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Abstract: Long term storage of corn is becoming more common due to the recent increase in the
demand for corn by ethanol plants. Infection of maize kernels by toxigenic fungi remains a
challenging storage problem despite decades of research. Experts in storage management
propose the use of a combination of preventive and monitoring-based responsive strategiesin
response to mold risks. In this paper, a stochastic dynamic programming model is solved to
determine the expected profitability and optimal combination, timing and intensity of the
proposed mold management strategies using farmers’ existing infrastructure. The results show
that even with relatively high monitoring costs, maintaining high quality grain using a
monitoring based optimal mold management strategy costs less than the benefit it fetches.
Farmers' current typical practice of aerating the grain until the end of December and doing
nothing thereafter bears a high risk of economic losses if grain isto be stored until later during
the summer. Generally, the optimal mold management strategy depends on monitoring the
biophysical conditions of the grain and the time period under consideration. If the in-bin
temperature is high and less than 5% of kernels are mold damaged, then aerating when the
outside temperatureis at least 3°C less than the in-bin temperature and continuing to store the
grain isthe optimal strategy.

Key words: Mold management, stored corn, expected profitability, integrated pest management,
monitoring, aeration, stochastic dynamic programming,

1. Introduction

Molds rank second only to insects as a cause of damage in stored grains (CAST, 1989). They
cause detrimental changes in grain appearance, quality and dry matter (Ng et al., 1998), and they
reduce the energy content and ethanol yield for corn (Hardy et al., 2006). Molds also produce by-
products called mycotoxins which are poisonous to humans and animals (MAFRI, 2006). The
presence of molds and mycotoxins leads to price discounts or rejections of shipments by buyers.
The annual loss due to mycotoxins from US exports of Bt corn is estimated at about $23 million
(Wu, 2006). Bt corn accounts for 40% of total US corn production (FBC, 2007). Total US corn
production for 2006/7 is about 10.5 billion bushels and the share of exportsin total corn
production is 21.3% (Hagenbaugh, 2007; Westcott, 2007). Assuming that the proportion of grain
containing mycotoxins is the same as the proportion for Bt corn exports, the estimated annual

loss to the US due to mycotoxinsin corn in 2006/7 is about $270 million. Farmers who enter



contracts to deliver food-grade corn late during the storage season report that they either face
huge discounts or incur higher costs to meet the minimum mold standards stipulated in the
contract (Yigezu and Alexander, 2007). In the face of increasing demand for storing corn due to
the recent the rise in the number of ethanol plants, storage mold invasion poses a maor challenge

for farmers.

Literature on the economics of stored product pest management is scanty, and most of it is
devoted to the study of the profitability of an individua intervention or the comparison of afew
possible combinations of strategies with fixed input intensities and times of application. Adam et
al. (2004) and Rulon et al. (1999) used cost benefit analysis to compare the profitability of
different strategies such as fumigation and aeration for controlling insects. Fox and Hennessey
(1999) developed an economic loss minimization method which is useful for determining the
timing of a given intervention to minimize economic loss during storage and applied it to the
case of fumigation to control the lesser grain borer. Our paper isthefirst to model the economics

of optimal mold control in stored grains.

Despite decades of research, mold infection remains a challenging problem (Munkvold, 2003).
Experts in storage pest management recommend the use of a combination of preventive and
monitoring-based integrated pest management (IPM) strategies (Hagstrum and Subramanyam,
2006; Arthur et a., 2001; Maier et a., 1997; Mason et al., 1993; Horn, 1988; Cuero and Smith,
1987; Thompson, 1972). However, it isnot clear if any of these strategies are profitable, i.e. cost
is less than the expected prevented economic loss. Currently, most Indiana farmers cool their

corn during the fal, keep it in their on-farm storage with minimal monitoring during the cold



winter period and then sell when temperatures start to rise around the first half of April. By so
doing, farmers might be selling corn which is at low risk of mold damage, but they might be

forgoing very high premiums during the summer that could more than offset the cost of storage.

