) is private information, but used
the distribution F (:) over the rivals� price strategies to derive the �rm i
optimal price. To characterize the link between the distribution of Ii (~pi)
and the �rm�s conjecture on output prices we impose:

F (pi) = G(~pi) =
~pi
~pu
� Ii
Iu

(33)

This is a problem of statistical inference. We need to ensure that the func-
tion pi(:) of the random variable Ii (i.e. ~pi) is itself a random variable and
to induce the distribution of pi from the distribution of Ii (i.e. ~pi). This
procedure is an example of the distributional strategies approach introduced
by Milgrom and Weber (1985). Since the investment costs are uniformly
distributed over I = [0; Iu], by (33) and the hazard rate we get:

h(pi) �
f(pi)

1� F (pi)
=

1
~pu

1� ~pi
~pu

d~pi
dpi

from which:
dpi
d~pi

=
1

h(pi)

1

~pu � ~pi
By (32):

(~pu � ~pi)
dpi
d~pi

=
1

h(pi)
� (N � 1)(pi � ~pi) (34)

The above equality can be expressed as a �rst order di¤erential equation in
p(~p) as:

p0(~p)(~pu � ~pi)� p(~p)(N � 1) + ~p(N � 1) = 0 (35)

with the boundary condition that p(~pu) = ~pu: By the linearity of (35) we can
try a solution of type:

p(~p) = A~p+B (36)
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Substituting (36) in (35) and rearranging we obtain :

A(~pu � ~pi)� (A~p+B)(N � 1) + ~p(N � 1) = 0

[�A� A(N � 1) + (N � 1)]~p+ A~pu �B(N � 1) = 0

from which, de�ning A = N�1
N

and B = ~pu

N
; we get:

p(~pi) = (1�
1

N
)~pi +

1

N
~pu (37)

This proves the �rst part of the proposition.
Let�s now turn to the second sub-problem. Since the �rms know in ad-

vance that in the event of a tie the regulator will break the tie basing on the
reported fee, it is a dominant strategy for all �rms to o¤er the highest fee
in order not to increase the rivals�probability of winning. Substituting (37)
into (1), the NPV 0i becomes:

NPV 0i � (pi � ~pi)K0 �
1

N
(~pu � ~pi)K0 (38)

From (38) the weakest �rm does not give any value to the project, i.e.
NPV 0l � 1

N
(~pu � ~pu)K0 = 0. Since the thresholds ~pi are distributed uni-

formly within �P= [0; ~pu]; the bidding problem becomes equivalent to the
case where each bidder i assigns a value to the project which is also distrib-
uted uniformly over the interval [0; NPV 0u ]. The equilibrium strategy form
(30) calls upon a �rm to bid a constant fraction of its NPV (Krishna, 2002,
p. 19), i.e.:

R0i =
N � 1
N

NPV 0i �
N � 1
N

�
1

N
(~pu � ~pi)K0

�
� 1

N
[~pu � p(~pi)]K0

This concludes the proof of the Lemma.

D Proof of Proposition 2

To prove Proposition 2 it is su¢ cient to show that by reversing the proof of
Lemma 3, we get the same result. Let�s �rst assume that there is a symmetric
price rule p : [0; ~pu]! [0; pu] which is strictly increasing with p0(~pi) < 1 and
boundary condition p(~pu) = ~pu: By (1), the project value can be expressed as
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NPV 0(~pi) � (p(~pi)� ~pi)K0; where NPV 0 : [0; ~pu] ! [NPV 0u ; 0] is a strictly
decreasing function.
Let�s now consider the bidding decision of �rm i. Assuming that all

other �rms use a strictly monotone decreasing bid function R0(~pi) : [0; ~pu]!
[R0(0); R0(~pu)] 8i that speci�es every bidder�s willingness to pay, the �rm i�s
expected payo¤ from bidding R0i is:�

NPV 0(~pi)�R0i
�
Pr

�
max
j 6=i

R0(~pj) � R0i
�

Since R0(~pi) is monotone in [0; ~pu]; the probability of winning when bid-
ding the amount R0i against rivals who play the strategy R

0(~pj); j 6= i is
Pr fR0(~pj) � R0i ) 8j 6= ig = Pr(R0

�1
(R0j ) � ~pi j 8j 6= i) = 1 � G(N�1)(~pi) ��

~pu�~pi
~pu

�N�1
: That is, since R0(~pi) is one-to-one in [0; ~pu]; choosing a bid in

[R0(0); R0(~pu)] is equivalent to choosing a ~pi in [0; ~pu]:We can then write the
�rm i �s expected payo¤ as:

U(~pi) �
�
NPV 0(~pi)�R0(~pi)

�
(1�G(N�1)(~pi)) (39)

from which it is deduced that NPV 0(~pi) � R0(~pi) must be non-negative to
guarantee a positive expected payo¤ (otherwise winning the auction would
be unpro�table). Let�s suppose that bidder i submits a bid R0(�pi) when his
or her true trigger is ~pi. Maximizing (39) with respect to �pi and imposing
the truth-telling condition �pi = ~pi yields the necessary condition:

0 =
@U(�pi; ~pi)

@�pi
j�pi=~pi= �R00(~pi)(1�G(N�1)(~pi))�

�
NPV 0(~pi)�R0(~pi)

�
g(N�1)(~pi):

(40)
By (40), the maximization problem can be reduced to the following �rst-order
linear di¤erential equation:

R00(~pi)(1�G(N�1)(~pi)) = �
�
NPV 0(~pi)�R0(~pi)

�
g(N�1)(~pi)

and rearranging we get: NPV 0(~pi)d(1�G(N�1)(~pi)) = R00(~pi)(1�G(N�1)(~pi))�
R0(~pi)g

(N�1)(~pi) � dR0(~pi)(1 � G(N�1)(~pi)). Since G(N�1)(~pu) = 1, integra-
tion yields:

�R0(~pi)(1�G(N�1)(~pi)) =
Z ~pu

~pi

NPV 0(y)d(1�G(N�1)(y)); (41)
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and

R0(~pi) = (N � 1)
Z ~pu

~pi

NPV 0(y)
(~pu � y)N�2
(~pu � ~pi)N�1

dy for any ~pi < ~pu

By standard arguments, it easy to show that if the bidder i�s private trigger is
equal to the upper value ~pu, his or her bid must be equal to the current value
of the project, i.e. R0(~pu) = NPV 0(~pu) = 0: This makes zero expected pro�t
for the worst bidder and ensures that the proposed equilibrium is unique in
[0; ~pu] (Krishna, 2002, p. 17). Furthermore, di¤erentiating (41) with respect
to ~pi con�rms the assumed monotonicity of the optimal strategy R0(~pi):

d

d~pi
R0(~pi) =

(N � 1)
(~pu � ~pi)

�
R0(~pi)�NPV 0(~pi)

�
< 0 for all ~pi 2 [0; ~pu)(42)

and by continuity for ~pi = ~pu as well. Finally, the monotonicity of NPV 0(~pi)
also assures the su¢ ciency of (40).
So far we have assumed the existence of the price rule p(~pi) and its prop-

erties. However it can be easily derived on the lines of Lemma 3. It is useful
to note that since p(~pi) is one-to-one in [0; ~pu]; choosing a price pi in [0; pu] is
equivalent to choosing a trigger ~pi in [0; ~pu]: Then the bidder i�s direct utility
function (under the truth-telling condition) can be written as:

U(~pi) �
�
(p(~pi)� ~pi)K0 �R0(~pi)

�
(1�G(N�1)(~pi)) (43)

=
�
(pi � ~pi)K0 �R0(~pi)

�
(1� F (N�1)(pi))

where F (pi) = G(~pi) stands for the �rm i rational conjecture about the
distribution of the rivals�prices. For any R0(~pi) < (pi � ~pi)K0; the �rm will
maximize (43) by choosing pi such that the expected revenue (pi� ~pi)K0(1�
F (N�1)(pi)) is maximum. Thus, Lemma 3 con�rms that p(~pi) is linear in ~pi
with p0(~pi) < 1 and p(~pu) = ~pu: This concludes the proof.

E Proof of Proposition 3

To prove this proposition we follow Che (1993, Proposition 2). The �rst step
is to show that under the �rst-score auction the price is chosen independently
of the score and it is given by:

pi = argmax
�
NPV 0(pi; ~pi)��(pi)

	
(44)
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In addition, since

dNPV 0(pi; ~pi)

dpi
� d�(pi)

dpi
= K0 � (N � 1)

(pi � ~pi)
(~pu � pi)

K0

= [1� (N � 1)(pi � ~pi)h(pi)]K0

h(pi) =
1

(~pu�pi) is equal to zero if pi = p(~pi) as in (7), the scoring rule is able
to implement the optimal bid.
To do this it is su¢ cient to show that for any couple of bids that give the

same score, the one that contains the price pi always outperforms the other.
Let�s suppose that there are two equilibrium bids (p+i ; R

