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ABSTRACT:  The hedonic pricing model is widely accepted as a method for estimating the 
marginal willingness to pay for spatially delineated amenities.  Empirical applications typically 
rely on one of three functional forms—linear, semi-log, and double-log—and rarely involve 
rigorous specification testing.  This phenomenon is largely due to an influential simulation study 
by Cropper, Deck and McConnell (CDM) (1988) that found, among other things, that simpler 
linear specifications outperformed more flexible functional forms in the face of omitted 
variables.  In the 20 years that have elapsed since their study, there have been major 
computational advances and significant changes in the way hedonic price functions can be 
estimated.  The purpose of our paper is to update and extend the CDM (1988) simulations to 
investigate current issues in hedonic modeling.  Three preliminary results obtained from our 
theoretically consistent Monte Carlo simulation have been highlighted in this paper:  (i) we find 
that adding spatial fixed effects (census tract dummies) to linear models does improve their 
performance.  This is true both when all attributes are observed, and when some attributes are 
unobserved,  (ii) adding the spatial fixed effects to the more flexible specifications such as the 
quadratic and quadratic box-cox does not improve their performance when all housing attributes 
are observed.  However, when some housing attributes are unobserved, the spatial fixed effects 
significantly improves the performance of flexible specifications as well, and (iii) increasing the 
sample size from CDM’s 200 observations to a sample size of 2000 (which is more 
representative of modern applications) changes the relative performance of different 
specifications. 
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1.  Introduction  

The hedonic pricing model is widely accepted as a method for estimating the marginal 

willingness to pay for spatially delineated amenities.  It has been described by Palmquist and 

Smith (2002) as “one of the ‘success’ stories of modern applied micro-economic analysis.”  The 

method is frequently used to investigate important questions in agricultural, environmental, and 

urban economics.  For example, hedonic pricing models have been used by Schlenker et al. 

(2005) to estimate the impact of climate change on farmland values, by Palmquist and Danielson 

(1989) to understand the value of erosion control and drainage, and by Smith and Huang (1995) 

to estimate the willingness to pay for marginal changes in air quality.  Furthermore, recent quasi-

experimental papers highlight the expanding role of the property value hedonic in evaluating 

public policies and the marginal-willingness-to-pay for public goods and spatially delineated 

amenities (i.e. Chay and Greenstone (2005), Davis (2004), and Pope (2007)).  We expect the 

hedonic method will continue to play a prominent role in future empirical applications aimed at 

revealing household preferences for spatially delineated attributes that are tied to property 

markets.  

From an empirical perspective, a key limitation of the hedonic method is that the 

underlying theory provides relatively little guidance on the shape of the equilibrium hedonic 

price function.  Therefore, our ability to identify consumers’ marginal willingness-to-pay 

(MWTP) for an amenity hinges on our maintained assumptions about functional form.  Given 

this uncertainty, those unfamiliar with the literature might be surprised to learn that empirical 

applications typically rely on one of three functional forms—linear, semi-log, and double-log—

and rarely involve rigorous specification testing.  Those familiar with the literature know that 



this approach is rooted in a simulation study by Cropper, Deck and McConnell (1988).1  Their 

study exploits parametric assumptions about consumers’ utility functions to solve for a vector of 

prices that clears a hypothetical housing market, using data on the structural characteristics of 

real homes.  The simulated prices and characteristics are then used to estimate several versions of 

the hedonic price function, each based on a different functional form. One of their key findings is 

that simple functional forms (such as the linear, semi-log, and double-log) tend to convey the 

smallest errors in estimating MWTP for an amenity when one or more housing characteristics 

cannot be observed by the econometrician. 

The purpose of our paper is to update and extend the CDM (1988) simulations to 

investigate current issues in hedonic modeling.  In the 20 years that have elapsed since their 

study, there have been major computational advances and significant changes in the way hedonic 

price functions can be estimated in empirical work.  This includes a variety of panel data 

techniques, as well as semiparametric and nonparametric methods.  Furthermore, housing data in 

electronic formats are much more accessible and it is not uncommon for recent hedonic studies 

to use thousands of housing observations in an analysis.  Compared to the parametric cross-

sectional models considered by CDM, the newer econometric techniques present a variety of 

tradeoffs with respect to sample size, omitted variables, and measurement error, to name only a 

few issues.  To date, there has been no effort to systematically evaluate the relative performance 

of these techniques in a controlled simulation. 

In this paper the results obtained from a theoretically consistent Monte Carlo simulation 

that evaluates the relative performance of earlier techniques to more modern techniques are 

presented.  Although the results presented in this paper are preliminary, three of the results not 

found in CDM are worth highlighting:  (i) we find that adding spatial fixed effects (census tract 
                                                 
1 We will refer to this paper as CDM throughout the text. 
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dummies) to linear models does improve their performance.  This is true both when all attributes 

are observed, and when some attributes are unobserved,  (ii) adding the spatial fixed effects to 

the more flexible specifications such as the quadratic and quadratic box-cox does not improve 

their performance when all housing attributes are observed, however, when some housing 

attributes are unobserved, the spatial fixed effects significantly improves the flexible 

specification performance as well, and (iii) increasing the sample size from CDM’s 200 

observations to a sample size of 2000 (which is more representative of modern applications) 

changes the relative performance of different specifications.  We think that these results can 

provide additional guidance for empirical researchers.  Our intention is to build off of our 

simulation framework in the future to extend the analysis to a panel data environment, to analyze 

alternative choices for utility functions and to complete nonparametric and semi-parametric 

specifications with larger sample sizes. 

The paper proceeds as follows.  In section 2 we provide a brief review of the functional 

form issues in hedonic property value literature.  Section 3 describes our simulation framework.  

Section 4 highlights the results and section 5 concludes.  

 

2.  A Brief Review of Functional Form in the Hedonic Property Value Literature 

In his seminal 1974 paper, Sherwin Rosen strengthened the economic foundations of the hedonic 

method by demonstrating that the functional relationship between the price of a differentiated 

product and its attributes can be interpreted as an equilibrium outcome from the interactions 

between all the buyers and sellers in a market.  Under the assumptions of his model, regressing 

product prices on their attributes can reveal consumers’ willingness-to-pay for a marginal change 

in a continuous attribute of a differentiated product (MWTP).  This result has been applied to 
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housing markets to evaluate the welfare implications of changes in public goods and 

environmental amenities such as school quality (Black, 1999), air quality (Chay and Greenstone, 

2005), water quality (Leggett and Bockstael, 2000), cancer risk (Davis, 2004), open space (Irwin, 

2002), hazardous waste (McCluskey and Rausser, 2003), and airport noise (Pope, 2008) to name 

only a few.  In all of these studies, estimates for welfare measures and their policy implications 

rely on the maintained assumption that the econometrician has correctly specified the true form 

of the equilibrium price function.    

In Rosen’s theoretical model, the form of the equilibrium price function depends on the 

underlying distributions of preferences and technology.  Under specific parametric assumptions 

about these latent distributions, such as Tinbergen’s (1959) linear-normal model, the equilibrium 

price function can take a convenient closed form.  In general however, it is nonlinear without a 

closed-form solution.  Moreover, Ekeland et al. (2004) demonstrate that nonlinearity is a generic 

property of the hedonic price function.  This means a linear function form would be a special 

case in the sense that marginal perturbations to the underlying distributions of preferences and 

technology can produce large deviations from linearity.   

While theory suggests the equilibrium price function is nonlinear, most empirical studies 

treat linearity as a maintained assumption.  This practice is often justified by citing Cropper, 

Deck, and McConnell’s (1988) Monte Carlo analysis of how the accuracy in predicting MWTP 

varies across competing functional form assumptions.  The distinguishing feature of their study 

(henceforth CDM) is that it is theoretically consistent.  They use Wheaton’s (1974) linear 

programming algorithm to solve for an equilibrium vector of housing prices under specific 

assumptions about the parametric form of utility, the distribution of preferences, and the supply 

of housing.  This allows them to compare the “true” MWTP for each housing characteristic (e.g. 
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# bedrooms, square feet) with the econometric predictions made by each of six functional forms: 

linear, semi-log, double-log, quadratic, linear Box-Cox, and quadratic Box-Cox.  When every 

housing characteristic which enters the utility function is included as an explanatory variable in 

the hedonic regression, the linear Box-Cox and quadratic Box-Cox produce the lowest mean 

percentage error in estimating MWTP.  This result changes when one of the characteristics is 

unobserved or replaced by a proxy.  In this case, the more parsimonious functional forms—

linear, semi-log, double-log, and linear Box-Cox—are the ones which perform the best.  