The objective of this articleis to determine the optima combination, timing and intensity of
mold management and marketing strategies. The expected profitability of the optimal mold
management strategies conditional on the biophysical conditions of the grain will also be
evaluated. In particular, we evaluate the potential benefits of a monitoring based mold
management strategy which involves decisions on aeration and optimal timing of grain sales. For
farmers who do not have a contractual commitment, the optimal time for selling their grain will
be determined in view of the tradeoffs between higher pricesin the future and the higher risk of
grain quality and dry matter losses during storage. This analysiswill determine which aeration
strategies are profitable; when it is optimal to sell the grain conditional on its quality and the bio-
physical conditions inside the bin; and what minimum storage fee processors should pay to

encourage contract farmersto deliver quality grain later in the storage season.

2. Mold Growth, Control and Farmers' Current Mold Management and Marketing Strategies

Small quantities of spores of storage fungi may be present on grain going into storage or on grain
residues from previous harvests or in handling and storage equipment. Moreover, mold spores
could be introduced into the bin by winds. Under improper storage conditions, a small amount of
inoculums introduced by any of the above means can grow rapidly, leading to grain spoilage

(Sweets, no date).



Researchers have developed several mold growth models. Some used the level of water activity
(theratio of the vapor pressure of the product to that of pure water expressed in decimal form) as
the only explanatory variable (Gibson et al., 1994; Baranyi et al., 1993). A number of other
studies used only temperature to explain fungal/mold growth (Carlile et al., 2001; Shanahan et
al., 2003; Cuero and Smith, 1987; Sweets, no date). Still other studies tried to explain mold
growth using both temperature and moisture content or water activity (Pitt, 1993; Cuero and
Smith, 1987; Northolt and Bullerman, 1982; White et al., 1982a; White et al., 1982b; Schindler
et a., 1967). Friday et a. (1989) argue that mold damage levels also depend on the hybrid type.
The extent of mechanical damage on the grain kernelsis aso important in determining the level
of mold damage (Wilcke et al., 2001; Gupta et a., 1999). Shanahan et al. (2003) argue that the
three major storage conditions that favor continued mold growth and are necessary for
mycotoxin formation in stored grain are: high corn kernel moisture content (16 to 30%); warm

temperatures (77 to 90°F); and high humidity (80 to 100%).

Conditioning the storage environment is considered the best strategy for controlling molds
(Wilcke et a., 2001; Pitt, 1993; Northolt and Bullerman, 1982). Particularly, |PM-based
strategies of monitoring and aeration have been found to be very effective in controlling the
atmospheric conditions in on-farm storage (llelgi et a., 2007; Maier et a., 1996; Arthur et al.,
1998; Thompson, 1972). Growth of moldsis generally low at temperatures below 50°F (10°C),
but slow growth will occur even at low temperatures if the moisture conditions are favorable.

Moisture levels below 12% will prevent mold formation (Shanahan et al., 2003).



A survey of 8 farmers from different parts of Indianaand Illinois revealed that farmers recognize
the importance of maintaining low moisture content in stored grain (Yigezu and Alexander,
2007). As aresult, they try as much as possible to dry their cornin the field and put it directly
into storage bins, which oftentimes is not feasible because favorable wesather to dry corn on the
field does not happen very often. They instead artificially dry it using either in-bin driers (viaa
high air flow rate aeration fans) or continuous flow or batch driers. Once dried to alevel of 16%
to 16.5% moisture content (MC), grain is moved to storage bins where the hot grain is left to
steep for 8 to 24 hours and then is aerated using low air flow rate fansto cool it off and also to

dry it further to 14 — 15% moisture content.

Farmers then core the grain by hauling atruck load or two from the bin to remove the fines and
foreign material which usually are concentrated at the center, thereby allowing for better air
circulation within the grain mass. After coring, aeration usually continues in the fall until in-bin
temperatureis as low as 4-5 °C to inhibit pest development. Farmers usually do not aerate their
grain during the winter or summer. They do minima monitoring which usually involves visua
inspection and smell testing by opening the hatch on the bins. If the smell and visual tests create
asuspicion of pest activity, farmers walk on the surface of the grain to check for pest damage. If
traces of mold crusts or hot spots due to high mold activity are observed, they usually scoop
them out of the bin or spread them across the surface of the grain mass. If the mold infection is

visible and substantial, they may aerate the grain.