0
i ) and (p

0
i; R

00
i ) with

p+i 6= pi; p0i = pi and R00i = R0i +
�
�(p0i)��(p+i )

�
: It is easy to show that the

two bids perform the same score, i.e. s0(p+i ; R
0
i ) = s

0(p0i; R
00
i ):

s0(p0i; R
00
i ) = R00i ��(p0i)

= R0i +
�
�(p0i)��(p+i )

�
��(p0i)

= R0i ��(p+i ) = s0(p+i ; R0i )

Although the two bids give the same score, the expected pro�t of (p0i; R
00
i ) is

higher than the expected pro�t of (p+i ; R
0
i ); that is:

11

U(p0i; R
00
i ) =

�
(p0i�~pi)K0�R

00
i

�
Pr (win; s0(p0i; R

00
i ))

=
�
(pi�~pi)K0�R

0
i�
�
�(pi)��(p

+
i )
�	
Pr (win; s0(p+i ; R

0
i ))

=
�
(p+i �~pi)K0�(p

+
i �~pi)K0+(pi�~pi)K0�R

0
i�
�
�(pi)��(p

+
i )
�	
Pr (win; s0(p+i ; R

0
i ))

=
�
(p+i �~pi)K0�R

0
i+
�
(pi�~pi)K0��(pi)� ((p

+
i �~pi)K0��(p

+
i )
�
)
	
Pr (win; s0(p+i ; R

0
i ))

� U(p+i ; R
0
i )

where the last inequality follows from (44). Next, since the price is chosen
independently from the score, substituting pi = p(~pi) we can rewrite the
above �rm i�s expected payo¤ as:

U(pi; R
0
i ) =

�
(p(~pi)� ~pi)K0 �R0i

�
Pr(win; s0(pi; R0i )

=
�
NPV 0(~pi)�R0(~pi)

�
(1�G(N�1)(~pi))

which is equivalent to (39). The optimal concession fee then follows in the
usual way. This concludes the proof.
11See Che (1993, p. 678) for a formal proof that Pr(win; s0(p0i; R

00
i ) = Pr(win;

s0(p+i ; R
0
i )) > 0:

27



F Proof of Lemma 4

Lemma 4 can be proved following the proof of Lemma 3. The pricing rule
is obtained by maximizing the expected project value. In particular, each
bidder should maximize the project value as de�ned in (4):

max
pi
V (pi)(1� F (pi))N�1

or equivalently:

max
pi
fmax[(pi � ~pi)K0; (pi � �pi)(K0 �K1)]g (1� F (pi))N�1:

The optimal price strategy is then given by:

poptioni = min [p(~pi); p(�pi)] (45)

where p(~pi) is the price when the �rm maximizes the NPV 0i and p(�pi) stands
for the price when it maximizes the NPV 1i : Since Lemma 3 provides p(~pi);
we need to derive the pricing rule that maximizes:

max
pi
[(pi � �pi)(K0 �K1)](1� F (pi))N�1

The �rst order condition for this case is:

(1� F (pi))N�1[(K0 �K1)� (N � 1)[(pi � ~pi)K0 + (p̂i � pi)K1]h(pi)] = 0

from which we obtain:

pi =
K0

K0 �K1

~pi �
K1

K0 �K1

p̂i +
1

(N � 1)h(pi)
(46)

= �pi +
1

(N � 1)h(pi)

Since h0(pi) > 0; the second order condition is always satis�ed; i.e.: �[(pi �
~pi)K0 + (p̂i � pi)K1]h

0(pi)� (K0 �K1)h(pi) < 0: As the costs are uniformly
distributed on I = [0; Iu] also �pi are distributed uniformly in P̄ = [0; �pu]: The
�rm with �pu has a project value that is too low to win, i.e. the less e¢ cient
�rm knows for certain that it will lose the auction, then h(p)!1 and from
(46) pi ! �pu:Finally, we get dpi

d�pi
= � �1

1+
h0(pi)

(N�1)h(pi)2
> 0 and < 1:
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Simple veri�cation shows that from (33) we obtain a �rst order di¤erential
equation in p(�p) similar to (35), from which it is easy to get the price rule
(11) in the text. Substituting p(�p) into (2) the NPV 1i becomes:

NPV 1i = (pi � �pi)(K0 �K1) �
1

N
(�pu � �pi)(K0 �K1) (47)

which is also distributed uniformly in [0; NPV 1u ], with NPV
1
l � 1

N
(�pu �

�pu)(K0 �K1) = 0: It follows that the bidding equilibrium strategy requires
reporting of a concession fee that is a constant fraction of the NPV 1 (Kr-
ishna, 2002, p. 19):