The results from CDM’s “omitted variable” specification have guided the subsequent 

empirical literature.  This is at least partly due to widespread concern about omitted variable bias 

in property value studies.  In many recently published applications, authors’ adopt a linear or a 

linear Box-Cox form to represent the equilibrium price function with little or no discussion of 

specification testing and the potential for bias.   

In the 20 years that have passed since CDM’s study, advances in microeconometric 

methods, together with the increasing availability of spatially delineated micro data, have 

changed the way we estimate hedonic models.  Modern property value studies use econometric 

techniques and descriptions for the spatial landscape which differ in many ways from CDM’s 

simulations.  To document these differences, we reviewed the 110 studies published between 

November 1988 and April 2008 which cite CDM according to the Social Science Citation Index 

(SSCI).  In addition to empirical property value studies, this set of papers includes theoretical 

work and applications to markets for labor, breakfast cereal, fruit, automobiles, herbicides, 

knitted garments, appliances, collectable coins, television, fish, forestry, and agricultural land.  

Narrowing the focus to residential property value studies decreased the size of our sample to 61 
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papers.2  Table 1 compares the features of these studies to CDM.3   

The influence of CDM on the choice of functional form is immediately apparent.  More 

than three quarters of the studies in our SSCI sample (47) rely on one of the three linear 

functional forms: linear, semi-log, and double-log.  Most of the others use a linear Box-Cox.  

Meanwhile, compared to CDM, the typical hedonic study uses more dummy variables, a larger 

sample size, a broader definition for the housing market, and explicitly controls for variation in 

unobserved attributes across space and time.   

As data on individual housing transactions have become increasingly available, sample 

sizes have increased.  The median number of observations in hedonic studies published during 

the past ten years (2,066) more than tripled from the previous ten year period (593) which was 

nearly triple the number of observations used by CDM (200).  As sample sizes have grown, so 

have the geographic and temporal boundaries used to define a housing market.  CDM used data 

on homes sold in Baltimore City and Baltimore County in 1977-78.  In comparison, 32 of the 61 

papers in our sample use data from multiple cites or counties, and 34 use sales data over more 

than two years.  Gayer et al. (2000) provide a representative example.  They use data on 

approximately 17 thousand homes sold in the greater Grand Rapids, MI area over a six year 

period.   

Over the past 20 years, the literature has also evolved to address omitted variables 

directly.  More than half the studies in the SSCI sample (35) use dummies to absorb the effect of 

unobserved amenities that vary between cities or between “neighborhoods” within a city (e.g. 

census tracts, school districts).  A smaller set of papers (7) use spatial econometrics to impose 

                                                 
2 A complete list of these papers is provided in a supplemental appendix available from the authors upon request.   
3 Many of these studies report the results from multiple econometric models.  We focus on the model which the 
authors identify as their main specification.  If the authors do not identify a main specification, we focus on the 
model which produces the results which enter their discussion of policy implications and/or conclusions. 
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more structure on the spatial relationship between unobserved variables and housing prices.  

Perhaps most importantly, researchers are increasingly using fixed effects, first difference, and 

difference-in-difference estimators to exploit changes in amenities over time as an identification 

strategy.  Of the 15 studies which exploit the panel structure of their data for identification, 11 

were published since 2000.  These studies are often able to make a convincing argument that 

changes in housing prices are caused by changes in the amenity of interest.  Moreover, the 

availability of data on repeated sales of individual homes provides a way to fully purge time-

constant omitted variables (e.g. Davis, 2004).  None of these new strategies for addressing 

omitted variables were considered by CDM.  The bottom line is that the empirical hedonic 

literature which routinely invokes the results from CDM has evolved to the point where it bears 

little resemblance to their original study.   

Three features of the hedonic literature suggest to us that it is time to revisit the issue of 

functional form.  First is the emergence of new techniques for addressing omitted variables.  To 

the best of our knowledge, there is no existing evidence on the relative performance of the 

different techniques within a theoretically consistent simulation framework.  We hypothesize that 

it may be possible to increase the accuracy of estimates for MWTP by extending nonlinear 

estimators to include spatial dummy variables, spatial error corrections, and panel data.   

Second, the increase in sample size documented in table 1 highlights the relatively small 

number of homes (200) used by CDM in their Monte Carlo simulations.  Larger sample sizes are 

needed to implement nonparametric estimators as well as some of the techniques for addressing 

omitted variables.  Furthermore, in a simulated differentiated product market, the equilibrium 

difference between true MWTP and true marginal implicit prices will depend on the extent of 
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discreteness in the choice set.4  Banzhaf (2003) provides preliminary evidence that this 

difference has the potential to be economically important.  Holding the number of covariates 

constant, increasing the sample size will tend to provide a more continuous choice set and 

decrease the divergence between MWTP and marginal implicit prices.  It is difficult to anticipate 

whether this will alter conclusions about the relative performance of different functional forms. 

 Finally, the econometric literature on nonlinear estimation has moved beyond the Box-

Cox specifications considered by CDM.5  Empirical evidence suggests that newer 

semiparametric and nonparametric methods dominate the linear Box-Cox in terms of in-sample 

and out-of-sample ability to predict prices (e.g. Gençay and Yang, 1996; Bin, 2004).  Will these 

methods also outperform the linear Box-Cox in estimating MWTP?  Or will the additional 

nonlinearity lead to abysmal performance in the presence of omitted variables, as CDM observed 

for the quadratic Box-Cox?  It is important to answer these questions as semi and nonparametric 

methods are beginning to be used to address important policy issues, such as racial segregation 

(Bajari and Kahn, 2005).           

 

3. Simulation Framework 

In order to investigate how our ability to accurately estimate MWTP depends on the size of the 

simulation, methods for mitigating omitted variable bias, and the use of semi and nonparametric 

estimators, we follow CDM in developing a theoretically consistent Monte Carlo simulation.  

After briefly reviewing the equilibrium concept, we describe the numerical algorithm we use to 

solve for equilibria and then summarize the features of the data we use to simulate the housing 

                                                 
4 The first order conditions of Rosen’s hedonic model require that consumers are able to set their marginal rates of 
substitution equal to the ratio of marginal implicit prices.  If consumers are not free to choose from a continuum of 
choices, this condition cannot be met, creating a divergence between MWTP and marginal implicit prices.  For a 
formal discussion see Bajari and Benkard (2005), Bayer et al. (2007), or Kuminoff (2008).   
5 See Parmeter (2006) for a review of hedonic applications of nonlinear estimators.  
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market in Wake County, North Carolina.          

 

3.1. Characterizing a Locational Equilibrium 

 

Suppose the availability of housing and amenities varies across an urban landscape and that each 

household chooses the particular home which provides its preferred bundle of goods, given its 

preferences, income, and relative prices.  This problem can be formalized using the 

characteristics approach to consumer theory (Lancaster, 1966).  Let Jj ,....,1=  homes be 

defined over a vector of characteristics, .  This includes structural characteristics of the home, 

such as the number of bedrooms, the number of bathrooms, square feet, and lot size, as well as 

amenities, such as crime, school quality, air quality and proximity to open space.  A household’s 

utility depends on the characteristics of housing and amenities at its location and on its 

consumption of a composite numeraire, c.  Households are heterogeneous.  They differ in their 

income,

jx

y , and in their preferences, α .  Let the population of households be indexed from 

.  Each household is assumed to choose a specific house and a quantity of c that 

maximize its utility subject to a budget constraint: 

Ni ,....,1=

 

 .             (1)  ( ) jjcj
pcytosubjectcxU +=α;,max

,

 

In the budget constraint, the price of the numeraire is normalized to one, and  represents 

annualized expenditures on house j. 

jp

A locational equilibrium is achieved when every household occupies its utility-

maximizing location and nobody wants to move, given housing prices and their exogenously 
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determined characteristics.6  In order to define this concept more formally, let  denote 

household i’s bid for the jth home, and let  be an assignment indicator where  if and 

only if household i occupies that home.  Then a locational equilibrium can be defined as follows: 

ijb

AijA 1=ij

 

 { } 1max == ijijiij Aiffbb ,                (2) 

 

∑∑ ==
j

ij
i

ij AA 1.               (3) 

 

In words, each household occupies exactly one home, for which it has the maximum bid.7   

In the context of Rosen’s (1974) hedonic model, bids can be expressed as a function of 

housing characteristics and preferences.  To see this, let u~  be some reference level of utility, and 

consider an indifference surface over which x  and c vary, while  stays the same:  u~

( )α;,~ cxUu = .  Assuming utility is monotonically increasing in c, the function can be inverted 

to solve for c.  