When afarmer contracts to deliver corn to afood processor, the contract will specify the

minimum quality standards, the premium for meeting the quality standards and penalty for



failure to meet them, and a monthly storage fee paid to the farmers for storing the grain on farm.
If the farmer fails to meet the minimum quality standards specified in the contract, then the grain
will be rejected by the food processor and the farmer must deliver it to alocal eevator for the

cash price.

Typically, the contract also specifies that the exact delivery date will be chosen by the food
processor, with 24 hours notice given to the farmer. The contract will also often specify an
expected timeframe for delivery, say the month of June. For the purposes of this model, we
assume that the farmer is choosing when to deliver the grain given the premium, penalties and

storage fee offered by the food processor.

3. The Bio-economic Model

A stochastic dynamic programming (SDP) approach is used to model the economics of optimal
mold control. The approach to solution is based on backward recursion as described by Bellman
(1957) and Bellman and Dreyfus (1962). The key isto calculate at each point in time the optimal
actions to maximize the current period contribution to net return profit plus the expectation of

future returns given the current state of the system.

The state of the system is defined jointly by in-bin temperature (3°C-38°C in 5°C steps),
cumulative mold damaged kernels (0% - 21% in steps of 0. 1423%) and whether the grain has
already been sold. In this analysis, a proxy state variable — the cumulative dry matter lossin

percent (L) is used first and then converted to the actual state variable- the cumulative mold



damaged kernels (D) variable asis explained below. These states are denoted by the set i. Each

individual state represents an outcome and is weighted by the probability of that individua event
occurring. The discrete states of nature and their probabilities can be viewed as an approximation
to the continuous distributions that capture the non-stochastic and stochastic relationships among

the random variables (Featherstone et al., 1990).

The potential controls (choice variables) in any period are do not aerate, aerate always, aerate
only if in-bin temperature is greater than outside (ambient) temperature plus 3°C, sell to the food
processor, sell to the local elevator or keep for future sale. These actions are denoted by the

following:

A = the variable for the aeration strategies which takes values 1 to 3 (1 = do not
aerate, 2= aerate unconditionally and 3 = aerate conditionally, i.e., only when the in-bin
temperature is greater than the ambient temperature by at least 3°C) in period .

Si = Selling variable (1= do not sell now, 2 = sell to the elevator now and

3=sell to the food processor now) in period t and statei.

Mold management decisionsin the current period (t) affect not only the value of the stored grain

in the current period, but also its future values. Let 7z, (i) denote the current contribution to profit

in period t given that we arein statei. Thus,



-c(A) if §;=1and A, #1

NS if S, =Land A =1
z (i) = o «y
Bti XQti - C(Ai) if Si - Z’VAi
Xy XQy _C(Ai) if §=3,VA
where,
By = price per unit of corn paid by the local elevator in period t and state i
Qi = quantity sold in period t and state i
c= cost function, which depends on the aeration decisions and includes monitoring
COSt.
Xii = price paid by the food processor per bushel of cornin statei in agiven time
period t, which is given by:
Xii = Futures + Premium + Sorage; — Penalty; 2
where

Futures = Chicago Board of Trade futures price, which farmers can use to establish prices for
delivery in December, March, May and July at anytime during the marketing year.

Premium = premium paid by the food processor for meeting minimum quality standards

Sorage = storage fee per bushel paid by the food processor to the farmer in period t (thisisa
monthly payment starting in December).

Penalty; = penalty for failing to meet the minimum quality standards in terms of moisture
content, test weight and number of mold damaged kernelswhen the grainisin statei in

period t.



Supposethat i, and | are indices reflecting the possible states of the system in the current and

next periods. Suppose asothat P, ; (S;, A, ) isthetransition probability from statei in the

current period (t) to state j in the next period conditional on the control variables (or decisions
made) in period t and statei. If Vi(i) denotes the maximum expected profit function in period t
given statei, given that the optimal policy is used for the rest of the time horizon, then the
procedure for calculating the optimal policy for the mold management problem is based on the

following recurrence relationship (Bellman’s equation):

V(i) =Max| 7 () + 2P, (S«i,Ai)xvm(j)} VL (3)
Si oA j

where

Max = the maximization operator where maximization takes place over the control

(choice) variables (S, Aq) and

o= the per period discount factor.