R1i =
N � 1
N

NPV 1i �
N � 1
N

�
1

N
(�pu � �pi)(K0 �K1)

�
� 1

N
[�pu�p(�pi)](K0�K1)

Finally, recalling that by assumption 6 we get �pi � ~pi � p̂i, the following
disequality p(�pi) < p(~pi) is always satis�ed for all i, i.e.:

(1� 1

N
) [�~pi + (1� �)p̂i] +

1

N
[�~pu + (1� �)p̂u] < (1� 1

N
)~pi +

1

N
~pu

(�� 1)
��
(1� 1

N
)~pi +

1

N
~pu
�
�
�
(1� 1

N
)p̂i +

1

N
p̂u
��

< 0

It therefore follows that reporting p(�pi) and o¤ering R1i =
N�1
N
NPV 1i as

concession fee is a dominant strategy for each �rm. This concludes the proof.

G Proof of Lemma 5

Let�s �rst consider the expected revenue. De�ning Vi = max [NPV 0i ; NPV
1
i ] ;

the bidder i�s expected payment is given by:

E(Ri) = Ri Pr(win) �
N � 1
N

Vi(
Vi
V u
)N�1

The regulator earns from each bidder an expected payment E(Ri): Since he
does not know the bidders�valuations, he takes an expected value:

E[E(Ri)] =
Z V u

0

E(R1(Vi))
1

V u
dVi

� N � 1
N

(
1

V u
)N
Z V u

0

Vi
NdVi

� N � 1
N(N + 1)

V u
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from which we get:

E[R] = NE[E(Ri)] �
N � 1
N + 1

V u (48)

Substituting (38) and (47) into (48), we obtain:

E[R0] =
N � 1

N(N + 1)
~puK0

if the �rms cannot postpone the decision, and:

E[R1] =
N � 1

N(N + 1)
�pu(K0 �K1)

if they can. We are now able to calculate the di¤erence:

E[R1]� E[R0] =
N � 1

N(N + 1)
[�pu(K0 �K1)� ~puK0] � �

N � 1
N(N + 1)

p̂uK1 < 0

(49)
Let�s now turn to the consumers�surplus. We need to distinguish between

the HFLP and the LPHF format. Indicating the surplus for the �rst and
second cases by S0 and S1 respectively, we get:

S0 = E

( 1X
t=0

1

(1 + �)t

Z pmax

pi(~pi)

ytdp

)
=

1X
t=0

1

(1 + �)t

Z pmax

pi(~pi)

E(yt)dp

= (pmax � pi(~pi))(y0 +
1X
t=1

1

(1 + �)t
E(yt) = (p

max � pi(~pi))K0

and:

S1 = q

( 1X
t=1

1

(1 + �)t

Z pmax

pi(�pi)

y+t dp

)
= (pmax � pi(�pi))q

1X
t=1

y+t
(1 + �)t

= (pmax � pi(�pi))qYuy0 = (pmax � pi(�pi))(K0 �K1)

Since the consumers do not know the winning bidder, the ex-ante surplus is
given by:

E[S0] = (pmax � Epi(~pi))K0 � (pmax �
1

2

N + 1

N
~pu)K0
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and:

E[S1] = (pmax � Epi(�pi))(K0 �K1) � (pmax �
1

2

N + 1

N
�pu)(K0 �K1)

where:

E [pi(~pi)] =

Z ~pu

0

pi(~pi)
1

~pu
d~pi �

1

2

N + 1

N
~pu

and:

E [pi(�pi)] =

Z �pu

0

pi(�pi)
1

�pu
d�pi �

1

2

N + 1

N
�pu

The di¤erence between the two consumer�s surplus therefore becomes:

E[S1]� E[S0] � (pmax � N + 1
N

�pu

2
)(K0 �K1)� (pmax �

N + 1

N

~pu

2
)K0(50)

�
�
�pmax + 1

2

N + 1

N
p̂u
�
K1

Finally, by (49) and (50), the di¤erence between the welfare value resulting
from the LPHF auction format and the welfare value resulting from the
HFLP is given by:

�W 1;0 =

�
�pmax + 1

2

N + 1

N
p̂u
�
K1 �

N � 1
N(N + 1)

p̂uK1

= �pmaxK1 +
1 + �� q
1 + �

N2 + 1

2N(N + 1)
Iu

This concludes the proof.
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