 

( α; )~,1 uxUc −= .                (4) 

 

Inserting (4) into the budget constraint and rearranging terms allows a household’s maximum 

willingness-to-pay for a home to be expressed as a function of its characteristics and the 

household’s income, preferences, and utility. 

 

( α;, )~1 xuUyb −−= .               (5) 

                                                 
6 See Bayer and Timmins (2007) for a discussion of equilibria and estimation in location choice model with 
endogenously determined public goods. 
7 Equations (2)-(3) are equivalent to the equilibrium concept defined in equations (2)-(4) of CDM. 
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This is Rosen’s (1974) bid function.  It can be used to solve for a locational equilibrium, given a 

parametric specification for the utility function, information on preferences and income, and data 

on housing characteristics. 

 

3.2. Numerical Approach to Solving for a Locational Equilibrium 

 

Kuminoff and Jarrah (2008) develop an Iterative Bidding Algorithm (IBA) which uses Rosen’s 

bid function to solve for a locational equilibrium.  The IBA iterates over a series of hypothetical 

second-price auctions for individual homes until subsequent bidding has no effect on prices or 

the assignment of people to homes; i.e. until equations (2)-(3) are simultaneously satisfied.   

The algorithm begins by assigning each household a reference level of utility.  This can 

be used together with data on x  and the joint distribution ( )yf ,α  to solve for each household’s 

bid for each home.  Consider the first home.  The IBA uses (5) to solve for the distribution of 

bids and assigns the household with the maximum bid to live there.  However, the household 

does not pay its full bid.  It pays the second highest bid plus a marginal increment, 0>ε .  The 

resulting price, , is then used to update the household’s reference utility.  Since it pays less 

than its maximum bid, utility must increase.  The same process is used to update the prices of 

homes 2 through J, and the reference utility of the households who are assigned to live there.   

1p

To provide a formal description of the algorithm, we use superscripts to rank households 

according to their bids.  For example,  depicts a ranking of households 

according to their bids for the jth home.  Household-specific subscripts are suppressed to preserve 

generality.  Using this notation, the first iteration of the IBA is shown as (6).         

J
j

J
jjj bbbb ≥≥≥≥ −121 ...
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1. { }ε+= 2
1

1
11 ,min bbp ,   ( )1

1
1

1
1 ;,~ αpyxUu −= . 

2. { }ε+= 2
2

1
22 ,min bbp ,   ( )1

2
1

2
1 ;,~ αpyxUu −= .    

   .    .                       (6) 

 .    . 

 .    . 

J. { }ε+= 21 ,min JJJ bbp ,   ( )111 ;,~ αJJ pyxUu −= . 

 

Two features of (6) are notable.  First, the minimum operator is used to ensure that households 

do not pay more than their bid in the special case where the top two bids are identical.  Second, 

the 1 superscript on 1~u , , and  may denote a different household on each of the J steps of 

(6) because the bid ranking will vary across homes due to heterogeneity in reference utility and 

preferences for housing characteristics.  

1y 1α

The price vector that results from the first iteration of (6) need not support a locational 

equilibrium.  For example, the household who was assigned to home 1 may have been 

subsequently assigned to another home.  The corresponding increase in utility will decrease its 

bid for the first home so that  must decrease in order to clear the market.  This decrease in  

may necessitate decreases in the prices of other homes.  Therefore, the IBA continues to iterate 

over (6) until the price vector converges, signaling the market has cleared.   

1p 1p

Unlike the linear programming algorithm used in the simulations reported by CDM and 

Banzhaf (2003), the IBA does not constrain households to be uniquely assigned to homes on any 

given iteration.  Nevertheless, if the algorithm converges it must converge to a locational 

equilibrium.  Moreover, if a unique equilibrium exists, the algorithm will converge to it.  

Kuminoff and Jarrah (2008) provide proofs, examples, and a discussion of computational 
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issues.8  We use their algorithm here to simulate hedonic equilibria in Wake County, North 

Carolina.  

 

.  

g 

f Cary.  The census name for the metropolitan area is the Raleigh-Cary NC metropolitan 

area. 

 

d 

e 

han 

odern methods of controlling for omitted variable bias that are used 

in som

 

3.3. Simulating Hedonic Equilibria in Wake County’s Market for Housing  

Wake County, North Carolina is the geographic setting for the analysis in this study.  According 

to the 2000 census there were approximately 628 thousand people living in the county in 1999. 

About 72 percent of the population is white, 20 percent black, and 6 percent Hispanic/Latino

The median household income in 1999 was approximately $55,000.   The largest city in the 

county is Raleigh with a reported population of 276 thousand as of 1999.  Most of the remainin

population lives in 12 satellite municipalities in the county, with the biggest of these being the 

town o

Wake County provides an ideal setting for a simulation exercise aimed at understanding

some of the empirical concerns of the hedonic literature.  First, because of the population an

number houses in the county, there are thousands of housing transactions that occur in this 

housing market every year.  Therefore, housing data from this area will likely accommodate th

needs of our simulation exercise to use a sample size that is an order of magnitude larger t

that used in CDM.  The area is also well suited for our analysis because of differences in 

amenities across municipalities within the county.  This naturally gives rise to a need for 

implementing some of the m

e of the simulations. 

                                                 
8 While the IBA is based on the same equilibrium concept as the algorithm used by CDM, it has two desirable 
properties which set it apart and make it more appropriate for our study.  First, it can be demonstrated that the IBA 
will necessarily converge to an equilibrium, if one exists.  Second, the IBA avoids the need to store large assignment 
matrices in the computer’s memory, enabling us to increase the size of our simulated market to the point where it is 
reasonable to include spatial fixed effects and to use nonparametric methods.     
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Solving for a hedonic equilibrium using the Iterative Bidding Algorithm described 

earlier, requires defining the stock of housing and the joint distribution of income and 

preferences.  The stock of housing is defined using actual housing data originally obtained from

the Wake County Revenue Department.  The dataset has been used in a variety of contexts 

including; Fulcher (2002), Pope (2008), Phaneuf et al. (forthcoming) and Pope (forthcoming

The data spans the years 1992 to 2000 and contains approximately 104 thousand observations of 

houses that transacted over this time frame.  This dataset is much more complete than most 

datasets used in typical hedonic analyses because of detailed information about the square feet 

various components of the house (i.e. garages, decks, basements and attics).  However, to keep 

the simulation exercise as realistic as possible, we limit the variables to those found in typical 

hedonic analyses.  Furthermore, although we have information on the square feet of garages and 

the total number of fireplaces, we convert these two variables to dummy variables that i

 

).  

of 

ndicate 

whethe  

s, 

 
                                                

r or not a home has a garage or a fireplace.  This is the most common way in the literature

for information on these two housing characteristics to enter into a hedonic regression. 