Thisrecursion isinitiated by setting the value function in the terminal period to:

Max (72'-,- - F/aT) if iisastatewheresalehasnot alreadyoccured
VT (|)= Si=20r3 4
0 otherwise 4

where

F= fixed cost of drying and shrinkage incurred at the beginning of storage, and F/o" isthe
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future value of the fixed costs of drying and shrinkage in the terminal period (thiswill be

discounted to F in the first period viathe recursion).

By recording the optimal activitiesin each state for each period, we derive the optimal
management policy for this problem. This backward recursion problem is implemented using

Genera Algebraic Modeling Systems (Brooke, et al., 2005) software.

4. Data

Storage is modeled as a bin that is round and made of sheet metal with a diameter of 36ft and
height of 32ft and a capacity of 36 thousand bushels of corn (Table 1). Information about the
premium and monthly storage fee paid to the farmers has been obtained from a food-grade corn

jprocessor.

In this analysis, ten year average futures and cash prices for the Evansville area are used for
determining the prices paid by local elevators and food processors. The ten year period chosen
was 1994/5-2005/6, with 1995/6 and 2003/04 dropped because they were drought years which
have avery different price pattern than atypical year. The contracts with the food processor
allow farmersto establish their selling futures prices using several different futures contracts
such asthe March, May or July contracts. For ssimplicity, we assume that the only futures price
available is the nearby contract, and we have smoothed these futures prices to eliminate price

discontinuities that may occur when there is a change in the nearby futures contract, i.e. when the
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nearby price switches from the March contract to the May contract on the first day of the

delivery period (Figure 1).

The smoothed futures prices (X) are used in this analysis to establish the food processor’ s prices.
We did not smooth the cash price offered by the local elevator because the farmer will only
deliver to the elevator if their grain has been regjected by the food processor, and so this decision

does not depend on their expectations of cash prices.

In this study, amodel called PHAST-FEM, a post-harvest aeration and storage simulation tool
developed by Montross et a. (2002) was used to generate data on the likelihood of transitions
between the states (in-bin temperature and cumulative dry matter |0ss) in a given period
conditional on the benchmark bin characteristics and values of the state variables in the previous
period. The PHAST-FEM model uses weather data which are taken from 1961-2005
observations of ambient temperature, ambient relative humidity, wind speed and solar radiation

for the Evansville area from the National Solar Radiation Data Base (NSRDB).

Simulations using the PHAST-FEM model with initial grain moisture content (MC) of 14.5%
using different aeration strategies (including no aeration) resulted in end period moisture content
range of (13.3%-15.3%) which exhibits only a small absolute deviation from theinitial moisture
content (14.5%). Asaresult, we decided to assume that MC is constant at 14.5% in order to

eliminate the need for an additional state variable.
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Limited amount of work has been done on the relationship between mold damaged kernels
(MDK) and dry matter loss. Gupta et al. (1999) is the only study that has conducted |aboratory
experiments on the relationship between total damaged kernels and dry matter loss (DML) and
also made the link to MDK. We use the Gupta et a. data to estimate the following linear

relationship between DML and MDK.

MDK = -0.69 + 14.23* DML (5)

The regression statistics for this equation are displayed in Table 2. The estimated relationship
resulted in a 6% cumulative number of mold damaged kernels for a dry matter loss value of
0.47%, which is consistent with the literature which finds that a dry matter loss of 0.5% due to
mold activity leads to adrop in the USDA grain grade by one level (Ng et al., 1998, Wilcke et
al., 1993, Friday at al., 1989, Saul and Steel, 1966), and the presence of more than 6% mold

damaged kernels also leads to a drop of the USDA grade by one level (GIPSA, 2007).

The longest period farmersin Indianatypically store corn in their on-farm binsis 9.5 months,
usually Mid October — End of July. This planning horizon is divided into roughly two-week (15
or 16 day) periods for modeling purposes. State transition matrices are estimated based on the
PHAST-FEM model results for the following seven groups of periods: second half of October,
November, December —end of March, first half of April, second half of April, May, and June-
end of July. Because weather patterns are similar within each of these groups of periods, the
matrices are taken to be constant within them, but they differ across groups of periods. Asa

result, only 7 distinct transition matrices are estimated. (See Appendix A for the list of periods.)
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Given that the favorable temperature levels for mold growth are between 25°C-33°C (Shanahan
et a., 2003), simulations were performed for 8 discrete initia in-bin temperature levelsin a
wider temperature range between 3°C-38°C at 5°C intervals. As aresult, atotal of 7,560 runs of
the PHAST-FEM model have been made for 45 years, 3 different aeration strategies, 8 initial in-
bin temperature levels and 7 groups of periods. From all of the runs, we found that the maximum
possible periodic dry matter loss is 0.41% and the maximum possible cumulative dry matter loss
(CDML) over the 19 periods of storage is 4.3%. As aresult, we used grids with a spacing of 0.01
and arange of 0.00% to 4.30% to create 430 levels of CDML in the model. The generated data
along with equation 5 were used to construct the joint transition probabilities Py;(Si,Aq) in each
period t. The transition probabilities along with other parameters for the benchmark farmer and
benchmark bin (Table 1) have been used to build the bio-economic model described by equations

1-5 above.

5. Resaults

The optimal mold control method with respect to different aeration strategies and timing of sales
depends on grain temperature and cumulative mold damaged kernels (CMDK). Model results
based on data from the Evansville area show that generally there is no economic benefit to
aerating unconditionally. Thisis because, in addition to the higher cost of running fans, aerating
unconditionally involves the risk of pushing hot air into already cool grain, especialy at times
when the ambient temperature is high, thereby increasing the risk of mold damage. The

exception to this general rule occurs when both the grain and ambient temperatures are high with
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the ambient temperature lower than the grain temperature throughout the period. In cases like

these, aerating continuously for 15 days can help to deter spoilage by molds.

Unlike the current farmer practice where aeration is not used after December, model results show
that the optimal mold management strategy involves continuation of conditional aeration even if
grain isto be sold to the local elevator in March, when cash prices are the highest. Continuation
of conditional aeration after the end of December is even more important if high quality cornis
to be delivered to afood-grade corn processor later during the summer (See Appendix B). Even
if the grain was cooled to aslow as 4-5°C by the end of December, never agrating the grain
thereafter leads to a gradual heating of the grain to 18-28°C by the end of June and to 23-38°C by
the end of July. Such high grain temperatures lead to accel erated mold damage that would often

lead to rejection of the grain by the food processor.

Our model results are summarized in figure 2. Farmers who have signed a contract with the
food-grade corn processor can use the following rules of thumb in conjunction with monitoring
their bins:

e If in-bin temperatureis less than or equal to 5.5°C and the number of mold damaged
kernels (MDK) isless than or equal to 4% at any point during the storage period, then do
not aerate but keep it at least for another 15 days after which you will have to monitor
and decide again (See Figure 2).

e If temperatureis greater than 20.5°C and MDK is|ess than 5% then do not sell yet but
aerate the grain conditionally (i.e., when the outside temperature is less than the in-bin

temperature by at least 3°C).
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e If thein-bin temperature is above 10.5°C and MDK reaches 6.14% any time before the
first half of March, then aerate the grain conditionally and keep it until early in March to
sell it to thelocal elevator. If it isany time past March, then sell it to the local elevator
right away.

e For the period before December, if MDK reaches 5%, sell to the food processor because,
no storage feeis paid until December and hence the risk of losing money from possible
mold development is higher than the storage fees earned for the periods after December.

e Inthe summer months, if the in-bin temperature is between 15.5°C and 35.5°C, and the
number of mold damaged kernels reaches 5.29%, then sell it immediately to the food
processor. Thisis because, in these periods, the periodic damage from molds exceeds the
storage fee paid per period.

A closer ook at the model results revealsthat if the farmer has the option of selling to the food
processor, then the premium ($0.55 per bushel) and storage fee ($0.03/bushel/month) make
selling to the elevator an option of last resort. Thisis because the total price paid by the food
processor is aways higher than the local elevator (Fig.1) provided that the grai is not rejected

(MDK does not exceed 6%).