Table 2 provides summary statistics of the housing prices (our dependent variable) and 

11 housing characteristics (our independent variables) used in our analysis.9  In our simlulation

each of these 11 variables enter into utility.  Note that this is approximately the same number of 

characteristics used in CDM.10   The average house in the dataset sells for approximately 201 

thousand dollars, has 2.5 baths, is on .5 acres, does not have a garage, has a fireplace, has 1900
 

9 We converted housing prices to rents for our simulations using the formula from Poterba (1992).  Poterba’s 
formula is:  PmriR p ]))(1[( πδττ −+++−−= .  Where for Wake County, τ  is the owner’s marginal tax rate 

and is equal to 15% according to Walsh (2007),   pτ  is the property tax rate and is 0.95% according to Wake 

county, i  is the interest rate and averages 7.76% over the 1992-2000 time period according to information reported 
by Freddie Mac,  r  is the risk premium set to 4% according to Poterba (1992), m is maintenance set to 2% 
according to Poterba (1992), δ  is depreciation set to 2% according to Poterba (1992) and π  is land appreciation 
rate set to 3.19% using the average of the BLS Housing Price Index over the 1992 to 2000 time frame.  
10 In the simulations we use 11 characteristics for the scenarios where all housing attributes are observed whereas 
CDM used 12 characteristics. 
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square feet of heated living space, is about 10 years old, is located in a census tract where median

household income is 68 thousand dollars, commute time to work is on average 23 minutes, 2

percent of people in the census tract are under 18, is 4 miles from the nearest park larger than 7

acres and is 8 miles from one of 4 major shopping areas in the county.  Table 3 presents the 

correlation coefficients for the independent variables.  The highest correlations occur between 

the “nearest shopping

 

7 

0 

 center” variable and the “median time to work” (0.77) and “nearest park” 

(0.73) v

luded 

y, 

e and longitude 

points o

cou

7), where 

 is a vector of continuous housing characteristics (e.g. # bathrooms, age) and  is a vector 

containing dummy variables indicating whether the home has a fireplace and a garage

 

ariables.  “Main heated living area” is also highly correlated with “garage” (0.67) and 

“bathrooms” (0.65). 

The data used in our simulations also included geographic information for each home.  

Variables that related each home to its corresponding census tract and block group were inc

along with the latitude and longitude of each home.  These variables do not enter utility directl

but are used to control for spatially delineated omitted variables in some of our simulation 

scenarios.  Figure 1 shows census tracts in the county in relation to the latitud

f each home in our dataset.  Notice how homes are concentrated in the center of the 

nty where the city of Raleigh is located.     

We represent each household’s utility using the Cobb-Douglas specification in (

jX jD

. 

( ) jijiij DXcU βα ++= lnln .  (7) 

 

Preferences for housing characteristics are assumed to be independent of income and 

distributed.  Selecting a gamma distribution recognizes that the distribution of preference

not be symmetric about the mean.  This makes it easier to calibrate the simulation to 

gamma 

s may 
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approximately reproduce the actual distribution of housing prices in Wake County.  The 

 

mple 

m 

e, a quasi-Newton algorithm is used to solve for values of the gamma shape and 

cale pa

our 

ir 

bility 

crease the sample size to 2000.  Overall, our simulated equilibria appear to provide a 

sonable approximation to the observable features of the housing market in Wake County.           

                                                

distribution of household income was defined using data from the 2000 Census of Population 

and Housing, which reports the number of households with income in each of 16 bins.  

 The price data for our Monte Carlo evaluation of functional form are generated by using

the Iterative Bidding Algorithm to solve for 100 hedonic equilibria, using two different sa

sizes, N=200 and N=2000.  On each Monte Carlo replication, households are randomly drawn 

from the nonparametric Census income distribution under the assumption that people are 

uniformly distributed within each bin.11  Then, given a random sample of homes and a rando

sample of incom

s rameters which minimize the distance between predicted and observed equilibrium 

housing prices. 

 Figure 1 contrasts the difference between the predicted and observed distributions of 

prices on a representative Monte Carlo replication.  For example, the solid line in panel A 

represents the empirical cumulative distribution function of actual prices for 200 homes in Wake 

County.12  The dashed line represents the equilibrium prices assigned to those homes in 

simulation.  While the predicted prices for some individual homes differ considerably from the

actual values, the simulation clearly reflects the general price trend in our data.  This is 

reinforced by the close match between the corresponding simulated and empirical proba

density functions in panel B.  Panels C and D illustrate that these results do not change when we 

in

rea

 
11 The lowest income bin (y<$10,000) was dropped under the assumption that households in this category are retired 
or purchasing housing out of savings.  The top income bin (y>$200,000) was truncated at $300,000 for the purposes 
of the simulation. 
12 Recall that these are annualized housing prices.  Converting them back to actual housing prices would require 
multiplying by 1/.1222. 
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4. Results 

The data on housing characteristics are combined with the simulated equilibrium prices 

generated on each of our 200 Monte Carlo replications to estimate 20 specifications for the 

hedonic price function.  We begin by considering the six functional forms from CDM’s original 

study: linear, semi-log, double-log, linear Box-Cox, quadratic, and quadratic Box-Cox.  The first

four have dominated the empirical hedonic literature for the past two decades (table 1).  Our nex

twelve specifications simply add dummy variables for Census tracts, and then Census blocks, to

the six functional forms from CDM.  This allows us to evaluate how the increasingly common

practice of adding spatial fixed effects to the hedonic price function influences performance in 

the presence of omitted variables.  Next, to compare spatial fixed effects with the parametric 

literature on spatial econometrics, we estimate a spatial error m

 

t 

 

 

odel based on a contiguity matrix 

for hom

ll 

 

hich are inherently discrete and 

by rem t.

es than commonly advocated. 

es within 0.13 degrees of one another.  Kim et al. (2003) provides a nice discussion of 

this type of spatial regression model in a hedonic application. 

Our final econometric specification is a fully nonparametric model which nests all of the 

parametric specifications from CDM and many popular semi-parametric specifications (Li and 

Racine [2007]).  Nonparametric methods are robust to model misspecification, making them we

suited to hedonic estimation.  Recent advances in these techniques have increased their appeal in

applied settings.  Specifically, Li and Racine (2007) document several ways in which the curse 

of dimensionality can be reduced by accounting for variables w

oving irrelevant variables from the outse   These features allow standard nonparametric 

estimation at smaller sample siz

 17



Equation (8) defines the model, where  represent the continuous covariates and  

represents discrete covariates. 

 ix iz  

 

iiii ( )xzmp ε+= , ,         (8) 

 

e.  We add 

rves to 

is 

 

s

.  This 

 a priori as is often the case 

p re needed

to obtain desirable statistical properties for the gradient of 

Four of our covariates are discrete: number of bathrooms, garage, fireplace, and ag

the unique identification number of each census tract as a fifth discrete covariate.  This se

control for unobserved characteristics which are correlated with tract id number.    

 We estimate the model in (8) using the Li-Racine generalized kernel local linear 

approach with bandwidths selected via least squares cross validation (Li and Racine, 2007).  Th

method has three features that make it well suited to hedonic estimation.  First, a generalized 

kernel estimator is capable of distinguishing between discrete and continuous covariates.  This

distinction is important because, as Racine and Li (2004) observe, the convergence rates on the 

bandwidths depend only on the number of continuous covariates.  Second, least squares cros  

validation has been shown to automatically remove irrelevant variables (Hall et. al. 2007)

occurs as the bandwidths of the irrelevant variables are set to their theoretical upper bounds.13  

While all of the variables in our model are relevant in the sense that they enter the utility 

function, their relevance in explaining equilibrium prices is unknown

for a subset of the covariates in empirical hedonic studies.  Finally, the local linear approach 

estimates the unknown function and its derivatives simultaneously.  

 An important caveat to our nonparametric approach is that large sam le sizes a  

( )⋅m .  The traditional convergence rate 

                                                 
13 In finite samples this amounts to selecting a bandwidth that is larger than two or three standard deviations of the 
continuous variables. 
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 is ( )of the nonparametric estimator of the unknown function ( )⋅m 21η +pO ,  

, and is the bandwidth associated with the continuous covariate.

derivative is 

η , where ∑=
q

η

th

=s
sh

1

2
1

  In ( ) 1
12

−= qhnh Lη

comp

sh

arison, the convergence rate for the 

s

ths ( )1−hη .  The presence of 

etween every household’s MWTP for each housing characteristic and 

e of the hedonic price function, 

21 sp

sh in the convergence rate slows the asymptotic speed with which estimates for the derivatives 

of ( )⋅m  converge to their true values.14   

 To evaluate the relative performance of the 20 different functional forms, we first 

+ηO

1−

lculate the difference b

the corresponding partial derivativ

ca

( )xP .  Equation (9) defines 

r ho old i’s valuation of characteris on Monte Carlo replication this difference fo

  

useh tic k r.  