From the perspective of the food processor, one important question is whether the premium and
storage fee specified in the contract will provide enough incentive to farmers to deliver enough
grain of acceptable quality later in the storage season. If we assume that all farmers would
deliver their grain by July 31 in order to empty storage bins in preparation for the next harvest,
then the food processor’ s goal isto have enough grain delivered to meet their processing needs

between July 31 and the following harvest which would start late September/early October.
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Assuming that the food processor needs a 2 month supply of quality grain delivered on July 31,
then in order to have enough grain, at least one-sixth or 16.7% of the farmers’ grain must meet

the minimum quality standards and be stored until July 31.

For afixed level of the premium and the price structure discussed in section 2 above, the amount
of acceptable grain that farmers can deliver to the food processor at a given time during the
storage period depends on the initial biophysical conditionsin their grain bin (initial in-bin
temperature and number of mold damaged kernels) and the monthly storage fee paid to them by
the food processor. To estimate the optimal storage fees the food processor needs to pay to the
contract farmers, we consider the following initial in-bin biophysical conditions (Table 3):
temperature range of 33°C-38°C and MDK range of 0%-2%, both of which are typical of hot

grain coming out of agrain drier.

Table 3 summarizes the simulation results for the different levels of initial biophysical conditions
and storage fees assumed above. These results show that the food processor can use the storage
fee as an instrument to increase the quality and quantity of grain that can be supplied later during
the summer. If we assume 1.5% mold damage at the beginning of the storage period, then for the
current level of the storage fee (3cents/bushel/month), 19% of the food processing plant’ s total
annual high quality corn demand will be supplied by the farmers, which suggests that the food
processor’ s current monthly storage fee is adequate to motivate farmers to deliver a sufficient

quantity of quality grain.
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6. Conclusions

The optimal mold management strategy depends on monitoring, the biophysical conditions of the
grain and the time period under consideration. If monitoring rshows that in-bin temperature is
high and the number of cumulative mold damaged kernelsis well below 6%, then the optimal
strategy is to aerate conditionally and to keep it for salesin the future thereby capturing the
storage fee which is higher than the storage cost. If the number of mold damaged kernelsis close
to the 6% limit, then the optimal strategy isto sell immediately to the food processor. If
monitoring any time before March reveals that the 6% limit for the cumulative mold damaged
kernelsis exceeded but is still less than 16%, then the optimal strategy is aerating conditionally
and keeping it for salesto the elevator in March during which cash prices tend to be the highest.
Farmers' current practice of aerating the grain until the end of December and doing nothing
thereafter bears a substantial risk of economic losses to the farmer especialy if they have signed
contracts to deliver good quality grain to the food processor later during the summer. Farmers
sign contracts with food processorsin order to take advantage of the high premium and storage
fee paid by the processors for delivering good quality grain later in the summer. Maintaining
grain quality until later during the summer however isvery unlikely with farmers' current
practices. On the other hand, even with the large number of labor hours and hence high
monitoring costs assumed in this paper, the likelihood of maintaining good quality grain using
the monitoring based optimal mold management strategy is higher and costs less than the benefit
it fetches. Hence, it isin the best interest of the farmer to adopt the monitoring based mold

management strategy.
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The processor’ s choice of the monthly storage fee affects the farmers’ optimal mold management
decisions and therefore the expected quantity of acceptable quality grain available at the end of
the storage period. Processors can use this information to design contracts where they pay ahigh
enough storage fee to get the quantity and quality of grain they want but minimize costs by not
paying more than they need to. For instance, to ensure a constant supply of corn, processors need
to design a pricing scheme that encourages farmers to store about a sixth of their annual corn
demand to be delivered not earlier than the end of July. If theinitial grain temperature and
cumulative mold damaged kernels in mid-October are 38°C and 1.5% respectively, then the
minimum storage fee that the processor has to pay to the contract farmers per each period of 15