( ) jkrk

sing

i

by u  (9) to constru mmary statistics for the distribution of

TP for the population of households.  Eq 0) defines

rikr

e follow CDM 

estimating MW

( kr

MWTPxxPe −∂∂= .  (9) 

 

W ct su  errors in 

uation (1  the normalized mean 

) and standard deviation (  attribute on a given replication.      krS ) of the errors for eachβ

 

∑−
ikr

kr MWTPN 1

i

e ,          kr=β
∑−

ikr
kr MWTPN 1=

i

krsS  ,      k K,...,1  (10) =

 

The normalized mean and standard deviation are simply the mean ( kre ) and standard deviation

( krs ) of the error from equation (9), divided by the average MWTP for characteristic k.   

 

                                                 
14 An alternative approach would be to use a local cubic estimator, which would improve the convergence of the 
derivative estimator at the expense of requiring more smoothness of the hedonic function. 
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 Like CDM, our simulation is designed to evaluate the potential for omitted variables to 

contaminate econometric estimates for MWTP.  Yet we focus on a different class of omitted 

variables.  CDM omit two structural characteristics—lot size and the number of rooms.  In the 

twenty years since their study, data on structural characteristics have become readily av

Detailed information on the characteristics of each home (including lot size and the number of

rooms) are virtually always included in the “assessor” property value databases which are now

used in most hedonic studies.

ailable.  

 

 

re the willingness-to-pay for a marginal increase in the distance of a 

home f

d 

y 

tance to the nearest park.  Table 3 illustrates that, all else 

onstant, moving to a home located further from parkland generally means moving to a lower-

                                                

15  Nevertheless, concern about omitted variable bias has 

intensified.  Since most studies seek to estimate the MWTP for spatially delineated amenities 

(e.g. air quality, flood risk, airport noise, proximity to registered sex offenders) concern about 

omitted variable bias has shifted to unobserved features of neighborhoods.  For example, 

suppose we seek to measu

rom a landfill.  If homeowners care about crime rates, and landfills tend to be located in 

high-crime areas, failing to include crime rates in the price function may artificially inflate 

estimates for MWTP.16   

In our omitted variable scenario, the econometrician observes only one of the spatially 

delineated attributes in table 1, nearest park.  That is, distance to the nearest shopping center is 

omitted along with the three Census block variables (median household income, % under 18, an

time-to-work).  Without any form of correction, omitting these four variables should artificiall

inflate estimates for the MWTP for dis

c

 
15 County assessors are often required to keep detailed records of the structural characteristics and transaction price 
of every home sold in the county for tax purposes.  This public information is collected by several commercial 
vendors, including Dataquick and TransAmerica Intellitech, who package it in electronic databases for sale to 
researchers and marketing firms.     
16 Spatial dummy variables are often included in the price function with the intention of “absorbing” the price effects 
of unobserved neighborhood characteristics. 
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income community, experiencing a longer commute, and increasing the distance to shopping 

centers, all of which decrease utility.  

 

4.1. Comparison of Basic Results to CDM 

 

Table 4 summarizes our basic results for the first six functional forms, providing a quick 

comparison to CDM.  The summary measures kβ , kS , and kβ  are calculated over all 100

Monte Carlo replications and over the seven housing characteristics which enter every 

econometric specification (bathrooms, acreage, garage, fireplace, heated area, age, and

For example, when all 11 characteristics are observed and a semi-log model is used in the 

simulation with 200 homes, estimates of the MWTP for individual characteristics differ from the 

true MWTP in absolute terms by 54% on average, and the maximum difference for any 

characteristic is 93%.  Moving from left to right in the table, the econometric flexib

 

 park).  

ility increases 

from a s in 

important consequences.  First, it changes the relative performance of some of the specifications.  

simple linear specification to a quadratic model of Box-Cox transformed variables.  A

CDM, when every attribute which influences households’ location choices is used in the 

estimation, the quadratic Box-Cox model outperforms all other functional forms.   

Increasing the size of the simulated market from 200 homes to 2000 homes has two 

The double-log specification has the fourth largest maximum kβ  when N=200 and the second 

largest whe N=2000.  Similarly, the quadratic model has by far the largest kS  when N=200, an

an intermediate value when N=2000.  The second important consequence of increasing the 

market size is that it decreases the magnitude of the capitalization bias reflected in the average

n d 

 

values for kβ .  That is, when households with heterogeneous preferences face a discrete set of 
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choices they may be unable to sort themselves according to every characteristic, as Banzhaf 

(2003) observed.  As a result, the willingness-to-pay for some housing attributes may be 

than fully capitalized into equilibrium prices.

less 

at 

 

 

increasing N tends to “fill in” preference space, which increases 

the com

he 

M, 

cores the 

porta  for 

 advances in 

onparametric methods and new strategies for addressing omitted variables, we report the full set 

of resu

                                                

17  Indeed, the fourth row of the table illustrates th

the MWTP for housing characteristics is systematically underestimated.  Notice that the 

magnitude of this effect decreases when the market size is increased to 2000 in simulation #2.  

There are two reasons.  Increasing N tends to “fill in” the space of housing characteristics, which

increases the opportunity for households to sort themselves across the urban landscape according

to their preferences.  Likewise, 

petition between households, requiring their equilibrium bids to more fully reflect their 

maximum willingness-to-pay.  

When four variables are omitted in simulation #3, the average normalized error and t

maximum error increase in every econometric specification except the double-log.  As in CD

the quadratic Box-Cox appears to be affected the most.  While the direction of this effect is 

consistent with CDM, the magnitude is noticeably smaller.  This difference unders

im nce of repeating our simulations for different data sets and alternative specifications

the parametric form of the utility function—two of the next steps in this research. 

 To compare the performance of the six specifications from CDM with

n

lts from all 20 econometric specifications in tables 5 through 8.           

 

4.2.  New Strategies for Dealing with Omitted Variable Bias: Cross-Section 

Columns (7) through (13) in Table 5 present the specifications that utilize two new strategies for 

dealing with omitted variable bias for the case where all housing attributes are observed and 
 

17 See Starrett (1981) for a general discussion. 
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there are 200 observations.  Colum  (7) through (12) include 70-75 census tract dummies in the 

six base specifications and column (13) runs the semi-log functional form with a spatial error 

correction.  Focusing on average 

ns

kβ , it can be seen that the linear, semi-log, double-log and

linear box-cox models all make modest improvements whereas the quadratic and box-cox 

quadratic models perform more poor

 the 

ly than without census tract controls.  For example, the 

emi-lo e as its 

um

s g model goes from 0.56 to 0.52.  The spatial error model performs about the sam

semi-log counterpart in col n (2). 

 Now focusing on the corresponding columns in Table 6, it can be seen that the 

improvements in average  kβ  is even more substantial for the linear, semi-log, double-log a

the linear box-cox models when some housing attributes are unobserved and there are 200 

observations.  For example, the linear model improves from 0.67 to 0.56 when census tra

controls are added to the specification.  Furthermore, with unobserved attributes, the census trac

controls improve the performance of the more flexible quadratic and quadratic box-cox 

specifications.  The quadratic goes from 0.51 to 0.43 and the quadratic box-cox goes from 0.38 

to 0.30.    When all attributes were observed in Table 5, the quadratic model performed better 

than all but the quadratic box-cox model.  However in Table 6, much like what was reported by

CDM, when some housing attributes are unobserved the quadratic performs worse than two o

linear counterparts.  However, with the inclusion of census tract dummies the quadratic model 

closes the performance gap with the two linear models actually barely outperforming one of

them.  The inclusion of t

nd 

ct 

t 

 

f its 

 

he census tract dummies into the quadratic box-cox model dramatically 

prov

s has 

im es its performance such that it appears to be almost as accurate as when all housing 

attributes are observed. 

 Tables 7 and 8 correspond with Tables 5 and 6, but now the number of observation
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been increased to 2000.  Many of the conclusions we drew from tables 5 and 6 on the value

adding the spatial dummies holds when the sample size increases as well.  One important 

difference is that the relative performance of some of the specifications has changed. 

example, the double-log model performs more poorly relative to some of its counterparts when 

the sample size is increased to 2000.  In Table 8 we also tried the same set of 6 base

 of 

 For 

 

ecifications with even more disaggregated spatial controls.  We included census bock group 

dummi ovement beyond previous specifications.   

4.3.  Nonparametric Estimator 

 

flects 

pite he 

all sample size in tables 5 and 6, the nonparametric estimator outperforms the linear and semi-

g models in its ability to recover the MWTP for distance to the nearest park.             

 

n 

rous 

sp

es and found a very modest impr

 

 

Of the 14 specifications summarized in tables 5 and 6, the nonparametric estimator has the 

largest average error (measured in absolute terms) and is also the most sensitive to the presence

of omitted variables.  It seems likely that the model’s relatively poor performance simply re

the small sample size.  We are in the process of repeating the nonparametric estimation for the 

N=2000 scenario, where we would expect the slow convergence speed for estimates of the 

gradient of the hedonic price function to pose less of a problem.  Finally, note that des  t

sm

lo

 

5. Conclusions 
 

The hedonic pricing model is widely accepted as a method for estimating the marginal 

willingness to pay for spatially delineated amenities.  Empirical applications typically rely o

one of three functional forms—linear, semi-log, and double-log—and rarely involve rigo
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specification testing.  This phenomenon is largely due to an influential simulation study by 

Cropper, Deck and McConnell (1988) that found among other things that simpler linear 

specifications outperformed more flexible functional forms in the face of omitted variables.  In 

the 20 years that have elapsed since their study, there have been major computational adva

and significant chang

nces 

es in the way hedonic price functions can be estimated.  The purpose of our 

paper i  

 

 fixed 

oes not 

the sample size from CDM’s 200 observations to a 

sample  

s.  

 

ith results derived from the proposed extensions to 

s to update and extend the CDM (1988) simulations to investigate current issues in

hedonic modeling.   

Three preliminary results obtained from our theoretically consistent Monte Carlo 

simulation have been highlighted in this paper:  (i) we find that adding spatial fixed effects 

(census tract dummies) to linear models does improve their performance.  This is true both when

all attributes are observed, and when some attributes are unobserved,  (ii) adding the spatial

effects to the more flexible specifications such as the quadratic and quadratic box-cox d

improve their performance when all housing attributes are observed, however, when some 

housing attributes are unobserved, the spatial fixed effects significantly improves their 

performance as well, and (iii) increasing 

 size of 2000 (which is more representative of modern applications) changes the relative

performance of different specifications. 

Our intention for future research is to extend our analysis in three directions.  First we 

will study the effect of alternative choices of utility functions on the results of our simulation

Second we will simulate a panel of housing data to explore issues of hedonic functional form in 

quasi-experimental analyses that identify an effect over time.  Finally we will run additional 

spatial regression, parametric and nonparametric specifications for larger sample sizes.  We think

that the results presented in this paper along w
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this work can provide additional guidance for empirical specification of hedonic price functions 

and will fill an important gap in the literature.

 26



 

Table 1:  Features of Empirical Hedonic Applications: 1998-2008 
 

CDM SSCI (61)

Functional form # using lin-lin, log-lin, log-log 47
# using Box-Cox 12

Dummy Variables Mean share of covariates which are 0/1 17% 36%
 

Sample Size Median # observations 200 1,679
published in 1989-1998 593
published in 1999-2008 2,066

Distribution of studies by # observations
0 to 200 1 5
201 to 500  6
501 to 1,000  16
1,001 to 10,000  25
more than 10,000  9

 
Housing Market Geography (#)

smaller than a city  5
city or county 1 24
multiple cities or counties  28
nation  4

Time Period (#)
0 to 1 year  16
1 to 2 years 1 11
2 to 5 years  14
5 to 10 years  11
more than 10 years  9

Space and Time # with spatial error or spatial lag structure  7
# exploiting panel structure of data  15

# with time dummies or time trend  23
day 3
month 3
quarter 2
year 15

# with spatial dummies  35
neighborhood 13
city or county 20
region 2

Total # studies 
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Table 2: Summary Statistics for Wake County, North Carolina 
 

type Variable Units Mean Std. Min Max
price price $1,000 201 105 16 2976
structural bathrooms # 2.50 0.76 1.00 10.50
structural acreage # 0.50 0.93 0.01 97.52
structural garage dummy 0.29 0.26 0.00 1.00
structural fireplace dummy 0.91 0.36 0.00 1.00
structural main heated living area sqft (1000) 1.93 0.73 0.40 9.08
structural age years 10.38 15.05 1.00 99.00
block median household income $1,000 67.87 21.30 8.32 146.76
block median time to work minutes 22.71 4.49 7.00 37.00
block % under 18 % 26.77 5.18 2.15 49.84
amenity nearest park miles 4.34 2.84 0.41 18.59
amenity nearest shopping center miles 7.86 4.76 0.39 26.07

 
 

 

 

 

Table 3: Correlation Coefficients for Covariates 
 

type Variable bath-rooms acreage garage fireplace
main 

heated 
living area

age
median 

household 
income

median 
time to 
work

% under 
18

nearest 
park

nearest 
shopping 

center

structural bathrooms 1.00
structural acreage 0.07 1.00
structural garage 0.53 0.07 1.00
structural fireplace 0.34 0.04 0.23 1.00
structural main heated living area 0.65 0.14 0.67 0.32 1.00
structural age -0.39 0.04 -0.43 -0.18 -0.28 1.00
block median household income 0.50 0.06 0.50 0.27 0.57 -0.29 1.00
block median time to work -0.04 0.14 0.08 -0.01 -0.07 -0.37 -0.08 1.00
block % under 18 0.22 0.07 0.32 0.07 0.23 -0.46 0.50 0.47 1.00
amenity nearest park -0.11 0.14 -0.07 -0.08 -0.14 -0.13 -0.18 0.54 0.20 1.00
amenity nearest shopping center -0.10 0.18 -0.02 -0.06 -0.11 -0.28 -0.18 0.77 0.37 0.73 1.00  

 

 28



 29

Table 4: Preliminary Comparison to CDM 
 

Simulation Criterion Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic

Maximum | βk | 0.97 0.97 0.93 1.08 0.88 0.62
Average | βk | 0.62 0.54 0.54 0.50 0.47 0.30
Average Sk 1.44 1.44 1.46 1.48 1.94 1.40
Average βk -0.46 -0.45 -0.28 -0.19 -0.43 -0.30

Maximum | βk | 0.98 0.98 1.38 1.56 0.90 0.76
Average | βk | 0.69 0.60 0.59 0.55 0.49 0.27
Average Sk 1.39 1.39 1.47 1.50 1.40 1.24
Average βk -0.41 -0.41 -0.19 -0.10 -0.37 -0.27

Maximum | βk | 1.39 1.14 0.92 1.01 0.96 0.81
Average | βk | 0.78 0.66 0.58 0.59 0.55 0.41
Average Sk 1.39 1.41 1.44 1.55 1.41 1.27
Average βk -0.26 -0.25 -0.06 -0.02 -0.23 -0.07

#3

No Omitted Variables, N=200

No Omitted Variables, N=2000

Four Omitted Variables, N=2000

#1

#2

  
 
 



Table 5: Errors in Measuring MWTP When All Housing Attributes are Observed, N=200  

Mean Error / Mean True Price 
(Standard Deviation of Error / Mean True Price) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic

Spatial 
Error 
Model

Non-
parametric

-0.106 -0.223 -0.313 -0.206 -0.294 -0.117 -0.104 -0.252 -0.149 -0.140 -0.129 -0.254 -0.217 -0.974
(1.146) (1.144) (1.188) (1.224) (2.025) (1.374) (1.146) (1.141) (1.206) (1.213) (3.006) (2.161) (1.144) (1.176)

-0.421 -0.477 0.932 1.079 0.138 -0.191 -0.403 -0.467 0.854 0.829 0.092 -0.125 -0.481 -0.322
(0.958) (0.947) (1.524) (1.797) (1.109) (1.193) (0.958) (0.948) (1.486) (1.485) (1.239) (1.580) (0.947) (0.966)

-0.485 -0.286 -0.479 -0.418 -0.432 -0.437 -0.445 -0.265 -0.448 -0.431 -0.299 -0.444 -0.289 -0.932
(1.463) (1.435) (1.437) (1.437) (1.974) (1.517) (1.463) (1.435) (1.436) (1.436) (3.186) (1.590) (1.435) (1.451)