days (for the fixed premium of $0.55 per bushel) is 3 about cents per month.
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Table 1. Parameters Used in the SDP Program
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Parameter Units Parameter Vaue
Drying cost $ per point per bushel 0.02
Moisture content at harvest % 22
Wagerate $/hour 10
Time required for monitoring for molds Hours per bushel 0.000111
Average bin size Bushels 36000
Premium Bushel 0.55
Storage fee $ per bushel per month  0.03
Penalty for mold damaged kernels $ per bushel 0.01
Interest rate % per year 8
Electricity cost (SUFG, 2005) $ per KWH 0.07
Table 2. Regression of MDK on DML
Un-standardized
Coefficients Corrected R
Variables Square
Coefficient Std. Error
Constant (con) -0.69 2.607
Dry Matter Loss (DML) 14.23 4.257 0.349
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Table 3. Percentage of Quality Grain that can be Delivered to the Food Processor on July 31

Initial in-bin Biophysical

Conditions: Mid October

Percentage of quality grain that can be

delivered to the FP on July 31 for storage charge of:

Temp DML (%) MDK (%) | 2.4¢/bushel/month  3¢/bushel/month  3.6¢/bushel/month
0 0 4.67 100 100
0.08 0.5 0 99.8 99.9
33°C 0.12 1 0 76.9 80.3
0.15 15 0 18.2 19.6
0.19 2 0 19 25
0 0 5.04 100 100
0.08 0.5 0 99.9 99.9
38°C 0.12 1 0 79.9 83.2
0.15 15 0 19.12 20.7
0.19 2 0 21 2.7
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Figure 1: Seasonal Changesin Futures (F), Cash (B) and Smoothed Food Processor (X) Prices



1 October
40.5] J
35.5]
30.5|
25.5) ACKP ACKE
20.5 SP
15.5]
10.5]
5.5 KE
KP
o] 2 3 4 5 6 13 20
1 March
40.5]
35.5|
30.5]
25.5 A C K P SP
S
£ 205 SE
()
p—
-] 15.5]
®
m 10.5]
o
g 5.5
— KP
o] 2 3 4 5 6 13 20
1 June
40.5 I
55 AAKP ‘\E
30.5] -
25.5] SP
ACKP
20.5 SE
15.5]
10.5]
5.5]
KP
0 2 5 6 13 20

3 )
Cumulative Mold Damaged Kernels (%)

KE Keep without aerating to sell to the elevator

KP Keep without aerating to sell to the food processor

ACKE Aerate conditionally and Keep to sell to the elevator
ACKP Aerate conditionally and Keep to sell to the food processor
AAKP Aerate always and keep to sell to the food processor
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Figure 2: Optimal Mold Management Strategies for Different Months
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Appendix A: Time Periods and Possible Farmer Actions Assumed for the Model

Time
period Dates Possible farmer activities
0 August 1 - september15 Pre-filling sanitation (cleaning, dusting and spraying)
0 September 15 — October 15 Filling bin, drying, residual pesticide application
1 October 16 - October 31 Monitoring, Aeration, selling
2 November 1 - November 15 Monitoring, Aeration, selling Assumed to have
o . . same transition
3 November 16 - November 30  Monitoring, Aeration, selling probabilities
4 December 1 - December 15 Monitoring, Aeration, selling ™\
5 December 16 - December 31~ Monitoring, Aeration, selling
6 January 1 — January 15 Monitoring, Aeration, selling Assumed to have
7 January 16 — January 31 Monitoring, Aeration, selling > same transition
8 February 1 — February 15 Monitoring, Aeration, selling probabilities
9 February 16 — February Monitoring, Aeration, selling
10 March 1 —March 15 Monitoring, Aeration, selling
11 March 16 — March 31 Monitoring, Aeration, selling Assumed  to have
i1 — i itori i i same transition
12 April 1 —April 15 Monitoring, Aeration, selling orobbilities
13 April 16 -April 30 Monitoring, Aeration, selling
14 May 1 - May 15 Monitoring, Aeration, selling Assumed to  have
15 May 16 - May 31 Monitoring, Aeration, selling } same transtion
probabilities
16 June 1 - June 15 Monitoring, Aeration, selling
o _ _ Assumed to have
17 June 16 - June 30 Monitoring, Aeration, selling .
o _ _ same transition
18 July 1 - July 15 Monitoring, Aeration, selling o
o _ _ probabilities
19 July 16 - July 30 Monitoring, Aeration, selling
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