-0.925 -0.663 -0.774 -0.718 -0.842 -0.625 -0.897 -0.697 -0.725 -0.706 -2.549 -0.695 -0.649 -1.000
(1.494) (1.480) (1.484) (1.482) (2.805) (1.610) (1.494) (1.483) (1.483) (1.482) (5.798) (2.808) (1.480) (1.494)

0.572 0.323 -0.133 -0.163 -0.134 -0.117 0.381 0.178 -0.238 -0.224 -0.389 -0.252 0.332 1.225
(1.090) (1.131) (1.157) (1.179) (1.866) (1.314) (1.090) (1.117) (1.148) (1.152) (2.914) (2.352) (1.133) (1.237)

-0.974 -0.969 -0.608 -0.460 -0.883 -0.392 -0.949 -0.944 -0.599 -0.583 -0.862 -0.422 -0.969 -0.836
(1.890) (1.887) (1.621) (1.522) (1.867) (1.447) (1.890) (1.884) (1.616) (1.606) (1.854) (1.484) (1.887) (1.819)

0.039 0.103 -0.199 -0.133 -0.211 -0.158 0.001 0.113 -0.281 -0.251 -0.347 0.004 0.110 0.244
(1.165) (1.175) (1.228) (1.271) (2.165) (1.427) (1.165) (1.198) (1.230) (1.242) (4.501) (2.684) (1.176) (1.308)

-0.185 -0.147 -0.407 -0.429 -0.139 -0.048 -0.204 -0.055 -0.432 -0.417 -0.274 -0.078 -0.079 -0.660
(1.714) (1.705) (1.646) (1.641) (2.654) (1.772) (1.714) (1.718) (1.661) (1.664) (4.346) (2.800) (1.706) (1.843)

-1.176 -1.259 -0.681 -0.596 -0.018 -0.074 -1.032 -1.046 -0.429 -0.423 -0.568 -0.200 -1.287 -0.733
(1.323) (1.367) (1.342) (1.357) (3.347) (1.699) (1.323) (1.359) (1.367) (1.378) (5.943) (3.253) (1.369) (1.559)

-0.873 -0.850 -0.558 -0.456 -0.576 -0.190 -0.728 -0.727 -0.446 -0.435 -0.524 -0.107 -0.843 -0.730
(2.055) (2.042) (1.812) (1.702) (1.957) (1.339) (2.055) (2.033) (1.757) (1.746) (2.093) (1.546) (2.042) (2.018)

-0.842 -0.849 -0.363 -0.273 -0.452 -0.121 -0.960 -0.932 -0.430 -0.421 -0.613 -0.197 -0.796 -0.750
(2.569) (2.557) (2.007) (1.809) (2.438) (1.636) (2.569) (2.564) (2.069) (2.047) (2.646) (2.011) (2.554) (2.518)

Census Tract Dummies   x x x x x x x

Maximum | βk | 1.18 1.26 0.93 1.08 0.88 0.62 1.03 1.05 0.85 0.83 2.55 0.69 1.29 1.23
Average | βk | 0.60 0.56 0.50 0.45 0.37 0.22 0.55 0.52 0.46 0.44 0.60 0.25 0.55 0.76
Average Sk 1.53 1.53 1.49 1.49 2.20 1.48 1.53 1.53 1.50 1.50 3.41 2.21 1.53 1.58
Average βk -0.49 -0.48 -0.33 -0.25 -0.35 -0.22 -0.49 -0.46 -0.30 -0.29 -0.59 -0.25 -0.47 -0.50

median time to work

% under 18

nearest park

nearest shopping center

fireplace

main heated living area

age

median household income

bathrooms

acreage

garage
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T 0 able 6: Errors in Measuring MWTP When Some Housing Attributes are Unobserved, N=20 

Mean Error / Mean True Price 
(Standard Deviation of Error / Mean True Price) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic

Spatial 
Error 
Model

Non-
parametric

0.223 0.115 -0.083 -0.065 0.104 0.245 -0.057 -0.198 -0.107 -0.118 -0.236 -0.146 0.038 -0.923
(1.146) (1.161) (1.212) (1.231) (1.794) (1.796) (1.146) (1.142) (1.211) -1.210 (1.944) (1.583) (1.156) (1.166)

-0.489 -0.544 0.460 0.507 -0.197 -0.331 -0.404 -0.469 0.784 0.714 -0.007 -0.190 -0.502 -0.518
(0.958) (0.946) (1.309) (1.390) (1.010) (1.197) (0.958) (0.948) (1.452) -1.391 (1.089) (1.232) (0.947) (0.975)

-0.443 -0.244 -0.501 -0.477 -0.430 -0.473 -0.428 -0.247 -0.441 -0.429 -0.471 -0.455 -0.243 -0.866
(1.463) (1.436) (1.438) (1.438) (1.802) (1.585) (1.463) (1.435) (1.436) -1.437 (1.856) (1.541) (1.435) (1.487)

-0.871 -0.604 -0.741 -0.694 -0.929 -0.495 -0.878 -0.678 -0.721 -0.713 -0.935 -0.622 -0.629 -1.000
(1.494) (1.479) (1.483) (1.483) (1.907) (1.741) (1.494) (1.482) (1.483) -1.482 (2.465) (1.701) (1.480) (1.494)

1.016 0.782 0.724 0.738 0.632 0.637 0.504 0.319 -0.035 -0.019 -0.034 0.123 0.699 2.004
(1.090) (1.194) (1.272) (1.316) (1.787) (1.629) (1.090) (1.131) (1.169) -1.168 (1.842) (1.467) (1.181) (1.279)

-0.986 -0.982 -0.746 -0.686 -0.933 -0.324 -0.950 -0.945 -0.608 -0.619 -0.875 -0.391 -0.976 -0.904
(1.890) (1.888) (1.707) (1.658) (1.874) (1.438) (1.890) (1.884) (1.622) -1.633 (1.862) (1.453) (1.887) (1.898)

-0.666 -0.643 -0.195 -0.144 -0.363 -0.126 -0.670 -0.652 -0.300 -0.308 -0.450 -0.177 -0.735 -0.557
(2.055) (2.028) (1.654) (1.611) (1.981) (1.562) (2.055) (2.029) (1.694) -1.714 (1.968) (1.480) (2.034) (2.055)

Census Tract Dummies   x x x x x x x

Maximum | βk | 1.02 0.98 0.75 0.74 0.93 0.64 0.95 0.94 0.78 0.71 0.93 0.62 0.98 2.00
Average | βk | 0.67 0.56 0.49 0.47 0.51 0.38 0.56 0.50 0.43 0.42 0.43 0.30 0.55 0.97
Average Sk 1.44 1.45 1.44 1.45 1.74 1.56 1.44 1.44 1.44 1.43 1.86 1.49 1.45 1.48
Average βk -0.32 -0.30 -0.15 -0.12 -0.30 -0.12 -0.41 -0.41 -0.20 -0.21 -0.43 -0.27 -0.34 -0.39

nearest park

main heated living area

age

bathrooms

acreage

garage

fireplace
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Table 7: Errors in Measuring MWTP When All Housing Attributes are Observed, N=2000  

Mean Error / Mean True Price 
(Standard Deviation of Error / Mean True Price) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic Linear Semi-Log Double-
Log

Box-Cox 
Linear Quadratic Box-Cox 

Quadratic

0.064 -0.073 -0.208 -0.099 -0.310 -0.039 0.076 -0.058 -0.066 -0.070 -0.266 -0.025
(1.046) (1.036) (1.126) (1.174) (1.023) (1.063) (1.046) (1.037) (1.147) -1.145 (0.986) (1.059)

-0.483 -0.561 1.383 1.565 0.218 -0.014 -0.488 -0.570 1.302 1.272 0.130 -0.039
(0.828) (0.816) (1.769) (2.153) (0.846) (1.145) (0.828) (0.816) (1.724) -1.703 (0.842) (1.139)

-0.566 -0.346 -0.560 -0.497 -0.415 -0.527 -0.479 -0.282 -0.480 -0.464 -0.359 -0.532
(1.476) (1.446) (1.451) (1.448) (1.539) (1.515) (1.476) (1.445) (1.448) -1.448 (1.590) (1.516)

-0.960 -0.702 -0.822 -0.774 -0.821 -0.758 -0.925 -0.728 -0.771 -0.760 -0.896 -0.758
(1.473) (1.460) (1.464) (1.461) (1.520) (1.469) (1.473) (1.460) (1.462) -1.461 (1.526) (1.468)

0.930 0.664 0.017 -0.012 0.195 -0.024 0.712 0.470 -0.137 -0.138 0.157 -0.022
(0.989) (1.074) (1.120) (1.151) (1.090) (0.982) (0.989) (1.045) (1.095) -1.093 (1.045) (0.978)

-0.980 -0.976 -0.609 -0.477 -0.901 -0.412 -0.962 -0.957 -0.604 -0.605 -0.899 -0.421
(1.894) (1.891) (1.620) (1.524) (1.878) (1.444) (1.894) (1.890) (1.617) -1.620 (1.878) (1.450)

0.295 0.368 -0.148 -0.094 -0.187 -0.037 0.079 0.116 -0.377 -0.359 -0.093 -0.089
(1.078) (1.100) (1.183) (1.236) (1.129) (1.121) (1.078) (1.079) (1.147) -1.148 (1.094) (1.172)

-0.116 -0.084 -0.418 -0.473 -0.046 -0.044 -0.060 0.067 -0.411 -0.396 0.060 -0.093
(1.775) (1.756) (1.682) (1.676) (1.752) (1.382) (1.775) (1.760) (1.682) -1.682 (1.883) (1.427)

-1.520 -1.602 -0.841 -0.756 0.095 -0.185 -0.936 -0.926 -0.433 -0.437 -0.509 -0.201
(1.285) (1.352) (1.288) (1.298) (1.770) (1.324) (1.285) (1.282) (1.320) -1.319 (1.553) (1.320)

-0.877 -0.854 -0.526 -0.420 -0.585 -0.124 -0.710 -0.697 -0.367 -0.366 -0.597 -0.138
(2.035) (2.021) (1.729) (1.582) (1.909) (1.048) (2.035) (2.007) (1.637) -1.637 (1.899) (1.044)

-0.894 -0.907 -0.306 -0.204 -0.443 -0.045 -0.973 -0.971 -0.248 -0.250 -0.438 -0.039
(2.518) (2.509) (1.828) (1.559) (2.345) (1.301) (2.518) (2.515) (1.779) -1.783 (2.354) (1.247)

Census Tract Dummies   x x x x x x

Maximum | βk | 1.52 1.60 1.38 1.56 0.90 0.76 0.97 0.97 1.30 1.27 0.90 0.76
Average | βk | 0.70 0.65 0.53 0.49 0.38 0.20 0.58 0.53 0.47 0.47 0.40 0.21
Average Sk 1.49 1.50 1.48 1.48 1.53 1.25 1.49 1.49 1.46 1.46 1.51 1.26
Average βk -0.46 -0.46 -0.28 -0.20 -0.29 -0.20 -0.42 -0.41 -0.24 -0.23 -0.34 -0.21

% under 18

nearest park

nearest shopping center

fireplace

main heated living area

age

median household income

median time to work

bathrooms

acreage

garage
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Table 8: Errors in Measuring MWTP When Some Housing Attributes are Unobserved, N=2000  

Mean Error / Mean True Price 
(Standard Deviation of Error / Mean True Price) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

x-Cox 
uad.

.07
.09)

.11
.10)

.54
.51)

.72
.47)

.05

.03)

.37
.42)

.08
.13)

.72

.28

.25

.26

Linear Semi-Log Double-
Log

Box-Cox 
Linear Quad. Box-Cox 

Quad. Linear Semi-Log Double-
Log

Box-Cox 
Linear Quad. Box-Cox 

Quad. Linear Semi-Log Double-
Log

Box-Cox 
Linear Quad. Bo

Q

0.43 0.30 0.03 -0.14 0.22 0.38 0.13 0.00 -0.01 -0.04 -0.17 -0.02 0.10 -0.02 -0.03 -0.07 -0.22 -0
(1.05) (1.07) (1.16) (1.09) (1.04) (1.15) (1.05) (1.04) (1.16) (1.14) (0.99) (1.10) (1.05) (1.04) (1.15) (1.13) (0.99) (1

-0.52 -0.60 0.86 1.01 -0.05 -0.21 -0.49 -0.57 1.20 1.07 0.04 -0.10 -0.48 -0.57 1.24 1.10 0.07 -0
(0.83) (0.82) (1.49) (1.46) (0.84) (0.95) (0.83) (0.82) (1.67) (1.52) (0.84) (1.09) (0.83) (0.82) (1.69) (1.51) (0.84) (1

-0.53 -0.31 -0.57 -0.51 -0.47 -0.54 -0.47 -0.28 -0.48 -0.46 -0.45 -0.53 -0.47 -0.29 -0.49 -0.48 -0.44 -0
(1.48) (1.45) (1.45) (1.49) (1.53) (1.54) (1.48) (1.44) (1.45) (1.45) (1.46) (1.51) (1.48) (1.44) (1.45) (1.45) (1.44) (1

-0.89 -0.63 -0.77 -0.70 -0.96 -0.65 -0.92 -0.72 -0.76 -0.76 -0.91 -0.69 -0.91 -0.74 -0.77 -0.78 -0.93 -0
(1.47) (1.46) (1.46) (1.48) (1.56) (1.50) (1.47) (1.46) (1.46) (1.46) (1.52) (1.48) (1.47) (1.46) (1.46) (1.46) (1.53) (1

1.39 1.14 0.92 0.97 0.92 0.81 0.82 0.58 0.02 0.03 0.28 0.19 0.70 0.46 -0.12 -0.11 0.17 0
(0.99) (1.16) (1.30) (1.17) (1.10) (1.16) (0.99) (1.06) (1.12) (1.11) (1.03) (1.05) (0.99) (1.04) (1.10) (1.08) (1.04) (1

-0.99 -0.99 -0.76 -0.72 -0.95 -0.29 -0.96 -0.96 -0.62 -0.65 -0.90 -0.37 -0.96 -0.96 -0.61 -0.66 -0.90 -0
(1.89) (1.89) (1.71) (1.92) (1.88) (1.89) (1.89) (1.62) (1.66) (1.88) (1.42) (1.89) (1.89) (1.62) (1.66) (1.88) (1

-0.69 -0.67 -0.11 -0.05 -0.31 0.03 -0.66 -0.64 -0.20 -0.22 -0.42 -0.04 -0.63 -0.63 -0.22 -0.25 -0.40 -0
(2.04) (2.01) (1.51) (2.21) (1.94) (1.22) (2.04) (2.00) (1.55) (1.60) (1.93) (1.15) (2.04) (2.00) (1.56) (1.63) (1.91) (1

Census Tract Dummies x x x x x x
Census Block Dummies    x x x x x x

Maximum | βk | 1.39 1.14 0.92 1.01 0.96 0.81 0.96 0.96 1.20 1.07 0.91 0.69 0.96 0.96 1.24 1.10 0.93 0
Average | βk | 0.78 0.66 0.58 0.59 0.55 0.41 0.64 0.54 0.47 0.46 0.45 0.28 0.61 0.52 0.50 0.49 0.45 0
Average Sk 1.39 1.41 1.44 1.55 1.41 1.27 1.39 1.39 1.43 1.42 1.38 1.26 1.39 1.38 1.43 1.42 1.38 1
Average βk -0.26 -0.25 -0.06 -0.02 -0.23 -0.07 -0.36 -0.37 -0.12 -0.15 -0.36 -0.22 -0.38 -0.39 -0.14 -0.18 -0.38 -0

 

bathrooms

acreage

garage

nearest park

fireplace

main heated living area

age

 

(1.37)
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ure 1:  Wake County Housing Locations Relative to Census Tracts 
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Figure 2:  Reproducing the Empirical Distribution of Housing Prices in Wake County 
 

    
A.  Deviations from price CDF ( I = 200 )  B.  Deviations from price PDF ( I = 200 ) 
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.  Dev ns from price PDF ( I = 2000 ) 
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